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certain special families of connections and we study its interactions with several
well-known constructions from the theory of Frobenius and F-manifolds.
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1. Introduction

The concept of an F-manifold was introduced by Hertling and Manin [6].
Definition 1.1. Let (M, �, e) be a manifold with a fiber-preserving commutative,
associative, bilinear multiplication � on T M , with unit field e . Then (M, �, e) is an
F-manifold if, for any vector fields X,Y 2 X (M),

LX�Y (�) = X � LY (�) + Y � LX (�). (1.1)

These F-manifolds were originally defined in the context of Frobenius manifolds
(all Frobenius manifolds are examples of F-manifolds) and singularity theory, and
have more recently found applications in other areas of mathematics. On writing
˜C(X,Y ) = X � Y the F-manifold condition may be expressed succinctly, in terms
of the Schouten bracket, as [

˜C, ˜C] = 0 . This provided the starting point for the
construction of multi-field generalizations and the deformation theory of such ob-
jects [17]. Interestingly, such conditions date back to the work of Nijenhuis [19]
and Yano and Ako [22].

Applications of F-manifolds within the theory of integrable systems, and more
specifically, equations of hydrodynamic type, have also appeared [10–13]. In a
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sense an F-manifold is a more general and fundamental object than a Frobenius
manifold, so it is not surprising that such applications have appeared, providing
generalizations of ideas originally formulated for Frobenius manifolds.

Frobenius manifolds by definition come equipped with a metric, in fact a pen-
cil of metrics, and the corresponding Levi-Civita connections play a central role in
the theory of these manifolds. In [15] Manin dispensed with such metrics and con-
sidered F-manifolds with compatible flat connections. Many of the fundamental
properties remain in this more general setting. Applications of F-manifolds with
compatible flat connections have also recently appeared in the theory of integrable
systems [12,13].

Given an F-manifold with an invertible vector field E (i.e. there is a vector field
E�1 such that E�1

� E = e) one may define a new, dual or twisted, multiplication

X ⇤ Y := X � Y � E�1, 8X,Y 2 X (M) . (1.2)

This is clearly commutative and associative with E being the unit field. Such a
multiplication was introduced by Dubrovin [3] in the special case when E is the
Euler field of a Frobenius manifold and used it to define a so-called almost dual
Frobenius manifold. The adjective ‘almost’ is used since, while the new objects
satisfy most of the axioms of a Frobenius manifold, they crucially do not satisfy
all of them. A question, raised by Manin [15], is the characterization of those
vector fields – called eventual identities – for which ⇤ defines an F-manifold. This
question was answered by the authors in [4]. At the level of F-manifold structures
one has a perfect duality: only when metrics are introduced with certain specified
properties is this duality broken to almost-duality. The overall aim of this paper
is to construct, by an appropriate twisting by an eventual identity, a duality for F-
manifolds with eventual identities and certain special families of connections and
to study various applications of such a duality.

1.1. Outline

This paper is structured as follows:
In Section 2 we review the basic facts we need about eventual identities and

compatible connections on F-manifolds. For more details on these topics, see [4,7,
15].

In Section 3 we give examples of eventual identities. The most important class
of eventual identities are (invertible) Euler fields and their powers on Frobenius, or,
more generally, F-manifolds. We describe the eventual identities on semi-simple
F-manifolds, and we construct a class of structures close to Frobenius manifolds,
which admit an eventual identity, but no Euler field affine in flat coordinates.

The motivation for our treatment from Section 4 is the second structure con-
nection of a Frobenius manifold (M, �, e, E, g̃) and the way it is related to the first
structure connection (i.e. the Levi-Civita connection of g̃). The first structure con-
nection is a compatible connection on the underlying F-manifold (M, �, e) of the
Frobenius manifold. The second structure connection is the Levi-Civita connection
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of the second metric g(X,Y ) = g̃(E�1
� X,Y ) and is compatible with the dual

multiplication X ⇤ Y = X � Y � E�1. With this motivation, it is natural to ask if
the dual (M, ⇤,E) of an F-manifold (M, �, e,E) with an eventual identity E inher-
its a canonical compatible, torsion-free connection, from such a connection r̃ on
(M, �, e). We prove that there is a canonical family, rather than a single connection.
This family consists of all connections of the form

rXY := E � r̃X (E�1
� X) + E � r̃Y (E�1) � X + V � X � Y, (1.3)

where V is an arbitrary vector field. It arises naturally by asking that it con-
tains torsion-free connections, which are compatible with the dual multiplication
X ⇤ Y = X � Y � E�1 and are related to r̃ in a similar way as the first and sec-
ond structure connections of a Frobenius manifold are related (see Theorem 4.1
and the comments before). Finally we define the second structure connection of
(M, �, e,E, r̃) and we show that it belongs to the canonical family (1.3) (see Defi-
nition 4.4 and Proposition 4.6).

In Section 5 we develop our main result (see Theorem 5.3). Here we introduce
the notion of special family of connections, which plays a key role throughout this
paper, and we interpret Theorem 4.1 as a duality (or an involution) on the set of
F-manifolds with eventual identities and special families of connections.

The following sections are devoted to applications of our main result. In Sec-
tion 6 we construct a duality for F-manifolds with eventual identities and compat-
ible, torsion-free connections preserving the unit fields (see Proposition 6.2 with
U = 0). Therefore, while in the setting of Frobenius manifolds the almost dual-
ity is not symmetric (the unit field of a Frobenius manifold is parallel, but the unit
field of a dual almost Frobenius manifold is not, in general), in the larger setting
of F-manifolds there is a perfect symmetry at the level of compatible, torsion-
free connections which preserve the unit fields. We also construct a duality for
F-manifolds with eventual identities and second structure connections (see Propo-
sition 6.3). These dualities follow from our main result (Theorem 5.3 of Section 5
mentioned above), by noticing that we can fix a connection from a special family
by prescribing the covariant derivative of the unit field (see Lemma 6.1).

In Section 7 we consider compatible, torsion-free connections on an F-mani-
fold (M, �, e), which satisfy the curvature condition

V � RZ ,Y (X) + Y � RV,Z (X) + Z � RY,V (X) = 0, 8X,Y, Z , V, (1.4)

introduced and studied in [12], in connection with the theory of equations of hy-
drodynamic type. This condition serves as the compatibility condition for an over-
determined linear system for families of vector fields that generate the symmetries
of a system of hydrodynamic type. In the case of a semi-simple F-manifold, when
canonical coordinates exist, this curvature condition reduces to the well-known
semi-Hamiltonian condition first introduced by Tsarev [21]. We show that con-
dition (1.4), if true, is independent of the choice of connection in a special family
and is preserved by the duality for F-manifolds with eventual identities and special
families of connections (see Theorem 7.1).
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In the same framework, in Section 8 we consider flat, compatible, torsion-free
connections on F-manifolds and their behaviour under the duality. It is easy to
see that a special family of connections always contains non-flat connections (see
Lemma 8.1). Our main result in this section is a necessary and sufficient condi-
tion on the eventual identity, which insures that the dual of a special family which
contains a flat connection also has this property (see Theorem 8.2). This condition
generalizes the usual condition r̃

2(E) = 0 on the Euler field of a Frobenius mani-
fold. We end this section with various other relevant remarks and comments in this
direction (see Remark 8.3).

In Section 9 we develop a method which produces F-manifolds with compat-
ible, torsion-free connections from an external bundle with additional structures.
Under flatness assumptions, this is a reformulation of [15, Theorem 4.3]. Exter-
nal bundles with additional structures can be used to construct Frobenius mani-
folds [20] and the so called CV or CDV-structures on manifolds [8], which are
key notions in t t⇤-geometry and share many properties in common with Frobenius
structures. Treating the tangent bundle as an external bundle, we introduce the
notion of Legendre (or primitive) field and Legendre transformation of a special
family of connections (see Definition 9.3). They are closely related to the corre-
sponding notions [2, 16] from the theory of Frobenius manifolds (see Remark 9.4).
We prove that any Legendre transformation of a special family of connections on an
F-manifold (M, �, e) is also a special family on (M, �, e) and we show that various
curvature properties of special families are preserved by the Legendre transforma-
tions (see Proposition 9.5). Our main result in this section states that our duality
for F-manifolds with eventual identities and special families of connections (see
Theorem 5.3) commutes with Legendre transformations (see Theorem 9.6).

2. Preliminary material

In this section we recall two notions we need from the theory of F-manifolds: even-
tual identities, recently introduced in [4], and compatible connections. We begin by
fixing our conventions.
Conventions 2.1. All results from this paper are stated in the smooth category (ex-
cept the examples from Section 3) but they also apply to the holomorphic setting.
Along the paper X (M) is the sheaf of smooth vector fields on a smooth manifold
M and, for a smooth vector bundle V over M , �1(M, V ) is the sheaf of smooth 1-
forms with values in V . On an F-manifold (M, �, e) we shall often use the notation
Xk (where X 2 X (M) and k � 1) for X � . . . � X (k-times), X0 for e and X�1 for
the inverse of e with respect to � (when it exists); for k  0 , Xk := (X�1)�k .

2.1. Eventual identities on F-manifolds

As already mentioned in the introduction, an invertible vector field E on an F-
manifold (M, �, e) is an eventual identity [15] if the multiplication

X ⇤ Y := X � Y � E�1
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defines a new F-manifold structure on M. The following theorem proved in [4] will
be used throughout this paper.

