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Stratified bundles and étale fundamental group

HÉLÈNE ESNAULT AND XIAOTAO SUN

Abstract. For a smooth projective variety X over an algebraically closed field
of characteristic p > 0, we show that all irreducible stratified bundles on X have
rank 1 if and only if the commutator [⇡1,⇡1] of the étale fundamental group
⇡1 of X is a pro-p-group, and we prove that the category of stratified bundles is
semi-simple with irreducible objects of rank 1 if and only if ⇡1 is Abelian without
p-power quotient. This answers positively a conjecture by Gieseker [4, page 8].

Mathematics Subject Classification (2010): 14F35 (primary); 14G17, 14G99
(secondary).

1. Introduction

Let X be a smooth projective variety defined over an algebraically closed field k of
characteristic p > 0. In [4], stratified bundles are defined and studied. It is shown
that they are a characteristic p > 0 analogue to complex local systems over smooth
complex algebraic varieties. In particular, Gieseker shows [4, Theorem 1.10]:

(i) If every stratified bundle is trivial, then ⇡1 is trivial;
(ii) If all the irreducible stratified bundles have rank 1, then [⇡1,⇡1] is a pro-p-

group;
(iii) If every stratified bundle is a direct sum of stratified line bundles, then ⇡1 is

Abelian without non-trivial p-power quotients.

Here ⇡1 is the étale fundamental group based at some geometric point. He con-
jectures that in the three statements, the “ if ” can be replaced by “ if and only if ”.
The aim of this note is to give a positive answer to Gieseker’s conjecture (see The-
orem 3.9).

The converse to (i) is the main result of [3], and it is analogous to the Malcev-
Grothendieck theorem ([5, 10]) asserting that if the étale fundamental group of a
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smooth complex projective variety is trivial, then there is no non-trivial bundle with
a flat connection.

The complex analogue to the converse to (iii) relies on the following. If X is an
Abelian variety over a field k, Mumford [11, Section 16] showed that a non-trivial
line bundle L which is algebraically equivalent to 0 fulfills Hi (X, L) = 0 for all
i � 0. If k = C, the field of complex numbers, L carries a unitary flat connection
with underlying local system `, and H1(X, L) = 0 implies that H1(X, `) = 0.
In fact, more generally, if X is any complex manifold with Abelian topological
fundamental group, and ` is a non-trivial rank 1 local system, then H1(X, `) = 0
(see Remark 3.11).

Finally the complex analogue to the converse to (ii) and (iii) together says that
if X is a smooth complex variety then all irreducible complex local systems on X
have rank 1 if and only if ⇡1 is Abelian. However, the semi-simplicity statement has
a different phrasing: all irreducible complex local systems on X have rank 1 and the
category is semi-simple if and only if ⇡1 is a finite Abelian group (see Claim 3.13
for a precise statement).

The proof of the converse to (ii) is done in Section 2. It relies on a consequence
of the proof of the main theorem in [3], which is formulated in Theorem 2.3. It
is a replacement for the finite generation of the topological fundamental group in
complex geometry (see the analogous statement in Remark 3.12). The proof of the
converse to (iii) is done in Section 3. The key point to show the converse to (iii) is
Theorem 3.4. Its proof relies on the construction (Proposition 3.5) of a moduli space
of non-trivial extensions, with a rational map f induced by Frobenius pullback,
which allows us to use a theorem of Hrushovski.

ACKNOWLEDGEMENTS. We thank the department of Mathematics of Harvard Uni-
versity for its hospitality during the preparation of this note. We thank Nguy˜̂en Duy
Tân for a very careful reading of a first version, which allowed us to improve the
redaction. We thank the referee of the first version who pointed out a mistake, cor-
rected in Section 3. The second named author would like to thank his colleague
Nanhua Xi for discussions related to Claim 3.3.

2. Stratified bundles

Let k be an algebraically closed field of characteristic p > 0, and X be a smooth
connected projective variety over k. A stratified bundle on X is by definition a
coherentOX -module E with a homomorphism

r : DX ! Endk(E)

ofOX -algebras, whereDX is the sheaf of differential operators acting on the struc-
ture sheaf of X . By a theorem of Katz (cf. [4, Theorem 1.3]), this is equivalent to
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the following definition. (The terminology is not unique: our stratified bundles are
called flat bundles in [4], and F-divided sheaves in [2]).
Definition 2.1. A stratified bundle on X is a sequence of bundles

E = {E0, E1, E2, · · · , �0, �1, . . .} = {Ei , �i }i2N

where �i : F⇤

X Ei+1 ! Ei is an OX -linear isomorphism, and FX : X ! X is the
absolute Frobenius.

