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Isothermalisation for a non-local heat equation

EMMANUEL CHASSEIGNE AND RAÚL FERREIRA

Abstract. In this paper we study the asymptotic behavior for a nonlocal heat
equation in an inhomogenous medium:

⇢(x)ut = J ⇤ u � u in RN
⇥ (0,1) ,

where ⇢ is a continuous positive function, u is non-negative and J is a probability
measure having finite second-order momentum. Depending on integrability con-
ditions on the initial data u0 and ⇢, we prove various isothermalisation results,
i.e., u(t) converges to a constant state in the whole space.

Mathematics Subject Classification (2010): 35B40 (primary); 35R09, 45A05,
45K05 (secondary).

1. Introduction

The aim of this paper is to study the asymptotic behavior for a nonlocal heat equa-
tion in an inhomogenous medium:

⇢
⇢(x)ut = J ⇤ u � u, (x, t) 2 RN

⇥ (0,1),

u(x, 0) = u0(x), x 2 RN .
(1.1)

Here, u0 is a non-negative continuous function inRN and ⇤ denotes the convolution
with a kernel J : RN

! R, which is a radial, continuous probability density having
finite second-order momentum:Z

RN
J (s) ds = 1 , E(J ) =

Z
RN

s J (s) ds = 0 , V(J ) =

Z
RN

s2 J (s) ds < +1.

Typical examples of kernel that we consider are the gaussian law, the exponential
law or any compactly supported kernels. We also assume that ⇢ is a positive, con-
tinuous function in RN , whether integrable or not.
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also partially supported by grant GR58/08-Grupo 920894.
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The operator J ⇤ u � u can be interpreted as a non-local diffusion operator.
Indeed, if u(x, t) represents the density of a single population and J (x � y) is
the probability to jump from y to x then the term (J ⇤ u)(x) is the rate at which
individuals arrive to x and �u(x) is the rate at which individuals leave from x , see
for instance [6]. In the case of heat propagation, u stands for a temperature and
⇢(x) represents the density of the medium.

Problem (1.1) is called non-local because the diffusion at u(x, t) depends on
all the values of u in the support of J and not only of the value of u(x, t), as it is
the case for the local diffusion problem

⇢
⇢(x)ut = 1u, (x, t) 2 RN

⇥ (0,1),

u(x, 0) = u0(x), x 2 RN .

For this local problem it is well known that for dimension N = 1, 2 there exists
a unique solution in the class of bounded solutions, see [7] and [4]. Moreover, if
⇢ 2 L1(RN ) and u0 is bounded, then as t ! 1 the solution converges on compact
sets to E⇢(u0), the mean of u0 with respect to ⇢ :

E⇢(u0) :=

Z
RN

u0(y)⇢(y) dyZ
RN
⇢(y) dy

2 R+.

This phenomenon is called isothermalisation, since the heat distribution converges
to a non-trivial isothermal state in all the space. However, for dimension N > 3
uniqueness is lost in the class of bounded solutions and some solutions decrease to
zero as t ! 1, so that isothermalisation does not take place, see [8] and [5].

We are also facing the influence of the space dimension in the nonlocal case.
More precisely, if J is compactly supported and N = 1, 2, we prove uniqueness of
bounded solutions. For dimension N > 3, we need (as in the local case) additional
conditions on the behavior of ⇢ at infinity to get uniqueness of bounded solutions.

The case when ⇢ is not integrable is also considered, which is more related to
the study of the homogeneous case (⇢ ⌘ 1), see [3] and [1]. For bounded solutions,
the flux at infinity is so big that solutions go down to zero asymptotically while if
the data is unbounded, the solution may go to infinity asymptotically as t ! 1.

Organization and main results

We first prove in Section 2 a comparison result which implies uniqueness for prob-
lem (1.1) in some class. This comparison states that if u is a supersolution of the
equation, and u is a subsolution, (and both are ordered initially), then we have u > u
inRN

⇥[0,1). Such a result is obtained by standard arguments once we are able to
construct a suitable strict supersolution (see Lemma 2.5 and Lemma 2.7). But this
requires some assumptions on ⇢. If ⇢ degenerates too fast at infinity, the maximum
principle may be violated.
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In Section 3 we study the existence in the class of bounded solutions, which is
obtained by approximation with Neuman problems in bounded domains. Our first
main result is the following:

Theorem 1.1. Let ⇢ > 0, be continuous, and u0 be a bounded non-negative con-
tinuous function. Then there exists a non-negative classical bounded solution of
problem (1.1). Moreover, if either

⇢(x) >
⌘

1+ |x |2
,

or N = 1, 2 and J has compact support then uniqueness holds in this class.