Theorem 2.2.

i) Let (M, �, e) be an F-manifold and E an invertible vector field. Then E is an
eventual identity if and only if

LE(�)(X,Y ) = [e,E] � X � Y, 8X,Y 2 X (M). (2.1)

ii) Assume that (2.1) holds and let

X ⇤ Y := X � Y � E�1

be the new F-manifold multiplication. Then e is an eventual identity on
(M, ⇤,E) and the map

(M, �, e,E) ! (M, ⇤,E, e)

is an involution on the set of F-manifolds with eventual identities.

Using the characterization of eventual identities provided by Theorem 2.2 i), it may
be shown that the eventual identities form a subgroup in the group of invertible
vector fields on an F-manifold. Also, if E is an eventual identity then, for any
m, n 2 Z,

[En,Em] = (m � n)Em+n�1
� [e,E]. (2.2)

Moreover, if E1 and E2 are eventual identities and [E1,E2] is invertible, then [E1,E2]
is also an eventual identity. Any eventual identity on a product F-manifold decom-
poses into a sum of eventual identities on the factors. It follows that the duality for
F-manifolds with eventual identities, described in Theorem 2.2 ii), commutes with
the decomposition of F-manifolds [7]. For proofs of these facts, see [4].
Remark 2.3. An Euler field on an F-manifold (M, �, e) is a vector field E such
that LE (�) = d�, where d is a constant, called the weight of E . It is easy to check
that [e, E] = de. From Theorem 2.2, any invertible Euler field is an eventual iden-
tity. It would be interesting to generalize to eventual identities the various existing
interpretations of Euler fields in terms of extended connections, like e.g. in [15],
where the F-manifold comes with a compatible flat structure and a vector field is
shown to be Euler (of weight one) if and only if a certain extended connection is
flat.

2.2. Compatible connections on F-manifolds

Let (M, �, e) be a manifold with a fiber-preserving commutative, associative, bilin-
ear multiplication � on T M with unit field e. Let ˜C be the End(T M)-valued 1-form
(the associated Higgs field) defined by

˜CX (Y ) = X � Y, 8X,Y 2 X (M).
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Let r̃ be a connection on T M , with torsion T r̃ . The exterior derivative dr̃ ˜C is a
2-form with values in End(T M), defined by

(dr̃ ˜C)X,Y := r̃X ( ˜CY ) � r̃Y ( ˜CX ) �
˜C[X,Y ], 8X,Y 2 X (M).

It is straightforward to check that for any X,Y, Z 2 X (M),

(dr̃ ˜C)X,Y (Z) = r̃X (�)(Y, Z) � r̃Y (�)(X, Z) + T r̃(X,Y ) � Z , (2.3)

where the (3, 1)-tensor field r̃(�) is defined by

r̃X (�)(Y, Z) := r̃X (Y �Z)�r̃X (Y )�Z�Y �r̃X (Z), 8X,Y, Z 2 X (M). (2.4)

The connection r̃ is called compatible with � if r̃(�) is totally symmetric (as a vec-
tor valued (3, 0)-tensor field). Note, from the commutativity of �, that r̃X (�)(Y, Z)

is always symmetric in Y and Z and the total symmetry of r̃(�) is equivalent to

r̃X (�)(Y, Z) = r̃Y (�)(X, Z), 8X,Y, Z 2 X (M).

From (2.3), if r̃ is torsion-free, then it is compatible with � if and only if

dr̃ ˜C = 0. (2.5)

From [8, Lemma 4.3] (which holds both in the smooth and holomorphic settings),
the existence of a connection r̃ on T M (not necessarily torsion-free) such that
relation (2.5) holds implies that (M, �, e) is an F-manifold. In particular, the exis-
tence of a torsion-free connection, compatible with �, implies that (M, �, e) is an
F-manifold [7]. Moreover, if r̃ is the Levi-Civita connection of a multiplication
invariant metric g̃ (i.e. g̃(X � Y, Z) = g̃(X,Y � Z) for any vector fields X,Y, Z ),
then the total symmetry of r̃(�) is equivalent to the F-manifold condition (1.1) and
the closedness of the coidentity g̃(e) (which is the 1-form g̃-dual to the unit field e),
see [7, Theorem 2.15].

Finally, we need to recall the definition of Frobenius manifolds.

Definition 2.4. A Frobenius manifold is an F-manifold (M, �, e, E, g̃) together
with an Euler field E of weight 1 and a multiplication invariant flat metric g̃, such
that the following conditions are satisfied:

i) the unit field e is parallel with respect to the Levi-Civita connection of g̃;
ii) the Euler field E rescales the metric g̃ by a constant.
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Since the coidentity g̃(e) of a Frobenius manifold (M,�, e, E, g̃) is a parallel (hence
closed) 1-form, our comments above imply that the Levi-Civita connection r̃ of g̃
(sometimes called the first structure connection) is a compatible connection on the
underlying F-manifold (M, �, e). Moreover, since r̃ is flat and E rescales g̃ by a
constant, r̃2E = 0, i.e.

r̃
2
X,Y (E) := r̃X r̃Y E � r̃

r̃XY E = 0, X,Y 2 X (M).

The above relation implies that E is affine in flat coordinates for g̃.

3. Examples of eventual identities

Most of the results in this paper are constructive in nature: given some geometric
structure based around an F-manifold, the existence of an eventual identity enables
one to study symmetries of the structure and hence to construct new examples of
the structure under study. For this procedure to work requires the existence of such
an eventual identity.

The existence of an eventual identity on an F-manifold is not a priori obvious
since equation (2.1) in Theorem 2.2, seen as differential equations for the compo-
nents of E , is overdetermined: there are n(n + 1)/2 equations for the n unknown
components (where n = dim(M)). However, if the multiplication is semi-simple
then solutions do exist [4]:
Example 3.1. Let (M, �, e) be a semi-simple F-manifold with canonical coordi-
nates (u1, · · · , un), i.e.

@

@ui
�

@

@u j
= �i j

@

@u j
, 8i, j

and
e =

@

@u1
+ · · · +

@

@un
.

Any eventual identity is of the form

E = f1(u1)
@

@u1
+ · · · + fn(un)

@

@un
,

where fi are arbitrary non-vanishing functions depending only on ui .
In the following example one has a structure close to that of a Frobenius man-

ifold, but no Euler field exists which is affine in the flat coordinates. However one
may construct an eventual identity for the underlying F-manifold structure.
Example 3.2. Consider the prepotential

F =

1
2
t21 t2 +

1
4
t22 log(t

2
2 ) �



6
t31 .
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This may be regarded as a deformation of the two-dimensional Frobenius manifold
given by  = 0 , but if  6= 0 one does not have an Euler field which is affine in flat
coordinates, i.e. the resulting multiplication is not quasi-homogeneous. However,
one can construct an eventual identity by deforming the vector field

E = t1
@

@t1
+ 2t2

@

@t2

which is the Euler field for the initial Frobenius manifold.
Consider the ansatz

E = E + 


f (t2)

@

@t1
+ g(t2)

@

@t2

�

where for simplicity it has been assumed that f and g are functions of t2 alone.
The eventual identity condition (2.1) is trivially satisfied if X or Y = e so

one only has to consider the case X = Y =
@

@t2 , and the two components of the
resulting eventual identity equation yields differential equations the functions f
and g , namely (where x = t2 and g0

= dg/dx etc.):

2xg0

� g � x f 0

= 0 ,

2x2 f 0

+ xg0

� g = x .

To get an understanding of these equations one can construct a solution as a power
series in the ‘deformation’ parameter :

f (t2) =

✓
1
2
log t2

◆
+ 

✓
�1

2t
1
2
2

◆
+ 2

✓
1
4t2

◆
+ . . .

g(t2) =

✓ t 122
2

◆
+ 

✓
�1
2

◆
+ 2

✓
�1

8t
3
2
2

◆
+ . . . .

Solving the differential equations exactly (and ignoring arbitrary constants) gives

f (x) =

1
2
log x + 1(x) , g(x) = �2x1(x)

where

1(x) =

tanh�1

"p

2 + 4x


#

p

2 + 4x
.

Note that the form of the ansatz ensure that [e,E] = e.
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This example is not isolated but belongs to a wider class. The AN -Frobenius
manifold may be constructed via a superpotential construction. With

�(p) = pN+1
+ sN pN�1

+ . . . + s2 p + s1

the metric and multiplication for the AN -Frobenius structure are given by the resi-
due formulae

g̃(@si , @s j ) = �

X
res
d�=0

⇢
@si�(p) @s j�(p)

�0(p)
dp

�
,

c̃ (@si , @s j , @sk ) = �

X
res
d�=0

⇢
@si�(p) @s j�(p) @sk�(p)

�0(p)
dp

�

and the Euler and identity vector fields follow from the form of the superpotential.
This construction may be generalized by taking � to be any holomorphic map from
a Riemann surface to P1 , with the moduli space of such maps (or Hurwitz space)
carrying the structure of a Frobenius manifold.

