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Bubbling solutions for an elliptic equation
with exponential Neumann data in R?

SHENGBING DENG AND MONICA MUSSO

Abstract. Let Q be a bounded domain in R? with smooth boundary; we study
the following Neumann problem
—Au+u=0 inQ
d 0.1)
M _ P~ le” ondQ,
av

where v is the outer normal vector of 92, A > 0 is a small parameter and 0 <
p < 2. We construct bubbling solutions to problem (0.1) by a Lyapunov-Schmidt
reduction procedure.

Mathematics Subject Classification (2010): 35B10 (primary); 35B33, 35J08,
58J05 (secondary).

1. Introduction

In this paper we consider the boundary-value problem

—Au+u=0 in Q

1.1
8_u =Pl onadQ, (b
av
where Q2 is a bounded domain in R? with smooth boundary, v is the outer normal
vector of 92, & > 0 is a small parameter,and 0 < p < 2.
In [6] Davila-del Pino-Musso analyzed the asymptotic behavior of solutions to
problem (1.1) when p = 1. Namely, they considered the following problem:

—Au+u=0 inQ

9 (1.2)
M _ re on 0L2.
av
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Suppose that u;, is a family of solutions to (1.2), with the property that A [, e* is
bounded as A — 0; then there is an integer £k > 1 such that, up to subsequences,

lim A/ et =2k, (1.3)
A—0 a0
Moreover, there are k distinct points &;, withj = 1, ..., k, on the boundary of 2,

such that Le"* approaches the sum of k Dirac masses centered at these points &;.
The location of such points can be characterized as that of the critical points of the
function given by

k
or(Er, . 8 = — [Z HEj £+ Y G, sj)} : (14)
j=1 I#]

where G (x, y) is the Green function of the problem

—AGx,y)+Gx,y) =0 xeQ
3G (x, (1.5)
GV _ sy () x €0,
dVy
and H is its regular part defined by

H(x,y) =G(x,y) —2log

. (1.6)
lx =yl
The authors in [6] also proved the existence of solutions with the above properties.
More precisely, they showed that, for any £ > 1, Problem (1.2) has a solution u;,
for all A small enough, with the property that

A/ e dx — 2kmr as A — 0.
IR

These solutions develop k peaks, as A — 0, around k points of the boundary of €2,
corresponding to the critical points of the function ¢y defined in (1.4).

In this paper we will extend this result and we will consider the problem of the
existence of solutions to (1.1) for any value of p with 0 < p < 2. In particular
we will recover the result in [6], for p = 1. Problem (1.1) is the Euler-Lagrange
equation for the functional J; : H'(2) — R defined by

1 A
J(u) = E/Q (|Vu|2 +u2) - ; /asz et

By the Young and Holder inequalities, we know that J; corresponds to the critical
Trudinger-Moser trace embedding

HU(Q) surs e’ e L9(0Q) Vg=>1,
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which is connected to the following critical Trudinger-Moser trace inequalities

Sy 1= sup{/ e e HYQ\[0}, ull; <1, / u :O} < o0 (1.7)
Q2 R

for any o < m, see [1]. Multiplying by a suitable test function, we can find that
smallness of A is necessary for the existence of a solution. From (1.7), there is a
minimizer solution near zero. On the other hand, there is a second solution for (1.1)
by the Mountain Pass Theorem.

Let ¢ be the parameter, which depends on A, defined by the relation

2(p—1

2 P p=2
PA —;loge € =1. (1.8)

Observe that, as A — 0, we have ¢ — 0. Furthermore ¢ = A when p = 1.
Our main result is the following:

Theorem 1.1. Assume 0 < p < 2. For any integer k > 1 problem (1.1) has two
Jamilies of solutions u; j, for i = 1,2 and for all . small enough, such that

. 2=p ul
lim ¢ e'ir =2k, (1.9)
A—0 a0

where ¢ is given by (1.8). Furthermore, there exist two families of points &, =
(i s -'-’S/i,x) € Ok, fori = 1,2, with

|§li,x _55',x| >8 for 1#j and i=12
for some small but fixed number § > 0, such that & — &' as A — 0, with

V&l ... ) =0

and
1 p=2 k .
wis(x)=p 2Vhe 7 | Y Gx £ +o(l) (1.10)
j=1
where o(1) — 0 on each compact subset offz\{éf, el .§li}. Moreover,
r=2 [ 2km  2km 1 T :
Lui)=xrer |:—— + —log— + k(&) + Ilogs|_10(1)] (1.11)
p p e 2-p

where O (1) is uniformly bounded as . — 0.
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The proof of our result relies on a very well known Lyapunov-Schmidt reduc-
tion procedure, introduced in [2, 15] and used in many different contexts, see for
instance [5-14,17]. A key step in this procedure is to find a good first approxima-
tion for the solution. Usually, this ansatz is built as a sum of terms, each one of
which turns out to solve an associate limit problem, properly scaled and translated.
For our problem, the limit problem is

2
Av =0 in RY

ov
_ 2
— =eon dR7.

av (1.12)

/ e’ < oo.

aR%
A family of solutions to (1.12) is given by
2up

Wr, (%) = wy,u(x1, x2) = log O Y (1.13)

where r € R and p > 0 are parameters. Set
(x) () =1 2 (1.14)

wy(x) == wp,,(x) =log ——. .
a a X%+ (x2 + p)?

If we use the above solution, properly scaled, and centered at several points on the
boundary of the domain, as our approximate solution, we get a very good approxi-
mation of a solution in a region far away from the points. In other words, the error is
relatively small far away from these points. Close to the concentration points on the
boundary, this approximation turns out to be good enough for our construction only
when p = 1. We refer to [6]. Unfortunately this is not the case when p € (0, 2)
and p # 1. In fact, in this case, we need to further improve the approximation near
the concentration points. We do this by adding two other terms in the expansion of
the solution: this can be done in a very natural way, which has first been used, for
instance, in [12] for studying the problem

Au+u? =0, u>0 inQ
(1.15)

u=20 on %2,

where € is a smooth bounded domain in R?, and ¢ is a large exponent. Later on,
this method has been applied in other contexts, see [5,13,14,17]. In particular,
H. Castro in [5] used this method to study the Neumann problem

—Au+u=0, u>0 InQ

u (1.16)
— =u4 on 012,
av
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where Q is a bounded domain in R? with smooth boundary 32, v is the outer
normal vector to d€2, and ¢ is a large exponent. He showed that, if ¢ > 1 is a large
parameter, for any integer k > 1, there exists at least two families of solutions u,,

which develop exactly k peaks &; € 0€2, and in the sense that quz — 2erm lezl 8,
as g — +0o0.

It is important to remark about the analogy existing between our result and the
Dirchlet problem

(1.17)
u=~0 on 02.

{Au +auPle =0, u>0 inQ
For p = 1, the asymptotic behaviour of solutions to (1.17) for which A fQ e" re-
mains uniformly bounded as A — 0 is well understood after the works [4,16,18]:
indeed, Ae" approaches a superposition of Dirac deltas centered at points in the in-
terior of 2. On the other hand, the construction of solutions with this behaviour has
been achieved in [3,8,11]. In our previous paper [10] we constructed bubbling so-
lutions to (1.17) for the whole range 0 < p < 2. We showed that If Q2 is not simply
connected and if k > 1 is any integer, then for all small A Problem (1.17) has a
solution concentrating around k points in the interior of 2. In fact this result was
shown first in [8] for p = 1. Construction of bubbling solutions for Problem (1.17)
and p = 2 has been treated in [9]: in this case, the existence of such a solution is
not only related to the location of the concentration points, but also to the rate of
concentration at these points.

This paper is organized as follows: Section 2 is devoted to describing a first
approximation solution to problem (1.1) and to estimating the error. Furthermore,
problem (1.1) is rewritten as a fixed-point problem, involving a linear operator. In
Section 3 we study the invertibility of the linear problem. In Section 4 we study the
nonlinear problem. In Section 5 we study the variational reduction, and we prove
the main Theorem 1.1 in Section 6. We will give some estimates in the Appendix,
Section 7.

In this paper, the symbol C denotes a generic positive constant independent of
A, that can change from one line to another. The symbols O (¢) (respectively o(t))

will denote quantities for which % stays bounded (respectively, o) tends to Zero)

H
as the parameter ¢ goes to zero. In particular, we will often use the notation o(1) for

a quantity which tends to zero as ¢t — 0.