A morphism ↵ = {↵i } : {Ei , �i } ! {Fi , ⌧i } between two stratified bundles is
a sequence of morphisms ↵i : Ei ! Fi ofOX -modules such that

F⇤

X Ei+1
�i

✏✏

F⇤

X↵i+1// F⇤

X Fi+1
⌧i

✏✏
Ei

↵i // Fi

is commutative. The category str(X) of stratified bundles is Abelian, rigid, and
monoidal. To see it is k-linear, it is better to define stratified bundles and morphisms
in the relative version: objects consist of

E 0

= {E0 = E 0

0, E
0

1, E
0

2, · · · , � 0

0, �
0

1, . . .} = {E 0

i , �
0

i }i2N

where E 0

i is a bundle on the i-th Frobenius twist X
(i) of X ,

� 0

i : F⇤

i,i+1E
0

i+1 ! E 0

i

is an OX (i)-linear isomorphism, and Fi,i+1 : X (i)
! X (i+1) is the relative Frobe-

nius, the morphisms are the obvious ones. A rational point a 2 X (k) yields a
fiber functor !a : str(X) ! veck, E 7! a⇤E0 with values in the category of
finite-dimensional vector spaces. Thus (str(X),!a) is a Tannaka category ([2, Sec-
tion 2.2]), and one has an equivalence of categories

str(X)
!a ⇠

=

���! repk(⇡ str) (2.1)

where
⇡ str = Aut⌦(!a)

is the Tannaka group scheme, and repk(⇡ str) is the category of finite dimensional
k-representations of ⇡ str. Let ⇡1 := ⇡ ét1 (X, a) be the étale fundamental group of
X . In [4, Theorem 1.10], D. Gieseker proved the following:

Theorem 2.2 (Gieseker). Let X be a smooth projective variety over an algebraic-
ally closed field k. Then:

(i) If every stratified bundle is trivial, then ⇡1 is trivial;
(ii) If all the irreducible stratified bundles have rank 1, then [⇡1,⇡1] is a pro-p-

group;
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(iii) If every stratified bundle is a direct sum of stratified line bundles, then ⇡1 is
Abelian with no p-power order quotient.

Then Gieseker conjectured that the converse of the above statements might be true.
In [3], it is proven that the converse of statement (i) is true. The aim of this section
is to prove the converse of (ii). We also prove the converse of (iii) in Section 3.
The proof relies on the following theorem extracted from [3], and which plays a
similar rôle as the finite generation of the topological fundamental group ⇡

top
1 in

complex geometry (see Remark 3.12). Fixing an ample line bundle OX (1) on X ,
recall that E is said to be µ-stable if for all coherent subsheaves U ⇢ E one has
µ(U) < µ(E), where µ(E) is the slope which is defined to be the degree of E with
respect toOX (1) divided by the rank of E .

Theorem 2.3. Let X be a smooth projective variety over an algebraically closed
field k. If there is a stratified bundle E = (En, �n)n2N of rank r � 2 on X , where
{En}n2N are µ-stable, then there exists an irreducible representation ⇢ : ⇡1 !

GL(V ) with finite monodromy, where V is an r-dimensional vector space over ¯Fp.

Proof. By the proof of [3, Theorem 3.15], there is a smooth projective model XS !

S of X ! Spec k, where S is smooth affine over Fp, with the following properties.
The point a 2 X (k) lifts to aS 2 XS(S). There is a quasi-projective model MS ! S
of the moduli of stable vector bundles considered in [3, Section 3]. There is a closed
point u ! MS of residue field Fq , corresponding to a bundle E over Xs , stable over
Xs̄ = X ⌦

¯Fp, where s is the closed point u viewed as a closed point of S, such that
(Fm)⇤E ⇠

= E , for some m 2 N \ {0}, where F is the Frobenius of Xs/Fq .
Thus, as explained in [3, Theorem 3.15], E trivializes over a Lang torsor

Y ! Xs [9, Satz 1.4], thus its base change Es̄ to Xs̄ trivializes over Y ⇥s s̄ ! Xs̄ .
This trivialization defines an irreducible representation ⇢0

: ⇡ ét1 (Xs̄, b) ! GL(Eb),
where b = aS ⌦ s̄. As the specialization homomorphism sp : ⇡1 ! ⇡ ét1 (Xs̄, b)
is surjective ([13, Exposé X, Théorème 3.8]), the composite ⇢ = sp � ⇢0 is a rep-
resentation of ⇡1 with the same finite irreducible monodromy. This completes the
proof.

We now use the following two elementary lemmas.

Lemma 2.4 (See [12, Chapter 8, Proposition 26]). Let G be a finite p-group and
⇢ : G ! GL(V ) be a representation on a vector space V 6= 0 over a field k of
characteristic p. Then

VG
= { v 2 V | ⇢(g)v = v 8 g 2 G } 6= 0.

Lemma 2.5. Let G be a finite group and ⇢ : G ! GL(V ) be an irreducible
representation on a finite dimensional vector space V over an algebraically closed
field k of characteristic p > 0. If the commutator [G,G] of G is a p-group, then
dim(V ) = 1.
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Proof. If [G,G] is a p-group, by Lemma 2.4, there exists a 0 6= v 2 V such that
⇢(g1)⇢(g2)v = ⇢(g2)⇢(g1)v for any g1, g2 2 G. Since V is an irreducible G-
module, the sub-vector space spanned by the orbit ⇢(G)v is V itself. Thus for all
w 2 V , all g 2 G, there are ag(w) 2 k, such that

w =

X
g2G

ag(w)⇢(g)v.