To move away from Frobenius manifolds one may consider different classes
of superpotentials [9]. Taking

� = rational function+  log(rational function) (3.1)

results, via similar residue formulae as above, to a flat metric and a semi-simple
solution of the WDVV equations (note, the above example falls, after a Legendre
transformation, into this class). Since the multiplication is semi-simple, eventual
identities will exist, but their form in the flat coordinates for g̃ is not obvious.

Remarkably, this type of superpotential appeared at the same time in two differ-
ent areas of mathematics. Motivated by the theory of integrable systems Chang [1]
constructed a two-dimensional solution to the WDVV equations from a so-called
“water-bag” reduction of the Benny hierarchy, and this was generalized to arbitrary
dimension in [9] by considering superpotential of the form (3.1). Mathematically,
the same form of superpotential appeared in the work of Milanov and Tseng on the
equivariant orbifold structure of the complex projective line [18]. We will return
to the construction of such eventual identities for these classes of F-manifolds in a
future paper.

4. Compatible connections on F-manifolds and dual F-manifolds

We begin with a short review, intended for motivation, of the second structure con-
nection of a Frobenius manifold. Then we prove our main result, namely that the
dual of an F-manifold (M, �, e,E, r̃) with an eventual identity E and a compat-
ible, torsion-free connection r̃, comes naturally equipped with a family of com-
patible, torsion-free connections - namely the connections r

A from Theorem 4.1,
with A given by (4.4). Finally, we define the second structure connection for
(M, �, e,E, r̃) and we show that it belongs to this family (see Section 4.3).



650 LIANA DAVID AND IAN A.B. STRACHAN

4.1. Motivation

Recall that the second structure connectionbrof a Frobenius manifold (M,�,e,E, g̃)
is the Levi-Civita connection of the second metric

g(X,Y ) = g̃(E�1
� X,Y )

(where we assume that E is invertible). Together with the first structure connection
r̃, it determines a pencil of flat connections, which plays a key role in the theory of
Frobenius manifolds. The compatibility of br with the dual multiplication

X ⇤ Y = X � Y � E�1

follows from a result of Hertling already mentioned in Section 2: b
r is the Levi-

Civita connection of g, which is an invariant metric on the dual F-manifold
(M, ⇤, E) and the coidentity g(E) of (M, ⇤, E, g) is closed (because g(E) = g̃(e),
which is closed). From [7, Theorem 9.4 (a), (e)], br is related to r̃ by

b
rX (Y ) = E � r̃X (E�1

� Y ) � r̃E�1
�Y (E) � X +

1
2
(D + 1)X � Y � E�1, (4.1)

where D is the constant given by LE (g̃) = Dg̃.

4.2. The canonical family on the dual F-manifold

Motivated by the structure connections of a Frobenius manifold, we now con-
sider an F-manifold (M, �, e,E, r̃) with an eventual identity E and a compati-
ble, torsion-free connection r̃. On the dual F-manifold (M, ⇤,E) we are looking
for compatible, torsion-free connections, related to r̃ in a similar way as the first
and second structure connections of a Frobenius manifold are related (recall (4.1)
above): that is, we consider connections of the form

r
A
XY = E � r̃X (E�1

� Y ) + A(Y ) � X, 8X,Y 2 X (M), (4.2)
where A is a section of End(T M). In the case of a Frobenius manifold, the first and
second structural connections are related as in (4.2) with

A(Y ) = �r̃E�1
�Y (E) +

D + 1
2

E�1
� Y .

Our main result in this section is the following.
Theorem 4.1. Let (M, �, e,E, r̃) be an F-manifold with an eventual identity E
and compatible, torsion-free connection r̃ and a section A of End(T M). The
connection r

A defined by (4.2) is torsion-free and compatible with the dual multi-
plication X ⇤ Y := X � Y � E�1 (4.3)
if and only if

A(Y ) = E � r̃Y (E�1) + V � Y, 8Y 2 X (M), (4.4)
where V is an arbitrary vector field.

We divide the proof of Theorem 4.1 into two lemmas, as follows.
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Lemma 4.2. In the setting of Theorem 4.1, the connection r
A defined by (4.2) is

compatible with ⇤ if and only if

A(Y � Z) � A(Y ) � Z � A(Z) � Y + A(e) � Y � Z

= E �

⇣
r̃Y (�)(E�1, Z) + r̃E�1(e) � Y � Z

⌘ (4.5)

for any vector fields Y, Z 2 X (M).

Proof. Denote by r̃
c the connection conjugated to r̃ using E , i.e.

r̃
c
X (Y ) := E � r̃X (E�1

� Y ), 8X,Y 2 X (M). (4.6)

With this notation,
r
A
XY = r̃

c
XY + A(Y ) � X . (4.7)

From (4.3) and (4.6), for any X,Y, Z 2 X (M),

r̃
c
X (⇤)(Y, Z) = r̃

c
X (Y ⇤ Z) � r̃

c
X (Y ) ⇤ Z � Y ⇤ r̃

c
X (Z)

= E � r̃X (E�2
� Y � Z) � r̃X (E�1

� Y ) � Z � Y � r̃X (E�1
� Z)

= E � r̃X (�)(E�1
� Y,E�1

� Z),

where we used E�2
� Y � Z = (E�1

� Y ) � (E�1
� Z) and

r̃X (E�2
� Y � Z) = r̃X (�)(E�1

� Y,E�1
� Z) + r̃X (E�1

� Y ) � E�1
� Z

+ E�1
� Y � r̃X (E�1

� Z).

Thus:

r̃
c
X (⇤)(Y, Z)= E � r̃X (�)(E�1

� Y,E�1
� Z), 8X,Y, Z 2 X (M). (4.8)

Using (4.7) and (4.8), we get

r
A
X (⇤)(Y, Z)= r

A
X (Y ⇤ Z) � r

A
X (Y ) ⇤ Z � Y ⇤ r

A
X (Z)

= r̃
c
X (⇤)(Y, Z) + A(Y ⇤ Z) � X�(A(Y ) � X) ⇤ Z�(A(Z) � X) ⇤ Y

= E � r̃X (�)(E�1
� Y ,E�1

� Z)

+ A(Y � Z � E�1) � X � A(Y ) � X � Z � E�1

� A(Z) � X � Y � E�1.

It follows that r A(⇤) is totally symmetric if and only if

E � r̃X (�)(E�1
� Y,E�1

� Z) + A(Y � Z � E�1) � X � A(Y ) � X � Z � E�1

= E � r̃Y (�)(E�1
� X,E�1

� Z) + A(X � Z � E�1) � Y � A(X) � Y � Z � E�1.
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Multiplying the above relation with E�1 and replacing Z by Z�E we see thatr A(⇤)
is totally symmetric if and only if

r̃X (�)(E�1
� Y, Z) � r̃Y (�)(E�1

� X, Z)

= E�1
� (A(X � Z) � A(X) � Z) � Y

� E�1
� (A(Y � Z) � A(Y ) � Z) � X.

(4.9)

Letting in this expression X := e we get

A(Y � Z) � A(Y ) � Z � A(Z) � Y + A(e) � Y � Z

= E �

⇣
r̃Y (�)(E�1, Z) � r̃e(�)(E�1

� Y, Z)
⌘

.
(4.10)

On the other hand, for any vector field Z 2 X (M),

r̃Z (e) = r̃e(e) � Z , (4.11)

which is a rewriting of the equality

r̃Z (�)(e, e) = r̃e(�)(Z , e).

Using (4.11) and the total symmetry of r̃ we get

r̃e(�)(E�1
� Y, Z)= r̃Z (�)(E�1

� Y, e)=�E�1
� Y � r̃Z (e)=�r̃E�1(e)�Y �Z .

Combining this relation with (4.10) we get (4.5). We proved that if r A(⇤) is totally
symmetric, then (4.5) holds. Conversely, we now assume that (4.5) holds and we
show that r A(⇤) is totally symmetric. Using (4.5), relation (4.9) which character-
izes the symmetry of r A(⇤) is equivalent to

r̃X (�)(E�1
� Y, Z) � r̃Y (�)(E�1

� X, Z)

= r̃X (�)(E�1, Z) � Y � r̃Y (�)(E�1, Z) � X

or to

r̃Z (�)(E�1
� Y, X) � r̃Z (�)(E�1

� X,Y )

= r̃Z (�)(E�1, X) � Y � r̃Z (�)(E�1,Y ) � X,
(4.12)

where we used the symmetry of r̃(�). Using the definition of r̃(�), it may be
checked that (4.12) holds. Our claim follows.

The next lemma concludes the proof of Theorem 4.1.

Lemma 4.3. In the setting of Theorem 4.1, the connection r
A defined by (4.2) is

torsion-free and compatible with ⇤ if and only if

A(Y ) = E � r̃Y (E�1) + V � Y, 8Y 2 X (M), (4.13)

where V is an arbitrary vector field.
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Proof. Using the definition of r A, the torsion-free property of r̃ and the total sym-
metry of r̃(�), it can be checked thatr A is torsion-free if and only if, for any vector
fields X,Y 2 X (M),

A(X) � Y � A(Y ) � X = E �

⇣
r̃X (E�1) � Y � r̃Y (E�1) � X

⌘
, (4.14)

or, equivalently,

A(Y ) = E � r̃Y (E�1) +

⇣
A(e) � E � r̃e(E�1)

⌘
� Y, 8Y 2 X (M). (4.15)

In particular, A is of the form (4.13), with

V = A(e) � E � r̃e(E�1).