We denote by L1(⇢) the space of measurable functions f : RN
! R such that

⇢ f 2 L1(RN ). Section 4 is devoted to study the isothermalisation phenomenon for
bounded initial data in this space. There are two major tools we use to derive the
isothermalisation effect for u0 2 L1(⇢): (i) an estimate of the solution in L1(⇢); (ii)
some weighted energy estimates in L2(RN ). Then the main theorem is as follows:

Theorem 1.2. Let ⇢ > 0, be continuous, integrable and u0 be a bounded non-
negative continuous function. Then, the solution satisfies the following mass con-
servation Z

RN
⇢(x)u(x, t) dx =

Z
RN
⇢(x)u0(x) dx . (1.2)

Moreover, u(x, t) ! E⇢(u0) as t ! 1 in Lploc(RN ) for any 1 6 p < 1; the
convergence also holds in L1(⇢):

lim
t!1

Z
RN

|u(x, t) � E⇢(u0)| ⇢(x) dx = 0.

Notice that since ⇢ 2 L1(RN ) and u0 is bounded then u0 2 L1(⇢). If ⇢ is not
integrable but still u0 2 L1(⇢) the flux at infinity forces the solution to go to zero:

Theorem 1.3. Let ⇢ > 0 and u0 be a bounded non-negative continuous function
such that u0 2 L1(⇢). If ⇢ is not integrable in RN , then u(x, t) ! 0 as t ! 1 in
Lploc(RN ) for any 1 6 p < 1.

Finally, in Section 5 we investigate the case of unbounded initial data. We first
prove an existence result in the class of unbounded solutions provided ⇢ does not
degenerate too rapidly at infinity. More precisely, if

⇢(x) >
⌘

1+ |x |�
� 6 2 , (1.3)

then we have an existence result for quadratic initial data:

Theorem 1.4. Let u0 be a positive continuous function with at most quadratic
growth at infinity. If the function ⇢ satisfies (1.3) then there exists a solution of
problem (1.1).
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More generally, if ⇢ is integrable, we prove similar isothermalisation results
for the minimal solution:

Theorem 1.5. We assume that ⇢ is a continuous positive integrable function inRN

and that u0 is a continuous non-negative function, possibly unbounded, such that
there exists a solution u. Noting u the minimal solution, the following holds:

i) If u0 2 L1(⇢) the isothermalisation takes place in L1(⇢),

lim
t!1

Z
RN

|u(x, t) � E⇢(u0)| ⇢(x) dx = 0.

ii) If u0 /2 L1(⇢), we have that for all 1 6 p < 1,

lim
t!1

u(x, t) = 1 in Lploc(R
N ).

In the case of nonintegrable ⇢’s with u0 62 L1(⇢) the asymptotic behavior is more
difficult to treat. For instance, if ⇢ ⌘ 1, the solutions

u(x, t) = |x |2 + V(J )t, and u(x, t) = 1

have different behavior. Thus, there is a balance between ⇢, J , and the initial data
u0 which is not easy to handle and the question remains open.

ACKNOWLEDGEMENTS. We would like to thank Jorge Garcia-Melián for giving
us a proof that J -harmonic bounded functions are constant (which was reproduced
in Lemma 4.4).

2. Preliminaries

Let us specify first what is the notion of solution that we use:

Definition 2.1. Let u0 2 L1loc(RN ). By a strong solution of (1.1) we mean a func-
tion u 2 C0

�
[0,1);L1loc(RN )

�
such that ut , J ⇤ u 2 L1loc(RN

⇥ (0,1)
�
, the equa-

tion is satisfied in the L1loc-sense and such that u(x, 0) = u0(x) almost everywhere
in RN .

We shall consider also solutions with more regularity:

Definition 2.2. A classical solution of (1.1) is a strong solution such that more-
over u, ut , J ⇤ u 2 C0(RN

⇥ [0,1)) and the equation holds in the classical sense
everywhere in RN

⇥ [0,1).
A classical sub or supersolution is defined as usual with inequalities instead of

equalities in the equation.



ISOTHERMALISATION FOR A NON-LOCAL HEAT EQUATION 1119

Let us recall some basic facts for (1.1) with ⇢ ⌘ 1 (which are more or less
valid for a suitable class of functions ⇢ as we shall see below):

maximum principle If u reaches a max at x0, then the convolution J ⇤ u � u
is necesarily non-negative at x0 (this is a consequence of the fact that J is a
propability density). And moreover, if (J ⇤ u � u)(x0) = 0, then u(x) = u(x0)
in the support of J , translated at x0.

comparison result This kind of nonlocal equation enjoys various comparison prin-
ciples between sub and supersolutions (whether in RN of in bounded domains),
which rely on the maximum principle above.

existence and uniqueness Both are typically obtained through fixed-point theo-
rems, but uniqueness is also (of course) a consequence of the comparison be-
tween sub/supersolutions.