2. Preliminaries and ansatz for the solution

For any parameter ¢ > 0, we can produce a solution to

: 2
Au=0 in RY

9 (2.1)
M _ ge'  on 8Ri,
av
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by taking

2p
ulx)=w,(x/e) —2loge =log ——,
. X%+ (x2 +ep)?

where w,, is defined by (1.14). Based on this observation, we choose a sufficiently
small but fixed number § > 0 and assume to be given k points §;, j = 1,...,k,on
0%2, satisfying

|& — &1 >4, forl # j. 2.2)
Furthermore, we consider k positive numbers (4 ; such that
§<u;j <87t forall j=1,... k. (2.3)
We define

2,u,j
Ix — & —epjvENP

uj(x) = log
We define the first approximate solution by

1

k
V) = — > [y @) + Hy ()]
i=1

pY

with some number y, to be defined later on, where H f is a correction term given as
the solution of

—AH}?—!—H; =—u; inQ
BH}? 4 (24)

0
8—‘ =¢geli — % on 0%2.
v v

We have the validity of the following lemma.

Lemma 2.1. Assume (2.2) and (2.3). For any 0 < o < 1, one has
H}(x) = H(x,&)) —log(2u;) + O(%) (2.5)

uniformly in Q, where H is the regular part of Green’s function defined (1.5).

We will give the proof of this lemma in the Appendix, Section 7.

We shall show later on that U (x) is a good approximation for a solution to (1.1)
far from the points &;, but unfortunately, when p # 1, it is not good enough for our
construction close to the points &;. This is the reason why we need to further adjust
this ansatz. In order to do this, let us first introduce the following result, whose
proof is given in [6].
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Proposition 2.2. Any bounded solution of the following problem

A¢p =0 in RZ
¢ (2.6)

™ —ePrp =0 on E)Ri,

is a linear combination of

Zop(x) = —i (x - Vwu(x) + 1) = ﬁ - 2)612:;%/”2, 2.7
and
G P G . . 28)
dxi X2+ (xp + p)?
Now, let us consider the following problem
Ap=0 in R2
¢ (2.9)

— — Vg = e on dRZ ,
av ¢ g T

with w, defined in (1.14). In [5] it is showed that

Proposition 2.3. Let g be a C! (BR%F) function such that, for © > 0, k > 0, satisfies

g(x) = O(log" (1 + |x])) as |x| — oo, (2.10)
and
/ et gzop =0 =/ e’r gz, @2.11)
IR% aR%

Then (2.9) has a solution ¢ € C“(Ri). Moreover, for any 0 < o < 1, and
lx| — o0,

1

|x [

1
V2ol = Cre 212)

o) =<C—. Vo) =C

|x] I4a’
where C is a positive constant, which depends on | g|| LP (IR’ for some p =
p(a) > 1.

Let us define ¢ ; to be the solution of the problem

Ag1; =0 in R2

I (2.13)
% —_ ewﬂj ¢)1] = ew/j'./' gl on BR%’_,
v



706 SHENGBING DENG AND MONICA MUSSO

2 nd

where wﬂj (y) g m a

1
81 :alj(w/Lj - 1) +w}Lj + E(wﬂj)z

with a1 is a constant to be fixed, in terms of p ;. Observe first that, by definition,
the function g; satisfies (2.10). We now choose a;; such that the orthogonality
condition (2.11) holds. First we observe that g; is a symmetric function for any

choice of « j, hence
Wy -
/ e Hj glzlﬂj = 0,
aRZ

Next, we chose the parameter «; such that the other orthogonality condition is
satisfied. Since

et
BRZ ngO,uJ
+

__ b e (e, — 1) + W, + ~ ()2 (y-Vuwu, () +1)
W Jor A wi T Wy )
1 /°° ( wy; (71,0) dwy,

= ——oy; e i (wy (v1,0) = 1) —= (31, 0)y;
w J oo ( Hj ) ayl

J

+ e (wy, (31,0) = 1) )dyl

L[> (31,0
_ M_ (ew/lj()’l’ )w,u](yl O)—(yl O)yl +e /AJ()’I )w,u,j(yl’o)) dy1
J
1 [ (wy,)? (Wy )
. (ewﬂj@l,m '2’ 01 ) (y1 0)y1 +¢"4 O LI (y,,0)| dyy
jJ—
1 o &
__ |:Ollj/ ewuj()’l,())dyl +/ elﬂuj()’l,())wuj(y],o)dyl] )
M —00 —00

Thus we define o ; such that

o0 [o.¢]
T / iV gy, [ "0, (31, 0)dy; = 0.
— 00 —00

Since

00 2 o0 1
/ MO0 gy, / 2# dy; = / —— di =2,
o i+ oo 1741
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and

o0

e
—00

/ ZM] ZH; dy
o Vi + 1 ®3 1"

MO, (n, 00y

——

1 1 _1
:2/;00 o [ogt2+1 +10g(2,uj )} dt = —2mw log(2u ).

Here we use the following fact (see the proof in the Appendix)

0 1 1
I dt = —2m log?2. 2.14
,/_oot2+10gt2+1 08 (2.14)

Therefore, o1 ; is given by

o1j = 10g(2pbj). (215)

Then we get the existence of ¢ ; by Proposition 2.3. With this function, we define

wij(y) = @1;(y) +oarjwy; (v).

We observe that wy ; satisfies

Awy;j =0 in Ri
dwi

1
Wy Wy 2 2
—e Mwyj=e M |w,, + =(wy, on 0IR% .
v 1) < " 2( M_j) ) +
Next, assume for the moment that p # 1 and consider ¢, a solution of

Ad)zj =0 in R%_

9 ; (2.16)
v

where
g = azj(u)w — 1)+w1j+7p_ (wu.)2+l(w1]~)2
J 2(p—1) J 2
1 4 1 3 1
+§(wﬂj) +wﬂjw1j+§(wﬂj) + -

2
2wlj(wuj) .

Again, by definition, we observe that g, satisfies (2.10) and it is a symmetric func-
tion. Thus, arguing as before, we can find a constant o such that the orthogonal-
ity conditions (2.11) are satisfied. Then we have the existence of function ¢,; by
Proposition 2.3.
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For &; € 92,let § > O be a fixed small radius, depending only in the geometry
of €2, such that

Fj:Bs(0)N (R —&;) - MNRZ, (2.17)
is a C? diffeomorphism, and M an open neighborhood of the origin such that
Fj (B5(0) N (32 — £;)) € M NIR3.
We can select F; so that it preserves the area. Fori = 1, 2, define
- Fi(x — &) x—§j
wij(x) = ¢ij (%) + ajjwy; ( - J

= $ij(y) + o (),

where
2 MU

ly =& —pujpEPI*
with & J/ = &; /¢ and where we will write v for the exterior normal unit vector to

9Q and 9K2,. Here Q, = ¢ 'Q. Then, for any 0 < p < 2, let us define the first
approximation solution to (1.1) is

wj(y) == wy; (y —S}) = log

k

— . & p — 1 1 7)1 - &
D) = Zl [ujm +H0+——5 (w1,<x> + Hljm)
= (2.18)
2
p—1 | R
(5 s )]
where Hfj ,i = 1,2,1s a new correction term, given by the solution of
_AHI";_FHZ:—O[UIZ}J(X/S) in Q
OHE. Su i (2.19)
Y = Olij geli — ﬂ on 0€2.
av v

By the same arguments used in Lemma 2.1, we have the following result, whose
proof is postponed to the Appendix, Section 7.

Lemma 24. Forany0 < o < 1, fori =1, 2, one has
Hi“}(x) =o;jH(x, &) —a;jlog2u;) — 2a;jloge + O (%) (2.20)

uniformly in Q, where H is the regular part of Green’s function defined (1.5).
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Consider now the change of variables
2
v(y) = py"~luley) = py?.  with y? = —>loge.
p

Then under the choice of ¢ in (1.8), problem (1.1) reduces to

—Av+&?v =26%loge  inQ;

v (2.21)

— =/ on 92,

av
where Q, = e‘lQ, and

v\ yrtass e
fw=[(1+ W e 2 . (2.22)

Let us define the first approximation solution to (2.21) as

Vi) = py”~ ' Us(ey) = py?, (223)

with U, defined by (2.18).