We now check that the connection r
A, with A given by (4.13), is compatible with

⇤. For this, we apply Lemma 4.2. Thus, we have to check that relation (4.5) holds,
with A defined by (4.13). When A is given by (4.13), relation (4.5) becomes

r̃Y�Z (E�1) � r̃Y (E�1) � Z � r̃Z (E�1) � Y + r̃e(E�1) � Y � Z
= r̃E�1(�)(Y, Z) + r̃E�1(e) � Y � Z .

(4.16)

From the definition of r̃(�), the second line of (4.16) is equal to

r̃E�1(Y � Z) � r̃E�1(Y ) � Z � Y � r̃E�1(Z) + r̃E�1(e) � Y � Z .

With this remark it is easy to check that (4.16) holds (use that E�1 is an eventual
identity and r̃ is torsion-free). Our claim follows.

The proof of Theorem 4.1 is now completed.

4.3. The second structure connection of an F-manifold

In analogy with Frobenius manifolds, we now define the notion of second structure
connection in the larger setting of F-manifolds.
Definition 4.4. Let (M, �, e,E, r̃) be an F-manifold with an eventual identity E
and a compatible, torsion-free connection r̃. The connection

r
F
X (Y ) := E � r̃X (E�1

� Y ) � r̃E�1
�Y (E) � X (4.17)

is called the second structure connection of (M, �, e,E, r̃).
Remark 4.5. When the F-manifold (M, �, e) underlies a Frobenius manifold
(M, �, e, E, g̃), E = E is the Euler field (assumed to be invertible) and r̃ is the
first structure connection, the Frobenius second structure connection b

r given by
(4.1) and the F -manifold second structure connection r

F given by Definition 4.4
differ by a (constant) multiple of the Higgs field ˜CX (Y ) = X � Y - hence, they
belong to the same pencil of connections on (M, �, e). Both are flat and compatible
with the dual multiplication X ⇤ Y = X � Y � E�1.
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Our main result from this section shows that rF is compatible with ⇤ in cases
where (M, �, e) does not necessarily come equipped with a Frobenius metric. More
precisely, the following holds:

Proposition 4.6. The second structure connection r
F of an F-manifold

(M, �, e,E, r̃) with an eventual identity E and a compatible, torsion-free connec-
tion r̃, is torsion-free and compatible on the dual F-manifold (M, ⇤,E). It belongs
to the family of connections {r

A
} (given by (4.2) and (4.4)), determined in Theo-

rem 4.1.

Proposition 4.6 is a consequence of Theorem 4.1, the definition of rF and the
following lemma.

Lemma 4.7. Let (M, �, e,E, r̃) be an F-manifold with an eventual identity E and
a compatible, torsion-free connection r̃. Then, for any X 2 X (M),

r̃E�1
�X (E) = �E �r̃X (E�1)+

✓
1
2

⇣
r̃E�1(E) + r̃E(E�1)

⌘
+ r̃e(e)

◆
� X. (4.18)

Proof. Using that E is an eventual identity and r̃ is torsion-free, we get:

r̃E�1
�X (E)= r̃E(E�1

� X) + LE�1
�X (E)

= r̃E(E�1
� X)�[E,E�1

] � X�E�1
� [E, X]�[e,E] � E�1

�X
= r̃E(E�1) � X + E�1

� r̃E(X) + r̃E(�)(E�1, X)

�[E,E�1
] � X � E�1

� [E, X] � [e,E] � E�1
� X.

(4.19)

On the other hand, using the total symmetry of r̃(�) and (4.11),

r̃E(�)(E�1, X) = r̃X (�)(E,E�1)

= r̃e(e) � X � r̃X (E) � E�1
� E � r̃X (E�1).

(4.20)

From (4.19), (4.20), and the torsion-free property of r̃, we get

r̃E�1
�X (E) = �E � r̃X (E�1) +

⇣
r̃E�1(E) � E�1

� [e,E] + r̃e(e)
⌘

� X. (4.21)

On the other hand, E is an eventual identity and relation (2.2) with n = �1 and
m = 1 gives

E�1
� [e,E] =

1
2
[E�1,E]. (4.22)

Relation(4.21), (4.22) and again the torsion-free property of r̃ imply our claim.

In the next sections, we shall use Theorem 4.1 in the following equivalent form:
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Corollary 4.8. Let (M, �, e,E, r̃) be an F-manifold with an eventual identity E
and a compatible, torsion-free connection r̃. Any torsion-free connection compati-
ble with the dual multiplication ⇤ and of the form (4.2) is given by

r
W
X (Y ) := E � r̃X (E�1

� Y ) � r̃E�1
�Y (E) � X + W ⇤ X ⇤ Y

where W is an arbitrary vector field.

Proof. Trivial, from Theorem 4.1, Lemma 4.7 and the definition of ⇤.

5. Duality for F-manifolds with special families of connections

We now interpret Theorem 4.1 as a duality for F-manifolds with eventual identities
and so called special families of connections (see Section 5.1). Then we discuss a
class of special families of connections and the dual families (see Section 5.2).

5.1. Special families of connections and duality

Definition 5.1. A family of connections ˜S on an F-manifold (M, �, e) is called
special if it is of the form

˜S = {r̃
V , V 2 X (M)}

where
r̃
V
X (Y ) := r̃X (Y ) + V � X � Y, 8X,Y 2 X (M), (5.1)

and r̃ is a fixed connection, torsion-free and compatible with �.

Remark 5.2. It is easy to check that if r̃
V and r̃ are any two connections related

by (5.1), then

r̃
V
X (�)(Y, Z) = r̃X (�)(Y, Z) � V � X � Y � Z , 8X,Y, Z 2 X (M).

Thus, r̃V is compatible with � if and only if r̃ is compatible with �. Moreover,
r̃
V is torsion-free if and only if r̃ is torsion-free. It follows that all connections

from a special family are torsion-free and compatible with the multiplication of the
F-manifold.

In the language of special families of connections, Theorem 4.1 can be refor-
mulated as follows:

Theorem 5.3. Let (M, �, e,E, ˜S) be an F-manifold with an eventual identity E
and a special family of connections ˜S. Choose any r̃ 2

˜S and define the family of
connections

DE( ˜S) = S := {r
W ,W 2 X (M)}
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where

r
W
X (Y ) = E �r̃X (E�1

�Y )�r̃E�1
�Y (E)�X+W ⇤X ⇤Y, 8X,Y 2 X (M) (5.2)

and ⇤ is the dual multiplication

X ⇤ Y = X � Y � E�1.

Then S is special on the dual F-manifold (M, ⇤,E) and the map

(M, �, e,E, ˜S) ! (M, ⇤,E, e,S) (5.3)

is an involution on the set of F-manifolds with eventual identities and special fam-
ilies of connections.

Proof. The family S is well defined, i.e. independent of the choice of connection
r̃ from ˜S , and, from Corollary 4.8, it is a special family on (M, ⇤,E). It remains to
prove that the map (5.3) is an involution. Recall, from Theorem 2.2, that the map

(M, �, e,E) ! (M, ⇤,E, e)

is an involution on the set of F-manifolds with eventual identities. Thus, we only
need to prove the statement about the special families. This reduces to showing that
for (any) r̃ 2

˜S ,

r̃X (Y ) = e ⇤ r
W
X (e�1,⇤ ⇤ Y ) � r

W
e�1,⇤⇤Y (e) ⇤ X + V � X � Y, (5.4)

where r
W is given by (5.2), V is a vector field which needs to be determined and

e�1,⇤ = E2 is the inverse of the eventual identity e on the F-manifold (M, ⇤,E).
From definitions, it is straightforward to check that

e ⇤r
W
X (e�1,⇤⇤ Y )�r

W
e�1,⇤⇤Y (e) ⇤ X= r̃X (Y )�

⇣
r̃Y (E) � E�1

+ r̃E�Y (E�1)
⌘

� X

+ r̃E�1(E) � X � Y,

for any X,Y 2 X (M). Moreover, from Lemma 4.7 with E replaced by E�1,

r̃Y (E) � E�1
+ r̃E�Y (E�1) =

✓
r̃e(e) +

1
2

⇣
r̃E(E�1) + r̃E�1(E)

⌘◆
� Y.

We get

e⇤r
W
X (e�1,⇤⇤Y )�r

W
e�1,⇤⇤Y (e)⇤X = r̃X (Y )�

✓
1
2
[E,E�1

] + r̃e(e)
◆

�X�Y. (5.5)

We deduce that (5.4) holds, with

V :=

1
2
[E,E�1

] + r̃e(e).

