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Uniform bounds for the Iitaka fibration

GABRIELE DI CERBO

Abstract. We give effective bounds for the uniformity of the Iitaka fibration.
These bounds follow from an effective theorem on the birationality of some ad-
joint linear series. In particular we derive an effective version of the main theorem
in [19].

Mathematics Subject Classification (2010): 14E05 (primary); 14C20 (sec-
ondary).

1. Introduction

Hacon and McKernan in [10] proposed the following:

Conjecture 1.1. There is a positive integer mn, such that for any m � mn, suffi-
ciently divisible, �|mKX | is birationally equivalent to the Iitaka fibration of X for all
smooth projective varieties X of dimension n and Kodaira dimension  .

They proved in [9] the case when (X) = n. For different proofs see also [21]
and [24]. Their result is not effective and it remains a difficult question to find
bounds for these numbers, see [4] for results in dimension three. When (X) < n
the standard approach to this problem is to use the canonical bundle formula of
Fujino and Mori [8]. Roughly speaking, it says that for the Iitaka fibration f :

X 99K Y the question is equivalent to finding a uniform bound for the birationality
of linear systems on Y of type KY + MY + BY where (Y, BY ) is a klt pair and MY
is a nef Q-divisor. With this approach mn, depends also on some other numerical
parameters which appear in the formula, see Section 4 for details. Under these
new assumptions there are some partial results. Fujino and Mori proved the case
(X) = 1. Some years later Viehweg and Zhang in [25] proved the case (X) = 2.
If dim(X) = 3 Ringler gave a different proof in [20]. For low-dimensional varieties,
i.e. dim(X)  4, the log version of Conjecture 1.1 has been studied in [22] and [23].
The first result for arbitrary Kodaira dimension is due to Pacienza in [19] but he
needs to assume that KY is pseudo-effective and MY is big. Recently Jiang in [12]
proved the case where MY is numerically trivial by reducing the problem to a result
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on log pluricanonical maps in [11]. In summary, the canonical bundle formula
suggests that we need some general theorems for adjoint linear systems in order to
prove Conjecture 1.1. In fact, thanks to the following result, Pacienza derived his
theorem on the uniformity of the Iitaka fibration.
Theorem 1.2 (Pacienza [19]). For any positive integers n and ⌫, there exists an
integer mn,⌫ such that for any smooth complex projective variety X of dimension
n with pseudo-effective canonical divisor, and any big and nef Q-divisor M on X
such that ⌫M is a Cartier divisor, the pluriadjoint map

�m(KX+M) : X 99K PH0(X,OX (m(KX + M)))

is birational for all m � mn,⌫ divisible by ⌫.

His proof relies on some techniques developed by Takayama in [21] and De-
barre [5]. There are some deep results involved, like Takayama’s extension theorem
and the weak positivity theorem of Campana [3]. Unfortunately all these theorems
allow us only to derive non-effective statements. On the other hand Kollár’s proof
in [14] of the Angehrn-Siu’s theorem is effective but it only deals with big and
nef divisors. In this note we explain how to use the method of Kollár to derive
an effective version of Pacienza’s theorem. Furthermore our proof relies on more
elementary techniques. Our main result is:
Theorem 1.3. Let (X,1) be a klt pair. Let M be a big and nef Cartier divisor on
X and E a pseudo-effective Q-divisor on X . Then for any

m >

✓
n + 2
2

◆

the map induced by | dKX + 1 + E + mMe | is birational.

Taking X smooth, 1 = 0 and E = (m � 1)KX we get an effective version of
Theorem 1.2.

We now show how Theorem 1.3 gives a uniform result for the Iitaka fibration.
Let f : X 99K Y be the Iitaka fibration of X . As we will see in Section 4 there are
two positive integers b and N , depending only on the general fiber of f , such that
bNMY is a Cartier divisor. For the definition of b and N see Definition 4.1. Further-
more we will see in Proposition 4.2 that |mKX | gives a map birationally equivalent
to the Iitaka fibration if and only if the linear series | bm(KY + BY + MY )c | gives
a birational map. Then Theorem 1.3 implies the following:
Theorem 1.4. Let f : X 99K Y be the Iitaka fibration of X , where X is a smooth
projective variety of Kodaira dimension  . Suppose KY + BY is pseudo-effective
and MY is big. Then for any

m > bN
✓

 + 2
2

◆

divisible by bN , the pluricanonical map �|mKX | is birationally equivalent to the
Iitaka fibration.
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One can give conditions only on X and the generic fiber of f such that Theo-
rem 1.4 applies, see for example Corollary 4.3. Of course we would like to prove
a similar statement without the assumption KY + BY pseudo-effective. In Section
3 we study the pseudo-effective threshold of (X,1) with respect to a big and nef
divisor M . In particular we obtain a similar result if we assume that the pseudo-
effective threshold is bounded away from one.