We next describe V;, close to the points EJ’.. We write y = e~ lx, & = e7'¢;.
For |x —&;| < & with § sufficiently small but fixed, by Lemmas 2.1 and 2.4, and the
factu j(ey) — py? = w;(y), we have

Vi (y)

€ p—11 ~ €
= o)+ Hj o)+ P = (1560 + Hije)

~1\? 1 /.
+ (%) W (U)Zj(e)’) + Hf,-(@’)) - py?
ko[ 11 ,_
+ Z <wz(8y) + Hf (ey) + p——p (wi(ey) + Hyj(ey))
—1\% 1
+ (p_) 2 (lI)ZI(E}’) + Hf[(@’)))
p Y (2.24)

~ P—l 1 ~ p_l : 1 ~ ! o
=wj(y)+7ﬁwu(8y)+ R szj(sy)+0(8|y—$jl)+0(8 )

log@u ) + | 14+a, 22 L 4 (p_1>2 !
— loglapt o — 4| — | —
! Topoyr T p )

k
x (H(s,-, E)+Y G, sp)

I£]

2
p—11 (p—l) 1
— oy, —tai| —— ) — | (log2u;) +2logs).
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We now choose the parameters j1 j: we assume they are defined by the relation

k
log(2uj) = (H@j, E)+ Y G, s,->> +(p— Dayj
I#]

11 k
+a1j”p o (H@j,sj) + ;G(a,sp
’ (2.25)
—log2u,) + (p — 1)@)
o]

—1\* 1 k
+szj<p—) TP(H(SJ‘, EN+Y G &) - 1og(2uj)> :
b2y =y

Taking into account the explicit expression (2.15) of the constant « j, we observe
that u ; bifurcates, as A goes to zero, from the value

k
= [H(éj,sm ) G@z,sn}
e el (2.26)

solution of equation

k
log(2u ;) = (H(S_/, §j)+ ZG(SI, Sj)) + (p — Dy (2.27)
I#j

Thus, 1 is a perturbation of order yip of the value [ ;, namely
k
1 1
logQuj) = 57— | H(j. &) + Y GeE.&p)(t+o0 — ) (228

Then, by this choice of the parameters 1 ;, we deduce that, if |y — & J/.| < 8/e with §
sufficiently small but fixed, we can rewrite

2
Vi =i + 2L L g, j(ey>+(p—_1) L (ey) +0(y), (229)
p P P yeP
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with
0(y) = Oely — £}) + O(e”).
We will look for solutions to (2.21) of the form
v="V,+9,
where V) is defined as in (2.23), and ¢ represents a lower order correction. We
aim at finding a solution for small ¢ provided that the points &; are suitably cho-

sen. For small ¢, we can rewrite problem (2.21) as a nonlinear perturbation of its
linearization, namely,

—Ap+e2p=0 x e Q

(2.30)
L($) = Ex + N(¢) x €0,
where
0

L) = % — f'(V0)e, 231)

aV;
Ey = f(Vi) = =, (232)

V
N@) = f(Vi +¢) — F(Vi) — ' (V2)o. (233)

p t _
We recall that f(t) = (1 + /W)pfleyl [A+ 57" 1

In order to solve the problem (2.30), first we have to study the invertibility
properties of the linear operator L. In order to do this, we introduce a weighted
L*°-norm defined as

k -1
1Al = sup (Z(1+|y—s}|)—1—"+8) ) (234)

yedQk \ j=1

for any h € L*°(3%2,), where we fix 0 < o < 1 later on. With respect to this norm,
the error term E) given in (2.32) can be estimated in the following way:

Lemma 2.5. Let 6 > 0 be a small but fixed number, assume (2.2) and (2.3). Then
there exists C > 0 such that
C C

i 2.35
737 = Tlogel® (239

IE> %00, <

for all » small enough.
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Proof. Far away from the points &;, namely for [x —&;| > §,i.e. |y — $}| > g, for
all j =1,...,k,we have that

8V,\ p—1 BU,\(Ey)
——=py e ———

— — 0 p,1 2 .
av av v &)

On the other hand, in this region we have

- Vi (y) 4 2loge + 0O(1) . o)

py? pyP ~ |loge]

where O(1) denotes a smooth function, uniformly bounded, as ¢ — 0, in the con-
sidered region. Hence

2

-1
fomy = (1422 oragr-n __er
’ py? [logelp=17 "

& 2
size of the error, measured with respect to the || - ||« aq,-norm, is relatively small.
Namely, if we denote by 1oyter the characteristic function of the set {y : |y —§& j.| >

Hence if we are far away from the points &;, or equivalently for |y — & }| > & the

s . . . .
HJ=1... k}, then in this region we have
2-p
ep
1 Exlouterll+, 00, < Ci_l- (2.36)
|loge|?
Let us now fix the index j in {1, ..., k}, for |y — Sj’.l < g,we have

A%
av

= Wi

- N2 -
+p_1iawlj(x)+(p 1) 19w L 562

p yP v p y2r v

p vP v

p—1\* 1 (d¢s;(y) -
+(T) W (# —|—a2je -’) + 0(82).
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On the other hand, for any R > 0 large but fixed, in the ball |y — & }| < R; =
R|loge|*, with @ > 3, we can use the Taylor expansion to obtain

FW)

L] 11 p—1\> 1 _ ]
+7 w;(y)+ Ty—wlj(é“)’)‘i‘( > ) ﬁwzj'(é“)’)‘f‘ »

~ —1 ~ 2 ~ P
y eyf’[(1+w#p(wj<y>+']7y%w en+(51) ﬁwzj@y)-i-@(y))) —1]

p—1

(=t p—1\> 1 _
= +Tﬁu)j(y)+ T lej(e)’)

3
p—1 | p—11
+ (T) szj(SJ’) + Tﬁe(y)

2
. p=l 1o oo (L*l) L,
% oW 7y e ) 202 E) o)

_ . 2, 2
%”Tfﬁ,[w,(ywr%#pw en+(251) y%,,wzj(sy)w(y)]

X e
s P11 [ g p—1\ 1

ozt e o (2
x{e’]’jzsz(sy)+ea’j |:17)1j+%( ]) + - (wlj) + - (w])4

- 13 1.
twjwij+ 5 W))7 4 Fwj W)

2
p—l 1 s (p_l) 1 Wi [ 7
+ 5 —ePigy) + [ T— ) ==Y [+ w1(ey)]0()
p V” p y2r [, e

p—1 1 1. 5 |
+ — ) it j(ey) + e (w1j) (8y)+4—8(w.,-) + W,y (ey)
1 . o 1. ~
5 (1)) ey) + 202 () + 5101 (ey) ()
2p—3

+ 2273 G i ey + 1(@ 25 + (i )2(e)
2p = 1) J J

1
+ 5 HEV)@))? + (w]> + 1 j(eY) D2, (£Y)

4( 1y

L e @)+ L1811 (e9))? + g (63) ()2
g W1 (EN) @)+ 5 (i1 () + S0 (ey) (1))

8
log |y — &/l
N )
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Thus, thanks to the fact that we have improved our original approximation with the
terms w1 j(ey) and wy;(ey), and the definition of *-norm, we get

C

C
. . Cc_ c 237
IEx B R 1002 = V3P~ Jloge)? 237

Here 1 B} Re) denotes the characteristic function of B(& J/., R.). Finally, in the re-

maining region, namely where R, < |y — §}| < g, forany j = 1,...,k, we

have from one hand that |2%22)| < Ce®i®), and also | f(Vi(3)| < Ce™i® as
consequence of (2.24). These facts, together with (2.36) and (2.37) give estimate
(2.35). O

In the next two lemmas we prove some estimates that will be of use later on in
our construction.

Lemma 2.6. Let § > 0 be a small but fixed number, assume (2.2) and (2.3). Then
there exists C > 0 such that, for all small X,

1F/(Va) = ePllsp0, < (2.38)
|log e
and there exists some positive constant Dg such that
k ~
(Vi) <Dy e, (2:39)

Jj=1

Proof. We have

_ p-2 Vi o\
Fomy =221 (1 + i) o1+ =)
p v py?
2(p—1) v
V; Vayp_
+(1+ fy ) B i NN
py?
As in the proof of Lemma 2.5, far away from the points &, namely for |x —&;| > &,
ie. |y —é‘]’.l > g,forallj =1,...,k, we have
V 21 ol ol
L) | 2lege+ o) 0()
py? py? |log &
Therefore
2 2
L=—""0M), adIlh=—"" —_0()
“7 Tlogelp=1 "7 TogePe=D "1
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Then we have
2

' (Vi) louter = o). (2.40)

|loge|P~!

On the other hand, fix the index j in {1, ..., k}, for |y — “;‘]’.| < R, with R, =
R|loge|, for any R > 0 large but fixed; we use the Taylor expansion to get

Pl g e 2 L
—_—— —— | W;(y) + ————1;(y
py? \'’ p y?

p vP
p—1\* 1 _ o
+<T) ﬁij(y)—i_ »

2 B P
L [(HM (w,(y)+" S+ (25) V%pwz,«y)w(y))) —1]

p—211|p—1 p—-11_ p—l2 1 .
—|: + ﬁwj(y)-’_ T lej()’)

p—2

p yP|lp—2 p
p—1\° 1
+ ) v (y)+—— )
_ 2
B0 5 0 (5 S5m0 6

and

1 . p—11 _
=14 —w;(y)+ ———wi;(y)
py p vP

p—1\* 1 _ ;
+(T> szj()’)‘F )

2 P
7 [(HW,; (wj(y) "T%w (y)+(PT) #Ub;(y)#)(y))) —1]
2(p—=1D 1 ( -1 1 .
=14+ —w;(y)+2 wi;(y)
[ pyP wi p )y

—1\° 1 2 1
+2(”—> )+ (- . )ﬁ (y)}

2(p=1)

p
p—1 1 2 15
% i yp 1) ( ) 7221 6

2 2
1p—1 1|~ -1 1 ~ -1 1~
Yt i o+t i o0+ 251 VT,,mj(y)-i-@(y)} .
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By the definition of w;; and w;; we get

o) D o)
I,1 Iylpe gy —e"i®) = ——. 241
BE R = [logg”  P1BER) 7€ oge| (2.41)
Finally, in the remaining region, namely where forany j = 1, ..., k we have R, <
ly — “;‘ | < E,wehave
C_uw ;(y)
[lal = I ] = Ce™Y (242)
loge*

Then, from (2.41) and the definition of *—norm, we find that very close to the point
&; on 092, we have

D o(l)
£/ (Vi) — e¥ls00, =
|log &|
which implies (2.38). Combining (2.40), (2.41) with (2.42) we obtain the estimate
(2.39). 0
Lemma 2.7. We have
L (Vi)llag, < € (2.43)

for some positive constant.

