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The Hopf-Laplace equation: harmonicity and regularity

JAN CRISTINA, TADEUSZ IWANIEC, LEONID V. KOVALEV AND JANI ONNINEN

Abstract. The central theme in this paper is the Hopf-Laplace equation, which
represents stationary solutions with respect to the inner variation of the Dirichlet
integral. Among such solutions are harmonic maps. Nevertheless, minimization
of the Dirichlet energy among homeomorphisms often leads to mappings which
are neither harmonic nor homeomorphisms. We prove that such mappings are
harmonic outside of a singular set with small image. On the singular set they are
locally Lipschitz, but not necessarily differentiable.
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(secondary).

1. Introduction

The Hopf-Laplace equation arises in the study of the Dirichlet energy integral

EX[h] =

ZZ
X
|Dh|2 = 2

ZZ
X

⇣
|hz|2 + |hz̄|2

⌘
dz (1.1)

for homeomorphisms h : X ! Y between two designated domains X and Y in the
complex plane C = {z = x1 + i x2 : x1, x2 2 R}. In the recent paper [20] we estab-
lished some sufficient, and necessary conditions for the minimum of energy to be
attained by a harmonic diffeomorphism. In general, minimization of EX yields non-
harmonic, non-diffeomorphism, non-smooth solution of the Hopf-Laplace equa-
tion. The goal of this paper is to establish the regularity theory for such solutions.

Throughout this text we take advantage of the complex partial derivatives
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In fact complex notation will be indispensable for advancing this work, especially
when quadratic differentials will enter the stage. Let us commence with the vari-
ational formulation of the classical Dirichlet problem. One asks for the energy-
minimal mapping h : X ! C of the Sobolev class h� + W 1,2

�
(X ! C) whose

boundary values are prescribed by means of a given mapping h� 2 W 1,2(X!C).
The first variation, h  h + ✏ ⌘, in which ⌘ 2 C 1

�
(X ! C) can be any test

function and ✏ ! 0, leads to the Laplace equation

1h = 4hzz̄ = 4
@2h
@z@ z̄

= 0. (1.2)

However, this approach is invalid when one seeks to minimize EX[h] among home-
omorphisms; the injectivity of h + ✏ ⌘ is usually lost. The difficulty is circumvented
by performing the inner variation

h  h � �✏ , �✏ : X onto
�! X (1.3)

where �✏ are C 1-smooth automorphisms of X onto itself, defined for parameters
✏ ⇡ 0, and �� = id : X onto

�! X. This is simply a change of the independent variable
in the domain of definition of h. Here each �✏ may be the identity on @X, but it
need not be. The latter situation is called slipping along the boundary. The first
derivative test d

d✏EX[h � �✏] = 0, at ✏ = 0, yields what we call the Hopf-Laplace
equation

@

@ z̄
�
hzhz̄

�
= 0, in the sense of distributions. (1.4)

The equation (1.4) appears in the literature under several names. See, e.g., the
analysis of “variation a)” in [8], Chapter 1 of [26] and the (more general) energy-
momentum equations in [39,41].

We shall investigate the Hopf-Laplace equation independently of its roots.
Nevertheless, because of its affiliation to the Dirichlet integral the natural domain of
definition, that we shall always assume here, sometimes implicitly, is the Sobolev
space W 1,2(X). Thus the differential expression hzhz̄ will represent an integrable
function. By Weyl’s Lemma the equation reduces equivalently to the first order
nonlinear PDE,

hzhz̄ = ' , where ' is a holomorphic function in X. (1.5)

We view ' also as unknown quantity. In this formulation one can speak of gener-
alized solutions in the Sobolev space W

1,1
loc (X). But we shall study, predominantly,

the orientation preserving mappings, meaning that the Jacobian determinant is non-
negative almost everywhere

Jh(z) = J (z, h) = |hz|2 � |hz̄|2 > 0.

Within the class of orientation preserving mappings we do not capture general-
ized solutions. Indeed, in this case |hz̄|2= |hz̄||hz̄| 6 |hz||hz̄| =|hz hz̄| = |'| 2
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L 1

loc(X), thus h is (locally) a qc-deformation in the sense of Ahlfors [1]. Since
the complex derivatives hz and hz̄ are intertwined by the Beurling-Ahlfors trans-
form, it follows that hz 2 BMOloc(X). In particular, for all 1 6 p < 1 we have
h 2 W

1,p
loc (X), hence h 2 C ↵

loc(X) for all 0 6 ↵ < 1. The Lipschitz regular-
ity is much harder to handle; this is the intricate part of our paper. Note that the
qc-deformations of Ahlfors are not necessarily Lipschitz.

Returning to the variational approach to the Hopf-Laplace equation, if one ad-
mits slipping along the boundary, then the inner variations of the Dirichlet energy
should include diffeomorphisms �✏ : X onto

�! X that are free on @X. Consequently,
supplementary equations on @X emerge, which are best stated in terms of the holo-
morphic quadratic differential.

'(z) dz2 = hzhz̄ dz2. (1.6)

It is called the Hopf differential of h in recognition of the related work of H.
Hopf [19]. Stated informally, the additional boundary equations [26, Lemma 1.2.5]
say that '(z) dz2 is real along @X, see Definition 2.5. This additional boundary
equation will be satisfied by minimal deformations, see (1.16). Clearly, conformal
automorphisms �✏ : X onto

�! X do not change the energy. More generally, any con-
formal transformation of the domain X does not affect the Hopf-Laplace equation
(1.4). In fact, because of that, it is the shape of the target Y and its closure, called
deformed configuration, that will really matter in questions to follow.

Naturally, complex harmonic functions solve the Hopf-Laplace equation.
Worth noting, is that real-valued solutions in C 1

loc(X) must be harmonic. If h
is C 2-smooth then the Hopf-Laplace equation yields

J (z, h)1h = 0 , where 1 = 4
@2

@z@ z̄
is the complex Laplacian. (1.7)

Thus C 2-solutions are harmonic in the region where the Jacobian determinant
J (z, h) 6= 0. There are other situations where the Hopf-Laplace equation im-
plies harmonicity, see Theorem 1.12. Nevertheless, nonharmonic solutions arise
naturally in global analysis of minimal surfaces [10, Ch. 2], [6] and in the calcu-
lus of variations [2, Ch. 21], [25]. In mechanics, in particular in elasticity theory,
the Hopf-Laplace equation appears under the name of the energy-momentum equa-
tions.

Let us look at some elementary though critical examples. One might expect
from (1.7) that all W 1,2-solutions whose Jacobian determinant does not vanish (al-
most everywhere) are harmonic maps. This, however, is easily seen to be false, for
in the complex plane the piece-wise linear mapping

h(z) =

(
2z + z̄ , if Im z > 0
z + 2z̄ , if Im z 6 0;

' = hz hz̄ ⌘ 2 , J (z, h) ⌘ ±3

is not harmonic. Observe that the Jacobian determinant changes sign. More elabo-
rate examples are provided in Section 3, which reveal that:
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Example 1.1. For each 1 < p < 1 there exists a generalized solution h : D !

C (in the unit disk D ) to the Hopf-Laplace equation hz hz̄ ⌘ 1 whose first deriva-
tives belong to the Marcinkiewicz weak space L

p
weak(D) , but not to L p(D).

The message from this example is that without supplementary conditions of
a topological nature the Hopf-Laplace equation will not guarantee any substantial
improvement of the regularity of the solutions. This is in marked contrast to the
case of elliptic PDEs, like the Laplacian. Consequently, we focus on solutions in a
suitable closure of homeomorphisms. Mathematical models of nonlinear elasticity
motivate our calling such solutions Hopf deformations.

The obvious question to ask is what topological preconditions do we really
need? Partial answers are given in a few already known regularity results. Hélein
[16] proved that quasiconformal solutions are harmonic. This is actually true [21]
for any homeomorphic solution in the Sobolev space W 1,2(X ! Y) . Even more,
injectivity is not necessary as long as the solution represents an open discrete map,
such are the mappings of integrable distortion [24]. In particular, W 1,2-solutions
(not necessarily injective) with Jacobian J (z, h) > const > 0 are also harmonic.
However, in Example 3.1, we give a Lipschitz solution with J (z, h) > 0 , almost
everywhere in the unit disk D , which is not C 1-smooth. Even more, this solu-
tion is a homeomorphism in D , except for a tiny crack along the radius which is
squeezed into a point. Such a failure of injectivity along the cracks (reminiscent of
elastic deformations) typically occurs when we pass to a weak limit of a minimizing
sequence of homeomorphisms. With the loss of injectivity the extremal mappings
will not be harmonic. The examples, like the one mentioned above, demonstrate
that the solutions can be Lipschitz at best. Our main results can be described as
follows

• Partial harmonicity (Theorem 1.12): Any Hopf deformation h restricts to a har-
monic diffeomorphism of h�1(Y) onto Y.

• Lipschitz regularity (Theorem 1.14): Any Hopf deformation is locally Lipschitz.
• Improved regularity (Theorem 1.15): If Y is a polygon-type domain, then any

C 1-smooth minimal deformation is a harmonic diffeomorphism.
• Non-smoothness of minimizers (Corollary 1.17): minimizing deformations are
not C 1 in general.

In particular, our regularity results apply to the minimal deformations; that is, to
minimizers of the Dirichlet energy in the class of suitably generalized homeomor-
phisms. An explicit example of a nonharmonic minimal deformations is the follow-
ing [3]:
Example 1.2. Consider two annuli X = {z : r < |z| < R} and Y = {w : 1 <
|w| < R⇤} where 0 < r < 1 < R < 1 and R⇤ =

1
2 (R + R�1). The map

h(z) =

8<
:

z
|z| , if r < |z| 6 1 , squeezing to the unit cirle
1
2 (z +

1
z̄ ) , if 1 6 |z| < R , the Nitsche harmonic map

(1.8)
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takes X into Y . It satisfies the Hopf-Laplace equation

hz hz̄ = '(z) =

�1
4z2

. (1.9)

The quadratic differential '(z) dz2 is real and positive along the boundary circles.

Figure 1.1. A nonharmonic minimal deformation.

The regularity theory of energy minimizing mappings has a long history. The
monographs [17, 31] provide an overview of the subjects. Note that in [17] the
solutions of the Hopf-Laplace equation are called weakly Noether harmonic maps.
Numerous recent studies concern the Lipschitz continuity of energy minimizers in
the setting of metric spaces, where higher degrees of smoothness are not avail-
able [5, 9, 15, 27–30, 42]. However, in these studies minimization is performed
among all mappings that are either prescribed on the boundary or belong to a given
homotopy class. This minimization problem allows one to use the first variation.
Our approach is different in that we obtain the Lipschitz continuity using only the
inner variation. Thus we have in our disposal only the Hopf-Laplace equation in-
stead of the Laplacian.

Before rigorous statements we need to review some notation and basic defini-
tions.

1.0.1. Domains

We shall be concerned with mappings h : X ! Y between bounded planar do-
mains of finite connectivity 1 6 ` < 1 . Thus each boundary X = @X and
7 = @Y consists of ` disjoint continua. We reserve the notation,

X1,X2, ...,X` , for the components of X = @X
71,72, ...,7` , for the components of 7 = @Y.