We refer to [1–3] for more details and references.
Now let us state a simple regularity Lemma, which contains a technical trick

that we shall use several times in the sequel:

Lemma 2.3. Let u be a strong solution of (1.1). We assume moreover that u0 is
continuous inRN and that the convolution term J ⇤u is continuous inRN

⇥[0,1).
Then u and ut are also continuous in RN

⇥ [0,1) and u is a classical solution.

Proof. We introduce the following transform:

T⇢[u](x, t) := e t/⇢(x)u(x, t). (2.1)

A straightforward calculus show that v = T⇢[u] satisfies

vt =

e t/⇢(x)

⇢(x)
(J ⇤ u)(x, t) ,

which is a continuous function inRN
⇥ [0,1). Integrating between 0 and t we get:

v(x, t) =

Z t

0
@tv(x, s) ds + v(x, 0) =

Z t

0
@tv(x, s) ds + u(x, 0) ,

hence v is continuous in RN
⇥ [0,1). This implies that u is also continuous in

RN
⇥ [0,1), and the equation holds in the classical sense.

Remark 2.4. It is well-known in convolution theory that under one of the following
assumptions, the convolution term is continuous:

(i) u bounded (since J is integrable);
(ii) J compactly supported and u locally integrable.
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The following lemma concerns the comparison of classical sub/supersolutions
of the problem. In order to prove that we need to find a strict supersolution  ,
which satisfies

 2 C0(RN
⇥ [0,1)) , > 0 ,

 (x, t) ! +1 as |x | ! 1 uniformly for t 2 [0,1) ,

⇢ t > J ⇤  �  .

(2.2)

Lemma 2.5. In each of the following three cases, if A > 0 and � is large enough,
the function  satisfies (2.2):

(i) If function ⇢ satisfies
⇢(x) >

⌘

1+ |x |2
,

then
 (x, t) = Ae�t (1+ |x |2).

(ii) If J has compact support and N = 1,

 (x, t) = Ae�t (1+ |x |).

(iii) If J has compact support and N = 2,

 (x, t) = Ae�t
�
1+ (ln |x |)+

�
.

Proof. The regularity and the behaviour at infinity of  is clear, so we only need to
prove that  is a strictly supersolution.

In the first case a direct computation gives us that

J ⇤  �  = Ae�tV(J ).

On the other hand,

⇢ t = ⇢A�e�t (1+ |x |2) > A�⌘e�t .

Then, for � > V(J )/⌘, we are done.
In the other two cases, we notice first that  is harmonic outside the origin.

Since J is a radial probability density supported in B(0, R) (then E(J ) = 0), this
implies that

J ⇤  �  = 0, for |x | > 2R.

On the other hand, since  is continuous in B(0, 2R), there exists K > 0 such that

J ⇤  �  6 Ke�t for |x | < 2R.

Moreover, if |x | 6 2R the function ⇢ is bounded from below, so there exists a
constant K̃ such that

⇢ t = ⇢� > K̃�e�t .
Therefore, taking � > K/K̃ , we get that  is a strictly supersolution.
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Remark 2.6. In dimension N > 3 and J compactly supported, the function
 (x, t) = e�t min(1, |x |2�N ) would give a strict supersolution, however it goes
to zero as |x | ! 1. Hence it cannot be used to obtain a comparison principle for
bounded solutions.
Lemma 2.7. Let  satisfy (2.2). Let u be a classical subsolution of (1.1) and ū a
classical supersolution of (1.1) such that u(x, 0) 6 ū(x, 0). If for all t > 0,

lim sup
|x |!1

u � u
 

6 0 (2.3)

then u > u in RN
⇥ R+.

Proof. We consider the function

w� = u � u � � ,

which satisfies the inequality

⇢(x)(w�)t (x, t) < (J ⇤ w�)(x, t) � w�(x, t). (2.4)

From (2.3), we deduce that on RN
⇥ [0, T ], w� attains its maximum at a point

(x0, t0). Observe that at this point,

⇢(x0)(w�)t (x0, t0) < (J ⇤ w�)(x0, t0) � w�(x0, t0) 6 0

but if t0 2 (0, T ), @tw�(x0, t0) = 0 and if t0 = T , @tw�(x0, t0) > 0. Hence in each
of these cases we reach a contradiction. We are left with the last possibility, t0 = 0,
which implies maxw� 6 0. Passing to the limit as � ! 0, since T > 0 is arbitrary
we obtain the comparison

u � u 6 0 for all x 2 RN , t > 0.