On the other hand, for all g1, g2, g 2 G, one has g1g2 = g2g1c for some c 2

[G,G], thus g1g2g = g2g1cg = g2g1gc0, for some c0 2 [G,G]. We conclude that
⇢(g1)⇢(g2)w = ⇢(g2)⇢(g1)w for any g1, g2 2 G, that is ⇢(G) is Abelian. As ⇢ is
irreducible, V must have dimension 1.

Theorem 2.6. Let X be a smooth projective variety over an algebraically closed
field k. Then all irreducible stratified bundles on X have rank 1 if and only if the
commutator [⇡1,⇡1] of ⇡1 is a pro-p-group.
Proof. One direction is the (ii) in Theorem 2.2. We prove the converse. Assume that
[⇡1,⇡1] is a pro-p-group. Let E = (En, �n)n2N be an irreducible stratified bundle
of rank r � 1 on X . Assume r � 2. Then by [3, Proposition 2.3], there is an n0 2 N
such that the stratified bundle E(n0) := (En, �n)n�n0 is a successive extension of
stratified bundles U = (Un, ⌧n) with underlying bundles Un being µ-stable. But
E being irreducible implies that E(n0) is irreducible as well. Hence all the En
are µ-stable for n � n0. By Theorem 2.3, there is an irreducible representation
⇢ : ⇡1 ! GL(V ) of dimension r � 2 with finite monodromy over an algebraically
closed field of characteristic p > 0. By Lemma 2.5, this is impossible. Thus
r = 1.

3. Extensions of stratified line bundles

In this section we prove the following:
Theorem 3.1. Let Xbe a smooth projective connected variety over an algebraically
closed field k of characteristic p > 0. If the étale fundamental group ⇡1 of X is
Abelian and has no non-trivial p-power order quotient, then any extension

0 ! L ! V ! L0

! 0

in str(X) is split when L and L0 are rank-1 objects.
We start the proof by the following result, which can be considered as a gener-

alization of [3, Proposition 2.4]:
Proposition 3.2. Let L be a line bundle on X such that (F⇤

X )aL is isomorphic to L ,
for some non zero natural number a, where FX : X ! X is the absolute Frobenius
map. Then

(F⇤

X )a : H1(X, L) ! H1(X, L)

is nilpotent if ⇡1 is Abelian without non-trivial p-power quotient.



800 HÉLÈNE ESNAULT AND XIAOTAO SUN

Proof. Since (F⇤

X )aL is isomorphic to L , we have that L is a torsion line bundle of
order n prime to p. The choice of an isomorphism Ln ⇠

= OX defines a Kummer
cover � : Y ! X with Galois group H = Z/n such that

�⇤L ⇠
= OY .

One has an exact sequence (recall that ⇡1 := ⇡ ét1 (X, ā))

1 ! ⇡ ét1 (Y, b̄) ! ⇡1 ! H ! 1,

where b̄ is a geometric point of Y above the geometric point ā of X .
Claim 3.3. ⇡ ét1 (Y, b̄) is Abelian without p-power quotient.

Proof. Since ⇡1 is commutative, the kernel of any quotient map

⇡ ét1 (Y, b̄) ⇣ K

is normal in ⇡1. Taking for K a finite p-group defines the push-out exact sequence

1 ! K ! G ! H ! 1

where G is a quotient of ⇡1, thus is commutative and has no p-power quotient.
Since K splits in G, K = {1}.

Then, by [3, Proposition 2.4], there is an integer N > 0 such that

(F⇤

Y )N : H1(Y,OY ) ! H1(Y,OY )

is a zero map, which implies that

�⇤

· (F⇤

X )Na = (F⇤

Y )Na · �⇤

: H1(X, L) ! H1(Y,OY )

is a zero map. But �⇤
: H1(X, L) ,! H1(Y,�⇤L) = H1(Y,OY ) is injective

(since OX ,! �⇤OY ⇣ �i L�i is split by the construction of � : Y ! X), thus
(F⇤

X )Na : H1(X, L) ! H1(X, L) is a zero map.

Proof of Theorem 3.1. By twisting with (L0)�1, we may assume that L0
= I, the

trivial object in str(X). We prove Theorem 3.1 by contradiction. If there exists a
nontrivial extension

0 ! L ! V ! I ! 0 (3.1)

in str(X), then, by definition, there is a set

EX = { (Li ,! Vi ⇣ OX ) }i2N
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of isomorphism classes of non-trivial extensions on X such that

(Li ,! Vi ⇣ OX ) ⇠
= (F⇤

X Li+1 ,! F⇤

XVi+1 ⇣ F⇤

XOX )

for any i 2 N. In particular, Li is isomorphic as a line bundle to F⇤

X (Li+1). We
will consider the moduli point in P(H1(Li )) of a nontrivial extension (Li ,! Vi ⇣
OX ) 2 H1(Li ). Thus, when we say that EX is a finite (respectively, infinite) set,
it means that the set of isomorphism classes of extensions is a finite (respectively,
infinite) set modulo scale.

If EX is a finite set, then there is a non-trivial extension

(Li ,! Vi ⇣ OX ) 2 EX

and an integer a > 0 such that

(F⇤

X )a(Li ,! Vi ⇣ OX ) ⇠
= (Li ,! Vi ⇣ OX ).