Our claim follows.
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5.2. A class of special families of connections

In the following example we discuss a class of special families of connections and
how they behave under the duality.
Example 5.4. Let (M, �, e) be an F-manifold of dimension n and X̃0 a vector field
such that the system {X̃0, X̃20, · · · , X̃n0} is a frame of T M. Assume that there is a
torsion-free, compatible connection r̃ on (M, �, e) satisfying

r̃Y (X̃0) � Z = r̃Z (X̃0) � Y, 8Y, Z 2 X (M). (5.6)

The following facts hold:

i) The set ˜S of all torsion-free, compatible connections on (M, �, e), satisfying
(5.6), is special.

ii) The image S := DE( ˜S) of ˜S through the duality of Theorem 5.3, defined
by an eventual identity E on (M, �, e), is the special family of compatible,
torsion-free connections r on the dual F-manifold (M, ⇤,E), satisfying

rY (E � X̃0) ⇤ Z = rZ (E � X̃0) ⇤ Y, 8Y, Z 2 X (M). (5.7)

Proof. Suppose that r̃ is a torsion-free connection, compatible with � and satisfy-
ing (5.6), and let

r̃
B
X (Y ) = r̃X (Y ) + BX (Y ), 8X,Y 2 X (M)

be another connection with these properties, where B 2 �1(M,EndT M). Since r̃

and r̃
B are torsion-free,

BX (Y ) = BY (X), 8X,Y 2 X (M). (5.8)

Since r̃(�) is totally symmetric, the total symmetry of r̃B(�) is equivalent to

BX (Y � Z) � BX (Z) � Y = BY (X � Z) � BY (Z) � X, (5.9)

where we used (5.8). Letting Z := e in the above relation we get

BY (e) = Be(Y ) = V � Y, 8Y 2 X (M), (5.10)

where V := Be(e). On the other hand, since (5.6) is satisfied by both r̃ and r̃
B ,

BY (X̃0) � Z = BZ (X̃0) � Y, 8Y, Z 2 X (M). (5.11)

We obtain:

BX̃0(Y ) = BY (X̃0) = Be(X̃0) � Y = V � X̃0 � Y, 8Y 2 X (M), (5.12)
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where in the first equality we used (5.8), in the second equality we used (5.11) and
in the third equality we used (5.10). Letting in (5.9) X := X̃0 and using (5.12) we
get

BY (X̃0 � Z) = BY (Z) � X̃0, 8Y, Z 2 X (M).

An induction argument now shows that

BY (X̃ k0) = V � X̃ k0 � Y, 8Y 2 X (M), 8k 2 N.

Since {X̃0, X̃20, · · · , X̃n0} is a frame of T M ,

BY (X) = V � X � Y, 8X,Y 2 X (M)

and thus ˜S is a special family on (M, �, e). Claim i) follows. For claim ii), one
checks, using (5.6), that any connection r 2 S satisfies (5.7). On the other hand,
(E � X̃0) ⇤ · · · ⇤ (E � X̃0) (k-times) is equal to E � X̃ k0 and {E � X̃0, · · · ,E � X̃n0}
is a frame of T M . Therefore, from claim i), the set of compatible, torsion-free
connections on (M, ⇤,E) satisfying (5.7) is special. It coincides with S.

Remark 5.5. i) Consider the setting of Example 5.4 and assume, moreover, that the
F-manifold (M, �, e) is semi-simple. We claim that under this additonal assump-
tion, one can always find a compatible, torsion-free connection satisfying relation
(5.6) (and hence the family of all such connections is special). Using the canon-
ical coordinates (u1, · · · , un) on the F-manifold (M, �, e), we can give a direct
proof for this claim, as follows. As proved in [12], the Christoffel symbols 0k

i j of a
compatible, torsion-free connection r̃ on (M, �, e) satisfy, in the coordinate system
(u1, · · · , un),

0s
i j = 0, 8i 6= j, s /2 {i, j} (5.13)

and
0i
i j = �0i

j j , 8i 6= j, (5.14)

while 0i
i i are arbitrary. Given a vector field X̃0 =

Pn
k=1 Xk

@
@uk relation (5.6) is

equivalent to
@X j

@ui
+ (Xi � X j )0

j
i i = 0, i 6= j. (5.15)

If, moreover, {X̃0, X̃20, · · · , X̃n0} is a frame of T M , X
i (p) 6= X j (p) at any p 2 M ,

for any i 6= j , and 0
j
i i , i 6= j , are determined by X̃0 using (5.15). We proved that a

connection r̃ on (M, �, e) is torsion-free, compatible, and satisfies (5.6) if and only
if its Christoffel symbols 0i

jk , with i , j , k not all equal, are determined by (5.13),
(5.14), (5.15), and the remaining 0i

i i are arbitrary. It follows that the family of all
such connections is non-empty (and special).

ii) In the semi-simple setting, relation (5.6) was considered in [13], in connec-
tion with semi-Hamiltonian systems. It is worth to remark a difference between our
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conventions and those used in [12, 13]: while for us a compatible connection on an
F-manifold (M, �, e) is a connection r̃ for which the vector valued (3, 0)-tensor
field r̃(�) is totally symmetric, in the language of [12,13] a compatible connection
satisfies, besides this condition, another additional condition, involving the curva-
ture, see (7.1) from the Section 7. Hopefully this will not generate confusion.

In the following sections we discuss several applications of Theorem 5.3.

6. Duality for F-manifolds with eventual identities and compatible,
torsion-free connections

It is natural to ask if the duality of Theorem 5.3 induces a duality for F-manifolds
with eventual identities and compatible, torsion-free connections, rather than spe-
cial families. This amounts to choosing, in a way consistent with the duality, a
preferred connection in a special family. We will show that this can be done by
prescribing the covariant derivative of the unit field. We shall consider two cases of
this construction: when the unit fields are parallel (see Section 6.1) and when the
preferred connections are the second structure connections (see Section 6.2).

6.1. Duality and parallel unit fields

Lemma 6.1. Let ˜S be a special family on an F-manifold (M, �, e) and U a vector
field on M . There is a unique connection r̃ in ˜S such that

r̃X (e) = U � X, 8X 2 X (M).

In particular, any special family on an F-manifold contains a unique connection
for which the unit field is parallel.
Proof. Straightforward from (4.11).

The following proposition with U = 0 gives a duality for F-manifolds with
eventual identities and compatible, torsion-free connections preserving the unit
fields.
Proposition 6.2. Let M be a manifold and U a fixed vector field on M . The map

(�, e,E, r̃) ! (⇤,E, e,r) (6.1)

where ⇤ is related to � by (4.3) and r is related to r̃ by

rX (Y ) = E �r̃X (E�1
�Y )�r̃E�1

�Y (E)�X+

1
2
[E�1,E]�X �Y+U ⇤X ⇤Y, (6.2)

is an involution on the set of quatruples (�, e,E, r̃), where � is the multiplication
of an F-manifold structure on M with unit field e, E is an eventual identity on
(M, �, e) and r̃ is torsion-free connection, compatible with �, such that

r̃X (e) = U � X, 8X 2 X (M). (6.3)
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Proof. Assume that (�, e,E, r̃) is a quatruple like in the statement of the proposi-
tion. From Theorem 2.2, ⇤ defines an F-manifold structure on M with unit field E
and e is an eventual identity on (M, ⇤,E). From Corollary 4.8, the connection r,
related to r̃ by (6.2), is compatible with ⇤ and is torsion-free. Moreover, it is easy
to check, using (4.22), (6.3) and the torsion-free property of r̃, that

rX (E) = U ⇤ X, 8X 2 X (M).

It follows that the map (6.1) is well defined. It remains to prove that it is an involu-
tion. This amounts to showing that

r̃X (Y ) = e⇤rX (e�1,⇤⇤Y )�re�1,⇤⇤Y (e)⇤X+

1
2
[e�1,⇤, e]⇤X⇤Y+U �X�Y, (6.4)

for any vector fields X,Y 2 X (M). To prove (6.4) we make the following compu-
tation: from (5.5) and the definition of ⇤,

e ⇤ rX (e�1,⇤ ⇤ Y ) � re�1,⇤⇤Y (e) ⇤ X +

1
2
[e�1,⇤, e] ⇤ X ⇤ Y +U � X � Y

= r̃X (Y )�

✓
1
2
[E,E�1

] + r̃e(e)
◆

� X � Y+

1
2
[E2, e] � E�2

� X � Y +U � X � Y

= r̃X (Y ) � r̃e(e) � X � Y +U � X � Y,

where in the last equality we used [E2, e] = 2[E, e] � E and (4.22). From (6.3)
r̃e(e) = U and relation (6.4) follows.

6.2. Duality and second structure connections

From Definition 4.4, the second structure connection r
F of an F-manifold

(M, �, e,E, r̃) with an eventual identity E and a compatible, torsion-free connec-
tion r̃, is given by (6.2), with

U :=

1
2
[E,E�1

] � E2, (6.5)

but despite this it does not fit into the involution of Proposition 6.2. The reason
is that U is a fixed vector field in Proposition 6.2, while in (6.5) U changes when
(�, e,E, r̃) varies in the domain of the map (6.1). If we want to construct a dual-
ity for F-manifolds with eventual identities and second structure connections, we
therefore need a different type of map, like in the following proposition.

Proposition 6.3. The map

(M, �, e,E, r̃) ! (M, ⇤,E, e,rF ) (6.6)
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where ⇤ is related to � by (4.3) and r
F is the second structure connection of

(M, �, e,E, r̃), is an involution on the set of F-manifolds (M, �, e,E, r̃) with
eventual identities and compatible, torsion-free connections satisfying

r̃X (e) =

1
2
[E�1,E] � X, 8X 2 X (M). (6.7)

Proof. Choose (M, �, e,E, r̃) from the domain of the map (6.6). From the torsion-
free property of r̃ and (6.7)

r̃e(E) = [e,E] + r̃E(e) ,

= [e,E] +

1
2
[E�1,E] � E .