(1.10)

1.0.2. Boundary correspondence

Every homeomorphism h : X onto
�! Y gives rise to a one-to-one correspondence be-

tween boundary components of X and boundary components of Y. It will involve
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no loss of generality in assuming (by re-arranging the indices, if necessary) that the
correspondence is:

h : X⌫  7⌫ , for ⌫ = 1, 2, ..., `. (1.11)

This simply means that h(x) ! 7⌫ as x ! X⌫ . The above definition of the
boundary correspondence is also pertinent to more general maps h : X onto

�! Y,
specifically to those which are proper and monotone in the sense defined below.
Definition 1.3. [33, 36, 43] A continuous mapping f : X ! Y between metric
spaces X and Y is monotone if for each y 2 f (X) the set f �1(y) is compact and
connected. It is proper if for each compact set F ⇢ f (X) the set f �1(F) is also
compact.

1.0.3. cd�uniform convergence and the class Hcd(X, Y)

The idea of the cd-limit is a useful compromise between the concepts of c-uniform
and uniform convergence.
Definition 1.4. A sequence of mappings hk : X ! Y , k = 1, 2, ... , is said to
converge cd-uniformly to a mapping h : X ! R2 if

• hk ! h c-uniformly (uniformly on compact subsets of X)
• dist(hk(x), @Y) ! dist(h(x), @Y) uniformly in X .

We shall write it as hk
cd
�! h and denote the class of cd-limits of homeomorphisms

hk : X onto
�! Y satisfying (1.11) byHcd(X, Y).

We emphasize that the boundary points of Y may be in the range of h 2

Hcd(X, Y). This fact is crucial for several results that follow. Precisely, we have

Y ⇢ h(X) ⇢ Y , for every h 2 Hcd(X, Y). (1.12)

If the range of a mapping h 2 Hcd(X, Y) equals Y then h is both monotone and
proper. Actually, we have an even more precise statement.

Proposition 1.5 (The Youngs approximation). A continuous mapping h : X !

Y between bounded `-connected domains belongs to Hcd(X, Y) if and only if it
is monotone, proper and surjective.

Let us introduce the classMPS(X!Y) of continuous mappings h : X ! Y
between bounded domains, which are monotone, proper and surjective. Note that
such mappings, as opposed toHcd(X, Y), do not take values in @Y . Our notation
is meant to emphasize this distinction. The following is the extension of our earlier
result [21] on approximation of homeomorphisms to the setting of monotone proper
mappings.

Theorem 1.6 (Approximation ofMPS maps). Let h : X onto
�! Y be a continu-

ous, monotone and proper mapping of Sobolev class W
1,2
loc (X) between bounded
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`-connected domains X and Y. Then there exist diffeomorphisms hk : X onto
�! Y

such that

• hk � h 2 A �(X)
• lim

k!1

khk � hkA (X) = 0.

HereafterA (X) = C (X)\W 1,2(X!C) is the Royden algebra equipped with the
norm

k f kA (X) = k f kC (X) + kDf kL 2(X). (1.13)

andA �(X) = C �(X) \ W 1,2
�

(X!C) is a subalgebra obtained by completing the
space C 1

�
(X) with respect to this norm.

The following corollary is immediate from Theorem 1.6.

Corollary 1.7. If h 2MPS(X!Y) \ W
1,2
loc (X), then the Jacobian of h does not

change sign; that is, either Jh > 0 a.e. or Jh 6 0 a.e.

1.0.4. Deformation and the class D(X , Y)

The concept of deformation seems to differ only a little from the routinely used
W 1,2 –weak limit of homeomorphisms. However, when the topological features
of the minimal-energy solutions are of major concern the deformations become
better suited than the weak limits of homeomorphisms. For example, in [20] the
concept of deformations was critical in establishing existence of harmonic homeo-
morphisms between planar doubly connected domains. Before making the precise
definition let us look at some examples of both geometric and analytical nature.

A sequence of homeomorphisms converging weakly in W 1,2 actually con-
verges c-uniformly, so the limit is a continuous map. But that is all, in general,
what the weak limit of a minimizing sequence can receive from homeomorphisms.
Consider the classical example:

Example 1.8. Conformal automorphisms hk : D onto
�! D of the unit disk, hk(z) =

z�ak
1�zak , |ak | ! 1 , are the minimal energy maps. They converge weakly in W 1,2(D)

and c-uniformly to a constant map. Such a trivial loss of topological distinctions is
due to the failure of cd-convergence.

On the other hand, when Sobolev mappings come into play, we find that a
c-uniform limit of homeomorphisms hk : X onto

�! Y that are uniformly bounded in
W 1,2(X!Y) satisfies the measure theoretical condition of non-overlapping

ZZ
X

|J (z, h)| dz 6 |Y|, (1.14)

due to the L 1-weak subconvergence of Jacobians [22, Theorem 8.4.2]. In nonlin-
ear elasticity theory this may be interpreted as saying that interpenetration of matter
does not occur. However, we will be forced to take into consideration more general
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minimizing sequences hk
cd

�! h in which the mappings are neither homeomor-
phisms nor they have uniformly bounded energy. We still impose the nonoverlap-
ping condition (1.14). In view of Corollary 1.7 the Jacobian of h does not change
sign, and thus it entails no loss of generality to assume that Jh > 0 a.e. These
observations drive us to the following
Definition 1.9 (Deformation). Let X and Y be bounded `-connected domains. A
deformation is a mapping h 2 Hcd(X, Y) such that

• h 2 W 1,2(X!R2)
• The Jacobian determinant of h is nonnegative a.e. and satisfies the non-over-
lapping condition ZZ

X
J (z, h) dz 6 |Y|. (1.15)

The class of all deformations will be denoted by D(X, Y). Throughout what fol-
lows, if no confusion can arise, we shall freely assume without explicit mention that
the class D(X, Y) is nonempty. We again strongly emphasize that a deformation
h 2 D(X, Y) may take points of X into @Y, a key point that will affect the forth-
coming arguments. The structure of the preimage h�1(y�) of a point in y� 2 @Y is
a delicate issue that we address in sections 5 and 8.

In [20] we have already established the essential properties of deformations. In
particular, the classD(X , Y) is sequentially weakly closed inW 1,2(X!R2), pro-
vided that X has 2 6 ` < 1 boundary components none of which are points [20,
Lemma 3.13]. Under these hypotheses we have the following.

Corollary 1.10. The infimum energy of the Dirichlet energy within the class
D(X , Y) is attained.

A mapping h� 2 D(X , Y) such that
Z

X
|Dh�|

2 dx = min
h2D(X ,Y)

Z
X

| Dh(x) |
2 dx (1.16)

will be called a minimal deformation.

1.1. Hopf deformations

Definition 1.11. Let X and Y be bounded `-connected domains. A deformation
h 2 D(X , Y) which satisfies the Hopf-Laplace equation

@

@z
�
hz hz

�
= 0 (1.17)

is called a Hopf deformation.
Thus Hopf deformations are among stationary solutions (with respect to the

inner variation) of the Dirichlet energy integral. We shall prove:
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Theorem 1.12. Any Hopf deformation h 2 D(X, Y) is a harmonic diffeomorphism
of h�1(Y) ⇢ X onto Y.

Observe that in Example 1.2 the mapping h fails to be harmonic exactly in the
part ofX that is squeezed into a boundary component of the target annulusY. More
precisely, this particular component of @Y is the inner boundary circle at whichY is
not convex. In particular, when the range of h is Y, we can combine Theorem 1.12
with Proposition 1.5 to obtain

Corollary 1.13. Let X and Y be bounded `-connected domains and h : X onto
�! Y

a monotone and proper mapping of Sobolev class W 1,2(X ! Y) that satisfies the
Hopf-Laplace equation (1.17). Then h is a harmonic diffeomorphism.

This corollary represents another advance on the Eells-Lemaire problem [11,
12]: under what conditions does the holomorphicity of the Hopf differential imply
that the mapping is harmonic?

1.2. Lipschitz regularity

The foremost interesting and much harder task is to determine the regularity of a
Hopf deformation when its image h(X) goes over the designated target Y; that is,
into its closure. There are minimal deformations, in particular Hopf deformations,
which are not C 1-smooth in X, see Corollary 1.17. Our main result in this paper is
the following best possible regularity of Hopf deformations.

Theorem 1.14. Every Hopf deformation h 2 D(X , Y) is locally Lipschitz continu-
ous. In particular, a minimal deformation of planar `-connected domains is locally
Lipschitz continuous.

Theorem 1.15. Suppose that h 2 D(X, Y) is a minimal deformation and the non-
convex part of @Y is at most countable. Then h is C 1-smooth if and only if it is a
harmonic homeomorphism.

The term nonconvex part of @Y refers to a set of points in @Y where Y is not
convex in any neighborhood. Precisely,
Definition 1.16. We say that Y is convex at y� 2 @Y if for some " > 0 the set
{y 2 Y : |y � y�| < " } is convex.

A natural example of a domain with finite nonconvex part of the boundary is
an `-connected polygonal domain.

According to [20, Theorem 2.4] there exists a nondecreasing function

2 : (0,1) ! (0,1), lim
⌧!1

2(⌧ )

⌧
= 1

such that the following holds. Whenever two bounded doubly connected domains
X and Y admit an energy minimizing diffeomorphism h : X onto

�! Y, we have

ModY > 2(ModX) (1.18)
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where Mod stands for the conformal modulus. Now combining Theorem 1.15 with
the nonexistence of energy minimizing diffeomorphisms, we arrive at the following:

Corollary 1.17. Let X and Y be bounded doubly-connected domains such that the
nonconvex part of @Y is at most countable and (1.18) fails. Then any minimal
deformation in D(X, Y) is not C 1-smooth.

Figure 1.2. A minimal deformation fails to be C 1-smooth.

We conclude this introduction with a brief outline of the proofs of the main results.
To prove the partial harmonicity of a Hopf deformation h we show that h has a
stronger energy minimization property in h�1(Y) than in all of X, namely (6.1)
holds. The three main ingredients of this proof are: diffeomorphic approxima-
tion of monotone Sobolev mappings (Section 4), a Reich-Strebel-type inequality
(Lemma 6.4), and the structure of preimages of points under h (Section 5). The
partial harmonicity of h is essential in the proof of its Lipschitz continuity, how-
ever a different approach is required for the set X \ h�1(Y). To this end we use
a Bonnesen-type inequality, i.e., a stability result for the isoperimetric inequality
(Section 7). The proof of Theorem 1.15 invokes Besicovitch’s removability theo-
rem for holomorphic functions, further analysis of preimages of points under h, and
the boundary point lemma of E. Hopf.

One method of proving Lipschitz continuity of h proceeds through the subhar-
monicity of the energy density |Dh|2, as in [15] and [5]. This method relies on
the first variation of h, which is not available to us. Although the Hopf-Laplace
equation appears to imply the subharmonicity of |Dh|2 on the formal level, our
Example 1.1 shows that this is not the case.

2. Preliminaries

The uniform limit of self-homeomorphisms of the sphere S2 is a monotone surjec-
tive mapping [43, IX.3.11]. In the converse direction, a monotone mapping of S2
onto itself can be refined in some Jordan subdomains of S2 in which it becomes a
homeomorphism.
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2.1. The Youngs refinement

Let X and Y be `-connected domains and f 2MPS(X!Y). Recall that D b Y
is a Jordan domain if it is the interior of a homeomorphic image of the closed unit
disk.

Proposition 2.1. For every Jordan domain D b Y and f 2 MPS(X ! Y) the
preimage U = f �1(D) b X is a simply connected domain in X. Furthermore,
there is fD 2MPS(X!Y), the Youngs refinement, such that

• fD = f in X \ U.
• fD restricted to U is a homeomorphism of U onto D.

Proof. This is a consequence of the Youngs modification theorem [44, Theorem
10.1] or [36, II.1.47] about continuous monotone mappings F : S2 onto

�! S2. It says
that to every Jordan domain 1 ⇢ S2 there corresponds a continuous monotone
mapping F1 : S2 onto

�! S2 such that

• F1 = F in S2 \ F�1(1)
• F1 maps F�1(1) homeomorphically onto 1.

