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Global smooth solution of the Cauchy problem
for a model of radiative flow

BERNARD DUCOMET AND SARKA NECASOVA

Abstract. We consider a simplified model of compressible Navier-Stokes-Fourier
system coupled to radiation. We prove existence and uniqueness of the solution
for smooth data near a radiative equilibrium.

Mathematics Subject Classification (2010): 35Q30 (primary); 76N10 (sec-
ondary).

1. Introduction

We revisit a model of radiative flow investigated in [12] where the (non-relativistic)
motion of the fluid is described by standard fluid mechanics giving the evolution
of the mass density ¢ = o(t, x), the velocity field # = u(z, x), and the abso-
lute temperature ¥ = ¥ (¢, x) as functions of the time ¢ and the Eulerian spatial
coordinate x € R3. The effect of radiation appears through the radiative intensity
[ = I(t, x,®,v),depending on the vector & € S?, where 82 C R3 denotes the unit
sphere, and the frequency v > 0. The collective effect of radiation appears in the
model as an average with respect to the variables @ and v of a quantity depending
on I: the radiation energy EX given by

1 o . -
ER(t,x) = —/ / 1(t,x,d,v)do dv (1.1)
¢ Js2Jo
and the radiation momentum F R given by

o0
FR(t,x)=// &1t x,d,v) dd dv. (1.2)
Sz Jo

The time evolution of [ itself is described by a transport equation with a source
term depending on the absolute temperature, while the effect of radiation on the
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macroscopic motion of the fluid is represented by an extra source term in the energy
equation evaluated in terms of /. More specifically, the system of equations to be
studied reads as follows:

d;0 + divy (i) =01in (0, T) x R?, (1.3)

3 (0it) + divy (0ii ® ii) + Vyp = divy,S — SF in (0,T) x R?,  (14)
3 (0€) + divy (oeit) + diveg = S : Vyii — p divyii — Sg in (0, T) x R?,  (1.5)

1 - .
—91+&-Vel =Sin(0,T) x R x (0, 00) x 8. (1.6)
C

In the right-hand sides of (1.4) and (1.5) there appear the (radiative) momentum
source

o
Sp(t,x)sz o- S, x,o,v)dodv,
s2Jo

and the (radiative) energy source
x
Sg(t, x) = / / S(t, x,®,v) do dv;
82 Jo

then, integrating (1.6) on (0, T') x R? x (0, 00) x S2, one observes that (1.5) and
(1.6) imply the total energy conservation

1 . 1 . =
0r (Q (§|u|2+6)+ER)+dlvx (Q <§|u|2+e)u+FR)

+ div, (pft +q— Sﬁ) a7
= —ii-Spin (0, T) x R,

The symbol p = p(o, ) denotes the thermodynamic pressure and e = e(p, ¥) is
the specific internal energy.
The viscous stress tensor S is determined by

S =2uD + Adiv,u I, (1.8)

where D = (Vi + V%ii) is the strain tensor and (o, ) > 0 and A(g, ¥) > 0 are
the viscosity coefficients. The right-hand side of (1.4) can be rewritten

div,S = AU+ (A + ) Vi (divyeid) + 2V - D+ Vi divyid. (1.9)
The heat flux g is given by the Fourier’s law
g = —kVy0, (1.10)

with the heat conductivity coefficient « (o, ¥) > 0.



CAUCHY PROBLEM FOR RADIATIVE FLOW 3

Finally,
S =S84+ Ss, (1.11)

where

1

Sue = 04 (B(v, 9) — 1), S, = o, (E /82 1C, &) da — 1) , (1.12)

with B(v, 9) = 2hv3c2 (e% — 1) the radiative equilibrium function where A
and k are the Planck and Boltzmann constants, o, = 0,(v, ¥) > 0 is the absorption
coefficient and o, = o,(v, ¥) > 0 is the scattering coefficient. More restrictions
on these structural properties of constitutive quantities will be imposed in Section 2
below.

System (1.3 - 1.6) is supplemented with the initial conditions

(0,1, 9)(0, x) = (00, llo, Vo) (x), x € R, (1.13)

10, x,v,&) = Ip(x,v,d) forx e R?, & € S%, v eRy. (1.14)

System (1.3 - 1.14) can be viewed as a simplied model in radiation hydrodynamics,
the physical foundations of which were described by Pomraning [42] and Miha-
las and Weibel-Mihalas [40] in the full framework of special relativity. Similar
systems have been investigated more recently in astrophysics by Lowrie, Morel and
Hittinger [36], Buet and Després [6], with a special attention to asymptotic regimes,
see also Dubroca and Feugeas [10], Lin [33] and Lin, Coulombel and Goudon [34]
for related numerical issues. Recall that a simplified version of the system (non
conducting fluid at rest) has also been investigated by Golse and Perthame [22]
(see also [23,24]), where global existence was proved by means of the theory of
nonlinear semi-groups under very general hypotheses on the transport coefficients.