As direct corollary, we have the following uniqueness result, which is valid only in
a suitable class of solutions, as it is the case for the local heat equation.
Corollary 2.8. Let  satisfy (2.2). Let u0 be a continuous function which grows
strictly less than  . Then there exists at most one classical solution u of (1.1) such
that |u| grows strictly less than  .

3. Existence and uniqueness of bounded solutions

We obtain an existence result by approximation. We consider the following Neu-
mann problem, where �n denotes the indicator of the ball Bn:

8<
:
⇢(x)@t un =

Z
Bn

�
un(y, t) � un(x, t)

�
J (x � y) dy , x 2 Bn ,

un(x, 0) = u0�n(x) ,
(3.1)

First, let us mention that this problem also enjoys a comparison result:
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Lemma 3.1. Let ū 2 C1([0,1);C0(Bn)) and u 2 C1([0,1);C0(Bn)) be a super-
solution and a subsolution of (3.1) such that u(x, 0) > u(x, 0) in Bn . Then ū > u
in Bn ⇥ [0,1).

Proof. The strategy is standard, and follows Lemma 2.7 except that we are in a
bounded domain so we need not worry about localizing the supremum with a func-
tion  .

Take c, T > 0 and consider

wc,T (x, t) := u(x, t) � u(x, t) �

c
T � t

in Bn ⇥ [0, T ]. This function satisfies the inequality

⇢(x)@twc,T 6
Z
Bn

(wc,T (y, t) � wc,T (x, t))J (x � y) dy �

c⇢(x)
(T � t)2

.

Notice that this inequality is still valid if x0 2 @Bn , this is just using the Dominated
Convergence Theorem with a sequence xn ! x0, xn 2 Bn .

We shall prove that for any c, T > 0, we have maxwc,T 6 0. Of course
wc,T reaches its maximum in Bn ⇥ [0, T ] because it is continuous, and obviously
it cannot be attained at t = T . If this max was attained at t = 0, we would deduce
that maxwc,T 6 0 which is what we want.

So, let us assume that the maximum point (x0, t0) is such that 0 < t < T .
Hence, by the above inequality we get the following contradiction

0 = ⇢(x0)@twc,T (x0, t0)

6
Z
Bn

(wc,T (y, t0) � wc,T (x0, t0))J (x0 � y) dy �

c⇢(x0)
(T � t0)2

< 0.

So we are left with t0 = 0 and maxwc,T 6 0.
Passing to the limit as c ! 0 we deduce that u 6 u in Bn ⇥ [0, T ], and then

we send T ! 1 to finish the proof.

Lemma 3.2. Let ⇢ > 0 be a continuous function in RN and u0 be a non-negative
bounded continuous function. Then for any n > 0, there exists a unique solution
un 2 C1([0,1);C0(Bn)), which satisfies 0 6 un 6 ku0k1. Moreover, the follow-
ing conservation law holds:Z

Bn
un(x, t)⇢(x) dx =

Z
Bn
u0(x)⇢(x) dx . (3.2)

Proof. Following [3], we consider t0 > 0 to be fixed later on and the Banach space
Xt0 = C0([0, t0]⇥ Bn) equipped with the norm |||w||| = max

�
kw(·, t)kL1(Bn) , 0 6

t 6 t0
 
. Then we define an operator T : Xt0 ! Xt0 as follows:

Tw0(w)(x, t) := w0(x) +

1
⇢

Z t

0

Z
Bn
J (x � y)(w(y, s) � w(x, s)) dy ds.
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A straightforward calculus, using that ⇢ > ⇢0 in Bn shows that:

|||Tw0(w) � Tz0(z)||| 6 kw0 � z0kL1(Bn) +

2t0
⇢0

|||w � z|||.

We deduce that for any fixed initial data u0 2 L1(Bn), if t0 > 0 is sufficiently
small (say t0 < ⇢0/4), Tu0 is a strict contraction in the Banach space Xt0 . Hence
there exists a unique function un 2 Xt0 such that Tu0(un) = un , which means that
for any x 2 Bn and t 2 [0, t0], one has

un(x, t) = u0(x) +

1
⇢

Z t

0

Z
Bn
J (x � y)(un(y, s) � un(x, s)) dy ds.

This in particular implies that u(0) = u0 and moreover, that the weak derivative @t u
exists, which is given by

@t un =

1
⇢

Z
Bn
J (x � y)(un(y, s) � un(x, s)) dy.

Since the right hand side of the equation is a continuous function in Bn ⇥ [0, t0],
we have that @t u is also continuous in Bn ⇥ [0, t0]. To extend the solution to [0,1)
we take as initial data u(x, t0) 2 C0(Bn) and obtain a solution up [0, 2t0]. We then
iterate the procedure to construct a solution for all time t > 0.