In particular, (F⇤

X )aLi ⇠
= Li . By Proposition 3.2,

(F⇤

X )a : H1(X, Li ) ! H1(X, Li )

is nilpotent. We obtain a contradiction since (F⇤

X )a sends the extension class ei =

(Li ,! Vi ⇣ OX ) 2 P(H1(X, Li )) to itself.
If EX is a infinite set, by Theorem 3.4 below, there is a nontrivial extension

0 ! L ! V ! OXs̄ ! 0 (3.2)

on a good reduction Xs̄ of X (thus over Fp) such that for an integer a > 0

0 ! (F⇤

Xs̄ )
aL ! (F⇤

Xs̄ )
aV ! (F⇤

Xs̄ )
aOXs̄ ! 0

is isomorphic to the extension (3.2). Then, by using Proposition 3.2 to Xs̄ , we
obtain again a contradiction since ⇡ ét1 (Xs̄, as̄), which is a quotient of ⇡1 via the
specialization map, is also Abelian without non-trivial p-power quotient. Here as̄
is a specialization of the geometric point ā used to define ⇡1.

Theorem 3.4. Let X be a smooth projective variety over an algebraically closed
field k. If there exists an infinite set EX of equivalence classes of nontrivial exten-
sions

(Li ,! Vi ⇣ OX ), i 2 N
satisfying (Li ,! Vi ⇣ OX ) ⇠

= (F⇤

X Li+1 ,! F⇤

XVi+1 ⇣ F⇤

XOX ) for any i 2 N,
then there exists a nontrivial extension

0 ! L ! V ! OXs̄ ! 0

on a good reduction Xs̄ of X (over Fp) such that for some a > 0�
(F⇤

Xs̄ )
aL ,! (F⇤

Xs̄ )
aV ⇣ (F⇤

Xs̄ )
aOXs̄

�
⇠
= (L ,! V ⇣ OXs̄ ).
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We now prove Theorem 3.4. Let XS ! S be a smooth projective model of X/k,
with geometrically irreducible fibers, endowed with a section, where S is a smooth
affine irreducible variety over Fq . Then we have:
Proposition 3.5. There exists a reduced S-scheme M ! S of finite type and a
rational map f : M 99K M over S such that:

(1) For any field extension K � Fq , the set M(K ) of K -valued points consists of
isomorphism classes of non-trivial extensions e : L ,! V ⇣ OXs on Xs ,
where Xs is the fiber of XS ! S at the image s 2 S(K ) of e 2 M(K );

(2) The set EX of Theorem 3.4 minus finitely many elements lies in M(k);
(3) The rational map f : M 99K M is well-defined at e = (L ,! V ⇣ OXs0 ) 2

M(K ) if and only if the pull-back extension

0 ! F⇤

Xs L ! F⇤

Xs V ! F⇤

XsOXs ! 0

under the absolute Frobenius FXs does not split, in which case

f (e) = (F⇤

Xs L ,! F⇤

Xs V ⇣ F⇤

XsOXs ) 2 M(K ).

Proof. The line bundles { Li }i2N occurring in EX must satisfy

Li ⇠
= L pi+1, 8 i 2 N,

so they are infinitely p-divisible, thus lie in Pic⌧ (X)(k), the group of numerically
trivial line bundles over k ([8, 9.6]).

We first assume L = I. We shrink S so that H1(OXS ) is locally free and
commutes with base change. Let H1(OXS ) denote the first direct image of OXS
under XS ! S, then

⇡S : M = P(H1(OXS )
_) ! S

is the moduli space of isomorphism classes of non-trivial extensionsOXs̄ ,! V ⇣
OXs̄ . In the diagram

XS

FXS

##F //

  A
A

A
A

A
A

A
A

X 0

S
//

✏✏

XS

✏✏
S

FS // S,

FS , FXS are the absolute Frobenius and F : XS ! X 0

S is the relative Frobenius.
Then the ”Frobenius pullback” induces

F⇤

: F⇤

S H
1(OXS ) = H1(OX 0

S
) ! H1(OXS ) (3.3)

which isOS-linear and commutes with base change. Let

⇡⇤

S H
1(OXS )

_

! OM(1) ! 0
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be the universal rank-one quotient, which, pulled back by the absolute Frobenius
FM : M ! M , defines theOM -linear map

⇡⇤

S F
⇤

S H
1(OXS )

_

! OM(p) ! 0 (3.4)

(since F⇤

M⇡⇤

S = ⇡⇤

S F
⇤

S and F
⇤

MOM(1) := OM(p)). Combining the dual

⇡⇤

S (F
⇤_) : ⇡⇤

S H
1(OXS )

_

! ⇡⇤

S F
⇤

S H
1(OXS )

_

of (3.3) with (3.4) defines theOM -linear map

⇡⇤

S H
1(OXS )

_

! OM(p).