We prove Proposition 2.1 by applying the Youngs theorem to the `-point compact-
ifications of X and Y. Indeed, both X and Y are homeomorphic to the sphere
S2 with ` punctures, say via the maps 8 : X ! S2 \ {x1, . . . , x`} and 9 : Y !

S2\{y1, . . . , y`}where the punctures are enumerated in the same way as the bound-
ary components (1.10). For any mapping f 2 MPS(X ! Y) the composition
9 � f �8�1 extends to a continuous mapping

F : S2 onto
�! S2, with F

�
8(x⌫)

�
= 9(y⌫), ⌫ = 1, . . . , `. (2.1)

Any simply connected domain D ⇢ Y is mapped via 9 onto a simply connected
domain 1 = 9(D) ⇢ S2 which stays away from the punctures. By the
Youngs theorem F�1(1) is a simply connected domain in S2. It follows that
f �1(D) is a simply connected domain compactly contained in X. The homeo-
morphism F1 : F�1(1)

onto
�! 1 (the Youngs refinement) yields a homeomorphism

fD : f �1(D)
onto
�! D.

2.2. The Youngs approximation, proof of Proposition 1.5

Proof. First, suppose that f : X into
�! Y is a cd-limit of homeomorphisms fk : X onto

�!

Y. Therefore, f (X) = Y, by (1.12). The preimage of a compact set in Y, under
f , is closed and stays away from @X because f satisfies (1.11). Thus f is proper.
To show monotonicity we appeal to the induced mappings Fk : S2 onto

�! S2, Fk =

9 � fk �8�1 as in (2.1). These are homeomorphisms of S2 onto itself converging
uniformly to F = 9 � f � 8�1. Thus F is monotone [44, Theorem 11.1]. Since
f : X onto

�! Y we see that f is monotone as well.
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In the converse direction we must show that every mapping f 2 MPS(X!

Y) belongs to H cd(X, Y). In the proof of Proposition 1.5 we shall appeal to the
classical Youngs approximation theorem [44, Theorem 11.1] (or [36, II.1.57]). It
asserts that

A continuous mapping f : S2 onto
�! S2 is monotone if and only if it is a uniform

limit of homeomorphisms of S2 onto S2.
Let us compactify X and Y as in the proof of Proposition 2.1, via the homeo-

morphisms 8 : X onto
�! S2 \ {x1, . . . , x`} and 9 : Y onto

�! S2 \ {y1, . . . , y`}. For any
f 2 MPS(X ! Y) the induced mapping F : S2 onto

�! S2, being monotone, can be
uniformly approximated by homeomorphisms Fk : S2 onto

�! S2. By altering Fk near
punctures we can ensure that Fk(x⌫) = y⌫ for ⌫ = 1, . . . , `. We then return to the
domains X and Y via 8 and 9 to define homeomorphisms

fk = 9�1
� Fk �8 : X onto

�! Y (2.2)

and observe that fk
cd
�! f by construction.

The Youngs refinement provides a homeomorphic replacement of a monotone
mapping. The following proposition shows that such a replacement can be chosen
to be harmonic. It combines classical results of potential theory [13, 37] with a
recent extension of the Radó-Kneser-Choquet theorem.

Proposition 2.2. Let X ⇢ C be a domain. To every bounded simply connected
domain U b X there corresponds a unique linear operator

PU : C (X) ! C (X)

such that for every f 2 C (X):

(i) PU f = f in X \ U;

(ii) PU f is harmonic in U.

Such an operator has the additional properties [20]:

(iii) PU f 2 f + W 1,2
�

(U), whenever f 2 C (X) \ W
1,2
loc (X!C). Moreover,

EU[PU f ] 6 EU[ f ], provided EU[ f ] < 1;

(iv) Suppose that the restriction f|U of f 2 C (X) is a homeomorphism of U onto
a convex domain D ⇢ C, then PU f : U onto

�! D is a harmonic diffeomorphism.

We call PU f the harmonic replacement of f .
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2.3. Prerequisites from holomorphic quadratic differentials

In this section we recall some basic facts about holomorphic quadratic differentials.
The general reference for these topics is [40].

Let X will be a bounded `-connected domain and ' : X ! C a holomorphic
function with isolated zeros, called critical points. Denote X� = X \ {zeros of '}.
In a neighborhood of every point a 2 X� one can introduce a local conformal
mapping w = 8(z) =

R p

'(z) dz, called a natural parameter near a. Through
every regular point there pass two C 1-smooth orthogonal arcs, called horizontal
and vertical arcs. A vertical arc is a C 1-smooth curve � : t ! � (t), a < t < b,
along which

[�̇ (t)]2'
�
� (t)

�
< 0, a < t < b.

A horizontal arc is a C 1-smooth curve � : t ! �(t), c < t < d, along which

[�̇(t)]2'
�
�(t)

�
> 0, c < t < b.

We emphasize that this yields, in particular, that such arcs only contain regular
points of '. A vertical trajectory of ' in X is a maximal vertical arc; that is, not
properly contained in any other vertical arc. Hereafter, with the customary abuse
of notation, the same symbol � will be used for both the parametrization � = � (t)
and its range. Similarly, a horizontal trajectory is a maximal horizontal arc in X.
Through every regular point of ' there passes a unique vertical (horizontal) trajec-
tory. A trajectory whose closure contains a critical point of ' is called a critical
trajectory. There are at most a countable number of critical trajectories, so they
cover a set in X of measure zero. We will be largely concerned with noncritical
trajectories.
Definition 2.3. ('-rectangle) A '-rectangle of a quadratic differential '(z) dz2 is
any simply connected domainR ⇢ X� on which the natural parameterw = 8(z) =R p

'(z) dz has a univalent branch which takesR onto a Euclidean rectangle

8(R) = {w = t + i⌧ : 0 < t < T and a < ⌧ < b}.

Note thatR contains no zeros of '. We will be concerned with '-rectangles which
are compactly contained in X�, so 8 defines a diffeomorphism of a neighborhood
of R onto a neighborhood of 8(R). Then we define the horizontal edges of R,
↵ = 8�1 ([0, T ] ⇥ {a}) and � = 8�1 ([0, T ] ⇥ {b}) and similar for the vertical
edges.

Every noncritical vertical trajectory � ⇢ � in a simply connected domain �
is a cross cut, see Theorem 15.1 in [40]. Thus in the maximal interval a < t < b
of the existence of � = � (t) both limit sets at the end-points of � , denoted by � {a}
and � {b}, lie in @�. Let �� ⇢ � be any closed vertical subarc of � , defined by
��(t) = � (t) for a� 6 t 6 b�, where a < a� < b� < b. Then the '-length of
�� is equal or smaller than '-length of any rectifiable curve � ⇢ � which connects
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A� = � (a�) with B� = � (b�). This means thatZ
��

|'|
1/2

|dz| 6
Z
�
|'|

1/2
|dz| (2.3)

see [40, Theorem 16.1]. Note that � \ �� consists of two components (two disjoint
vertical arcs). Inequality (2.3) can be slightly generalized; it is not necessary to
assume that the end-points of � coincide with the endpoints of ��.

Lemma 2.4. Let � ⇢ � be a locally rectifiable arc in a simply connected region
whose closure intersects both components of � \ ��, thenZ

��

|'|
1/2

|dz| 6
Z
�
|'|

1/2
|dz|. (2.4)

Proof. Let A, B 2 � be points in different components of � \ �� that are approach-
able through the arc �; that is,

A = lim
n!1

An and B = lim
n!1

Bn, where An, Bn 2 �.

Let [A, B]� denote subarc of � that connects A and B. We certainly have �� ⇢

[A, B]� , so Z
��

|'|
1/2

|dz| 6
Z

[A,B]�

|'|
1/2

|dz|.

Similarly, we denote by [Bn, An]� ⇢ � the closed (rectifiable) subarc of � which
connects Bn and An . Since An ! A 2 � ⇢ � and Bn ! B 2 � ⇢ � for
sufficiently large n the straight segments [A, An] and [Bn, B] lie in �. We now
have a rectifiable curve [A, An] [ [An, Bn]� [ [Bn, B] in � which connects the
end-points of [A, B]� . Therefore, we have

Z
��

|'|
1/2 6

Z
[A,B]�

|'|
1/2 6

Z
[An,Bn]�

|'|
1/2

+

Z
[A,An]

|'|
1/2

+

Z
[Bn,B]

|'|
1/2

6
Z
�
|'|

1/2
+ (|An � A| + |Bn � B|) k'k

1/2
C (�) �!

Z
�
|'|

1/2,

as desired.

The next lemma deals with a holomorphic quadratic differential ' dz2 which
is real on the boundary of a C 1-smooth domain X, no single points as components
of @X.
Definition 2.5. A quadratic differential ' dz2 is said to be real on the boundary of
a C 1-smooth `-connected domain X if ' is smooth up to @X and each component
of @X is either a horizontal or a vertical trajectory of ' dz2.
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Lemma 2.6. Let X be a finitely connected domain with C 1-smooth boundary. Let
' dz2 be a holomorphic quadratic differential in X which is real on @X. Suppose
that 0 is a vertical trajectory of ' dz2 with both ends approaching the same bound-
ary component of X. Then the components of X \ 0 are not simply connected.

Proof. Suppose that the set X \ 0 has a simply connected component G. There
are no closed trajectories in G, for such a trajectory must enclose a pole of '. The
global structure of trajectories of a holomorphic quadratic differential with finite
norm [40] is inconsistent with @G being a union of a vertical trajectory and another
(vertical or horizontal) trajectory.

Lemma 2.7 (Fubini-like integration formula). Let '(z) dz2 be a holomorphic
quadratic differential in a simply connected domain � ⇢ C, ' 6⌘ 0. Suppose
that F and G are measurable functions in � such thatZZ

�
|'(z)||F(z)| dxdy < 1 and

ZZ
�
|'(z)||G(z)| dxdy < 1. (2.5)

Then for almost every vertical trajectory � of '(z) dz2 we haveZ
�
|'(z)|1/2|F(z)| |dz| < 1 and

Z
�
|'(z)|1/2|G(z)||dz| < 1. (2.6)

If, in addition, Z
�
|'(z)|1/2F(z) |dz| =

Z
�
|'(z)|1/2G(z) |dz|, (2.7)

then ZZ
�
|'(z)|F(z) dxdy =

ZZ
�
|'(z)|G(z) dxdy. (2.8)

Proof. According to [40, Section 19.2] � can be covered, up to a set of mea-
sure zero, by a countable number of disjoint '-strips. These are open connected
subsets of � with no critical points, such that a locally defined analytic function
8(z) =

R p

'(z) dz is actually a univalent conformal mapping of the '-strip onto a
Euclidean vertical strip S in the w-plane, w = 8(z).

S = {w = t + i⌧ : 0 < t < T, ↵(t) < ⌧ < �(t)}

where �16 ↵(t) < �(t)6+1 are measurable functions. Making a substitution
z = 8�1(w) the problem reduces equivalently to the usual Fubini’s theorem in
Euclidean vertical strip, for functions F̃(w)= |'(z)|F(z) and G̃(w)= |'(z)|G(z).

Corollary 2.8. Assume, instead of condition (2.7) in Lemma 2.7 thatZ
�
|'|

1/2
|F | 6

Z
�
|'|

1/2
|G|
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for almost every noncritical vertical trajectory of ' dz2. ThenZZ
�
|'| |F | 6

ZZ
�
|'| |G|.