On the other hand, we note that the constants functions ū = ku0k1 and u = 0
are a supersolution and subsolution respectively, then by comparison

0 6 un 6 ku0k1.

Finally, we observe that

⇢(x)un(x, t) � ⇢(x)u0(x) =

Z t

0

Z
Bn
J (x � y)(un(y, s) � un(x, s)) dy ds.

Then, integrating in x and apply Fubini’s theorem in the right hand side of the
equation, we get de desired conservation law.

Proposition 3.3. Let ⇢ > 0 be a continuous function in RN and u0 be a non-
negative continuous bounded function and for any integer n > 0, let un be the
solution constructed in Lemma 3.2. Then as n ! 1, along a subsequence un ! u
in L1loc(RN

⇥[0,1)) where u is a non-negative classical bounded solution of (1.1).

Proof. Since the sequence un is bounded, it converges (along a subsequence still
denoted un) in L1-weak⇤ to some non-negative and bounded function u. Since
J 2 L1, this implies that J ⇤ un ! J ⇤ u strongly and that @t un ! @t u in the sense
of distributions. We can then pass to the limit in the sense of distributions but here
also we want a better convergence.
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Let us introduce a modified version of transform T as follows:

vn(x, t) := e t (J⇤�n)(x)/⇢(x)un(x, t).

Since (3.1) can be written as

⇢(x)@t (un)(x, t) =

⇥
J ⇤ (un�n)

⇤
(x, t) � (J ⇤ �n)(x)un(x) ,

it follows immediately that vn satisfies the equation

@tvn =

e t (J⇤�n)(x)/⇢(x)

⇢(x)
J ⇤ un.

This implies that @tvn converges strongly on compact sets of RN
⇥ [0,1), and so

does vn(x, t) = u0(x)�n(x) +

R t
0 (vn)t (x, s) ds. Then un also converges strongly

on compact sets of RN
⇥ [0,1) to its limit u.

Passing to the limit in the equation, we see that u is a strong solution of (1.1),
which implies that it is a classical solution of this equation – this follows from
Lemma 2.3.

Proof of Theorem 1.1. It is just the combination of Proposition 3.3, Corollary 2.8
and Lemma 2.5.

Now, we pass to the limit in the conservation law, to obtain:
Theorem 3.4. Let ⇢ > 0, be continuous and u0 2 C0(RN ) \ L1(RN ) \ L1(⇢).
Then:
(i) for any t > 0, u(·, t) 2 L1(⇢) andZ

RN
⇢(x)u(x, t) dx 6

Z
RN
⇢(x)u0(x) dx .

(ii) if moreover we assume that ⇢ 2 L1(RN ) then the conservation law holds:Z
RN
⇢(x)u(x, t) dx =

Z
RN
⇢(x)u0(x) dx .

Proof. Since u0 2 L1
\ C0, the approximating sequence {un} of Proposition 3.3

satisfies that (up to a subsequence) un ! u almost everywhere, with 0 6 un 6
ku0k and Z

RN
un(x, t)�n(x)⇢(x) dx =

Z
RN

u0(x)�n(x)⇢(x) dx . (3.3)

Since u0 2 L1(⇢), the dominated convergence theorem yields the convergence of
the right-hand side integral as n ! 1. For the left hand side, using Fatou’s Lemma
we obtain thatZ

RN
⇢(x)u(x, t) dx 6 lim inf

n!1

Z
RN
⇢(x)un(x, t)�n(x) dx =

Z
RN
⇢(x)u0(x) dx ,

which proves assumption (i).
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Finally, if we assume that ⇢ 2 L1(RN ) we can use also the dominated conver-
gence theorem for the sequence un�n⇢, which is bounded by ku0k1 ⇢ 2 L1(RN ).
We then pass to the limit in the left-hand side of (3.3) and get (ii).

4. Asymptotic behaviour for bounded solutions

We shall now derive our main results concerning the asymptotic behaviour for (1.1).
We divide the proof in several steps.

4.1. Weak limit

This first step is easy, it only comes from the fact that the solution is globally
bounded:

Lemma 4.1. Let ⇢ > 0, continuous and u0 2 C0(RN ) \ L1(RN ). Let u be a
bounded classical solution. Then for any s > 0 there exists a subsequence tk !

+1 such that the following limit exists in L1-weak*:

u1(x, s) := lim
tk!1

u(x, s + tk).

Proof. Since u is bounded, thus there exists a subsequence tk ! 1 such that
u(·, s + tk) converges in L1-weak* to a function u1(·, s) 2 L1(RN ).