By the universal property, this is the same as a rational map

f : M 99K M

over S. To see that f satisfies (3), let e ! M be a point with image s ! S (under
M ⇡S

�! S), which corresponds to a nontrivial extension

e = (OXs ,! V ⇣ OXs )

where Xs is the fiber of XS ! S at s ! S. Then f is well-defined at e ! M if
and only if theOM -linear map

⇡⇤

S H
1(OXS )

_

! OM(p)

at e ! M is surjective. By definition, this is equivalent to saying that theOS-linear
map (3.3) at s ! S, which is

F⇤

: F⇤

k(s)H
1(OXs ) = H1(OX 0

s ) ! H1(OXs ),

is not trivial at F⇤

k(s)([e]) 2 H1(OX 0

s ) (i.e. F
⇤(F⇤

k(s)([e])) 6= 0), where

[e] 2 H1(OXs )

denotes class corresponding to e = (OXs ,! V ⇣ OXs ). Since

F⇤

Xs : H1(OXs )
F⇤

k(s)
��! H1(OX 0

s )
F⇤

�! H1(OXs ),

we have F⇤

Xs ([e]) = F⇤(F⇤

k(s)([e])). Thus f is well-defined at

e = (OXs ,! V ⇣ OXs ) 2 M

if and only if (F⇤

XsOXs ,! F⇤

Xs V ⇣ F⇤

XsOXs ) is not splitting, and

f (e) = (F⇤

XsOXs ,! F⇤

Xs V ⇣ F⇤

XsOXs ).
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The objects (OX ,! Vi ⇣ OX ) 2 EX (i 2 N) define points ei ! M over
s = Spec (k) ! S, and f is well-defined at ei with f (ei ) = ei�1 for i > 1. This
finishes the proof if L = I.

If L 6= I, after removing a finite number of elements in the set EX , we can
assume that all line bundles { Li }i2N occurring in EX satisfy

H0(X, Li ) = 0, H1(Li ) 6= 0 i 2 N

(Li 6= OX if and only if H0(Li ) 6= 0 since Li is numerically trivial). Let Pic⌧XS !

S be the torsion component of the identity of the Picard scheme [8, 9.6]. Let L be
the universal line bundle on XS ⇥S Pic⌧XS . We define

N0 = { t 2 Pic⌧XS | H1(Lt ) 6= 0 }

with its reduced structure. By the semi-continuity of cohomology, this is a closed
sub-scheme of Pic⌧XS . IfNi is defined, let

Ni+1 = { t 2 Ni | H1(Lpi+1
t ) 6= 0 }.

By the Nötherian property, N0 ◆ N1 ◆ · · ·Ni ◆ Ni+1 ◆ · · · terminates. Then,
there is a k0 � 0 such that

Ni = Nk0 8 i � k0.

The line bundles { Li+pk0 }i2N occurring in EX (pk0), where

EX (pk0) := { (Li+pk0 ,! Vi+pk0 ⇣ OX ) 2 EX }i2N,

are k-points ofNk0 = Ni for all i � k0.
We define T ⇢ Nk0 ! S with its reduced structure to be the sub-scheme

T = { t 2 Nk0 | H0(Lt ) = 0 }.

Such a T is open inNk0 . LetL be the restriction of universal line bundle on XS⇥ST
(thus, for any t 2 T , H1(Lpi

t ) 6= 0 for i � 0). Unfortunately, R1 pT ⇤
(L) is neither

commuting with base change nor locally free in general, where pT : XS ⇥S T ! T
is the projection. However,

E = Rn�1 pT ⇤
(L_

⌦ p⇤

XS!XS/S), n = dim(X)

may not be locally free, but does commute with base change since

Hn(L_

t ⌦ !XS⇥{t}) = H0(Lt )_ = 0 8 t 2 T .
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There exists a quotient scheme ⇡ : M = P(E) ! T together with

⇡⇤E ! OM(1) ! 0,

which represents the functor that sends a T -scheme pW : W ! T to the set of
isomorphic classes of quotients p⇤

WE ! Q ! 0, where Q is a line bundle on W
( [7, Theorem 2.2.4]). By definition, M ⇡

�! T ! S satisfies the properties (1) and
(2) in the proposition (replacing M by Mred if necessary). The rest of the proof is
devoted to the construction of a rational map

f : M 99K M

over S, which satisfies the property (3) in the proposition.
Let F : XS ⇥S T ! (XS ⇥S T )0 denote the relative Frobenius morphism over

T . We write

XS ⇥S T

FXS⇥ST

((F //

pT
''NNNNNNNNNNNNN

(XS ⇥S T )0 //

p0

T
✏✏

XS ⇥S T

pT
✏✏

T
FT // T .

(3.5)

One has (XS ⇥S T )0 = X 0

S ⇥S T thus we can project to X 0

S , further to XS . Let L0

be the pullback of L under the projection

(XS ⇥S T )0
p1
�! XS ⇥S T

and ! (respectively !0) be the relative dualizing sheaf of XS ⇥S T
pT
�! T (respec-

tively (XS⇥S T )0
p0

T
�! T ). The line bundle F⇤L0 on XS⇥S T defines a S-morphism

⌫ : T ! Pic⌧XS . Define

T 0 = { t 2 T | H0(Lp
t ) = 0 } ⇢ T

with its reduced scheme structure. Note that T 0 is open in T . By definition of T , ⌫
restricted to T 0 factors through T , thus it induces