Proof. We have
—D(p-2) 1 vy \F~3 Vi yp_
V) = (p )(217 )Tp <1 xp) REIE ALY
p Y pY
=1V e RS AL
p P pyr

b
V; yP P
+(1+p—;p) 5" _ 14 1+ 1,

by a similar computation as before. Far away from the points &, namely for |x —
£l > 6, ie. |y—§l’.|>— forall j =1,...,k, we have

e
&7 ev e
= WO(]), I = WO(D’ and I, = WO(I)'
Then
2
I (Vi) Lower = o), (244)

| loge|P~!
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where again O(1) denotes a function which is uniformly bounded, as ¢ — 0, in the
considered region. Let us now fix the index j in {1, ..., k}; for |y — §}| < R, with
any R, := R|loge| for some R > 0 large but fixed, by the Taylor expansion, we
have

(p—Dp-2) 1 1 . p—11 _
Io=-—"r 21— ,() + ——— — i1 ()
‘ p? y2p py? \ '’ p yr
p—1\% 1 3
+(T) ﬁﬁ&j()’)'Fe()’)))
[(H p<w,(y)+ pwl,(y)+(L)2%wzj(yHG(y)))pfl]
Xe Py Py p y2P
(p—2(p—-3) 1 |p—1 p—11 (p— 21
= | Rt N T i)
p? y*¥ |p-3" p pr oy
(p—13 1 _ p—11
F——— w2 (y) + ———0(y)
p> oy p P
- 2 ~
« ew,(y>eL7y%@1_/<y)e(pTl) 771270 6 ()
2
%"%ﬁ[w,(y) PTprl,<y>+("7)2y%,,wz,-(y)w(y)]
X e ;
3(p—1) 1 1 (. p—11 _
lo==——— 14+ — (i;() + ———ib;(»
p oyl py? \ '’ p yr

2 2p—3
p—1 1 _ . p
+ <T) szj()’) + ()’)))

1 1~ SN2 g . P
Xeyp[<l+”y (w;(y) %ﬁwlj(y)+(p7> yprzj(y)+9(y)>> ,1]

_3@p=3 1 | p-1 p—11_ (p—1D* 1 _
p [2p—3+ p Ot T o)
(p—13 1 _ p—11
+ 5w () + ———0(y)
p> oy p P

" ; p=1) g,
X ewj(y)eTprwlj(y)e( ) ) yz,,m_/(y)e@(y)

~ 2 1 ~ (v 9 | 2
. S H( 55 S e ()6 ) ;

=
I
[l
-
*<|__‘
S
—
S
~.
—
<
N
F
s
[l
~:|”
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and

= (14— (@00 + 2= a0
= — | w;(») + ———1,(y
¢ py? \ "’ p yr

2 3(p—1)
p—1 1 _ p
+ (—p ) —yzpwz](y)Jr (y)>)

- -1 - -1\2 1 - b
y eyP[(HW#p(w_,-(y)+”7yipw.,~(y>+(”7) y%pwz,-(y)w(y))) —1]

3(p—1 1 _ 3(p—-1% 1 _
— [1 () + Tﬁwu(y)

3p—1 1
+ 73)/—171%()’) + %y—pe()’)}

2
~ 1 el S T W S
« ew_;(y)eTy—pwlj(Y)e< » ) yzpw2f(y)69(y)
1 p—1 1 —1 1 —1 2 1 :
7”7—,,[zbj<y>+PTV—,,w1,<y>+(P7) VT,,wz,-<y>+e<y>}

Therefore, we get

o(1) o

Ielpe k) = Lal ) k) = Lelpe gy =0(1). (245)

| loge|’ |loge|?’

Finally, for R, < |y — §}| < g,for any j, we have

el <

< , il < ——,  |L|=0()+Ce"i. (2.46)
|log ¢| | log |2

From (2.44) and (2.45) with (2.46), by the definition of %-norm, we obtain that
(2.43) holds. O

3. The linearized problem

In this section we prove the bounded invertibility of the operator L. First of all, we
will solve the following linear problem: given 4 € C(9€2;), find a function ¢ such
that

—Ap+e2p=0 in Q
k

L@p)=h+ ZCijle on 02, 3.1
Jj=1 ’

/ XjZ1j$ =0 for j=1,...,k,
Qe
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for certain scalars c;, where the operator L is defined as in (2.31), and Z;, x; are
defined as follows: set

1
Fi(y)= EF,-(sy), (3.2)
with F; given by (2.17); then

Zij(y) =zij(F;(y), i=0,1, j=1,...k,

with zo; and z;; defined in (2.7) and (2.8) respectively.

Next, let us consider a large but fixed number Ry > 0 and a non-negative radial
and smooth cut-off function x with x(r) = 1 ifr < Rgand x(r) =0ifr > Ro+1,
0 < x < 1. Then set

1) = xAFEDD.

Equation (3.1) is solved in the following proposition.

Proposition 3.1. Let § > 0 be a small but fixed number, assume (2.2) and (2.3),
and let w j be given by (2.28). Then there exist positive numbers Ay and C such that
problem (3.1) has a unique solution ¢ = T) (h) which satisfies

1
lollLe) <C <10g g) 172114, 5% (3.3)

forall & < ).

We carry out the proof in the following steps.

Step 1: Constructing a suitable barrier.

Lemma 3.2. There exist positive constants Ry and C, independent of ., such that
if A is small enough, there exists ¥ : Qg\ U];:1 Bg, (gj.) — R, smooth and positive,

satisfying

k 1
—AY + ey §‘;‘§??¥+2 in Q:\ Uk, Bg, (€})
d k 1
_“’ — VY ; e 89\ Uk_, Br, (5))
w~zl szSm(uiﬂaBRggpy

Moreover, we have a uniform bound

0<y <C inQ\U_ Bg ().
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Proof. Letn; € Cgo(Rz) besuchthat0 <n; <1,7; = 1lin 98035/28(5}),4, =0
in Q:\Bs/e(§}), V| < Cein Q¢,|An;| < Ce? in Q. Let Yo (y) = ¥ (), where
gﬁ is the solution to

AV +¢¥ =1 inQ
W

on 0€2,
av
so that 5
—AYo+ &>y =62 inQ,, and %:8 on 9€2.
v

In particular, ¥ is uniformly bounded in €2,. Take the function

k (y—§&)-vE) 1
WZX;UJ [#—I—Cr—a} + Co,
J=

where r = |y — «S;. — I jv(f;.)l. It is directly checked that v satisfies the required
condition. ‘ ' O

Step 2: Transferring a linear equation.
We first study the linear equation

—Ap+e2p=h inQ,

% — (V)¢ =h ondQy, (34)

where A1, h are in suitable weight spaces: we consider for / the norm defined in
(2.34) and for h

& -1
171l 0 == sup (Z(l +ly—&D7° +82) ()] (3.5)

YEQe j=l1

For the solution of (3.4) under some orthogonality conditions, we have an a priori
estimate:

Lemma 3.3. There are Ry > 0 and Ao > 0 such that for 0 < A < Ao and any
solution of (3.4) with the orthogonality conditions

/X‘,-Z,:,-¢=0 Vi=0,1, j=1,...,k (3.6)

£

we have

@l < C (I1hllxa0, + Ih1ll.0,) (3.7

where C is independent of A.
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Proof. We take Rp = 2R;, with R being the constant of Lemma 3.2. Thanks to
the barrier ¥ of that lemma we deduce that the following maximum principle holds
in Qe\ US_| Br,(§)): if € H'(Q:\ US| B, (€))) satisfies

—Ap+e2p >0 in ¢\ U{;:l Bg, (&)

a¢ 7 k /
=5 = ['(V)$ =0 ondQe\ U, Br, ()
¢ >0 on Q; N (Ul;zlaBRl &),

then ¢ > 0 in €2\ u’;zl Br, (§)).
Let i1, h be bounded and ¢ be a solution to (3.4) satisfying (3.6). Define the
inner norm of ¢ as

ol = sup |1,

2:0(V_1Bry €))

and set
¢ =C1y (Iglli + lAllxa0, + A1 ls0.)

with C a constant independent of A and ¥ the function given in Lemma 3.2. By the
above maximum principle we deduce that ¢ < ¢ and —¢ < ¢ in Q;\ Ul;zl Bgr, (¢ ;.).
Since ¢ is uniformly bounded, we have '

Ipllzoe@n < C (ol + Nhlls o0, + 1 lle.) (3.8)

for some constant C independent of ¢» and A.