4.2. Lyapounov functional

We now want a stronger result, so we use a Lyapounov functional:

Lemma 4.2. Let t0 > 0. Assume the hypotheses of Lemma 4.1 and that u0 2 L2(⇢).
Then there exists a constant C = C(u0, ⇢, t0) such that for all t > t0 > 0,

Z
1

t

Z
RN
⇢(x)(ut )2(x, s) ds 6 C.

Proof. We first go back to the approximating scheme (3.1). Notice that the follow-
ing quantity

F[un](t) =

Z
Bn

Z
Bn
J (x � y)(un(x, t) � un(y, t))2 dx dy
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is a Lyapounov functional which is nonincreasing along the evolution orbits at the
level n. Indeed, multiplying the equation by u and integrating in Bn we get
Z
⇢(x)@t un · un dx =

ZZ
J (x � y)un(x)un(y) dx dy �

Z
un(x)2 dx

=

1
2

ZZ
J (x � y)

�
2un(x)un(y) � 2un(x)2

�
dx dy

=

1
2

ZZ
J (x � y)

�
2un(x)un(y) � un(x)2 � un(y)2

�
dx dy

= �

1
2
F[un](t).

Therefore,

F[un](t) = �

d
dt

Z
Bn
⇢n(x)u2n(x, t) dx . (4.1)

In a similar way, multiplying the equation by @t un and integrating in space we
obtain

d
dt
F[un](t) = �4

Z
Bn
⇢(x)((un)t )2(x, t) dx . (4.2)

Integrating (4.1) we have that for some C 0
= C 0(u0, ⇢),

Z t

0
F[un](s) ds = 2

Z
Bn
⇢(x)u20(x)�n(x) dx � 2

Z
Bn
⇢(x)u2n(x, t) dx 6 C 0.

Indeed, as u0 2 L2(⇢) we have by monotone convergence that
Z

RN
⇢(x)u20(x)�n(x) dx !

Z
RN
⇢(x)u20(x) dx < 1.

Using now the monotonicity in t of F[un](t), we get

t F[un](t) 6
Z t

0
F[un](s) ds 6 C 0.

Moreover, F[un](t) is positive so that, integrating (4.2), we get for any t > t0:
Z

1

t

Z
RN
⇢((un)t )2(x, s) dx ds 6

1
4
F[un](t) 6

C 0

4t0
.

Using Fatou’s Lemma and the fact that ⇢(un)t converges strongly to ⇢ut , we obtain
the desired result.
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As an immediate consequence of this result we obtain:
Lemma 4.3. Assume the hypotheses of Lemma 4.1 and that u0 2 L2(⇢). For all
sequence tk ! 1 and s > 0,

k

p
⇢(·) u(·, s + tk) �

p
⇢(·) u(·, tk)k2L2(RN )

! 0 as n ! 1.

Hence, the limit function u1(x, s) does not depend on the variable s > 0.
Proof. Notice that for all sequence tk ! 1, we get
��p⇢(·) u(·, s + tk) �

p
⇢(·) u(·, tk)

��2
L2(RN )

=

Z
RN
⇢(x)

⇣ Z tk+s

tk
ut (x, � ) d�

⌘2
dx

6 s
Z

RN

Z tk+s

tk
⇢(x)(ut )2(x, � ) d� dx,

which goes to zero as tk ! +1.

4.3. The !�limit set

We define the !�limit set as follows:

!(u0) = {u1 2 C0(RN ) : 9t j ! 1 such that u(·, t j ) ! u1(·) in L1-weak*}.

Lemma 4.4. Under the hypotheses of Lemma 4.1 and that u0 2 L2(⇢), the !-limit
set is reduced to constants.
Proof. Since u(x, s + tk) converges weakly in L1-weak*, then as tk ! 1,

(J ⇤ u)(x, s + tk) =

Z
J (x � y)u(y, s + tk) dy

pointwise
�! (J ⇤ u1)(x, s).

Moreover, since u is bounded, the convergence of J ⇤ u is also strong in L1loc. On
the other hand, @t⇢u(s + tk) ! ⇢@su1(s) in the sense of distributions. We then
pass to the limit in the sense of distributions in the equation and get

⇢(x)
@

@s
u1(x, s) = J ⇤ u1(x, s) � u1(x, s).

Using Lemma 4.3 we know that u1 is independent of s so that u1 is a bounded
solution (in the sense of distributions) of

J ⇤ u1 � u1 = 0 in RN .

We first deduce that u1 is continuous because the convolution term is continuous.
Then we consider the Fourier transform in the space of tempered distributions:

Ĵ · û1 � û1 = 0.

Since | Ĵ | < 1 except for Ĵ (0) = 1, we see that the (generalized) Fourier transform
of u1 has a support contained in {0}. This implies that u1 is a polynom but since
it is bounded, it has to be a constant.
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4.4. Identification of the limit

We are now ready to identify the !-limit set.