Proof. Replace F and G in Lemma 2.7, with |F(z)| and µ(z)|G(z)|, where

0 6 µ(z) =

R
� |'|

1/2
|F |R

� |'|
1/2|G|

6 1 for all z 2 � .

Given a quadratic holomorphic differential ' dz2 we define two partial differential
operators, called the horizontal and vertical derivatives

@H =

@

@z
+

'

|'|

@

@ z̄
and @V =

@

@z
�

'

|'|

@

@ z̄
.

If h satisfies the Hopf-Laplace equation hzhz̄ = ', then the horizontal and vertical
trajectories of ' dz2 are the lines of maximal and minimal stretch for h. Precisely,
the following identities hold.

|@Hh| = |hz| + |hz̄|, |@Vh| =

��
|hz| � |hz̄|

�� (2.9)
|@Hh| · |@Vh| = |Jh|, |@Hh|

2
� |@Vh|

2
= 4|'| (2.10)

As a consequence
|@Vh|

2 6 |Jh| 6 |@Hh|
2. (2.11)

3. Examples

Mappings in Example 1.1. Actually such solutions can be defined in the entire
plane. First we define h in the upper half plane, Im z > 0, where one can settle the
analytic branches of power functions and the logarithm.

h(z) =

8>><
>>:
z1�↵

1� ↵
+

z1+↵

1+ ↵
, where ↵ =

2
p

6= 1

log z +

z̄2

2
, if p = 2.

(3.1)

We have

hz = z�
2
p , which belongs toL

p
weak(D) but not toL p(D)

hz̄ = z
2
p , which belongs toL 1(D) ⇢ L p(D).

Thus the Hopf-Laplace equation hzhz̄ ⌘ 1 holds in the upper half plane. Then we
extend h to the lower half of the plane by setting h(z) = h(z) for Im z < 0. It is a



THE HOPF-LAPLACE EQUATION 1161

Figure 3.1. A non-Lipschitz W 1,2-solution to the Hopf-Laplace equation.

general fact, and easy to see, that such an extension gives a Sobolev function in the
entire plane. The Hopf-Laplace equation remains true in the lower half of the plane
as well.
Figure 3.1 illustrates the case p = 4. Thus h(z) = 2z1/2 +

2/3z̄
3/2 belongs to

W 1,s(D) ⇢ W 1,2(D) for every 2 < s < 4, but is not locally Lipschitz contin-
uous.

Example 3.1. We use the polar coordinates for z in the closed unit disk D, z =

⇢ei✓ , 0 6 ⇢ 6 1 and 0 6 ✓ < 2⇡ . Define h : D ! C

h(⇢ei✓ ) = 2⇢
⇥p
⇢ sin(3/2 ✓) + i sin ✓

⇤
= z � z̄ � i

h
z3/2 � z̄3/2

i
.

This mapping is Lipschitz continuous, since it has bounded derivatives

hz = 1�
3/2 i

p

z, hz̄ = �1+
3/2 i

p

z̄. (3.2)

Moreover, its Hopf differential is holomorphic, hzhz̄ = �
1/4 (4+ 9z). Thus h

solves the Hopf-Laplace equation @
@ z̄

�
hzhz̄

�
= 0.

Formulas (3.2) show that h fails to be C 1-smooth in any neighborhood of the
ray I = {z : Im z = 0 and 0 6 Re z 6 1}. Concerning topological behavior, h turns
out to be a harmonic diffeomorphism of D \ I onto the butterfly domain Y ⇢ C.
Figure 3.2 shows the grid of horizontal and vertical trajectories in X as well as their
images in Y.

Figure 3.2. A non-C 1 Hopf deformation.
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The radius I is squeezed into the origin, which is a boundary point of Y. Figure 3.2
illustrates that I is an arc of a critical vertical trajectory of the quadratic differential
' dz2. Let us notice that the functions |hz| and |hz̄| are actually continuous. Indeed,
we have

|hz|2 = 1+
9/4 ⇢ + 3

p

⇢ sin
✓

2
, |hz̄|2 = 1+

9/4 ⇢ � 3
p

⇢ sin
✓

2
.

In particular, the Jacobian determinant and the energy density function are also
continuous

Jh = |hz|2 � |hz̄|2 = 6
p

⇢ sin
✓

2
, which is positive expect for z 2 I.

|Dh|2 = 2
⇣
|hz|2 + |hz̄|2

⌘
= 4+ 9⇢ .

It is easy to see that h is a cd-limit of homeomorphisms of D onto Y. Thus h is a
Hopf deformation. In section 8 we demonstrate through nonexplicit examples, that
even minimal deformations need not be C 1-smooth.

4. Approximation of monotone mappings

Let us begin by recalling the following approximation of homeomorphisms, estab-
lished in [21].

Proposition 4.1. Let H : X onto
�!Y be a homeomorphism of Sobolev classW 1,2

loc (X!

Y). Then there exist diffeomorphisms Hk : X onto
�! Y, k = 1, 2, . . . , such that

• Hk � H 2 A �(X);
• kHk � HkA (X) ! 0 as k ! 1.

In view of this result we need only construct, for every ✏ > 0, a homeomorphism
H : X onto

�! Y such that

(i) H � h 2 A �(X);
(ii) kH � hkA (X) 6 6✏.

The construction of H proceeds in three steps. We constructMPS(X!Y) map-
pings H� = h, H1 2 H0 + A �(X), H2 2 H1 + A �(X) and H3 2 H2 + A �(X),
in which H3 will turn out to be a desired homeomorphism of X onto Y. In each
step we make suitable harmonic replacements to gain more points of injectivity.
Moreover, estimate (4) will follow from:

kH1 � H0kA (X) 6 2✏, kH2 � H1kA (X) 6 2✏ and kH3 � H2kA (X) 6 2✏.

We shall go into the construction of H1 in detail in Step 1. For H2 we follow the
construction from Step 1, but with H1 in place of h. In much the same way H3
will be obtained as a refinement of the mapping H2. Before passing to the actual
construction of H1 we need some geometric considerations.
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4.1. Proof of Theorem 1.6

An open dyadic square in R2 is the set

Qm
i j = {(a, b) : 2mi < a < 2m(i + 1) and 2m j < b < 2m( j + 1)}.

Hereafter, the number 2m is the size of the square. Note that:

(1) Two different squares of the same size are disjoint.
(2) Each square of size 2m is contained in exactly one square of size 2m+1, namely

Qm
i j ⇢ Qm+1

ı̈ |̈ , where i � 1 6 2 ı̈ 6 i and j � 1 6 2 |̈ 6 j.

We refer to Qm+1
ı̈ |̈ as the dyadic square next to Qm

i j .

(3) Every two dyadic squares are either disjoint or one contains the other.

A dyadic mesh in R2 is a familyM of open dyadic squares. Let Y be a bounded
domain. We will be interested only in those dyadic squares which are compactly
contained in Y. Call such a dyadic square Q b Y maximal if the next dyadic
square to Q is not compactly contained in Y. Denote by M(Y) the family of
maximal dyadic squares in Y. ClearlyM(Y) is a disjoint family and

Y =

[
Q2M(Y)

Q.

Claim 1. Every compact subset F ⇢ Y intersects at most a finite number of closed
squares Q, where Q 2M(Y).

Proof. For, if not, we would find an arbitrarily small square Q 2 M(Y) whose
closure intersects F, because one can accommodate only a finite number of large
squares in Y. But then the next dyadic square, being small enough, would be com-
pactly contained in Y. This contradicts maximality of Q 2M(Y).

In what follows we shall subdivide each Q 2 M(Y) into 4n congruent dyadic
subsquares, later referred to as fine squares. The numbers n = nQ will be chosen
and fixed according to the needs for the construction of H1. In the meantime, let us
reserve a notation and point out basic features of fine squares.

Q↵ ⇢ Q, ↵ = 1, 2, . . . , 4n, n = nQ .

These are disjoint open dyadic squares of size 2m�n , where 2m is the size of Q. For
each Q 2M(Y) we have

Q =

4n[
↵=1

Q↵ , n = nQ .
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Once a subdivision of each Q 2 M(Y) is made the family of fine squares will be
denoted by

F(Y) = {Q↵ : Q 2M(Y), Q↵ ⇢ Q, ↵ = 1, . . . , 4n, n = nQ}.

This is a disjoint family of squares whose closures cover the entire domain Y. As
in Claim 1, we have:
Claim 2. Every compact set F ⇢ Y intersects at most a finite number of closed fine
squares.

We now proceed to the construction of the mapping H1.
Step 1. Let Q b Y be a generic square inM(Y), and Q↵ ⇢ Q, ↵ = 1, . . . , 4n ,
the corresponding fine squares, with n = nQ to be determined later. Since h 2

MPS(X!Y), by Proposition 2.1, each preimage

U↵ = h�1(Q↵) b X, ↵ = 1, 2, . . . , 4n

is a simply connected domain compactly contained in X. We refer to U↵ as cells in
X. Caveat lector—the closed cell U↵ can be substantially smaller than h�1(Q↵); it
may even lie in the interior of h�1(Q↵). The Youngs refinement, Proposition 2.1,
tells us that h : U↵

onto
�! Q↵ admits a homeomorphism hQ↵ : U↵

onto
�! Q↵ with con-

tinuous extension to X. The extended mapping, still denoted by hQ↵ : X onto
�! Y,

coincides with h on X \ U↵ and belongs toMPS(X!Y). However, the Youngs
refinement does not guarantee that hQ↵ belongs to W

1,2
loc (X ! Y). At this point,

since h 2 W
1,2
loc (X ! Y), the Poisson operator in Proposition 2.2 comes to the

rescue. We simply replace each hQ↵ : U↵
onto
�! Q↵ with a harmonic diffeomorphism

h↵ := PU↵ (hQ↵ ) : U↵
onto
�! Q↵, h↵ 2 h + A �(U↵)

and extend to X by setting h↵ = h on X \ U↵ . This yields a mapping

hnQ : U onto
�! Q, defined by hnQ = h +

4nX
↵=1

[h↵ � h]�

where [h↵ � h]� stands for the function in X that equals h↵ � h in U↵ and vanishes
outside U↵ . The energy of each h↵ does not exceed that of h, namely EU↵ [h↵] 6
EU↵ [h]. Outside of the cellsU↵ the mapping hnQ coincides with h, thus has the same
energy as h. Therefore:

1. hnQ � h 2 A �(U);
2. EU[hnQ] 6 EU[h].

We also have

khnQ � hkC (U) 6 max
16↵64n

kh↵ � hkC (U) 6 max
16↵64n

diam Q↵ = 2�n diam Q.
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When n increases to 1 the mappings hnQ converge uniformly to h on U. Further-
more, they are bounded in W 1,2(U). Thus hnQ converge weakly to h in W 1,2(U).
By weak lower semicontinuity, we have

EU[h] 6 lim inf
n!1

EU[hnQ] 6 EU[h]

so EU[hnQ] ! EU[h]. We now recall the well known fact that if functions inL 2(U)
converge weakly and their norms converge to the norm of the weak limit then such
functions actually converge strongly.

It is at this stage that we choose and fix number n = nQ , which will also
depend on ✏, to be large enough to satisfy

khnQ � hkC (U) 6 2�nQ diam Q 6 ✏

EU[hnQ � h] 6
|Q| ✏2

|Y|

.

Finally, we conjoin all mappings hnQ : U ! Q, with Q 2 M(Y) and n = nQ(✏).
We obtain the desired mapping H1 : X onto

�! Y,

H1 = h +

X
Q2M(Y)

[hnQ � h]� 2 A �(X).