We prove the lemma by contradiction. Assume that there exist a sequence
An — 0, points &f', ..., & on 0%2 satisfying (2.2) and functions ¢, f, and h, with
I@nllLe@,,) = L, 1A w2, = 0, [I2llx 00, — 0,such that, for each n, ¢, solves
(3.4) satisfying (3.6). By (3.8) we see that ||¢,||; stays away from zero. For some of
the indices, say j, we can assume that supBRl &) |¢n| = ¢ > 0 for all n. Consider

gﬁn =¢u(z —§& ;.), and let us translate and rotate €2, such that 2., approaches the
upper half-plane and 5]’. = 0. Then by an elliptic estimate bn converges uniformly

on compact sets to a nontrivial solution ¢ of (2.6). By Proposition 2.2 ¢ is a linear
combination of zo; and z1;. On the other hand, taking limit in the orthogonality

relation (3.6), we find that fRi X(}Aﬁzi i = 0fori = 0, 1. This contradicts the fact
that ¢ # 0. O

Step 3: Establishing an a priori estimate.
In what follows, we will establish an a priori estimate for a solution to (3.4) with
the orthogonality condition |, Q. XJ Z1j¢ =0 only.
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Lemma 3.4. For small enough X, if ¢ is a solution of (3.4) and satisfies

/ XiZ1jp=0 Yj=1,...k, (3.9)

&

then there holds
@l < Clloge| (I1hll«o0. + 1712, - (3.10)

where C is independent of A.

Proof. Let ¢ satisfy (3.4) and (3.9). In order to use Lemma 3.3, we will modify ¢
to ¢ so to satisfy all orthogonality relations with respect to Z;; fori = 0, 1. Let
R > Ro + 1 be large but fixed, § > 0 be small and fixed. Set

Zo;j(y) = ¥ Zo;(y),

where
_log(é/e) — log|x|

"~ log(8/e) —log R

with F JE the change of variables defined in (3.2). We observe that h is just the
solution to

v =h(FSOD,  hx)

Ah =0 in Bs;:(0)\Bg(0)
h=1 |x|=R
h=0 |x|=34/e.

Let 11, 172, be radial smooth cut-off functions on R? such that

0<i; <1, Vil <C inR?

fij=1 inBg©), ;=0 inR*\Bgy(0),
and
0 < i <1, |Viij| < Ce/s, |V¥iip;| < Ce*/8* inR?,
Mj=1 inB;©0), ;=0 inRz\B%(O).

Now, we write
ni ) =0 (F; (), mj(y) =2 (F; (). (3.11)

Define N R
Zoj =mjZoj+ (L —mn1j)n2jZo;.

Given ¢ satisfying (3.4) and (3.9), we set
Jo. xiZojo

k
b=¢+ deOJ, where dj = — 5 .
; fszg ZoJ'Xj

J
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Therefore, our result is a direct consequence of the following:

Claim:
dj| < Clloge| (I1hlla0. + Ih1llw,) YJi=1, ... k. (3.12)
First, using the notation L=-A + £21, we observe that (5 satisfies
~ k ~ )
L(¢) =hi + ZdjL(ZOj) in Q,
J_
~ 3.13
¢ 870, (3.13)
3 — (V) =h+ Z dj 81) — f'(V)Zo; | onag.

Thus, by Lemma 3.3, we have

||¢||Loo<g><CZ|d |(

+ Cllhll*,ms + Cllhtllx, .-

f (VA)ZOJ

kD (3.14)

+ ||Z<20j>||**,95>
*,0Q2

Multiplying the first equation in (3.13) by Zois integrating by parts and using the
second equation in (3.13), we find

=~ 5 5 - [0Zu
d; |:/ L(Zo)Zy +f Zy (8— - f (VA)ZOI)j|
Qe 3R v

(3.15)
~ ~ 3ZOI ~~ o~
=—[ hZy—| mZoy+ ¢ B—_f(VA)ZOI + OL(Zoy).
9, e Q% % Qe
Thus by (3.14), we deduce that
~ - - - [8Zy L -
d L(Zoy)Zor + Zy vl V) Zo
Q0 Q% v
- YA , -
< Cllhlx00, + Cllhtllse,o. + @llLe @) = Vi) Zoy
*,082
+ 11l oo (@) 1L (Zoo) 14,2, (3.16)
9 Zo ~ =
C(||h||*,395+||h1||**,Q£)(1+ B——f(V,\)ZOZ +||L(Zoz)||**,sz£>
*,0Q%
aZO/ / 5 T
C —_— = Vi) Zo i L(Zy; .
- ;( il A » + I L( o,)n**,szs)
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We achieve the claim by proving the following estimates: for some constant C > 0,
independent of A,

~ = s - (0Zo; . C
L(Zoj)Zoj + Zy; — (V2o | = , (3.17)
Q. 9% v |log &|
~ - C
IL(Zoj) s, 20 < ——, (3.18)
Tog e
dZ0o; - c
L — (Vi) Zo; < : (3.19)
ov |log |
*,0Q
In [6] it is showed that estimates (3.17), (3.18) and (3.19) hold. O

Step 4: In proving the solvability of (3.1), we may first solve the following problem:
given h € L°(2,) find ¢ € L*(Q,) and dy, ..., d; € R such that

k
—A¢ + 82¢ = Z dixjZij 1in g
j=1
¢ ,
3 (Vo =h on 082, (3.20)
v
/ ijlj¢=0 fOI‘j=1,...,k.
We first prove that for any ¢, dy, . . ., dy solution to (3.20) the bound
@1l L) < Cllogelllhll«aq, (3.21)

holds. In fact, by Lemma 3.4, we have

k
ol < Clloge| <||h||*,395 +y |de> (3.22)

Jj=1

and therefore it is enough to prove that |d;| < Cllh||« g, -
Let 12 be the cut-off function defined in (3.11), and multiply (3.20) by 12, Z1;.
Integrating by parts we get

ony
dl/ nZh = —/ hnyZyy + b——2Zy
. FIoR 9, OV
071 ,
+ onuZy\———f Vi)Zy (3.23)
2% v

+ / d(—AMmuZi) + 2nuZu).
Qe
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Since, Z1; = 0(%) and Vny = O(e), we have

Ny
o—Z7Zy

1
< Celog —.
EIoN av &

On the other hand, we can estimate that

07Z1; , I3 g% 1)
—_— Vi)Zyu=0\|— o|——=), -, € 092,
oy L VWZu (1+r)+ (1+r2 <2,y e

which implies that

07y

/ — (V) Zi| = O(e%). (3.24)
32 av
Moreover, we deduce that
2 1
‘_A(nﬂzll) +e 7721211‘ =0 8logg ) (3.25)
9%
Thus from (3.23)-(3.25), we conclude that
d f 023 < Clitlhag, + Ce®lplL~@. (3.26)
Qe

Combining (3.22) and (3.26) we have
L
i < € (nhn*,mg +Celog — ]ZI |dj|) :
This implies that
ldi| < Cllhll« 00, 3.27)
which proves (3.21).

Now consider the Hilbert space

H:{qbeHl(QE) ;/ xjZ1j¢ =0 Vj:l,...,k},

€

endowed the norm ||<;>||§{1 = ng |Vo|> + £2¢>. Problem (3.20), expressed in a
weak form, is equivalent to seeking ¢ € H such that

/ v¢vx/f+82¢x//—/ f’(V,Qxﬁ:/ hy, forall y € H.
Qe 092 082,
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Fredholm’s alternative guarantees unique solvability of (3.20), which is satisfied by
(3.21).

Step 5: In order to solve (3.1),let ¥; € L*°(2), d;; € R be the solution of (3.20)
with h = x; Zy;, that is

k
—AY; +&%Y; = Y djxjZy; inS

j=1
aY; ,
5 ' VOYi = xiZy on 982 (3.28)
/ XjZIjYi=0 fOI‘j=],...,k.