ACKNOWLEDGEMENTS. First I would like to express my gratitude to Professor
János Kollár for his constant support and many enlightening discussions. I also
would like to thank Professor Gianluca Pacienza for constructive comments on the
paper.

2. Pluriadjoint maps

We follow the notation and terminology of [14] and [15]. However we state here
some definitions we will need later.
Definition 2.1. A pair (X,1) consists of a normal variety X and a Q-Weil divisor
1 � 0 such that KX + 1 is Q-Cartier.

The multiplier ideal of a divisor D on a normal variety X is denoted byJ(X,D).
We refer to [17] for the definition.
Definition 2.2. The non-klt locus Nklt(X,1) of a pair (X,1) is

Nklt(X,1) := {x 2 X | (X,1) in not klt at x} .

We will use the following relation

Nklt(X,1) = Supp(OX/J (X,1))red.

See [17, Section 9.3.B] for the proof.

Proposition 2.3. Let (X,1) be a pair. Let M be a big and nef Cartier divisor on
X and N be a Cartier divisor on X such that N � KX � 1 is pseudo-effective. Let
x1 and x2 be two general points in X . Suppose there are t0 > 0 and an effective
Q-divisor D0 such that

1. D0 ⇠Q t0M;
2. x1, x2 2 Nklt(X,1 + D0);
3. x1 is an isolated point in Nklt(X,1 + D0).

Then for any m > t0 the linear system |N + mM| separates x1 and x2.
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Proof. Let E a pseudo-effectiveQ-divisor such that N = KX +1+ E . Fix m > t0
and write D := D0 + E . Note that D is equivalent to an effective Q-divisor.
Let V := Nklt(X,1 + D). Let x1 and x2 be two general points not contained in
Supp(E), then we have that x1, x2 2 V and x1 is isolated in V . In order to get
separation of points we want the following map to be surjective

H0(X,OX (N + mM)) ! H0(V,OX (N + mM)|V ).

It fits in the long exact sequence given by

0 ! OX (N +mM)⌦J (X,1+D) ! OX (N +mM) ! OX (N +mM)|V ! 0,

then it is enough to prove that

H1(X,OX (N + mM) ⌦ J (X,1 + D)) = 0.

Since
N + mM � (KX + 1 + D) ⇠Q (m � t0)M

is big and nef, the above vanishing follows from Nadel vanishing on singular vari-
eties, see [14, Theorem 2.16] or [17, Theorem 9.4.17].

Remark 2.4. In Proposition 2.3 we work with D0 ⇠Q t0M instead of working with
D0 ⇠Q t0(M + E) as Pacienza does in his Lemma 6.3. This is a crucial difference
between our approach and that of Pacienza.

We recall a result of Kollár in [14, Theorem 6.5].

Theorem 2.5 (Kollár). Let (X,1) be a projective klt pair and M a big and nef
Q-Cartier Q-divisor on X . Let x1 and x2 be closed points in X and c(k) positive
numbers such that if Z ⇢ X is an irreducible subvariety with x1 2 Z or x2 2 Z
then

(Mdim Z
· Z) > c(dim Z)dim Z .

Assume also that
nX

k=1

kp2
k
c(k)

 1.

Then there is an effective Q-divisor D ⇠Q M such that:

1. x1, x2 2 Nklt(X,1 + D);
2. x1 is an isolated point in Nklt(X,1 + D).

We recall the definition of the augmented base locus B+(M), see [17, Definiton
10.3.2].
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Definition 2.6. The stable base locus of a divisor M is

B(M) :=

\
m�1

Bs(|mM|),

where Bs(|M|) is the base locus of M .
The augmented base locus of a divisor M is the Zariski-closed set

B+(M) := B(M � ✏A),

for any ample A and sufficiently small ✏ > 0.
Theorem 2.5 easily implies the following useful result.

Corollary 2.7. Let (X,1) be a klt pair. Let M be a big and nef Cartier divisor on
X . Then for any x1, x2 /2 B+(M) there exists an effective Q-divisor D0 with

1. D0 ⇠Q
�n+2
2
�
M;

2. x1, x2 2 Nklt(X, D0 + 1);
3. x1 is an isolated point in Nklt(X, D0 + 1).

Proof. Recall that B+(M) is a proper subset of X if and only if M is big, see [6,
Example 1.7]. Furthermore

B+(M) =

\
M=A+E

Supp(E),

where the intersection is taken over all decomposition M = A + E , where A is
ample and E effective, see [6, Remark 1.3]. Then for any variety Z through x1, x2 /2
B+(M) we have that Mdim(Z)

· Z > 0. Since M is integral then (Mdim Z
· Z) � 1.