Clearly, we have

kH1 � hkC (X) = sup
Q2M(Y)

khnQ � hkC (U) 6 ✏

EX[H1 � h] =

X
Q2M(Y)

EU[hnQ � h] 6 ✏2
X

Q2M(Y)

|Q|

|Y|

= ✏2.

Hence the estimate,
kH1 � hkA (X) 6 2✏.

What we gained, as compared to h, is that the mapping H1 : X onto
�! Y is a harmonic

diffeomorphism on every cell

U↵ = h�1
↵ (Q↵) ⇢ X, Q 2M(Y), ↵ = 1, 2, . . . , nQ .

Thus
H�1
1 (y) is a singleton if y 2

[
Q↵2F(Y)

Q↵. (4.1)

For other preimages, we have

H�1
1 (y) = h�1(y) if y 2

[
Q↵2F(Y)

@Q↵. (4.2)
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In either case the preimage of a point in Y is connected. Thus H1 is a monotone
mapping. Similarly we argue that H1 is a proper mapping. Indeed, let F be compact
inY. There are only finite number of closed fine squares inF(Y)which intersect F.
Therefore the preimage of F under H1 is contained in the union of a finite number
of closed cells in X and in h�1(F). Thus H�1

1 (F) stays away from @X and, being
relatively closed in X, is indeed compact. Step 1 is completed.

Steps 2 and 3. In Step 1 the construction of H1 : X onto
�! Y started with a mesh

M of dyadic squares in R2; let us now redenote this mesh asM1. Such a mesh
actually depends on the choice of the orthogonal coordinates for R2. Translating
the origin of the coordinate system leads to new meshes. These meshes would work
for the constructions of H1 just asM1. It would, however, lead us to different
dyadic squares in Y, different family F(Y), and different cells in X. We shall
take advantage of this observation by considering three incommensurate meshes in
R2. One way to construct incommensurate meshes is by shifting the squares inM
through a vector with irrational coordinates, say v = (

p

2,
p

2) 2 R2. Specifically,
let

M1 =M, M2 = {Q + v : Q 2M}, M3 = {Q � v : Q 2M}.

The key observation is that no three squares from different meshes have a common
boundary point; that is,

@Q1 \ @Q2 \ @Q3 = ? (4.3)

whenever Q1 2M1, Q2 2M2 and Q3 2M3.
Recall the corresponding families of open fine squaresF1(Y)⇢M1,F2(Y) ⇢

M2 and F3(Y) ⇢M3. In each family the closures of fine squares cover the entire
domain Y. But the essential feature of these families is that the open fine squares
all together cover Y, in symbols

Y =

[
F1(Y) [

[
F2(Y) [

[
F3(Y).

We are now ready for the construction of H2 and H3. Following the construction of
H1 in Step 1, but with H1 in place of h and with meshM2 in place ofM ,we obtain
a mapping H2 : X onto

�! Y which is continuous monotone and proper. Moreover,

H2 � H1 2 A �(X) and kH2 � H1kA (X) 6 2✏.

Then, in the same fashion, we refine H2 by using the meshM3. We arrive at the
desired mapping H3 : X onto

�! Y such that kH3 � H2kA (X) 6 2✏. To see that H3
is a homeomorphism we need only verify injectivity. Let y 2 Y =

S
Q2F3(Y) Q

and suppose, to the contrary, that H�1
3 (y) ⇢ X is not a singleton. This means that

y /2
S

Q2F3(Y) Q so y lies in the boundary of some square Q3 2 F3(Y) ⇢ M3.
Recall that for such a boundary point we have H�1

3 (y) = H�1
2 (y). This in turn

means that y /2
S

Q2F2(Y) Q, so y lies in the boundary of a square Q2 2 F2(Y) ⇢
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M2. For such a point we have H�1
2 (y) = H�1

1 (y). As before, this means that
y /2

S
Q2F1(Y) Q, so y lies in the boundary of a square Q1 2 F1(Y) ⇢ M1. In

conclusion, y belongs to @Q1 \ @Q2 \ @Q3. This contradicts (4.3). The proof of
Theorem 1.6 is complete.

Next we apply this theorem to harmonicMPS mappings.

Proposition 4.2. Any harmonic mapping of class h 2 MPS(X !Y) is a diffeo-
morphism.

Proof. Indeed, suppose Jh = |hz|2 � |hz̄|2 > 0, where we note that hz and hz̄
are holomorphic functions. Since h is surjective, Jh 6⌘ 0, which means that hz
admits only isolated zeros. Then we obtain a meromorphic function ⌫ := hz̄hz
which is bounded by 1. The zeros of hz are removable singularities. The maximum
principle yields |⌫(z)| < 1 in X; because it cannot be that |⌫(z)| ⌘ 1. Thus Jh > 0
everywhere in X and, therefore, h is a local diffeomorphism. The monotonicity
implies that h is actually injective.

4.2. Deformations of X into Y

Such deformations can now be completely characterized as follows:

Theorem 4.3. Let f : X into
�! Y be a continuous mapping between `-connected

bounded domains in the Sobolev class W 1,2(X ! Y) with nonnegative Jacobian.
Then the following seven statements are equivalent:

�1 f is monotone proper and surjective.
�2 f is a uniform and strong W 1,2

�limit of homeomorphisms fk : X onto
�! Y, in

which fk 2 f + W 1,2
�

(X!Y) , for all k = 1, 2, ... .
�3 f is a uniform and strong W 1,2

�limit of C 1
�diffeomorphisms fk : X onto

�! Y,
in which fk 2 f + W 1,2

�
(X!Y) , for all k = 1, 2, ... .

�4 f is a uniform and weak W 1,2
�limit of C 1

�diffeomorphisms fk : X onto
�! Y, in

which fk 2 f + W 1,2
�

(X!Y) , for all k = 1, 2, ... .
�5 f is a uniform and weak W 1,2

�limit of homeomorphisms fk : X onto
�! Y, in

which fk 2 f + W 1,2
�

(X!Y) , for all k = 1, 2, ... .
�6 f is a weak W 1,2

�limit of homeomorphisms fk : X onto
�! Y, in which fk 2

f + W 1,2
�

(X!Y) , for all k = 1, 2, ... .
�7 f is a deformation.

The assumption J f > 0 a.e. does not impose an essential restriction on the mapping
f , by virtue of Corollary 1.7.

Proof. The implications�1 )�2 )�3 are just a restatement of Theorem 1.6. The
implications�3 )�4 )�5 )�6 are obvious.



1168 JAN CRISTINA, TADEUSZ IWANIEC, LEONID V. KOVALEV AND JANI ONNINEN

For the proof of�6 )�7 we argue as follows. Since fk : X onto
�! Y are orienta-

tion preserving homeomorphisms of Sobolev class f + W 1,2
�

(X!Y) converging
weakly inW 1,2(X!Y) to f , it follows thatZZ

X
J f dx =

ZZ
X
J fk dx = |Y|.

Hence there is a compact subset F ⇢ X such thatZZ
F
J f dx >

1
2
|Y|.

By weak L 1-convergence of nonnegative Jacobians [22, Theorem 8.4.2] we haveRR
F J f dx = lim

RR
F J fk dx . Therefore,

| fk(F)| =

ZZ
F
J fk dx >

1
2
|Y|, for sufficiently large k.

It then follows that there is ✏ > 0, such that

sup
x2F

( fk(x), @Y) > ✏, k = 1, 2, . . . .

Let xk 2 F be a point for which yk = fk(xk) has distance at least ✏ from @Y. We
may assume, by passing to a subsequence if necessary, that

xk ! x� 2 F and yk ! y� 2 Y.

Let 8k : X onto
�! X and 9k : Y onto

�! Y be local perturbations (arbitrarily small) of the
identity mapping near x� and y�, respectively, to satisfy,

8k(x�) = xk and 9k(yk) = y�.

Now the homeomorphisms Fk = 9k� fk�8k : X onto
�! Y take x� into y�. We consider

Fk as a mapping of the punctured domain X� = X \ {x�} onto Y� = Y \ {y�}, each
of which has ` + 1 > 2 boundary components. These mappings coincide with fk
outside a compact subset of X. At this point we appeal to the following uniform
estimate of the distance to @Y� [23, Theorem 1.1].

dist (Fk(x), @Y�) 6 ⌘(x) kDFkkL 2(X�)
, k = 1, 2, · · · (4.4)

where ⌘(x) = ⌘X� Y�

(x) is a continuous function in X� vanishing on @X�. We
emphasize that this function depends only on the domains X� and Y�. Since Fk =

fk near @X the estimate (4.4) yields, for each fk ,

dist ( fk(x), @Y) 6 ⌘(x)M

where M is controlled from above by the energy of fk , so is independent of k. Fi-
nally, since fk ! f c-uniformly we conclude that dist( fk(x), @Y)!dist( f (x), @Y)
uniformly in X. This shows that f is a deformation.

The implication�7 )�1 is a part of Proposition 1.5.
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Remark 4.4. The observant reader may notice that the conditions �2 –�6 tell us
something about the boundary behavior of a deformation with rangeY. In a way ev-
ery deformation f : X onto

�! Y must agree on @X with a homeomorphism fk : X onto
�!

Y. This is understood in the sense of Sobolev boundary data f 2 fk + W 1,2
�

(X!

Y).

5. Preimage of a point under generalized solutions

Let h : X ! R2 be a continuous mapping. The multiplicity function of h defined
by Nh(y) = #{h�1(y)}, y 2 R2, is measurable, so one can speak of the essential
supremum ofNh(y). We are concerned with mappings such that

ess sup
y2R2

Nh(y) < 1. (5.1)

Note that Hopf deformations enjoy the property [20, Lemma 3.8]

ess sup
y2R2

Nh(y) = 1. (5.2)

The following proposition deals with more general solutions to the Hopf equation.

Proposition 5.1. Let h : X ! C be a continuous W
1,1
loc (X)-solution to the Hopf-

Laplace equation

hzhz̄ = ' 6⌘ 0 almost everywhere in X,

where ' is a holomorphic function in a domainX ⇢ C. Assume that the multiplicity
function Nh(y) = #{h�1(y)} is essentially bounded (5.1). Then for each y� 2 R2
the union of all vertical trajectories of the quadratic differential '(z) dz2 in X that
intersect h�1(y�) has zero measure.

Proof. To simplify writing we assume that y� = 0 2 R2. Let V denote the family
of all vertical trajectories of '(z) dz2 in X. These are disjoint open C 1-smooth
curves without self-intersections whose union covers X� = X \ {zeros of '}. Every
point in X� has a neighborhood in which a single valued branch of the analytic
function 8(z) =

R p

'(z) dz can be chosen. This is a local conformal mapping
which takes the arcs of vertical trajectories into open vertical intervals in the w-
plane,w = 8(z). In general it may not be possible to perform analytic continuation
of 8 along the entire trajectory; the local branches of

R p

' may not coincide if
their domains of definition are overlapping. This difficulty is usually overcome by
performing analytic continuation of the inverse8�1 along the straight vertical lines
in the w-plane, see [40, Section 1.3.2] for a thorough discussion. Such a procedure
leads to the concept of a vertical strip. A vertical strip in the w-plane associated
with ' dz2 is a simply connected domain of the form

S = {w = t + i⌧ : 0 < t < T, ↵(t) < ⌧ < �(t)}
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where�1 6 ↵(t) < �(t) 61 are measurable functions in t 2 (0, T ). Moreover,
there is a single valued analytic function 9 : S into

�! X which takes every vertical
interval �t = {t + i⌧ : ↵(t) < ⌧ < �(t)} onto a complete vertical trajectory in X.
This mapping 9 is locally conformal and its inverse, locally defined, is a branch of
8 =

R p

'(z) dz. Thus the image 9(S) ⇢ X is an open subset of X. Each vertical
trajectory in X either lies entirely in 9(S) or otherwise is disjoint from 9(S). The
point is that the whole domainX� can be covered by a countable number of domains
such as 9(S).