From Step 4, there is a unique solution ¥; € L*°(£2,) of (3.28), and
1YillLe@,) < Cllogel,  |dij| =C (3.29)

for some constant C independent of A.
Multiplying (3.28) by 12 Z1 j, and integrates by parts, we have

2 2 9Z1 /
dij | xjZij+dij XiZij = —— — f'(V)Zy; | ;Y
Q 9% a0, \ v
anaj
/BQS v 1j1Li

where §;; is Kronecker’s delta. From (3.24), (3.25) and (3.27) we obtain

.. 72 . 72 o 1
d; XjZij +8ij XjZij=0|&"log—|.
Qe Qe &

Then we get
1
dij = A(S,‘j + O (8“ log —) (3.30)
&

with A > 0 is independent of . Hence the matrix D with entries d;; in invertible
for small ¢ and | D™!|| < C uniformly in &. Then, given & € L>®(3;) we find ¢1,
dy, ..., dg,the solution to (3.28) and define

k
¢=¢1+ ) ci
i=1

where c¢; satisfies
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Then ¢ satisfies (3.1) and we have
1 K
I¢lie@ < Il +log = > lcil
i=1

1 1<

< Clog = |Ihll+o0. +log = > |di]
& & =
1

< Clog g||h||*,aszs

by (3.27). This finishes the proof of Proposition 3.1.
Remark 3.5. A slight modification of the proof above also shows that for any /2 €
L*°(0%2,) and h € L*°(L2.), the equation

—A¢p + &2 = hy in Q,

k
Li@)=h+ Y cjxjZij ondQ,
j=1

/ Xjle¢=0 fOI'j=1,...,k,

&

has a unique solution ¢, cy, . .., ¢k satisfying

1
l¢llLe,) < Clog - (121,00, + A1 l1ss,22. ) -
lcjl <C (Ihllvoe + Ihillsee), YJi=1,....k

for some C independent of A.

Proposition 3.1 implies that the unique solution ¢ = T, (h) of (3.1) defines a
continuous linear map from the Banach space C, of all functions % in L for which
|h]l« < oo into L°°, with norm bounded uniformly in X.

Lemma 3.6. The operator T), is differentiable with respect to the variables &, . . . ,&

on 02 satisfying (2.2), and one has the estimate

1 2
19 Ta (M) | L) = € <1Og g) I2llx00, forl=1,....k  (3.31)

for a given positive C, independent of X, and for all small enough A.

Proof. Differentiating equation (3.1), formally Z := 85[¢ should satisfy in €2, the
equation
~AZ+¢’Z=0 inQ,
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and on the boundary 9€2,

k
L(Z) = =g (f (V) + cidg QuZi) + Y d;Z1jx;
j=I

withd; = 8§Irc > moreover the orthogonality conditions now become
/ Z]ijZZO lfj;él
Q¢

/ ZuxzZ = —/ 9 (Zuxi) ¢-
Qe Qe

We consider the constants b; defined by

bl/ X125 =/ O (Zux) ¢, for I=1,... k.
Qe Qe

Define
Z=Z+bxzy.
‘We then have
—AZ+¢e*Z=a in £,
B k
L(Z)y=b+ ) djZijx; ondQ
j=l1
/ XiZ\jZ =0 forj=1,...,k,
Qe
where

a=b(=AZu) + e xZu),
b= =3y (f' (V1)) ¢ + cidg (Zux) + LOuZuw),

and we have
1 1
llalls,0 < C log gllhll*,aszg, 10l%,00, < C log gllhll*,aszg-

Hence, using Proposition 3.1 we obtain

1\2
19 Ta (M) | L) < € (lOg g) ll00, forl=1,... k.
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4. The nonlinear problem
Let us now introduce the following auxiliary nonlinear problem

—Ap+e2p=0 in Q,

k
L) =E,+N@ + > cjx;jZij ondL,
i=1

= 4.1)

/ ijlj¢=0 fOI‘j=1,...,k.

&

We have the following result:

Proposition 4.1. Under the condition of Proposition 3.1, there exist positive num-
bers Ao and C such that problem (4.1) has a unique solution ¢ which satisfies

1l Lo 4.2)

) S 77
= Tlogel?

for all A < Ao. Moreover, if we consider the map &' — ¢ into the space C (), the
derivative Dg ¢ exists and defines a continuous function of §'. Besides, there is a
constant C > 0 such that

[ Dg ¢l oo (e (4.3)

) S T—
~ |loge]

Proof. In terms of the operator 7) defined in Proposition 3.1, problem (4.1) be-
comes

¢ =T, (N(@) + Ey) := A(®). (4.4)

For a given number M > 0, let us consider the region
_ M
Fm=1¢€C) : lIllrow) < ——51-
[loge|
From Proposition 3.1 we get
1
|A(P)lL>(,) < C |log - [IN @) lx00. + I Exlls00.] -

From (2.35) and (2.43), by the definition of N (¢) in (2.33), we have

1
2
IA@) Lo, < Clloge| <C||¢||L°°(Q£) + m) ‘
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We then get that A(Fys) C Fa for a sufficiently large but fixed M and all small X.
Moreover, for any ¢, ¢» € F, one has

IN(@1) — N(@2) x99, <C (fg% ||¢i||L°°(Qg)) lé1 — P2llL=(Q,)-

In fact,
N(p1) — N(2) = f(Va +¢1) — fF(Va + ) — (Vi) (@1 — ¢2)
L rd
= /0 <Ef(vk + ¢+t (1 — ¢>2)> dt — f' (V) (o1 — ¢2)

1
= /0 (f'Vi+ 2 +1(p1 — d2) — f/(V2)) dt (dp1 — ¢2).
Thus, for a certain t* € (0, 1),and s € (0, 1)
IN(¢1) — N(@2)| < CIf' (Vi + 2 + % (1 — ¢2) — f' (Vo1 — d2llL=(a)
<CIf" Va4 s + 151 — d)I (1911202 + l1d2]lLo@,)) 91 — D21l (@)-

Thanks to (2.43) and the fact that ||¢1]|zx(q,), ¢2llLe@,) — 0as A — 0, we
conclude that

IN(@1) — N(P2) I« 00,
< Clf"(Vi)llso0. (Io1lz@) + 920l o1 — 2l
< CUld1llLee,) + @2llLe@) ld1 — 21l Loo(,)-

Then we have
A1) — A(@2)llL>(n,) < Clloge|lIN(p1) — N(é2)ll«00,

< Clloge| (,H—Rlné ||¢i||L°°(Qg)> lp1 — 21l Leo(,)-

Thus the operator A has a small Lipschitz constant in ), for all small A, therefore
a unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map &' = (¢, ..., &) — ¢.
Assume for instance that the partial derivative agl/qﬁ exists, for/ =1, ..., k. Since
¢ =T, (N(¢) + E,), formally we have

0 = (0 T) (N (@) + Ex) + Ty (9N (@) + 5 B2 )

From (3.31), we have

6 T (N (@) + E3) |2,y < Cllogel’IN(@) + Eillvoq. < logel’



BUBBLING SOLUTIONS FOR AN ELLIPTIC EQUATION 731

On the other hand,
0, N(@) = [/ (Vi + ) — £/ (V) = £ (V)] Vo + 0 [ £/ (Vi) — €]
+[ Va4 6) = f1 (V)] + [ f' (Vi) — e ]og .

Then,

1

1
s/ ) 00 ———||9¢r 00 .
9@l =@ @llL> @) + |10g€||| 5 PllL (98)}

Since ”85/ Eylls00, < H()gLaP’ by Proposition 3.1 we then have

0s/ %) <
19/ @ll o>, < Togel

for all [ = 1,...,k. Hence the regularity of the map &’ — ¢ can be proved
by standard arguments involving the implicit function theorem and the fixed point
representation (4.4). This concludes proof of the proposition. O

5. Variational reduction

After problem (4.1) has been solved, in order to find a solution to the original prob-
lem we need to find &’ such that

cj(¢)=0 forall j=1,... k. (5.1)

This problem is indeed variational: it is equivalent to finding the critical points of
a function of & = ¢&’. Associated to (1.1), let us introduce the energy functional
Ji : H'(Q) — R given by

1 2 2 A uP
JA(M)=—/(|VMI tu )——/ e (52)
2 Ja p Jaq
and the finite-dimensional restriction
Fu®) = 5, (U, + ). (5.3)

where (]3 = 43(5 ) = (]S(x, &) is the function defined in €2 by the relation é(x, &) =
(3, %), with ¢ the unique solution to problem (4.1) given by Proposition 3.1.

Lemma 5.1. The functional F;(§) is of class C'. Moreover, for all A > 0 suffi-
ciently small, if Dg Fy (§) = 0, then & satisfies (5.1).
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Proof. A direct consequence of Proposition 4.1 and the definition of the function
U, is the fact that the map & +— F; (£) is of class C'. Define

1
I (0) — + Vo2 22_/
) 2/Qg(| o+ £02) N

Let us differentiate the function F) (£) with the respect to £. Since

5 ((Ur+8) x.9) = %u ((VA +) (f %)) SENCES

we can differentiate directly I, (V) (£) + ¢(£)) under the integral sign, so that

1
% Fu©)= e DB V®) + 9@ [95156) + 06|

1
= p2y2-1) n® e Z/ CjXjZij [851V,\(§)+as ¢($)]

1

-1
=S 5o 0t CjixjZjog Vi(§)+ / CixjZijogd§) |-
pzyz(P*I) |:J;/E;Qg JAJ A1) ; 50, JAJE1j O

By the expansion of V,, we have

wy(ey) + 9(y))

k !