Lemma 4.5. We assume the hypotheses of Lemma 4.1 and that u0 2 L1(⇢). Then
the following holds:

(i) if ⇢ 2 L1(RN ), !(u0) =

�
E⇢(u0)

 
;

(ii) if ⇢ /2 L1(RN ), !(u0) =

�
0
 
.

Proof. Notice first that since u0 2 L1(⇢) \ L1, then u0 2 L2(⇢), hence we may
use Lemma 4.4. In the integrable case, ⇢ 2 L1, we observe that as u is uniformly
bounded, the dominated convergence Theorem gives

Z
RN
⇢(x)un(x, s + t j ) dx ! u1

Z
RN
⇢(x) dx .

Therefore, by Theorem 3.4-(ii) we obtain u1 = E⇢(u0), so that the !-limit set is
reduced to

�
E⇢(u0)

 
.

In the case ⇢ 62 L1(RN ), we take a compact set K such that
Z
K
⇢(x) dx >

Z
RN
⇢(x)u0(x) dx ,

which is always possible since u0 2 L1(⇢). Using Theorem 3.4-(i), Lemma 4.4 and
Fatou’s Lemma, we obtain

u1

R
K ⇢(x) dx 6 lim inf

n!1

Z
K
⇢(x)un(x, s + t j ) dx

6 lim inf
n!1

Z
RN
⇢(x)un(x, s + t j ) dx

6
Z

RN
⇢(x)u0(x) dx .

This implies that necessarily u1 = 0, hence the !-limit set is reduced to
�
0
 
.

4.5. Proofs of Theorems 1.2 and 1.3

As consequence of the fact that the !�limit is given by only one function we can
pass to the limit in the time variable without extracting any subsequence. Then
it only remains to check that the convergence is better, which is done by using
transform T⇢ .

Proof of Theorem 1.3. Under the hypotheses of the Theorem, we have that u0 is
continuous, bounded, and ⇢ not integrable, but nevertheless u0 2 L1(⇢) \ L2(⇢).
Thus Lemmas 4.1 and 4.5 imply that for any s > 0, at least along a subsequence
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tn ! 1 we have u(x, s+ tn) ! 0 in L1-weak*. But the same arguments are valid
for any other subsequence such that u(x, s + t 0n) converges weakly. Since the limit
is always zero, we deduce that for any s > 0,

u(x, s + t)
L1-weak*

�������!

t!1

0 ,

which implies that
�
J ⇤ u(s + t)

�
converges strongly in L1loc as t ! 1. Then,

⇢(x)@su(x, s + t) =

�
J ⇤ u(s + t)

�
(x) � u(x, s + t)

L1-weak*
�������!

t!1

0.

Even more, since t ! +1 we may assume that t > t0 for some t0 > 0 and from
lemma 4.2 we obtain that for any compact set K ,Z

1

t

✓Z
K
⇢(x)|ut |(x, s) dx

◆2
ds 6

Z
1

t

✓Z
K
⇢(x)|ut |2(x, s) dx

◆

6
✓Z

K
⇢(x) dx

◆
ds 6 C(K , u0, ⇢).

Then, at least for some sequence tk ! +1, we have ⇢(x)@su(x, s + tk) ! 0 in
L1loc. Summing up, we obtain that

lim
tk!+1

u(x, s + tk) = 0 in L1loc.

Of course, if t 7! u(x, s + t) were to converge in L1loc along another subsequence
t 0k ! 1, the limit would necessarily be zero, so that finally u(·, t) ! 0 in L1loc(RN )

as t ! 1. Moreover, since t 7! u(·, t) remains bounded in L1(RN ), we deduce
that the convergence holds in Lploc(RN ) for any 1 6 p < 1.

Proof of Theorem 1.2. The first part is done exactly as in the proof of Theorem 1.3,
except that ⇢ is integrable here so that the limit is not zero, but E⇢(u0). To end the
proof in this case, it only remains to prove the L1(⇢) convergence. We fix " > 0
and choose R > 0 big enough so that (remember that ⇢ is integrable):Z

|x |>R
⇢(x) dx 6 ".

ThenZ
RN

|u(x, t) � u1|⇢(x) dx 6 2"ku0k1 +

Z
|x |6R

|u(x, t) � u1|⇢(x) dx ,

and using the L1loc convergence we get:

lim sup
t!1

Z
RN

|u(x, t) � u1|⇢(x) dx 6 2"ku0k1.

Since " is arbitrary, we get that the limit is zero, which ends the proof.
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5. Unbounded solutions

In this section we derive some results for unbounded initial data and solutions. Let
us mention that in the case ⇢ ⌘ 1, further results are to be found in [1]. But here
we still face the problem of the space inhomogeneity implied by ⇢.