Denote V� ⇢ V the family of vertical trajectories in X which intersect the
set h�1(0) and assume, to derive a contradiction, that the union

SV� has positive
measure. We shall confine ourselves to one particular subdomain 9(S) ⇢ X and
trajectories selected from V� that lie in 9(S). With a suitable choice of 9(S) we
ensure that the union of the selected trajectories still has positive measure. Rather
than discuss this subdomain, let us assume that X = 9(S). Further simplification
comes by considering the mapping f = h � 9 : S ! C. This simplifies not
only the domain of definition but also the Hopf-Laplace equation translates into the
somewhat easier form

fw fw̄ ⌘ 1, for all w = t + i⌧ 2 S. (5.3)

Let 0 = {�t }0<t<T denote the family of all vertical intervals in S; these are vertical
trajectories of f dw2,

�t = {t + i⌧ : ↵(t) < ⌧ < �(t)}, 0 < t < T .

Among them there are intervals that pass through the set f �1(0)which we designate
by

0� = {�t 2 0 : 0 2 f (�t )}.

In this way we are reduced, equivalently, to showing that the union
S
0� has posi-

tive measure. That this is indeed an equivalent problem follows from the observa-
tion that 9, being a local diffeomorphism, takes a null family of vertical intervals
in S into a null family of vertical trajectories in 9(S). Furthermore, the strip S ,
possible infinite, can be exhausted with an increasing sequence of vertical strips
compactly contained in S ,

S1 b S2 b · · ·Sn b · · · b S =

1[
n=1
Sn.

Let the family 0n
�
consist of those vertical intervals in Sn which pass through the

set f �1(0). Clearly, we have
S

1

n=1
�S

0n
�

�
=

S
0�; the latter is a subset of S with

positive measure. Thus for some large n we still have
���[0n

�

��� > 0.
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Therefore, we may and do assume, instead of introducing new notation that S is
bounded and 9 : S onto

�! 9(S) extends as a local conformal mapping to a neighbor-
hood of S . In particular, |S| < 1 and the multiplicity function of 9 : S ! 9(S)
is also bounded.

Lemma 5.2. For almost every t 2 (0, T ) such that �t 2 0�, we have

diam f (�t ) > 0.

Proof. Let C ⇢ (0, T ) denote the set of parameters t such that diam f (�t ) = 0 and
�t 2 0�. This means that f is a constant mapping on each interval �t , for t 2 C .
Since 0 2 f (�t ) we conclude that f ⌘ 0 on

S
t2C �t . On the other hand, in view of

the Hopf-Laplace equation (5.3), f cannot vanish on a set of positive measure, so��S
t2C �t

��
= 0. Hence C has zero linear measure, as claimed.

We now choose and denote by E ⇢ (0, T ) a set of positive linear measure such that

diam f (�t ) > 2⇢, for all t 2 E (5.4)

where ⇢ is a sufficiently small positive number. Consider a sequence of concentric
annuli centered at 0,

Am = {y : 2�m⇢ 6 |y| 6 21�m⇢}, m = 1, 2, . . .

It follows from (5.4) that f (�t ), with t 2 E , is a connected set which joins 0 with a
point outside the outer boundary of Am . Elementary geometric arguments give an
estimate of 1-dimensional Hausdorff measure of the set Am \ f (�t ) ⇢ C, namely

H1 ( f (�t ) \ Am) > 2�m⇢ .

For almost every t 2 E , the function f is absolutely continuous on �t , because
f 2 W 1,1(S). Consider a subset K = �t \ f �1(Am) of the interval �t ⇢ 0�. We
have Z

K

����@ f@⌧
���� > H1� f (K)

�
> H1 ( f (�t ) \ Am) > 2�m⇢

where we used the inclusion f (K) � f (�t )\Am . Integrating with respect to t 2 E ,
by Fubini’s theorem, we obtain

ZZ
H�1(Am)

����@ f@⌧
���� >

Z
E

✓Z
�t\ f �1(Am)

����@ f@⌧
����
◆
> 2�m⇢ |E |.

Next we apply Hölder’s inequality

4�m⇢2|E |
2 6 | f �1(Am)|

ZZ
H�1(Am)

����@ f@⌧
����
2
. (5.5)
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It is at this point that we shall appeal to the Hopf-Laplace equation (5.3) and for-
mula (2.11), which gives us a pointwise inequality in terms of the Jacobian deter-
minant of f , ����@ f@⌧

����
2
6

��J f �� a.e. in S.

Now recall that the multiplicity function of h is essentially bounded and 9 : S !

9(S) has finite multiplicity. Therefore, the function N f (y) = #{w 2 S : f (w) =

y} is essentially bounded as well, say N f (y) 6 N for almost every y 2 R2. We
have ZZ

f �1(Am)

����@ f@⌧
����
2
6

ZZ
f �1(Am)

|J f | 6 N |Am | = 3⇡⇢24�mN

where the second inequality follows from [22, Theorem 6.3.2]. Substituting into
(5.5) yields |E |

2 6 3⇡N | f �1(Am)|. Finally we add these inequalities for m =

1, 2, . . . ,` to obtain

` |E |
2 6 3⇡N

��� f �1
⇣ [̀
m=1

Am
⌘��� 6 3⇡N |S|

where ` can be any positive number we wish. Thus |E | = 0, completing the proof
of Proposition 5.1.

Corollary 5.3. Under the assumptions of Proposition 5.1, suppose w 2 Y and
h�1(w) does not contain any critical points of '(z) dz2. Then h�1(w) is a closed
vertical arc.

Proof. By Lemma 3.7 in [20] the set h�1(w) ⇢ X is connected and compact. Then
the union of vertical trajectories which intersect h�1(w) is connected and, by Propo-
sition 5.1, has zero measure. This is possible only when h�1(w) is contained in
exactly one vertical trajectory.

6. Partial harmonicity, proof of Theorem 1.12

The outline of the proof is as follows. Wemay assume that the Hopf differential of h
does not vanish identically, for otherwise h is holomorphic inX. Using the notation
of Theorem 1.12 let D be an open disk compactly contained in Y and U = h�1(D).
We will prove that h is harmonic in U by showing that the energy of h does not
exceed the energy of H ,

EU[h] 6 EU[H ] (6.1)

where H is the Poisson refinement of h in U. Indeed, (6.1) shows that h = H in U
and therefore h is harmonic diffeomorphism ofU ontoD. Since h is also monotone,
it is a global diffeomorphism. Thus (6.1) is all we need to prove Theorem 1.12.

The first step toward proving (6.1) is the following computation.
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Lemma 6.1. Let U and D be bounded simply connected domains. Suppose that
h : U onto

�! D, of Sobolev class W 1,2(U, D), is monotone and proper and has a
continuous extension toU. Furthermore, let H : U onto

�! D be a C 1-diffeomorphism
of Sobolev class W 1,2(U) which extends continuously to U with H(z) = h(z) for
z 2 @U. Then for � = H�1

� h : U onto
�! D and '(z) = hzhz̄ we have

EU[H ] � EU[h] >
4

k'kL 1(U)

ZZ
U

����z �

'

|'|

�z̄

���p|'(z)|
q

|'
�
�(z)

�
| dz

�2

� 4
ZZ

U
|'|.

(6.2)

Here we assume that ' is continuous, ' 6⌘ 0, and the term '
|'|

is understood as
equal to zero whenever ' vanishes.

Proof. First assume, in addition to the above hypotheses that h : U onto
�! D is a dif-

feomorphism.
The chain rule can be applied to the composition H = h � ��1

: U onto
�! U

@H(w)

@w
= hz(z)

@��1

@w
+ hz̄(z)

@��1

@w

@H(w)

@w̄
= hz(z)

@��1

@w̄
+ hz̄(z)

@��1

@w

where w = �(z). The partial derivatives of ��1
: U ! U at w can be expressed in

terms �z and �z̄ at z = ��1(w) by the rules

@��1

@w
=

�z(z)
J (z,�)

and
@��1

@w̄
= �

�z̄(z)
J (z,�)

where the Jacobian determinant J (z,�) is strictly positive. This yields

@H
@w

=

hz�z � hz̄�z̄
J (z,�)

and
@H
@w̄

=

hz̄�z � hz�z̄
J (z,�)

.

Let U0 b U be a compactly contained subdomain of U. We compute the energy of
H over the set �(U0) by substitution w = �(z),

EU[H ] > E�(U0)[H ] = 2
ZZ

�(U0)

⇣
|Hw|

2
+ |Hw̄|

2
⌘
dw

= 2
ZZ

U0

|hz�z � hz̄�z̄|2 + |hz̄�z � hz�z̄|2

|�z|2 � |�z̄|2
dz.

On the other hand, the energy of h over the set U0 is

EU0[h] = 2
ZZ

U0

⇣
|hz|2 + |hz̄|2

⌘
dz.
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Subtract these two integral expressions to obtain

EU[H ] � EU0[h] > 4
ZZ

U0

�
|hz|2 + |hz̄|2

�
· |�z̄|

2
� 2Re

⇥
hzhz̄�z�z̄

⇤
|�z|2 � |�z̄|2

dz

> 4
ZZ

U0

2|hzhz̄| · |�z̄|
2
� 2Re

⇥
hzhz̄�z�z̄

⇤
|�z|2 � |�z̄|2

dz

= 4
ZZ

U0

"
|�z � � (z)�z̄|2

|�z|2 � |�z̄|2
� 1

#
|hzhz̄| dz

(6.3)

where

� = � (z) =

(
hzhz̄ |hzhz̄|�1 if hzhz̄ 6= 0
0 otherwise.

Using Hölder’s inequality we continue the above chain of estimates as follows

> 4

hRR
U0

|�z � ��z̄|
p

|hzhz̄|
q

| 
�
�(z)

�
| dz

i2
RR

U0 J (z,�)| 
�
�(z)

�
| dz

� 4
ZZ

U0

|hzhz̄|. (6.4)

where  : U ! C can be any continuous function, provided  6⌘ 0 on �(U0).
The denominator in (6.4) is uniformly bounded from above

ZZ
U0

J (z,�)| 
�
�(z)

�
| dz =

ZZ
�(U0)

| | 6
ZZ

U
| |.

Hence

EU[H ] � EU0[h] > 4

hRR
U0

|�z � ��z̄|
p

|'(z)|
q

| 
�
�(z)

�
| dz

i2
RR

U| (z)| dz
� 4

ZZ
U0

|'|.

This inequality can now be generalized by an approximation argument. By Theo-
rem 1.6, we have a sequence of diffeomorphisms h j : U onto

�! D, converging to h uni-
formly and strongly inW 1,2(U, D). Moreover, each h j 2 h+A �(U, D), so h j ex-
tends continuously toUwith h j (z) = h(z) on @U. We may and do assume, by pass-
ing to a subsequence if necessary, that h jz and h

j
z̄ converge almost everywhere to hz

and hz̄ , respectively. Let ' j = h jz h
j
z̄ . Since the sequence �

j
= H�1

� h j : U onto
�! U

of self-diffeomorphisms of U is converging to � uniformly and strongly in W 1,2

on subdomains U0 b U, it follows that

EU[H ]�EU0[h j ] > 4

hRR
U0

���� j
z � � j�

j
z̄

��� p
|' j (z)|

q
| 

�
�(z)

�
| dz

i2
RR

U| (z)| dz
�4

ZZ
U0

|' j |.
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Passing to the limit as j ! 1 yields

EU[H ] � EU0[h] > 4

hRR
U0

|�z � ��z̄|
p

|'(z)|
q

| 
�
�(z)

�
| dz

i2
RR

U| (z)| dz

� 4
ZZ

U0

|'|.