⌫ : T 0 ! T

such that
(1⇥ ⌫)⇤L⌦ p⇤

T 0⌘ = F⇤L0

on XS ⇥S T 0, with XS ⇥S T 0
pT0
��! T 0, and where ⌘ is a line bundle on T 0. We

abuse notation and still write ! for the relative dualizing sheaf !XS⇥ST 0/T 0 of pT 0 ,
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!0 for the relative dualizing sheaf !X 0

S⇥ST 0/T 0 of p
0

T 0 : X 0

S ⇥S T 0 ! T 0 . Since
! = p⇤

XS!XS/S = (1⇥ ⌫)⇤!XS⇥ST/T , we have

Rn�1 pT 0⇤(! ⌦ F⇤L0_) = ⌘�1
⌦ ⌫⇤E, Rn�1 p0

T 0⇤(!
0

⌦ L0_) = F⇤

T 0E,

and these identities commute with base change. By Lemma 3.6, we have

� : ⌘�1
⌦ ⌫⇤E ! F⇤

T 0E .

Together with the universal quotient ⇡⇤E ! OM0(1) ! 0, restricted to M0 :=

M ⇥S T 0, where ⇡ : M0 ! T 0, T 0 ! S factors through the composition of the
open embedding T 0 ⇢ T with the map T ! S, this induces

8 : ⇡⇤⌫⇤E �
�! ⇡⇤⌘ ⌦ ⇡⇤F⇤

T 0E = ⇡⇤⌘ ⌦ F⇤

M0⇡
⇤E ! ⇡⇤⌘ ⌦OM0(p).

Here FT 0 , FM0 are the absolute Frobenius morphisms satisfying

M0
FM0

����! M0??y⇡

??y⇡

T 0
FT0

����! T 0

Let M0
⇢ M be the reduced open set consisting of points q 2 M such that 8

is surjective at q 2 M (which implies M0
⇢ M0). Then there exists a unique

morphism
f : M0

! M

corresponding via the universal property to f ⇤(⇡⇤E !OM(1) ! 0) = (⇡⇤⌫⇤E !

⇡⇤⌘ ⌦OM0(p) ! 0). By definition, one has the factorization

M0 f
����! M??y⇡

??y⇡

T 0 ⌫
����! T .

Then Lemma 3.6 below implies that the rational map

f : M 99K M

satisfies the requirement (3) in the proposition.
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For any point t ! T , let s ! S be its image under T ! S, and Xs be the
fiber of XS ! S at s ! S. Then the diagram (3.5) specializes to

Xs ⇥ t

FXs⇥t

''Ft //

&&LLLLLLLLLLL
(Xs ⇥ t)0 //

✏✏

Xs ⇥ t

✏✏
t // t

and Ft induces the k(t)-linear map F⇤

t : H1(L0

t ) ! H1((F⇤L0)t ), which induces a
k(t)-linear map

(F⇤

t )_ : H1((F⇤L0)t )
_

! H1(L0

t )
_.

By Serre duality, we have the induced k(t)-linear map

�t : Hn�1((! ⌦ F⇤L0_)t ) ! Hn�1((!0

⌦ L0_)t ). (3.6)

Serre duality allows to make (3.6) in families:

Lemma 3.6. There exists a homomorphism

� : Rn�1 pT ⇤
(! ⌦ F⇤L0_) ! Rn�1 p0

T ⇤
(!0

⌦ L0_)

such that
Rn�1 pT ⇤

(! ⌦ F⇤L0_) ⌦ k(t) ⌧
����! Hn�1((! ⌦ F⇤L0_)t )??y�⌦k(t)

??y�t

Rn�1 p0

T ⇤
(!0

⌦ L0_) ⌦ k(t) ⌧
����! Hn�1((!0

⌦ L0_)t )

is commutative for any t ! T , where ⌧ is the canonical base change isomorphism,
and �t is the homomorphism in (3.6).

Proof. Let ! (respectively, !0) be the relative canonical line bundle of

XT := XS ⇥S T
pT
�! T

(respectively, X 0

T := (XS ⇥S T )0
p0

T
�! T ). Let F : XT ! X 0

T be the relative
Frobenius morphism in (3.5), which is flat and Cohen-Macaulay as XS ! S is
smooth. The injection L0 ,! F⇤F⇤L0 of vector bundles induces the surjection of
vector bundles

Hom (F⇤F⇤L0,!0) ⇣ Hom (L0,!0). (3.7)

Duality theory for the Cohen-Macaulay map F : XT ! X 0

T implies an isomor-
phism

F⇤Hom (F⇤L0,!) ⇠
= Hom (F⇤F⇤L0,!0). (3.8)
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Equations (3.7) and (3.8) imply that one has a surjection

F⇤Hom (F⇤L0,!) ⇣ Hom (L0,!0) (3.9)

of vector bundles on X 0

S . Since F is a finite morphism, taking Rn�1 p0

T ⇤
((3.9))

induces

� : Rn�1 pT ⇤
Hom (F⇤L0,!) ! Rn�1 p0

T ⇤
Hom (L0,!0). (3.10)

For any t ! T , let Xt be the fiber of XT ! T , and Ft : Xt ! X 0

t be the relative
Frobenius. Then (3.10)⌦ k(t) induces (through ⌧ )