5.1. An existence result for unbounded solutions

Proposition 5.1. Let us assume that (2.2) holds. Then for any non-negative u0 2

C0(RN ), satisfying u0(x) 6  (x, 0) there exist a classical solution u of (1.1) with
u(x, 0) = u0(x).

Proof. Let us first consider an approximation u0n = u0 · �n where �n is smooth,
non-negative, compactly supported and �n % 1. Let un be the solution of (1.1) with
initial data u0n given by Proposition 3.3, then by applying the comparison result for
bounded solutions, the sequence un is nondecreasing.

Notice that  is not bounded, but this is allowed in Lemma 2.7, which gives:

un(x, t) 6  (x, t).

Hence the sequence un converges to some u and we are able to pass to the limit
in J ⇤ un by dominated convergence, using that  is integrable with respect to
translations of J .

Using now Lemma 2.3, we deduce that u is a classical solution of (1.1) and the
initial data of u is u0.

Remark 5.2. This construction does in fact give a minimal solution: if u1 is any
other solution, then it can be used as a supersolution for any un and passing to
the limit shows that u 6 u1. One can think that if we restrict the initial data to
grow strictly less than  , then uniqueness holds because the comparison argument
is valid in this class. However, it is not clear whether the constructed solution enters
this class unless we know more about u0, see [1].

5.2. Asymptotic behaviour for unbounded solutions when ⇢ is integrable

We prove now that if u0 is integrable with respect to ⇢, the isothermalisation phe-
nomenon occurs (whether infinite or not). Notice that we gave sufficient conditions
for existence of a minimal solution in the previous section. The first result is the
following:

Proposition 5.3. Let u0 2 C0(RN ) \ L1(⇢), ⇢ 2 L1(RN ) and assume there exists
a solution u such that u(x, 0) = u0(x). Then, if u denotes the minimal solution, we
have

lim
t!1

Z
RN

|u(x, t) � E⇢(u0)| ⇢(x) dx = 0.
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Proof. Let u be the minimal solution and let us use the same monotone approxima-
tions that were used in Proposition 5.1. Since un is bounded, Lemma 2.7 implies
that we have a bound from above:

u(x, t) > un(x, t) in RN
⇥ [0,1).

But since un(x, 0) 2 L1(RN ), Theorem 3.4 impliesZ
RN

un(x, t)⇢(x) dx =

Z
RN

un(x, 0)⇢(x) dx .

Moreover, the convergence of un to u is monotone, so we can pass to the limit in
the above equation to obtainZ

RN
u(x, t)⇢(x) dx =

Z
RN

u(x, 0)⇢(x) dx .

Using the above three equations we get thatZ
RN

|u(x, t) � E⇢(u0)|⇢(x) dx 6 I1 + I2 + I3,

where,

I1 =

Z
RN

|u(x, t) � un(x, t)|⇢(x) dx =

Z
RN

(u(x, 0) � un(x, 0))⇢(x) dx .

I2 =

Z
RN

|un(x, t) � E⇢(u0�n)|⇢(x) dx,

I3 =

Z
RN

|E⇢(u0�n) � E⇢(u0)|⇢(x) dx .

Observe that I1 and I3 are independents of t and tend to zero as n ! 1. Moreover,
un satisfies the hypothesis of Theorem 1.2 so that I2 tends to zero as t ! 1.
Therefore, we first have

lim sup
t!+1

Z
RN

|u(x, t) � E⇢(u0)|⇢(x) dx 6 I1 + I3 ,

so that taking the limit as n ! 1 yields the desired result.

In the case when u0 /2 L1(⇢), then infinite isothermalisation occurs:

Proposition 5.4. Let ⇢ 2 L1(RN ) and u0 2 C0(RN ) be such that u0 /2 L1(⇢).
Then for any solution u with initial data u0 and any 1 6 p < 1, the following
asymptotic behaviour holds:

lim
t!+1

u(x, t) = +1 in Lploc(R
N ).
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Proof. As before, if there exists a solution, then we can approximate the minimal
solution u by the family un used in Proposition 5.1. Since this approximation is
monotone,

u(x, t) > un(x, t) in RN
⇥ [0,1).

But un(x, 0) satisfies the hypotheses of Theorem 1.2 so that

lim inf
t!+1

u(x, t) > lim
t!+1

un(x, t) = cn ,

where cn = E⇢(un(x, 0)), the limit holding in all Lploc(RN ). Hence passing to the
limit as n ! +1, we obtain the result for u since cn ! E⇢(u0) = +1, thus the
same holds for any other solution.

Theorems 1.4 and 1.5 follow from the conjunction of Propositions 5.1, 5.3 and 5.4.
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