(6.5)

To see this we simply note that
���� j
z � � j�

j
z̄

���
q

|h jz h
j
z̄ | ! |�z � ��z̄|

p
|'(z)| inL 1(U0)

while
q

| 
�
� j (z)

�
| !

q
| 

�
�(z)

�
| everywhere.

Here we recall that ' is assumed to be continuous, so we can take  = '
in (6.5). Finally, since U0 was an arbitrary compact subset of U, we conclude
from (6.5) with the desired estimate, completing the proof of Lemma 6.1.

For the proof of (6.1) it remains to show that the right hand side of (6.2) is
nonnegative. This requires a careful analysis of the boundary behavior of � , as this
mapping is not necessarily continuous up to @U. We need a definition and a lemma.
Definition 6.2. Let X ⇢ C be a domain and U be a simply connected domain
compactly contained in X. Let ' : X ! C be a holomorphic function such that
' 6⌘ 0. We say that a mapping � : U ! U is compatible with ' if the following
holds for any vertical arc � of ' dz2 that intersects U and has endpoints in X \ U.
Let �� be a maximal subarc of � contained in U, and denote its endpoints by a and
b. The connected components of � \ �� are naturally denoted as �a and �b. The
condition we impose on � is

�{a} ⇢ �a and �{b} ⇢ �b

where �{a} and �{b} are cluster sets [7].

Lemma 6.3. The mapping � in Lemma 6.1 is compatible with ' provided that
h�1(@D) contains no zeros of '.

Proof. We use the notation of Definition 6.2. According to Corollary 5.3, the sets
h�1(h(a)) and h�1(h(b)) are vertical arcs, hence subarcs of � . The continuity of
h and H implies that �{a} is a subset of h�1(h(a)), and similarly for �{b}. The
claim follows.

The restriction concerning zeros of ' in Lemma 6.3 is easily fulfilled by choos-
ing a generic radius for the disk D. We are finally ready to handle the expression
in (6.2), thus completing the proof of Theorem 1.12. The following result is related
to the Reich-Strebel inequality [38], see also [32] for a recent extension. However,
in our Lemma 6.4 the assumptions on � are different from those in [32,38].
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Lemma 6.4. Let X ⇢ C be a domain and U a simply connected domain compactly
contained in X. Let ' : X ! C be a holomorphic function such that

RR
X|'| < 1.

Suppose that � 2 W
1,2
loc (U, U) is continuous proper and compatible with '. Then

ZZ
U

����z �

'

|'|

�z̄

���|'|

1/2
|' � � |

1/2 >
ZZ

U
|'|. (6.6)

Proof. For almost every vertical noncritical trajectory � the mapping � is locally
absolutely continuous on � . Let �� be a maximal subarc of � in U. Denote by a
and b the endpoints of ��. By the compatibility condition the curve � = � � ��

connects two different components of � \ ��. By Lemma 2.4 we haveZ
��

|'|

1/2 6
Z
�
|'|

1/2
=

Z
��

����z �

'

|'|

�z̄

���|' � � |

1/2 (6.7)

because
����z �

'
|'|
�z̄

��� is the magnitude of directional derivative of � along � . In
view of Corollary 2.8 inequality (6.6) follows.

Combining (6.6) with (6.2) yields (6.1), completing the proof of Theorem 1.12.

7. Lipschitz continuity, proof of Theorem 1.14

In this section X and Y are bounded `-connected domains. Suppose h 2 D(X, Y)
is a Hopf deformation, that is,

' := hzhz̄ (7.1)

is a holomorphic function inX. We shall actually prove the following explicit bound

|Dh(a)| 6 72
kDhkL 2(X)

dist(a, @X)
for almost every a 2 X. (7.2)

Let k'k =

RR
X|'| and note the pointwise inequality

|'(z)| 6
k'k

⇡ dist2(z, @X)
(7.3)

which is a consequence of the subharmonicity of |'| in X.
Since the Jacobian Jh = |hz|2� |hz̄|2 is nonnegative, it follows from (7.3) that

hz̄ is locally bounded, specifically

|hz̄(z)| 6
p

|'(z)| 6
k'k

1/2
p

⇡ dist(z, @X)
. (7.4)

The boundedness of hz̄ implies that |hz| is locally in BMO , and consequently h 2

W
1,p
loc (X) for every 1 < p < 1. A similar argument was carried out in [34] in a
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somewhat different context. However, it does not yield the Lipschitz continuity of
h, which we will prove by an entirely different method.

The proof of Theorem 1.14 is preceded by several lemmas. We denote the av-
erage value of a function by an integral sign with a dash. The normal and tangential
derivatives of h are defined as

hN =

1
|z|

(zhz + z̄hz̄) hT =

i
|z|

(zhz � z̄hz̄). (7.5)

Lemma 7.1. Suppose that 0 2 X and h(0) = 0. Let R = dist(0, @X). Then the
circular mean

S(⇢) :=

1
2⇡⇢

Z
T⇢
h =

Z
T⇢
h, 0 < ⇢ < R (7.6)

is a locally Lipschitz function of ⇢. Specifically we have

|S0(⇢)| 6
2 k'k

1/2
p

⇡(R � ⇢)
, 0 < ⇢ < R. (7.7)

As a consequence,

|S(⇢)| 6
2 ⇢k'k

1/2
p

⇡(R � ⇢)
, 0 < ⇢ < R. (7.8)

Proof. Note that S is an absolutely continuous function of ⇢, even more S 2

W
1,2
loc (0, R). Therefore, we can differentiate with respect to ⇢ for a.e. ⇢ 2 (0, R) to

obtain
S0(⇢) =

Z
T⇢
hN =

Z
T⇢

1
⇢

(zhz + z̄hz̄). (7.9)

Combining (7.9) and the identity
Z

T⇢

1
⇢

(zhz � z̄hz̄) = �i
Z

T⇢
hT = 0,

yields Z
T⇢
hN =

2
⇢

Z
T⇢
z̄ hz̄ . (7.10)

This together with (7.4) implies (7.7) and the integration yields (7.8).

Lemma 7.2. Suppose 0 2 X. For almost every ⇢, 0 < ⇢ < dist(0, @X), we have
Z

T⇢
|hN |

2
=

Z
T⇢

|hT |
2

=

1
2

Z
T⇢

|Dh|2. (7.11)
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Proof. Using the identities (7.5) we find that

|hN |
2
+ |hT |

2
= |Dh|2 (7.12)

and
|hN |

2
� |hT |

2
=

4
|z|2

Re(z2hzhz̄). (7.13)

Integration of (7.13) over T⇢ shows that
Z

T⇢
(|hN |

2
� |hT |

2) |dz| =

4
|z|2

Re
Z

T⇢
z2'(z) |dz|

=

4
|z|
Im

Z
T⇢
z'(z) dz = 0.

(7.14)

From (7.12) and (7.14) we obtain (7.11).

Lemma 7.3. Suppose h 2 D(X, Y) andw 2 @Y. If the set h�1(w) intersects some
domain � b X, then it also intersects @�.

Proof. Let � b X be a domain such that h�1(w) \� contains a point a. Consider
a cd-convergent sequence of homeomorphisms h j ! h. For each j

min
@�

|h j � w| 6 |h j (a) � w|, because w 62 h j (�).

Since the convergence is uniform on compact sets, letting j ! 1, we conclude

min
@�

|h � w| 6 |h(a) � w| = 0.

Next we require a Fourier series lemma that can be viewed as a Bonnesen-type
inequality [35].

Lemma 7.4. Let f : T ! C be a function in W 1,2(T). Expand it into the Fourier
series f (ei✓ ) =

P
n2Z

cnein✓ . If

max
T

| f � c0| > 2min
T

| f � c0|, (7.15)

then X
n2Z

n|cn|2 6
99
100

X
n2Z

n2|cn|2. (7.16)

Indeed, inequality (7.16) is apart from the better factor 99/100, a form of isoperimetric
inequality in the plane. We gain this better factor because of the assumption (7.15)
which can be interpreted as saying that the image of f is far from being a circle
centered at c0.
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Proof. We may assume that f is nonconstant. Normalize f so that c0 = 0 and
max

T
| f � c0| = 1. Clearly,

|c1| 6 1. (7.17)

We need a lower bound for |cn| as well. To this end, consider

g(ei✓ ) = f (ei✓ ) � c1ei✓

and observe that

max
T

|g| > max
T

���| f | � |c1|
��� > 1

2
�
1�min

T
| f |

�
>
1
4

(7.18)

by virtue of (7.15). On the other hand,

max
T

|g|2 6
✓X
n 6=1

|cn|
◆2
6

✓X
n 6=1

1
n2

◆✓X
n 6=1

n2|cn|2
◆
6 3

X
n 6=1

n2|cn|2

which together with (7.18) yield
X
n 6=1

n2|cn|2 >
1
48

. (7.19)

Using (7.17) and (7.19) we arrive at (7.16) as follows.

X
n2Z

✓
n �

99
100

n2
◆

|cn|2 6
1
100

|c1|2 +

X
n 6=1

✓
1
2
n2 �

99
100

n2
◆

|cn|2

6
1
100

�

49
100

·

1
48
6 0.

Let the “good” part of X be G = h�1(Y) and the “bad” part be B = X \ G. By
Theorem 1.12 the restriction of h to G is a harmonic diffeomorphism onto Y. Thus
the case G = X is trivial. From now on we assume that B is nonempty. This is only
possible if ' 6⌘ 0.

Proposition 7.5. Suppose that 0 2 X and h(0) = 0 2 @Y. Then for a.e. 0 < ⇢ <
dist(0, @X), we haveZZ

B⇢
Jh 6

99
100

⇢

2

Z
T⇢

|hT |
2
+ 4⇡ |c0|2, where c0 =

Z
T⇢
h. (7.20)

Proof. Fix ⇢ such that the restriction of h to T⇢ is inW 1,2(T⇢). Let M = max
T⇢

|h�

c0|. The change of variables formula (5.2) impliesZZ
B⇢
Jh 6 ⇡M2. (7.21)
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Thus we may assume M > 2|c0|; otherwise (7.20) is immediate from (7.21). By
Lemma 7.3 the mapping h assumes the value 0 on T⇢ , hence

min
T⇢

|h � c0| 6 |c0| <
M
2

.

Thus, Lemma 7.4 applies to the restriction of h onto T⇢ . The estimate (7.16) reads
as ZZ

B⇢
Jh 6

99
100

⇢

2

Z
T⇢

|hT |
2

which implies (7.20).

Proof of Theorem 1.14. We will show that for every point a 2 X

lim sup
⇢&0

��

ZZ
B⇢(a)

|Dh|2 6
16000

⇡ dist2(a, @X)

ZZ
X
|Dh|2. (7.22)

We may assume a = 0 = h(a). Let R = dist(0, @X).

Case 1. 0 2 @Y. The first step is to rewrite (7.20) as a differential inequality for the
function

E(⇢) :=

ZZ
B⇢

|Dh|2, 0 < ⇢ <
R
2

.