1
85 V)L—asf (wz(y) + T—wll(&‘)’) + <

1
=0 Wi (y) + T—agwmey) + ) — 0 Do (2y) + 00(y)

’_‘“B

1
=—Zy+ p——ag B (ey) + (—) 55 O 2 (ey) + D0 ().
p p y2r
Hence, for j # [, we have

1
fo s == ([ wzvzn) (10 () ) = 00

while for j =/ we have

7., _ 2 1
/asz 1j 2150 V2 (®) = (/asz Xlz”) (1 +O <| logs|>> '

‘We thus conclude that

ijc'/ X'Zl'a’VA($)=—Cl</ XIZZ)(1+O< ! >)+ZC~O(8)
ot J 99, J J gl 99, 1 |10g8| Z J .

J#
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On the other hand, taking into account (4.3), we get

Cj

C k
X Z10:9 ()| < le;l.
o T |logs|;1 /

Then, if D¢ F; (§) =0,for j = 1,2, ..., k, we then have

2 1
¢ xwZy)1+o0 +Y ¢;j0()=0, forall [=1,....k. (55)
Q% llogel /) 4=

This concludes the proof of the lemma. O

Next, we will write the expansion of Fj (&) as A goes to zero.

Lemma 5.2. Let § > 0 be fixed and assume that the constants i are given by
(2.28). Then there exist positive numbers Ly and C such that the following expan-
sion holds

2= 2km 2km 1
Ale T F) = —7 + TIOg— +

fp‘ﬂk(g) + |loge|~1@;.(&) (5.6)

where

o (€)= gr(Er, ... &) = [ZH(&,, HZG@E)} (5.7)
I#]

In (5.6) ©, (&) denotes a generic smooth function, which is uniformly bounded, as
A — 0, for points & satisfying (2.2).

Proof. We have
F® = 5 (U0 +9©)
ST AI D RO R R
From (5.4) we have that
5 (Un®) +6©) = b U 6) = W (Vi + 9) = (V)]
Since by construction I} (Vi + ¢)[¢] = 0, we have

~ 1 1
5 (Un® +6©) = 5 0N =~y / D1V +19)¢7(1 = 1) dt

1

= 220" 1)/ [ (EA+N(¢))¢+ [fx(Vx) HVi+19)1¢ }(1 —t)dr.
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: C C C
Since [|Ex 00, =< Togel lPllLe,) = Togel?”’ IN(@)ls,00, =< Tloge? and
(2.43), we get that

5 (U ® +6©) = . W) = (5:8)

y2(P=Dlloge|?”

Next we expand

1 A P
BUE) = 5 fg [V W) P+ )7 - 5 /a B 59)

Now we write
Uj(x):zuj(x)+H]§(x), U1j1=ﬁ)1j(x)+Hfl-(x), U2j1=u~)2j(x)+H28j(x).
By (2.18), we have

1 & p—11 p—1\> 1
Up(x) = U~(x)+——U1~(x)+(—) —Usi(x) ).
py”“?_}( ’ p oy p ) oy
Then we have

1
2 [|V(UA(§))|2+UA($)2]

2, g2
pz),z(p 1){ Z/(WUﬂ +U; )+Zf(VUNU]+U1U])

I#]
S,
—|——— (VU;VUj+U;Uij)
» ypz J J JY1j
p—1\" 1
+(= Z | (VUjVUzj +UjUnj)

p—1 1 1 2 2
+<T) W[ngg(wwjl +Ui;) (5.10)

/(VU11VU1J+U11U1,):|
Z#J
p—1\ 1
+< ) WZ/Q(VUUVUQJ+UUU2]~)
j=1

+<”_1)4 : lf/uw 2+ u2)
p-1\' 11 P U2
p )y |25 )q ! 2

+ Z/(VUszUzj +U21U2])i|}

I#j

% ‘
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Let us estimate the first two terms. We observe that the remaining terms are

0()/2(,,171))/,,) We have

/(|VUj|2+U}):f |w,~|2+f u§+/ |VHj|2+f(H;)2
Q Q Q Q Q
+2/ VMjVH;-{-z/uij.
Q Q

Multiplying (2.4) by H]‘? yields

[vmse+ [

(5.11)

Il
|
5
<
~.
3
+
S~
Q
job)
SH)
2|
~em

ou;
= — u~H€—|—8/ e”ng—/ —LHeE,
/sz I a0 P Jaq v

Multiplying (2.4) by u‘j. again, we find

ou ;

2 e £ U J
u.—l—/H-u'_—/ Vu-VH-—l—e/ e-/u-—/ —Uu;.
/Q] o 17 o IQ T Jag v

Then we get

2 2
/Q(WUjI +U?)

ou ou
_ 2 J .. . e _ J 7€ uj . &
_/Q|w]| /m—av M]+/QVMJVH]~ /ag—au Hj—|—8/me i(uj + HY)

:/ " (uj + HY)
IQ :

- 204 (1 1 e o a)
8/39 =& — e ENE\ Ix—fj—eujv(fj)l2Jr (.57 + 0 ).

xX—

Taking the change of variables y = w,—j , we have
/ (IVU;I*+UD
Q
2 1 5.12)
= log +H(S~+8u~y,$-)—2log(u-8)) .
/agmjw - v<0)|2< ly —v@P !
+0(&%).
Since
/ ! + O(¢)
—— =7 ),
920, 1y = VO

/ ! 1 ! /OO ! 1 ! dt + 0(e%)
og = og €
0, 1Y — vO)? Ty —vO)F Sl +12 T 142

= 2w log2 + O(&%),
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and
/asz U_ﬁ (HEj +enjy. &) — HEjLE)))
= /BQ% |y_ﬁO(e"lyI“) = 0(%)
we obtain
% jz:/Q(IVUjIZ +U?)
k

= —2kmlog2+m Y [H(&j. &) — 2log(ep ;)] + O (%)

k
= —2kmloge + 7 Y [H(Ej. &) — 2log2u;)] + O(e%).
j=1
On the other hand, we have

[ (VU VU; + U U))
I#j

/VuquJ+2/ VMIVH8+/ VHfVH;
I#] @

+/u1u,~+2/ uﬂfi—}—/HfH?.
Q ’ Q Q :

Multiplying (2.4) by Hf yields

ou ;
/VH;VHZS+/ H]'?Hfz_/ uij+e/ e”fo—/ “Hp,
Q Q Q a0 aQ Ov

Multiplying (2.4) by u; again, we have

9
/vujvu;+/ Hjufz—/ wfw,w/ e“f'u,f—/ i .
Q Q Q a0 ae dv

By (5.14)-(5.16) we find that

/(VU;VUJ +UU))
I#j
/Vuquj+2/ VuIVHg—i-/ VH;?VH;Tj
1#j Q

+/u1uj+2/ UIH;+/ HZSH;
Q Q Q

=7 G &)+ 0.
I#]

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Therefore, by (5.10), (5.13) and (5.17), using the choice of 1 ; in (2.28), we get
1
3 L[V wen? + @]
Q

1
[ 2km log e — —n (Z H (&, $J)+ZG(51 §)) ) (5.18)

p y2(p D oy
- 0(|logs|—1>} :

Finally, let use estimate the second term in (5.9). We have

&/ euf=£/ ey"(1+1,ypv,\( ))
P Jao P Jao

AN )
P 5= JoanB(;.9) (5.19)
+1/ ) o (i)’
p BQ\jL:Jl B(&;,5)
=0+ .
First we observe that
L =10,(¢) (5.20)

with ®, (£) a function uniformly bounded as A — 0. On the other hand,

1 a P (1450 Vi)
11=WZ:/3 N ey[( ”) ]

QeNB(E}.5/e)

P )/2(” ”Zfaszgrw(g a/e>

(o)
)/P
2 1
= __(1+0(=
p yz(p D ZLQSHB(O,M;) ly — v(0)|? ( (Vl’))

2k (1 + |10ge|_1®,\($)> )

p=1 1 = =1\ -
w,~(y>+7—,,w O+ 5) A5 02 (0)+0)

= p2y2=D
with ©, (§) a function uniformly bounded as A — 0. From (5.19)-(5.21) we get
)\, UP 1 -1
;/396 =D [an (1 + [loge| @,\(s))]. (5.22)
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By (1.8), (5.8), (5.9), (5.18) and (5.22), we can write the whole asymptotic expan-
sion of F) (&), namely (5.6) holds. ]

6. Proof of the main theorem

Proof of Theorem 1.1. From Lemma 5.1, the function

~ X
Ui©) +8©) = —— (pr" + Vit ) (5))

where V) defined by (2.23) and ¢ (£) is the unique solution of problem (4.1), is a
solution of problem (1.1) if we adjust £ so that it is a critical point of F} (§) defined
by (5.3). This is equivalent to finding a critical point of

~ 2—
Fo) = A\l 7 Fi(§) + B+ Cloge,

for suitable constants A, B and C. On the other hand, from Lemmas 5.2, for £ =
(&1, ..., &) € 092 satisfying (2.2), we have that,

F®) = gi(&) + O(loge| ), (&), (6.1)

where ¢y, is given by (1.4), and ®, (&) is uniformly bounded in the considered region
as A — 0.