Using the following inequality

nX
k=1

kp2k <
nX

k=1

✓
1+

1
k

◆
k =

✓
n + 2
2

◆
� 1,

we see that the divisor
�n+2
2
�
M satifies the conditions of Theorem 2.5 with c(k) =�n+2

2
�
.

Now our main theorem is a consequence of the above results.

Proof of Theorem 1.3. By [1, Corollary 1.4.3] we can assume that (X,1) is a Q-
factorial klt pair, see also [18, Corollary 4.4] for a more detailed proof.
We can write

dKX + 1 + E + mMe = KX + 1 + E 0

+ mM,
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where
E 0

:= E + dKX + 1 + Ee � (KX + 1 + E)

is a pseudo-effective Q-divisor. Then Proposition 2.3 and Corollary 2.7 imply that
| dKX + 1 + E + mMe | separates any two points x1 and x2 not in B+(M). Since
X � B+(M) is a dense open subset of X , the result follows.

Corollary 2.8. Let (X,1) be a klt pair with KX + 1 pseudo-effective. Let M be a
big and nef Q-divisor on X . Let ⌫ be an integer such that ⌫M is a Cartier divisor,
then for any

m > ⌫

✓
n + 2
2

◆

divisible by ⌫, the map induced by | dm(KX + 1 + M)e | is a birational map.

Proof. Let m be as in the statement and set E := (m�1)(KX +1). Then Theorem
1.3 gives the result.

Note that if we take X smooth and 1 = 0, we get an effective version of The-
orem 1.2.
Of course one can ask a weaker question about the non-vanishing of the cohomol-
ogy group H0(X,OX (dm(KX + 1 + M)e)). Using a similar version of Proposi-
tion 2.3 and Theorem 6.4 in [14] we get:

Theorem 2.9. Let (X,1) be a klt pair with KX + 1 pseudo-effective. Let M be a
big and nef Q-divisor on X . Let ⌫ be an integer such that ⌫M is a Cartier divisor,
then for any

m > ⌫

✓
n + 1
2

◆

divisible by ⌫, | dm(KX + 1 + M)e | 6= ;.

In the application to the Iitaka fibration we need to study the round down of
these linear series instead of the round up.
Definition 2.10. The index of a variety X is the smallest natural number a(X) such
that a(X)KX is a Cartier divisor.

Corollary 2.11. Let (X,1) be a klt pair such that KX +1 is pseudo-effective. Let
M be a big and nefQ-divisor on X and let ⌫ be an integer such that ⌫M is a Cartier
divisor. Suppose bk1c � (k � 1)1 for any k 2 Z>0 divisible by ⌫ and a(X). Then
for any

m > ⌫

✓
n + 2
2

◆

divisible by ⌫ and a(X) the map induced by | bm(KX + 1 + M)c | is birational.
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Proof. Let m be as in the statement, then we can write

bm(KX + 1 + M)c = KX + (m � 1)(KX + 1) + bm1c � (m � 1)1 + mM.

Let E := (m � 1)(KX + 1) + bm1c � (m � 1)1 and note that KX + E +mM is
an Z-divisor. Then the result follows from Theorem 1.3.

3. Pseudo-effective threshold

In this section we deal with the case where KX + 1 is not pseudo-effective. Fol-
lowing [1] and [25] we define the pseudo-effective threshold.
Definition 3.1. Let (X,1) be a pair such that KX + 1 is not pseudo-effective. Let
M be a big divisor on X . We define the pseudo-effective threshold e(X,1,M) of
(X,1) with respect to M as

e(X,1,M) := inf
�
e0 2 R | KX + 1 + e0M is pseudo-effective

 
.

If there is no risk of confusion we denote it only by e(M).

Proposition 3.2. Let (X,1) be a klt pair such that KX +1 is not pseudo-effective.
Let M be a big and nef Cartier divisor on X such that KX + 1 + M is big. Let
e(M) be the pseudo-effective threshold of (X,1) with respect to M . Then for any

m >
1

1� e(M)

✓
n + 2
2

◆

the map induced by the linear system |dm(KX + 1 + M)e| is birational.

Proof. Let m be as in the statement. Since KX + 1 + M is big, by [16, Corollary
2.2.24], we know that e(M) < 1. Then we can find a rational number e0 such that
e(M)  e0 < 1 and

m >
1

1� e0

✓
n + 2
2

◆
.

We can write

m(KX + 1 + M) = KX + 1 + (m � 1)(KX + 1 + e0M) + (m(1� e0) + e0)M.

In particular it is enough to prove that the map induced by round up of the linear
system

KX + 1 + (m � 1)(KX + 1 + e0M) + m(1� e0)M

is a birational map. Then the result follows from Theorem 1.3.