(6.8)

Let rF be the second structure connection of (M, �, e,E, r̃). From its definition
and equations (6.7) and (6.8)

r
F
X (E) = ([E, e] � E) ⇤ X =

1
2
[e�1,⇤, e] ⇤ X, 8X 2 X (M). (6.9)

So the map (6.6) is well defined. Moreover, from (5.5) and (6.7),

r̃XY = e ⇤ r
F
X (e�1,⇤ ⇤ Y ) � r

F
e�1,⇤⇤Y (e) ⇤ X,

i.e. r̃ is the second structure connection of (M, ⇤,E, e,rF ). It follows that the
map (6.6) is an involution.

7. Duality and curvature

Let (M, �, e, r̃) be an F-manifold with a compatible, torsion-free connection r̃,
with curvature Rr̃ .We assume that for any X,Y, Z , V 2 X (M),

V � Rr̃

Z ,Y X + Y � Rr̃

V,Z X + Z � Rr̃

Y,V X = 0. (7.1)

In the following theorem we show that condition (7.1) (if true) is independent of
the choice of connection in a special family and is preserved under the duality of
Theorem 5.3.

Theorem 7.1.

i) Let r̃ be a compatible, torsion-free connection on an F-manifold (M, �, e)
and

˜S := {r̃
V
X (Y ) = r̃X (Y ) + V � X � Y, V 2 X (M)}

the associated special family. Assume that (7.1) holds for r̃. Then (7.1) holds
for all connections r̃

V from ˜S.
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ii) The involution
(M, �, e,E, ˜S) ! (M, ⇤,E, e,S) (7.2)

from Theorem 5.3 preserves the class of special families of connections which
satisfy condition (7.1). More precisely, if r̃ 2

˜S and r 2 S are any two
connections belonging, respectively, to a special family ˜S and its dual S =

DE(S̃), then

V � Rr̃

Z ,Y X + Y � Rr̃

V,Z X + Z � Rr̃

Y,V X = 0, 8X,Y, Z , V 2 X (M) (7.3)

if and only if

V ⇤ Rr

Z ,Y X + Y ⇤ Rr

V,Z X + Z ⇤ Rr

Y,V X = 0, 8X,Y, Z , V 2 X (M). (7.4)

Before proving Theorem 7.1 we make some preliminary remarks. Note that claim
i) from the above theorem is a particular case of claim ii): if in (7.2) E = e, then
� = ⇤, ˜S = S and claim ii) reduces to claim i). Therefore, it is enough to prove
claim ii). For this, we use that any two connections, one from ˜S and the other from
the dual S = DE( ˜S), are related by

r
A
XY = E � r̃X (E�1

� Y ) + A(Y ) � X, 8X,Y 2 X (M), (7.5)

where A is a section of End(T M). Another easy but useful fact is that (7.4) holds
if and only if it holds with ⇤ replaced by �.With these preliminary remarks, Theo-
rem 7.1 is a consequence of the following general result:

Proposition 7.2. Let (M, �, e, r̃) be an F-manifold with a compatible, torsion-free
connection r̃, such that

V � Rr̃

Z ,Y X + Y � Rr̃

V,Z X + Z � Rr̃

Y,V X = 0, (7.6)

for any X,Y, Z , V 2 X (M). Let A be a section of End(T M) and E an invertible
vector field (not necessarily an eventual identity). Let r A be the connection given
by (7.5). Then also

V � Rr
A

Z ,Y X + Y � Rr
A

V,Z X + Z � Rr
A

Y,V X = 0, (7.7)

for any X,Y, Z , V 2 X (M).

Proof. A straightforward computation which uses (7.5), the symmetry of r̃(�) and
the torsion-free property of r̃, gives

Rr
A

Y,Z X = E � Rr̃

Y,Z (E�1
� X) � Q(Y, X) � Z + Q(Z , X) � Y (7.8)

where

Q(Y, X) := A(E � r̃Y (E�1
� X)) + A(A(X) � Y ) � E � r̃Y (E�1

� A(X)).
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From (7.8) we readily obtain that

V � Rr
A

Z ,Y X + Y � Rr
A

V,Z X + Z � Rr
A

Y,V X

= E �

⇣
V � Rr̃

Z ,Y (E�1
� X) + Y � Rr̃

V,Z (E�1
� X) + Z � Rr̃

Y,V (E�1
� X)

⌘
.

The claim follows.

The following remark describes various classes of compatible torsion-free con-
nections whose curvature satisfies condition (7.1).
Remark 7.3. In the setting of Frobenius manifolds, both the Saito metric and the
intersection form are automatically flat, so condition (7.1) and its dual are trivially
satisfied. However, by twisting by powers of the Euler field (which is an eventual
identity) one may construct a hierarchy of connections each of which satisfies this
condition (this is just a statement, in the semi-simple case, of the semi-Hamiltonian
property of these hierarchies). An alternative way to construct examples (in the case
of Coxeter group orbit spaces) is to introduce conformal curvature [5]. This results
in a constant curvature/zero curvature pair of connections both of which satisfy
(7.1) and one may again keep twisting with the Euler field to obtain hierarchies of
such connections. It is easy to see that (7.1) holds for the Levi-Civita connection of
any metric of constant sectional curvature.

8. Duality and flat connections

While condition (7.1) is well suited for the duality of F-manifolds with eventual
identities and special families of connections, it is natural to ask if other curvature
conditions are well suited, too. Along these lines it natural to consider the flatness
condition in relation with this duality.

A first remark is that the flatness condition depends on the choice of connection
in a special family. More precisely, the following lemma holds:

Lemma 8.1. Let r̃ and r̃
V be two torsion-free, compatible connections on an F-

manifold (M, �, e), related by

r̃
V
X (Y ) = r̃X (Y ) + V � X � Y, 8X,Y 2 X (M), (8.1)

where V is a vector field. Assume that r̃ is flat. Then r̃
V is also flat if and only if

r̃X ( ˜CV )(Y ) � Z = r̃Z ( ˜CV )(Y ) � X, 8X,Y, Z 2 X (M), (8.2)

where ˜CV is the section of End(T M) given by

˜CV (X) = X � V, 8X 2 X (M).
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Proof. With no flatness assumptions, one can show that the curvatures of two com-
patible, torsion-free connections r̃

V and r̃ like in (8.1), are related by

Rr̃
V

X,ZY = Rr̃

X,ZY +

⇣
r̃X (V � Y ) � V � r̃X (Y )

⌘
� Z

�

⇣
r̃Z (V � Y ) � V � r̃Z (Y )

⌘
� X,

(8.3)

for any vector fields X,Y, Z . Thus, if r̃ is flat then r̃
V is also flat if and only if

(8.2) holds.

Given a special family which contains a flat connection, it is natural to ask
when the dual family has this property, too. The answer is given in the following
theorem, which is our main result from this section.

Theorem 8.2. Let (M, �, e,E, ˜S) be an F-manifold with an eventual identity E
and a special family of connections ˜S. Assume that there is r̃ 2

˜S which is flat.
Then the dual family S = DE( ˜S) on the dual F-manifold (M, ⇤,E) contains a flat
connection if and only if there is a vector field W̃ , such that, for any X,Y, Z 2

X (M),
⇣
r̃
2
X,Y (E) � r̃X ( ˜CW̃ )(Y )

⌘
� Z =

⇣
r̃
2
Z ,Y (E) � r̃Z ( ˜CW̃ )(Y )

⌘
� X. (8.4)

If (8.4) holds then the connection

r
W
X (Y ) := E � r̃X (E�1

� Y ) � r̃E�1
�Y (E) � X + W ⇤ X ⇤ Y, (8.5)

with W := W̃ � E , is flat (and belongs to DE( ˜S)).

Proof. Let W be a vector field and r
W the connection defined by (8.5). We need

to compute the curvature of rW (knowing that r̃ is flat). For this, note that

r
W
X (Y ) = r

F
X (Y ) + W ⇤ X ⇤ Y

where r
F is the second structure connection of (M, �, e,E, r̃). Since both r

W

and r
F are torsion-free and compatible with ⇤, their curvatures are related by (8.3),

with � replaced by ⇤ and V replaced by W . Thus,

Rr
W

Z ,XY = Rr
F

Z ,XY +

⇣
r
F
Z (W ⇤ Y ) � W ⇤ r

F
Z (Y )

⌘
⇤ X

�

⇣
r
F
X (W ⇤ Y ) � W ⇤ r

F
X (Y )

⌘
⇤ Z

= Rr
F

Z ,X (Y ) +

⇣
r
F
Z (E�1

� W � Y ) � E�1
� W � r

F
Z (Y )

⌘
� X � E�1

�

⇣
r
F
X (E�1

� W � Y ) � E�1
� W � r

F
X (Y )

⌘
� Z � E�1.
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Using the definition (4.17) of rF to compute the right-hand side of the above rela-
tion, we get

Rr
W

Z ,XY = Rr
F

Z ,XY +

⇣
E � r̃Z (W � Y � E�2) � W � r̃Z (E�1

� Y )
⌘

� X � E�1

�

⇣
E � r̃X (W � Y � E�2) � W � r̃X (E�1

� Y )
⌘

� Z � E�1,

or, by replacing Y with E � Y ,

Rr
W

Z ,X (E �Y ) = Rr
F

Z ,X (E �Y )+ r̃Z ( ˜CW�E�1)(Y ) � X �r̃X ( ˜CW�E�1)(Y ) � Z , (8.6)

for any vector fields X,Y, Z 2 X (M). We now compute the curvature of r
F . For

this, let Y be a local r̃-flat vector field and Ỹ := r̃Y (E). Then, for any X, Z 2

X (M),
r
F
X (E � Y ) = �Ỹ � X

and
r
F
Z r

F
X (E � Y ) = �E � r̃Z (E�1

� Ỹ � X) + r̃E�1
�Ỹ�X (E) � Z . (8.7)

Since E is an eventual identity, we can apply Lemma 4.7 to compute the second
term in the right-hand side of (8.7). We get:

r̃E�1
�Ỹ�X (E) = � E � r̃Ỹ�X (E�1) +

1
2

⇣
r̃E�1(E) + r̃E(E�1)

⌘
� Ỹ � X

+ r̃e(e) � Ỹ � X

and therefore

r
F
Z r

F
X (E � Y ) = � E � r̃Z (E�1

� Ỹ � X) � E � r̃Ỹ�X (E�1) � Z

+

1
2

⇣
r̃E�1(E) + r̃E(E�1)

⌘
� Ỹ � X � Z

+ r̃e(e) � Ỹ � X � Z .