Here we restrict ourselves to 0 < ⇢ < R/2 which yields dist(z, @X) > R/2 for z 2 B⇢ .
Since |Dh|2 = 2Jh + 4|hz̄|2, applying the inequality (7.4) we obtain

E(⇢) 6 2
ZZ

B⇢
Jh +

4⇢2k'k

(R/2)2
= 2

ZZ
B⇢
Jh +

16⇢2k'k

R2
. (7.23)

Next, the integral on the right is estimated using (7.20), (7.8) and Lemma 7.2:

2
ZZ

B⇢
Jh 6

99
100

⇢

Z
T⇢

|hT |
2
+ 8⇡ |c0|2 6

99
200

⇢

Z
T⇢

|Dh|2 +

128⇢2k'k

R2
. (7.24)

Combining (7.23) and (7.24) we obtain

E(⇢) 6
99
200

⇢ E0(⇢) +

144⇢2k'k

R2
for a.e. 0 < ⇢ <

R
2

. (7.25)

For notational simplicity we introduce the constant q =
200/99. Inequality (7.25)

yields
d
d⇢

�
⇢�qE(⇢)

�
=

⇢ E0(⇢) � q E(⇢)

⇢ q+1 > �

144 q k'k

R2⇢ q�1 . (7.26)
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Integrate (7.26) over the interval (⇢, R/2) to obtain

1
⇢ q

E(⇢) 6
2q

Rq
E(R/2) +

144 q k'k

(q � 2)R2⇢ q�2 =

2q

R q E(R/2) +

14400 k'k

R2⇢ q�2 . (7.27)

Finally, multiply (7.27) by ⇢q�2 and rewrite it as

��

ZZ
B⇢

|Dh|2 6
2q

⇡R2
⇣ ⇢
R

⌘q�2 ZZ
BR/2

|Dh|2 +

14400 k'k

⇡R2
. (7.28)

We further simplify (7.28) using the pointwise inequality 4|'| 6 |Dh|2.

��

ZZ
B⇢

|Dh|2 6
✓
2q

⇣ ⇢
R

⌘q�2
+ 3600

◆
1
⇡R2

ZZ
X
|Dh|2. (7.29)

This yields (7.22) even with a better constant.
Case 2. 0 2 Y; that is, 0 2 G = h�1(Y). Let r = dist(0, @G) 6 dist(0, @X) = R.
Since h is harmonic in G, the subharmonicity of |Dh|2 yields

|Dh(0)|2 6 ��

ZZ
Br

|Dh|2 6
1
⇡r2

ZZ
X
|Dh|2. (7.30)

If R < 60 r , then (7.30) already implies (7.22). Otherwise pick ⇣ 2 X\G such that
|⇣ | = r . Clearly

��

ZZ
Br

|Dh|2 6 4��

ZZ
B2r (⇣ )

|Dh|2 (7.31)

and the righthand side of (7.31) can be estimated by applying (7.29) to B2r (⇣ ).
Since dist(⇣, @X) > R � r > 59 r , we may apply inequality (7.29) with ⇢ = 2r
and R � r in place of R. This gives the estimate

��

ZZ
B2r (⇣ )

|Dh|2 6
⇣
2q (2/59)

q�2
+ 3600

⌘ (60/59)2

⇡R2

ZZ
X
|Dh|2

6
4000
⇡R2

ZZ
X
|Dh|2.

(7.32)

Combining (7.30), (7.31), and (7.32) gives the inequality (7.22).
This estimate yields the pointwise inequality (7.2) at the Lebesgue points of

|Dh|2, completing the proof of Theorem 1.14.

8. C 1-smoothness of minimal deformations, proof of Theorem 1.15

Throughout this section the following standing assumptions are made on the map-
pings under considerations: X andY are `-connected bounded domains and h : X!

Y is a C 1-smooth Hopf deformation, h 2 D(X, Y); that is,

hzhz̄ = ' 6⌘ 0 in X
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where ' is a holomorphic function. Recall that the convex part of the boundary of
a domain Y is

@cY = {w 2 @Y : Br (w) \ Y is convex for some r > 0}. (8.1)

We designate the domain of regular points of the quadratic differential '(z) dz2 by

X� = X \ {zeros of '}.

Additional assumptions on h will be explicitly stated when needed. The proof of
Theorem 1.15 proceeds by a number of claims and Lemma 8.1.

Claim 1. Let 0 2 h(X), then each horizontal arc ↵ ⇢ ↵ ⇢ X� contains at most a
finite number of zeros of h.

Proof. By virtue of (2.10) we have a lower bound for the horizontal derivative

|@Hh| > 2
p

|'| > 0 for all z 2 ↵. (8.2)

If h : ↵ ! C had an infinite number of zeros there would be an accumulation point
of zeros. Since h is C 1-smooth along ↵, its horizontal derivative would vanish at
the accumulation point of zeros, in contradiction with (8.2).

Claim 2. Suppose 0 2 @Y. Then the preimage h�1(0) is covered by a countable
number of vertical trajectories and critical points.

Proof. The domain X� can be expressed as countable union of '-rectangles com-
pactly contained in X�, see Section 2.3 for the definition and consideration of '-
rectangles. LetR be one such '-rectangle. It suffices to show that the set h�1(0)\R
can be covered by a countable number of vertical trajectories. Let ↵ and � denote
the horizontal edges of R. These are horizontal arcs of ' dz2 compactly contained
in X�. In view of Claim 1, we may and do assume that h does not vanish on
the horizontal edges of R, for otherwise we can replace R by a finite number of
parallel subrectangles of R; simply cut R along vertical trajectories crossing the
horizontal edges ↵ and � at the zeros of h. With this assumption the proof of
Claim 2 will be completed by showing that inside of R there are no zeros of h.
Indeed, suppose otherwise. Then, by Lemma 7.3, the set h�1(0) intersects at least
one of two vertical edges of the rectangle R. By the same reasoning h�1(0) inter-
sects one of two vertical edges of any subrectangle obtained by continuously com-
pressing R with vertical trajectories. This procedure results in a family of vertical
arcs intersecting h�1(0) whose union has positive measure, in contradiction with
Lemma 5.1.

It should be mentioned that a result similar to Claim 2 was proved in [30] for energy-
minimizing mappings between closed surfaces that are smooth except for isolated
singularities.
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Recall that Theorem 1.15 deals with minimal deformations. These are special
mappings for which the Hopf differential hzhz̄ dz2 is real along @X, provided @X is
C 1-smooth. It involves no loss of generality in the proof of Theorem 1.15 to assume
that @X is indeed C 1-smooth. For, if necessary, we could transform X conformally
onto, say, a circular Schottky domain. Our next lemma tells us that no point in X
can be mapped into a convex part @cY of @Y, see (8.1) and Figure 1.2.

Lemma 8.1. Suppose @X is C 1-smooth and '(z) dz2 is real on the boundary of X,
see Definition 2.5 in Section 2.3. Assume that h is C 1-smooth in X. Then

h(X) \ @cY = ?. (8.3)

Proof. Assume, to the contrary, that the set

Bc := h�1(@cY) 6= ?. (8.4)

Consider the “good” subdomain G = h�1(Y) ⇢ X. It is indeed connected by
Theorem 1.12. Let E be the set of points z 2 @G \ X for which there is a disk
D = Dz ⇢ G such that z 2 @D. Note that E is dense in @G \ X. Our first step is
to prove that

Step 1. We have
h(E) \ @cY = ?. (8.5)

Hence, more generally,
h(@G \ X) \ @cY = ?. (8.6)

Proof. Suppose to the contrary that w = h(z) 2 @cY for some z 2 X. Since Y is
convex at w the function u := Re(ei✓h), for some constant 0 6 ✓ 6 2⇡ , attains a
local maximum at z, which yields

ru(z) = 0. (8.7)

On the other hand, there is a disk D ⇢ G such that z 2 @D, h(D) ⇢ h(G) ⇢ Y
and u(z) > u(⇣ ) for all ⇣ 2 D. The Hopf boundary point lemma ( [14, Lemma
3.4], [18]) implies that the inner normal derivative of u at z 2 @D is strictly negative.
This contradicts (8.7). Finally, since @cY is open in @Y and E is dense in @G \ X,
the claim (8.6) follows.

Step 2. The set Bc = h�1(@cY) ⇢ X is open.

Proof. By virtue of (8.6) the set Bc is contained in the interior ofX\h�1(Y). Since
@cY is open in @Y, it follows that Bc is open in X.

Step 3. Every noncritical vertical trajectory 0 that intersects Bc is a connected
component of h�1(w) for some w 2 @cY.
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Proof. The intersection of 0 with Bc is open in 0. On the other hand the vertical
derivative @Vh vanishes a.e. onX\h�1(Y). Indeed, by [20, Lemma 3.8] Jh vanishes
a.e. onX\h�1(Y) and by (2.11) the vertical derivative satisfies |@Vh| 6

p

|Jh| = 0.
Therefore, h is constant along0, say equal tow 2 @cY. On the other hand, by Claim
2, the preimage h�1(w) is covered by a countable union of vertical trajectories
and critical points. We find that 0 is indeed one of the connected components of
h�1(w).

Step 4. A noncritical vertical trajectory 0 that intersects Bc approaches two differ-
ent boundary components of X.

Proof. Recall from the introduction, Section 1.0.1, the components X1, . . . ,X` of
X = @X. Suppose otherwise, that both ends of 0 approach the same boundary
component, say X1. By Lemma 2.6 the vertical trajectory 0 separates two other
boundary components of X, say X2 and X3. Let C ⇢ Y be a continuum connecting
the components 72 and 73 of @Y, in accordance with the correspondence in (1.11).
Then h�1(C) is a continuum [20, Lemma 3.7] that connects X2 and X3 in X \ 0, a
contradiction.

Now we have the required contradiction that proves Lemma 8.1. Indeed 0, being
a connected component of h�1(w) 2 @Y, cannot approach different components
of @X; otherwise its image h(0) would approach different components of @Y by
virtue of (1.11).

To complete the proof of Theorem 1.15 we need one more lemma.

Lemma 8.2. IfX\h�1(Y) has � -finite 1-dimensional Hausdorff measure, then the
set X \ h�1(Y) is empty and h is a diffeomorphism of X onto Y.

Proof. The function hz is continuous in X and holomorphic in h�1(Y). By a the-
orem of Besicovitch [4, Theorem 2] sets of � -finite 1-dimensional Hausdorff mea-
sure are removable for holomorphic continuous functions. Therefore, hz is holo-
morphic in X. It follows that h is harmonic in X, which by Proposition 4.2 implies
that h is a diffeomorphism.

Proof of Theorem 1.15. Combining Lemmas 8.1 and 8.2 we find that the set X \

h�1(Y) has � -finite 1-dimensional measure and therefore h is a diffeomorphism by
Lemma 8.2.

9. Open questions

The Hopf-deformations in Example 3.1 are slightly better than Lipschitz regular.
Namely, their energy functions are continuous. This raises the following question.
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Question 9.1. Suppose that h is an energy-minimal deformation. Is |Dh| continu-
ous?

The reader may notice that the domain Y in Theorem 1.15 cannot be C 1-
smooth. Also, the butterfly domain Y of Example 3.1 has nonsmooth boundary.
These observations lead to the following question.
Question 9.2. Are energy-minimal deformations C 1-smooth when the boundary
of Y is smooth?

In Example 1.2 the energy-minimal deformation h belongs to C 1,1(X) but not
to C 2(X). Thus one may expect the C 1,1-regularity to hold in Question 9.2.
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753–785.

University of Helsinki
Department of Mathematics and Statistics
P.O. Box 68
00014 University of Helsinki, Finland
jan.cristina@helsinki.fi

Department of Mathematics
Syracuse University
215 Carnegie Building
Syracuse, NY 13244-1150, USA
lvkovale@syr.edu
jkonnine@syr.edu
tiwaniec@syr.edu