We have an analogue statement for the round down.
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Proposition 3.3. Let (X,1), M and e(M) as in Proposition 3.2. Furthermore
assume that bk1c � (k � 1)1 for any k 2 Z>0 divisible by a(X). Then for any

m >
1

1� e(M)

✓
n + 2
2

◆

divisible by a(X), the map induced by the linear system |bm(KX + 1 + M)c| is
birational.

Proof. The argument is the same as in Proposition 3.2 and Corollary 2.11.

4. Iitaka fibration

We now show how the previous results gives the uniformity of the Iitaka fibration
under some extra conditions. For the definition and basic properties of the Iitaka
fibration we refer to [16]. We recall the canonical bundle formula and some of
his properties, see [8] for details. Let f : X 99K Y be the Iitaka fibration of X
with Y nonsingular and general fiber F . Blowing up X we may assume that f is
a morphism. Then the canonical bundle formula says that there are Q-divisors BY
and MY such that

KX ⇠Q f ⇤(KY + BY + MY ).

BY is called the boundary divisor and it is an effective divisor such that (Y, BY ) is a
klt pair. MY is called the moduli part and it is a nef Q-divisor. We now define two
numbers which play a key role in the canonical bundle formula.
Definition 4.1. Let

b := min
�
b0 > 0 |

��b0KF
��
6= ;

 
.

Let B be the (n � (X))-th Betti number of a non-singular model of the cover
E ! F associated to the unique element of |bKF |. We define

N = N (B) := lcm {m 2 Z>0 | '(M)  B} ,

where ' is the Euler function.
We list some properties we will need later.

Proposition 4.2. The following hold true:

1. bNMY is a Cartier divisor;
2. for any m 2 Z>0 divisible by b, we have

H0(X,OX (mKX )) ⇠
= H0(Y,OY (bm(KY + MY + BY )c));

3. for any m 2 Z>0 divisible by bN , bmBY c � (m � 1)BY is effective;
4. KY + MY + BY is a big Q-divisor;
5. if F has a good minimal model and Var( f ) is maximal then MY is big.
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Proof. For (1), (2) and (3) see [8]. (4) follows from (2). Finally (5) follows from
a theorem of Kawamata in [13]. See also [19, Corollary 3.1].

In particular (2) implies that |mKX | is birational to the Iitaka fibration if and
only if | bm(KY + MY + BY )c | gives a birational map.

Proof of Theorem 1.4. It is just Proposition 4.2 and Corollary 2.11 with a(Y ) = 1
because Y is smooth.

Recall that by a theorem of Fujino in [7], (MY )  Var( f ). In particular,
since every variety is conjectured to have a good minimal model, the bigness of MY
is conjecturally equivalent to the maximality of the variation of f .

We can now prove an effective version of [19, Theorem 1.2].

Corollary 4.3. Let X be a smooth projective variety of Kodaira dimension  and
f : X 99K Y be the Iitaka fibration. Assume that

1. Y is not uniruled;
2. f has maximal variation;
3. the generic fiber F has a good minimal model.

Then for any

m > bN
✓

 + 2
2

◆

divisible by bN , the pluricanonical map �|mKX | is birationally equivalent to f .

Proof. The main result in [2] implies that if Y is not uniruled then KY is
pseudo-effective. By Proposition 4.2 we know that MY is big. Then Theorem 1.4
applies.

If we use Theorem 2.9 instead of Theorem 1.3 we can prove the following.

Theorem 4.4. Let X as in Theorem 1.4. Then for any

m > bN
✓

 + 1
2

◆

divisible by bN , the cohomology group H0(X,OX (mKX )) is non-zero.

In particular if (X) = n � 2 we can choose b = 12 and N = 22.
If KY + BY is not pseudo-effective we have a similar result but the bound

depends on the pseudo-effective threshold e(MY ).

Theorem 4.5. Let f : X 99K Y the Iitaka fibration of X with general fiber F .
Assume that
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1. f has maximal variation;
2. the generic fiber F has a good minimal model.

Then for any sufficiently divisible

m >
bN

1� e(MY )

✓
 + 2
2

◆

the map associated to |mKX | is birational to the Iitaka fibration.

Proof. Apply Proposition 4.2 and Proposition 3.3 with a(Y ) = 1.

It is now natural to ask the following.
Question 4.6. Is possible to find a universal bound e < 1 which depends only on
the dimension of Y , b and N such that e(Y, BY ,MY )  e for any Y , BY and MY as
in Theorem 4.5?

Viehweg and Zhang gave an affirmative answer to Question 4.6 in the case
dim(Y ) = 2, see [25, Lemma 2.10 and Lemma 2.11].
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