Assume now that X and Z are both r̃-flat. Since r̃ is torsion-free, [X, Z ] = 0 and
the above relation gives, by skew-symmetrizing in Z and X ,

Rr
F

Z ,X (E � Y ) = E �

⇣
r̃X (E�1

� Ỹ � Z) � r̃Ỹ�X (E�1) � Z
⌘

� E �

⇣
r̃Z (E�1

� Ỹ � X) � r̃Ỹ�Z (E�1) � X
⌘

or, using the r̃-flatness of X , Z and the total symmetry of r̃,

Rr
F

Z ,X (E � Y ) = E �

⇣
r̃X (E�1

� Ỹ ) � r̃Ỹ�X (E�1)
⌘

� Z

� E �

⇣
r̃Z (E�1

� Ỹ ) � r̃Ỹ�Z (E�1)
⌘

� X.



666 LIANA DAVID AND IAN A.B. STRACHAN

We now simplify the right-hand side of this expression. Define

E(X, Ỹ ) = r̃X (E�1
� Ỹ ) � r̃Ỹ�X (E�1).

Then

E(X, Ỹ ) = r̃X (E�1) � Ỹ + E�1
� r̃X (Ỹ ) + r̃E�1(�)(X, Ỹ ) � r̃Ỹ�X (E�1)

= r̃X (E�1) � Ỹ + E�1
� r̃X (Ỹ )

+ r̃E�1(Ỹ � X) � X � r̃E�1(Ỹ ) � r̃Ỹ�X (E�1)

= r̃X (E�1) � Ỹ + E�1
� r̃X (Ỹ ) + LE�1(Ỹ � X) � X � r̃E�1(Ỹ )

= E�1
� r̃X (Ỹ ) +

⇣
[e,E�1

] � Ỹ � r̃Ỹ (E�1)
⌘

� X,

where in the first equality we used the symmetry of r̃(�); in the third equality we
used the torsion-free property of r̃; in the fourth equality we used that E�1 is an
eventual identity, the r̃-flatness of X and again the torsion-free property of r̃. Since
r̃X (Ỹ ) = r̃

2
X,Y (E) (Y being r̃-flat) and similarly r̃Z (Ỹ ) = r̃

2
Z ,Y (E), we get

Rr
F

Z ,X (E � Y ) = r̃
2
X,Y (E) � Z � r̃

2
Z ,Y (E) � X. (8.8)

Combining (8.6) with (8.8) we finally obtain

Rr
W

Z ,X (E � Y ) =

⇣
r̃
2
X,Y (E) � r̃X ( ˜CW�E�1)(Y )

⌘
� Z

�

⇣
r̃
2
Z ,Y (E) � r̃Z ( ˜CW�E�1)(Y )

⌘
� X,

(8.9)

for any r̃-flat vector fields X,Y, Z . Since r̃ is flat, relation (8.9) holds for any
X,Y, Z 2 X (M) (not necessarily flat). Our claim follows.

We end this section with several comments and remarks.
Remark 8.3. i) Condition (8.2) is clearly satisfied when V is the unit field or a
(constant) multiple of the unit field of the F-manifold. Therefore, if r̃ is a compat-
ible, torsion-free connection on an F-manifold (M, �, e) and the pencil

r̃
z
X (Y ) = r̃X (Y ) + zX � Y

(z-constant) contains a flat connection, then all connections from this pencil are
flat. Such pencils of flat torsion-free connections appear naturally on Frobenius
manifolds. More generally, it can be checked that on a semi-simple F-manifold
(M, �, e)with canonical coordinates (u1, · · · , un), a vector field V =

Pn
k=1 V k @

@uk
satisfies (8.2) if and only if

V j
= V j (u j ), 0

j
i i (V

i
� V j ) = 0, 8i, j
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where V j are functions depending on u j only and 0k
i j are the Christoffel symbols

of r̃ in the coordinate system (u1, · · · , un).
ii) We claim that condition (8.4) from Theorem 8.2 is independent of the choice

of flat connection r̃ from ˜S. To prove this claim, let (M, �, e,E) be an F-manifold
and ˜CX (Y ) := X �Y the associated Higgs field. Let E be an eventual identity and r̃,
r̃
V any two compatible, torsion-free, flat connections on (M, �, e), related by (5.1).

Since both r̃ and r̃
V are flat, (8.2) holds. A long but straightforward computation

which uses (8.2) shows that

(r̃V )2X,Y (E) � Z � (r̃V )2Z ,Y (E) � X = r̃
2
X,Y (E) � Z � r̃

2
Z ,Y (E) � X, (8.10)

for any vector fields X,Y, Z . On the other hand, it is easy to see that

r̃
V
X ( ˜CS)(Y ) � Z � r̃

V
Z ( ˜CS)(Y ) � X = r̃X ( ˜CS)(Y ) � Z � r̃Z ( ˜CS)(Y ) � X, (8.11)

for any vector fields X,Y, Z , S. Using (8.10) and (8.11) we deduce that (8.4) holds
for r̃V if and only if it holds for r̃.

iii) In the setting of Theorem 8.2 assume that the initial F-manifold (M, �, e)
underlies a Frobenius manifold (M, �, e, E, g̃), E = E is the Euler field (assumed
to be invertible) and r̃ is the Levi-Civita connection of g̃. Since r̃

2E = 0, by
applying Proposition 8.2 with W̃ = 0, we recover the well-known fact that the
second structure connection of (M, �, e, E, g̃) is flat.

9. Duality and Legendre transformations

We now adopt the abstract point of view of external bundles to construct F-mani-
folds with compatible, torsion-free connections (see Section 9.1). This construc-
tion is particularly suitable in the setting of special families of connections. Then
we consider the particular case when the external bundle is the tangent bundle of
an F-manifold with a special family of connections and we define and study the
notions of Legendre (or primitive) field and Legendre transformation of a special
family (see Section 9.2). Finally, we show that our duality for F-manifolds with
eventual identities and special families of connections commutes with the Legendre
transformations so defined (see Section 9.3).

9.1. External bundles and F-manifolds

Let V ! M be a vector bundle (sometimes called an external bundle), D a con-
nection on V and A 2 �1(M,EndV ) such that

(dD A)X,Y := DX (AY ) � DY (AX ) � A[X,Y ] = 0 (9.1)

and
AX AY = AY AX (9.2)
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for any vector fields X,Y 2 X (M). Let u be a section of V such that

AY (DZu) = AZ (DYu), 8Y, Z 2 X (M). (9.3)

Assume that the map

F : T M ! V, F(X) := AX (u) (9.4)

is a bundle isomorphism. In this setting, the following proposition holds (see [15]
for the flat case).

Proposition 9.1.

i) The multiplication

X � Y = F�1 (AX AY u) , X,Y 2 X (M) (9.5)

is commutative, associative, with unit field F�1(u).
ii) The pull-back connection F⇤D is torsion-free and compatible with �. In par-

ticular, (M, �, F�1(u)) is an F-manifold.

Proof. It is easy to check, using (9.2) and the bijectivity of F , that

AX�Y = AX AY , 8X,Y 2 X (M), (9.6)

which readily implies, from (9.2) and the bijectivity of F again, the commutativity
and associativity of �. From (9.4),

AF�1(v)(u) = v, 8v 2 V (9.7)

and, for any X 2 X (M),

X � F�1(u) = F�1 �
AX AF�1(u)u

�
= F�1 (AX (u)) = X,

i.e. F�1(u) is the unit field for �. Claim i) follows. For claim ii), recall that the
pull-back connection F⇤D is defined by

(F⇤D)XY := F�1DX (F(Y )), 8X,Y 2 X (M).

To prove that F⇤D is torsion-free, let X,Y 2 X (M). Then

(F⇤D)XY � (F⇤D)Y X = F�1 (DX (F(Y )) � DY (F(X)))

= F�1 (DX (AYu) � DY (AXu))
= F�1(A[X,Y ]u) = [X,Y ],
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where we used (9.1) and (9.3). It remains to show that F⇤D is compatible with �.