Next we show that ¢ has at least two critical points. Assume &1, . . ., & belong
to the same component of d<2. We denote by I" such a component. Let D be the
diagonal in (9Q2)*. Define € = (92)* \ D and

Qu=1{teC"\D: &g >35)

for some small but fixed § > 0. We show that ¢ has at least two critical points in
Q.

First observe that Pk has an absolute maximum m in Qk indeed, ¢ is Cl,itis
bounded from above in Qk (and hence in ) and

o1, ..., &) > —oo, as [§ —&;| —> 0 forsome i #j.

On the other hand, in our setting the number of critical points of ¢y in Q can be
estimated from below by the Ljusternik-Schnirelman category of €2, namely the
minimal number of closed and contractible sets in Qk whose union covers 2. In
[6], it is proved that the Ljusternik-Schnirelman category of Qk, cat(Qk), is greater
than or equal to two, for any k > 1. Define

c=supl € Eglrellﬁ or (&) (6.2)
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where y
={l CQ : T closedand cat(l') > 2}.

Then c is a critical level. If ¢ # m, then ¢ has at least two distinct critical points
in'Qy. If c = m, then (6.2) gives the existence of a set I" with cat(T") > 2 where
¢k reaches its maximum. In this case we conclude that there are infinitely many
critical points for ¢ in .

These critical points persist under small CO-perturbation of the function, thus
(6.1) gives that also the function FA (&) has two distinct critical points in Q. and
hence problem (1.1) has at least two distinct solutions.

Expansion (1.9) follows from (1.8) and (5.22), while (1.10) holds as a di-
rect consequence of the construction of U,. Expansion (1.11) is a consequence
of (5.6). O

Remark 6.1. Let us mention that one can get a stronger existence result assuming
that the function ¢, has some other critical points in 2, provided it is a topologi-
cally non trivial critical point for ¢;. We refer to [6] for further reference.

7. Appendix

Proof of (2.14). Since (arctant)’ = integration by parts gives

1+2’

/oo 1 log 1 dt:‘/oolog 1

0 241 2+1 0 211

= |:arctant10g ! ] ‘+Oo + /+OO mdt
L+l 0 1442

Setting 1 = tan x we have 1 4 1> = sec? ¢, dt = sec® tdx, hence

d (arctant)

/ +2 2t arctan ¢
0 1 +12

s

- / " xd(log(cos x))
0

dt —2/ x tan xdx
0

T

= [—2x log(cosx)] : + 2/2 log(cos x) dx
0

+00 7
= [—2 arctan f log[cos(arctan t)]] ‘0 + 2/ log(cos x) dx
0

+00 5
= [— arctan ¢ log[cosz(arctan t)]] ‘0 + 2/ log(cos x) dx.
0

‘We have

) 2 1 1 1
cos“(arctant) = cos“ x = = = .
seczx 14+tan?x 1412
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On the other hand, we note that

/2 log(cosx) dx = /2 log(sinx) dx.

0 0

Then we have

s

2/2 log(cos x) dx
0

= /2 log(cos x) dx + / ’ log(sinx) dx
0 0

= /7 log (Sin(zzx)) dx = %/nlog (Sinz(x)) dx
0 0

l/wl (sin x)dx — Zlog2
= — sSin x X — —
>, og 5 log

7 w
= f log(sin x)dx — —log?2
0 2

2 b4
= / log(cos x)dx — —log?2.
0 2

Hence we get

/w ! 1 ! dt 2/Oo ! 1 ! dt
() = (o)
o 12+ 1 S o t2+1 g

ps

7
= 4/ log(cos x) dx = —2m log 2. O
0

Proof of Lemma 2.1. On the boundary, we have

0H¢ C Ou; 1 —v(&;) - v(x) (x — &) - v(x)
R A 7y B AR, PP J +2 J _
v &¢ v eﬂjhr—éj—SMJVGjﬂz lx —&; —eujvEpI?
Thus,
. O0H} (x —&j)-v(x)
J J .
ah—>0 v Ix — &2 VX EL

Set z.(x) = H]?(x) + log(2uj) — H(x,&); then from the definition of H(x, &;)
and Hf we have

1 1
—1
K=& S lx =& — ep v
dze _OHj  (x—§)) - v(x)

= 2 on 9L2.
) v Ix —&;1?

in

_AZE + g = 1Og
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First, we claim that there is a positive constant C such that

9HE _E).
=8 V) <ce1, vgs1. (7.1)
v Ix — &;1? L1GD)
In fact,
OH)  (x—&)-v)
ov lx —&;1?
_ I—v()) - -vix) (x =& -v(x) (x—§&;) - v(x)
=2ep; 2 72 2
lx —&; —epjv(§))] lx —&; —enjvé))| lx — &
I—v(;) vx) (x — &) v [2(x — &) - v(x) — euj]
I T e T — g P — £ — e v(E)) 2

Now, we observe that
I1—v(E) v <Clx — &%, |[(x—&) - v(x)| <Clx — &% VxedQ.
Hence,

OH; (= &)-v)
av Ix — &/

el2(x —&;) - v(&j) — el

<Ce+C
Ix — & —epjv(E)I?

(7.2)

For small p > 0, we have

OH] ,x—§) v)
v Ix — &/

< Ceg, for Vix —&;j| > p, x €dQ. (7.3)

Now take g > 1; we have

/z;p(s_,)masz
= Cs/
By/s (0)N9S2

ple 1
§C8/ ——ds < Ce.
0 (1+5)4

Combining (7.2) with (7.3) and (7.4) we conclude that (7.1) holds.
Next, we show that

q

R —§j) - vEj) —emjl|®

v — & — e v(E)I
2y - v(0) = ;|
y = ()

(7.4)

Hlog ! 5 — log ! 5 <Cs
lx — &l Ix =& —enjvENI~ Il Lo (7.5)

forany 1 < g < 2.




742 SHENGBING DENG AND MONICA MUSSO

In fact, for g > 1, we write
q

1
log —log
H Ix — &/ lx —&; —epjv(E))I? L9(Q)

=/ +f o= 1 411
Bioep ; (§,)N82 S0\ Bioey ; §))

Next we estimate / and /1. For I, we observe that

q Ce 1 q
/ lo dx < c/ |logr|irdr < Ce? (log —) ,
BlOs;tj (S_j)mQ 0 &

and the same bound is true for the integral of ‘ log m
TSI J

(7.6)

gi
Ix —&;I?

q.
m Bl()suj (gj)ﬁ

2. Hence we have
1\¢
11| < Cé? (log —) . (1.7)
&
For I1,if |x — &;| > 10eu , we have

1
lx —&jl < Ix =& —tepjvEpl+uje < |x —§; —teu;v(E)| + ﬁ'x —&jl

forany ¢ € [0, 1], then we have |x — &;| < C|x —&; —teu;v(§;)|. Using this fact,
we can obtain

1 1
log —— —log
lx —&;12 Ix — & —epjv(E)I?
Ce Ce
<C sup < .
o<t<1 |x —§&j —euvENl ~ [x =&l

Thus for 1 < g < 2,

D
|1 < Cé‘q/ rl=dr < Céed, (7.8)
10

where D is the diameter of 2. Thus, combining (7.6) with (7.7) and (7.8) we obtain
that (7.5) holds.
Therefore by elliptic regularity theory, we obtain

9ze
dv

Izellwi+sa ) < (‘ + ||Azs||Lq<m) <Ce'd (7.9)

L9(39)
forany 0 < s < é. By the Morrey embedding we obtain
lzellcn () < Ce'/

forany 0 < 8 < % + %. This proves the lemma with o = é O
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Proof of Lemma 2.4. The proof follows from the same arguments as those used to
prove Lemma 2.1. First, on the boundary, we have

&
: ' (x —§j)-v(x)
1 / =2uq;;—1— 2 v i
lim =, () = 204 &2 Shab
The regular part of Green’s function satisfies
1 .
—AXH(X,SJ)—I—H()C,&]):—Iogm in Q
Y
0H(x,&; —-&)-
«.&) _,«x—§&j) VZ(X) on 9.
vy |x_§j|

Setting 7, = H; (X) + o log(Z;Ljsz) —a;jH(x,&;), we have

—AZ 47, = —AHS + HS +ajjloguje®) — aij [~ AH(x, &) + H(x, &))]

= —a;jb; + ajjlog(Quje?) — aij [~AH (x, &) + H(x, &))]

1 1
—wiloe— 1 o in Q.
tj|: g|x—‘§j|2 g|x—§1—8ﬂjv(51)|2:|

On the other hand, on the boundary we have

32, [8H§_2u—fp-wm}

v % T x — &2

From (7.1) and (7.9), by the same procedure as in the proof of Lemma 2.1, we
obtain that (2.20) holds. ]
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