� ⌦ k(t) : Hn�1(Xt ,Hom (F⇤

t L0

t ,!t )) ! Hn�1(X 0

t ,Hom (L0

t ,!
0

t ))

which is induced by ' := (3.9)⌦ k(t). Then the surjection of vector bundles on X 0

t

' : (Ft )⇤Hom (F⇤

t L0

t ,!t ) ⇣ Hom (L0

t ,!
0

t ) (3.11)

is dual, by taking Hom (·, !0

t ), to the canonical injection

L0

t ,! (Ft )⇤F⇤

t L0

t (3.12)

of vector bundles on X 0

t . As the dual Hn�1(')_ of Hn�1(') = � ⌦ k(t) is the
k(t)-linear map

F⇤

t : H1(X 0

t ,L0

t ) ! H1(Xt , F⇤

t L0

t )

induced by (3.12), this finishes the proof.

To prove Theorem 3.4, the key tool is a theorem of Hrushovski. In fact, we
only need a special case of his theorem:

Theorem 3.7 (Hrushovski, [6, Corollary 1.2]). Let Y be an affine variety over
Fq , and let 0 ⇢ (Y ⇥Fq Y ) ⌦Fq ¯Fq be an irreducible subvariety over Fq . As-
sume the two projections 0 ! Y are dominant. Then, for any closed subvariety
W  Y , there exists x 2 Y (Fq) such that (x, xq

m
) 2 0 and x /2 W for large enough

natural number m.

Remark 3.8. Writing Y ⇢ Ar , we have x = (x1, ..., xr ) 2 (Fq)r = Ar (Fq) and
xqm := (xq

m

1 , ..., xq
m

r ) 2 Ar (Fq). In our application, 0 is the Zariski closure of the
graph of a dominant rational map f : Y 99K Y and W is the locus where f is not
well-defined.

Proof of Theorem 3.4. (Compare with [3, Theorem 3.14].) Let

f : M 99K M

be as in Proposition 3.5. So M ! S is an S-reduced scheme of finite type, where
S is smooth affine over Fq , the normalization of Fp in H0(S,OS). Let Mk be the
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general fiber of M ! S at Spec (k) ! S. We define Zk to be the intersection
of the Zariski closures EX (m) of the EX (m) ⇢ Mk , where EX (m) = { (Li+m ,!
Vi+m ⇣ OX ) 2 EX }i2N. By the Nötherian property, there exists a m0 > 0 such
that

Zk = EX (m) ⇢ Mk(k) = M(k)
for any m � m0. As EX is assumed to be infinite, all components of Zk have
dimension � 1. Indeed, if it had a component of dimension 0, then there would
be a m1 > m0 such that this 0-dimensional component would not lie on EX (m1),
a contradiction. The fields of constants of the irreducible components of Zk lie
between Fq(S) and k. Let S0

! S be affine with S0 smooth affine irreducible
such that all components of Zk are defined over S0, yielding models of them over
S0 which are geometrically irreducible over Fq , and a model Z ! S0 of Zk . We
replace now XS ! S and M ! S by XS0 and the corresponding MS0 ! S0. We
abuse notations, set S = S0, and have Z ⇢ M ! S.

Let M0
⇢ M be the largest open subset where f is well-defined. Notice that

EX (1) ⇢ M0
k

and f (EX (m)) = EX (m � 1) for any m � 1. Thus f (Zk \ M0
k ) contains a dense

subset of Zk . On the other hand,

f (Zk \ M0
k ) ⇢ Zk,

thus f : M 99K M induces a dominant rational map f : Zk 99K Zk, and thus a
rational dominant map

f : Z 99K Z .

We consider one irreducible component of Zk , and its model Z irr ! S, which is a
geometrically irreducible component of Z over Fq . There is an integer a1 > 0 such
that f a1 : Z irr 99K Z irr is a dominant rational map over a finite field Fq .

To prove that Z irr contains a periodic point of f a1 , without loss of generality,
we can assume that Y := Z irr ⇢ Ar is an affine variety and f a1 : Y 99K Y is
defined by rational functions f1, ..., fr 2 Fq(Y ). Let

0 ⇢ Y ⇥Fq Y

be the Zariski closure of the graph of f a1 , which is irreducible over Fq as Y is by
assumption. The two projections 0 ! Y are dominant since f a1 : Y 99K Y is
dominant. By Theorem 3.7, there exists a point x 2 Y (Fq) such that f is well-
defined at x = (x1, ..., xr ) and f a1(x) = (xq

m

1 , ..., xq
m

r ) := xqm for some large m.
Recall that fi 2 Fq(Y ) (i = 1, ..., r) have coefficients in Fq , we have

f a1( f a1(x)) = ( f1(x
qm
1 , ..., xq

m
r ), ... , f1(x

qm
1 , ..., xq

m
r ))

= ( f1(x1, ..., xr )q
m
, ... , f1(x1, ..., xr )q

m
)

= (xq
2m

1 , ... , xq
2m

r ) = xq
2m

.
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Thus f a2a1(x) = xqa2m = x when a2 is large enough. The point

x 2 Y (Fq)
determines a nontrivial extension 0 ! L ! V ! OXs̄ ! 0 on a good reduction
Xs̄ of X (over Fq ). That f a(x) = x , a = a1a2, means by Proposition 3.5 (3)�

(F⇤

Xs̄ )
aL ,! (F⇤

Xs̄ )
aV ⇣ (F⇤

Xs̄ )
⇤OXs̄

�
⇠
= (L ,! V ⇣ OXs̄ ).