For this, let ˜C be the End(T M)-valued 1-form defined by

˜CX (Y ) = X � Y, 8X,Y 2 X (M).

Using (9.1) and (9.4), we get

(dF
⇤D ˜C)X,Y (Z) = F�1(dD A)X,Y F(Z) = 0. (9.8)

This relation and the torsion-free property of F⇤D imply that F⇤D is compatible
with � (see relations (2.3) and (2.5) from Section 2.2). Relation (9.8) also implies
that (M, �, F�1(u)) is an F-manifold (from [8, Lemma 4.3] already mentioned in
Section 2.2). Our claim follows.

It is worth to make some comments on Proposition 9.1.
Remark 9.2. i) The torsion-free property of F⇤D relies on the condition (9.3)
satisfied by u. Note that by dropping (9.3) from the setting of Proposition 9.1,
(M, �, F�1(u)) remains an F-manifold. The reason is that relation (9.8), which
implies that (M, �, F�1(u)) is an F-manifold, does not use (9.3), but only (9.1).

ii) The pull-back connections F⇤(D + zA) (z-constant) are given by

F⇤(D + zA)X (Y ) = (F⇤D)X (Y ) + zX � Y, 8X,Y 2 X (M)

because

(F⇤A)X (Y ) := F�1 (AX F(Y )) = F�1 (AX AY u) = X � Y.

Thus, F⇤(D + zA) is a pencil of compatible, torsion-free connections on the F-
manifold (M, �, F�1(u)). When D is flat, all connections D + zA are flat and
we recover [15, Theorem 4.3] (which states that a pencil of flat connections on an
external bundle V ! M together with a primitive section – the section u in our
notations – induces an F-manifold structure on M together with a pencil of flat,
torsion-free, compatible connections on this F-manifold).

9.2. Legendre transformations and special families of connections

We now apply the results from the previous section to the particular case when V is
the tangent bundle of an F-manifold. We begin with the following definition.
Definition 9.3.

i) A vector field u on an F-manifold (M, �, e, ˜S) with a special family of con-
nections ˜S is called a Legendre (or primitive) field if it is invertible and for
one (equivalently, any) r̃ 2

˜S ,

r̃X (u) � Y = r̃Y (u) � X, 8X,Y 2 X (M). (9.9)
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ii) The family of connections

{Lu(r̃) := u�1
� r̃ � u, r̃ 2

˜S} (9.10)

is called the Legendre transformation of ˜S by u and is denoted by Lu( ˜S).

Remark 9.4. The notions of Legendre field and Legendre transformation on F-
manifolds with special families of connections are closely related to the correspond-
ing notions from the theory of Frobenius manifolds [2]. The reason is that if u is a
Legendre field on an F-manifold (M, �, e, ˜S) with a special family ˜S , then there is
a unique connection r̃ in ˜S for which u is parallel (this can be easily checked). On
the other hand, recall that a Legendre field on a Frobenius manifold (M, �, e, E, g̃)
is, by definition, a parallel, invertible vector field @. It defines a new invariant flat
metric by

g(X,Y ) = g̃(@ � X, @ � Y ),

see [15]. The passage from g̃ to g is usually called a Legendre-type transformation.
The Levi-Civita connections of g̃ and g are related by

rX (Y ) = @�1
� r̃X (@ � Y ), 8X,Y 2 X (M),

like in (9.10).
In the next proposition we describe some basic properties of Legendre trans-

formations.

Proposition 9.5. Let (M, �, e, ˜S, u) be an F-manifold with a special family of con-
nections ˜S and a Legendre field u. The following facts hold:

i) The Legendre transformation Lu( ˜S) of ˜S by u is also special on (M, �, e).
ii) If (any) connection r̃ 2

˜S satisfies the condition (7.1) from Section 7, i.e.

V � Rr̃

Z ,Y X + Y � Rr̃

V,Z X + Z � Rr̃

Y,V X = 0, (9.11)

then the same is true for any connection from Lu( ˜S).

iii) If ˜S contains a flat connection, then so does Lu( ˜S).

Proof. For the first claim, we prove that for any r̃ 2
˜S ,Lu(r̃) is torsion-free and

compatible with �. To do this, we use Proposition 9.1, with V := T M , D :=

r̃ , A :=
˜C the Higgs field, given by

˜CX (Y ) := X � Y, 8X,Y 2 X (M), (9.12)

and u the Legendre field. It is easy to check that conditions (9.1)-(9.3) are satisfied.
The map (9.4) is given by

F : T M ! T M, F(X) = X � u
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and is an isomorphism because u is invertible. The induced multiplication (9.5)
from Proposition 9.1 coincides with �, because

F�1 (AX AY u) = F�1(X � Y � u) = X � Y, 8X,Y 2 X (M).

From Proposition 9.1, the connection

F⇤(r̃)X (Y ) = u�1
� r̃X (u � Y ) = Lu(r̃)X (Y ), 8X,Y 2 X (M)

is torsion-free and compatible with �, as required. It also belongs to the Legendre
transformation Lu( ˜S) of ˜S . It follows that Lu( ˜S) is a special family on (M, �, e).
This proves our first claim.

For the second and third claims, we notice that the curvatures of r̃ and Lu(r̃)
are related by

RLu(r̃)
X,Y Z = u�1

� Rr̃

X,Y (u � Z). (9.13)

Thus, if r̃ is flat then so is Lu(r̃). Similarly, if the curvature of r̃ satisfies the
condition (9.11), then, from (9.13), also

V � RLu(r̃)
Z ,Y X + Y � RLu(r̃)

V,Z X + Z � RLu(r̃)
Y,V X = 0.

Our second and third claims follow.

9.3. Legendre transformations and eventual identities

In this section we prove a compatibility property between Legendre transforma-
tions, eventual identities and our duality for F-manifolds with eventual identities
and special families of connections. It is stated as follows:

Theorem 9.6. Let (M, �, e, ˜S, u) be an F-manifold with a special family of con-
nections ˜S and a Legendre field u. Let E be an eventual identity on (M, �, e) and
(M, ⇤,E, e,S) the dual of (M, �, e,E, ˜S), as in Theorem 5.3. Then E � u is a
Legendre field on (M, ⇤,E,S) and

LE�u(S) = (DE � Lu)( ˜S), (9.14)

where (DE � Lu)( ˜S) = DE(Lu( ˜S)) is the image of the special family Lu( ˜S) on
(M, �, e) through the duality defined by E .

Proof. Recall from Theorem 5.3 and Lemma 4.7 that S = DE( ˜S) is the special
family on (M, ⇤,E) which contains the connection

rX (Y ) = E � r̃X (E�1
� Y ) + E � r̃Y (E�1) � X, 8X,Y 2 X (M) (9.15)
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where r̃ is any connection from ˜S. Since u is a Legendre field on (M, �, e, ˜S),
relation (9.15) implies that

rX (E � u) ⇤ Y = rY (E � u) ⇤ X, X,Y 2 X (M),

i.e. E � u is a Legendre field on (M, ⇤,E,S). The connection

LE�u(r)X (Y ) := (E � u)�1,⇤ ⇤ rX ((E � u) ⇤ Y )

= u�1
� E �

⇣
r̃X (E�1

� u � Y ) + r̃u�Y (E�1) � X
⌘

belongs to the special familyLE�u(S), where (E �u)�1,⇤ = u�1
�E is the inverse of

E � u with respect to the dual multiplication ⇤. On the other hand, Lu( ˜S) contains
the connection Lu(r̃) = u�1

� r̃ � u and thus, from Theorem 5.3 and Lemma 4.7,
(DE � Lu)( ˜S) contains the connection

(DE � Lu)(r̃)X (Y ) = E �

⇣
u�1

� r̃ � u
⌘
X

(E�1
� Y )

+ E �

⇣
u�1

� r̃ � u
⌘
Y

(E�1) � X

= E � u�1
�

⇣
r̃X (u � E�1

� Y ) + r̃Y (u � E�1) � X
⌘

.

In order to prove our claim we need to show thatLE�u(r) and (DE �Lu)(r̃) belong
to the same special family of connections on (M, ⇤,E), i.e. that there is a vector
field U , which needs to be determined, such that

r̃Y (u � E�1) = r̃u�Y (E�1) +U � Y, 8Y 2 X (M). (9.16)

In order to determine U , we note that

r̃Y (u � E�1) = r̃Y (u) � E�1
+ r̃E�1(�)(u,Y ) + u � r̃Y (E�1)

= r̃Y (u) � E�1
+ r̃E�1(u � Y ) � r̃E�1(u) � Y � u � r̃E�1(Y )

+ u � r̃Y (E�1)

= LE�1(u � Y ) + r̃u�Y (E�1) � u � LE�1(Y )

=

⇣
[E�1, u] + [e,E�1

] � u
⌘

� Y + r̃u�Y (E�1),

where in the first equality we used the total symmetry of r̃(�); in the third equality
we used

r̃Y (u) � E�1
= r̃E�1(u) � Y, 8Y 2 X (M),
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(because u is a Legendre field) and the torsion-free property of r̃; in the fourth
equality we used that E�1 is an eventual identity. We proved that (9.16) holds, with

U := [E�1, u] + [e,E�1
] � u. (9.17)

Our claim follows.
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