This finishes the proof of Theorem 3.4 and thus of Theorem 3.1.

Theorem 3.9. Let X be a smooth projective variety over an algebraically closed
field k of characteristic p > 0. Then:
(i) Every stratified bundle on X is trivial if and only if ⇡1 is trivial;
(ii) All the irreducible stratified bundles have rank 1 if and only if [⇡1,⇡1] is a

pro-p-group;
(iii) Every stratified bundle is a direct sum of stratified line bundles, that is str(X)

is a semi-simple category with irreducible objects of rank 1, if and only if ⇡1
is Abelian with no non-trivial p-power quotient.

Proof. (i) is the main theorem of [3]. (ii) is Theorem 2.6. To show (iii), assume that
⇡1 is Abelian with no p-power order quotient. Let E = (En, �n)n2N be a stratified
bundle on X . By (ii), any irreducible stratified bundle has rank 1. Thus there is a
filtration 0 = E0 ⇢ E1 ⇢ · · · ⇢ Er = E in str(X) such that Lv

= Ev/Ev�1,
1  v  r , are rank one stratified bundles. Then, by Theorem 3.1, the filtration
splits and E is a direct sum of rank-1 objects.

We now comment on analogues of (ii) and (iii) in complex geometry. For
this reason, we include here the following lemma, which may have an independent
interest.
Lemma 3.10. Let G be a commutative group scheme over an algebraically closed
field k such that all its quotients in Gm are smooth. Let ` be a non-trivial character
of G. Then H1(G, `) = 0.
Proof. Let � : G ! Gm = Aut(`) be the non-trivial character, and let � : G ! `
be a cocycle representing a class in H1(G, `). By definition of a cocycle, one has
� (gh) = �(g)� (h) + � (g). The commutativity of G implies

� (hg) = �(h)� (g) + � (h) = � (gh) = �(g)� (h) + � (g). (3.13)

As � is non-trivial, and Im(�) ⇢ Gm is assumed to be smooth, there is a h 2 G(k)
such that

0 6= (�(h) � 1) 2 End(`) = k.
Thus

(�(h) � 1) 2 k⇥

= Gm(k) = Aut(`).
Set v = (�(h) � 1)�1� (h) 2 `. Then, by (3.2), one has � (g) = �(g)v � v, which
means that � is a coboundary. Thus H1(G, `) = 0.
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Remark 3.11. The same proof shows that if X is a smooth complex variety, with
Abelian topological fundamental group, and if ` is a non-trivial rank-1 local system,
then H1(X, `) = 0. Indeed, G is now ⇡

top
1 (X, a), the topological fundamental

group based at a complex point a 2 X (C), and non-triviality implies the existence
of h 2 G with (�(h) � 1) 2 C⇥

= Aut(`). One then concludes identically.
This fact ought to be well known, but we could not find a reference in the

literature.

Remark 3.12. As already mentioned in the introduction, the Malcev-Grothendieck
theorem ([5, 10]) asserts that the étale fundamental group ⇡1 of a smooth complex
projective variety is trivial if and only its stratified fundamental group ⇡ str is triv-
ial, where ⇡ str is the pro-affine complex algebraic group of the Zariski closures of
the monodromies of complex linear representations of the topological fundamental
group ⇡

top
1 . By going to the associated Galois cover, it implies that ⇡ str is finite if

and only if ⇡1 is finite (in which case ⇡ str = ⇡1). One also has that ⇡ str is Abelian
if and only if ⇡1 is Abelian. Indeed, by definition ⇡ str is Abelian if and only ir-
reducible complex linear representations have dimension 1. But if ⇢ : ⇡

top
1 !

GL(r, C) is a representation, since ⇡
top
1 is spanned by finitely many elements, ⇢

has values in GL(r, A) for A a ring of finite type over Z. Then if ⇢ is irreducible,
there is a closed point s 2 Spec (A) such that ⇢ ⌦ (s) : ⇡

top
1 ! GL(r, (s))

is irreducible as well, where (s) is the residue field of s. As ⇢ ⌦ (s) is finite, it
factors through ⇡1, thus r = 1. Since a linear representation with finite monodromy
is semi-simple, one can summarize as follows:

Claim 3.13. ⇡1 is

1) finite,
2) respectively, Abelian,
3) respectively, Abelian and finite,

if and only if ⇡ str1 is

1) finite,
2) respectively, Abelian,
3) respectively, Abelian and finite,

if and only if

1) local systems have finite monodromy,
2) respectively, irreducible local systems have rank-1,
3) respectively, local systems are direct sums of rank-1 local systems.

While the main result of [3] is an analogue in characteristic p > 0 of Claim 3.13
(1), the main theorem of this note is an analogue of Claim 3.13 (2) and (3).
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