Let us mention that a global existence result has been proved recently in the 3D
setting in [12] for large data under some cut-off hypotheses on transport coefficients,
a global existence result has also been proved in the stationary case in [31] for large
data under different cut-off hypotheses on transport coefficient and that the low
Mach number regime for a system close to (1.3 - 1.14) introduced by Seaid, Teleaga
and col. in [11,46,47], has also been investigated in [17]. Moreover a number
of similar results concerning global existence and asymptotic behaviour for large
times have also been considered in the recent past in the one-dimensional geometry
[1,13-16]. Finally in the compressible but inviscid setting, the existence of a local-
in-time solution has been proved recently in [48] together with the existence of
global weak solutions to the Euler-Boltzmann equations in radiation hydrodynamics
in [30] and the Cauchy problem for an inviscid diffusion model was investigated
in [35].
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Our goal in the following is to prove the global existence of a strong solution
to (1.3 -1.14). As far as a strong solution is concerned, we need to restrict ourselves
to well prepared data in a neighbourhood of an equilibrium. A number of authors
deal with global solutions of the perturbative compressible heat-conducting Navier-
Stokes system, starting with the pioneer article by J. Nash [41]. Among these, let
us quote the works of N. Itaya [28], A. Matsumura and T. Nishida [37,38], Bui An
Ton [7], and recently D. Hoff [25-27] and S. Jiang [29].

In the following, we consider the global existence of a solution of the Cauchy
problem for the system (1.3)-(1.6) near a (radiative) equilibrium, using the methods
introduced by Hoff in [25-27], extending a previous work of S. Jiang [29] who
considered a perfect gas without radiation.

The paper is organized as follows. In Section 2, we list the principal hypotheses
imposed on constitutive relations and state the main result. In Section 3 we derive
necessary LP-estimates for the unknowns (density, velocity, temperature and radia-
tive energy). In Section 4 we give the proof of Proposition 2.3 and in Section 5 we
give the proof of Theorem 2.2. Finally in the Appendix is given, for completeness,
a short proof of local existence of a solution for our Cauchy problem.

ACKNOWLEDGEMENTS. Part of the paper was written during the second author’s
stay in CEA. She would like to thank to Prof. Ducomet for his hospitality during
her stay.

2. Hypotheses and main results

We suppose that the state functions (pressure p = p(p, ¥) and internal energy
e = e(p, U)) are smooth positive functions of their arguments submitted to the

thermodynamical constraint g—; > 0 and related through Maxwell’s equation
de 1 ap
50" o2 (p(g ) ﬂ) 2.1

In order to simplify the arguments, we suppose in the sequel that the transport co-
efficients p, 17, and k are positive constants. Moreover we assume that o,, o5, B are
continuous functions of v, ¥ such that

0<0,(v,?),05(v, ), |0p0a(v, D), [d90s(v, })| < c1, (2.2)
0 <o04(v,})B(v, 1), [0p{oa(v, })B(v, D)}| < c2, (2.3)
o,(v, %), 05, ), 0,v, )B(v, %) <h(v), he LI(O, 00), 2.4

forall v > 0,4 > 0. Relations (2.2 - 2.4) represent “cut-off”” hypotheses neglecting
the effect of radiation at large frequencies v.
It will be convenient to replace (1.5) by the internal energy equation

9;(0e) + divy (oeu) + divyg =S : Vyii — pdivyu — Sg. (2.5)



CAUCHY PROBLEM FOR RADIATIVE FLOW 5

Furthermore, dividing (2.5) by ¢ and using Maxwell’s relation (2.1), we get the
entropy equation

3, (05) + divy (osii) + div, (g) = 2.6)
where S
1 . gV S u-Sp
=—|S:Vyu-— - — , 2.7
‘= ( i1 ) LI @)
where the first term ¢, = 3 (S Vil — Z"ﬁ is the (positive) matter entropy

production. In order to identify the second term we recall [2] the formula for the
entropy of a photon gas

2%k [ .
sk = __3/ / v? [nlogn — (n + Dlog(n + D] dadv, (2.8)
C 0 S2?

where n = n(l) = h ; is the occupation number. Defining the radiative entropy
flux

- 2k [ .
qR:__Z/ /vz[nlogn—(n—l—l)log(n—l—l)]wda)dv, (2.9)
32

and using the radiative transfer equation, we get the equation

8,5 —|—d1vxq ——/ /
S?

Checking the identity log E‘él)‘?l = Zg with B = B(%, v) the Planck function, and
using the definition of S, the right-hand side of (2.10) rewrites as

(2.10)

N
-

§R S_E_u-Sp

k(1 n(I) n(B) .
_Z/o [szE[logmnH_logn<3)+1}““(3‘”dwd” @.11)

— _/ / D log& os(I — I) ddddv
sV n(1)+1 n(l)+1

where we used the hypothesis that the transport coefficients o, ¢ do not depend on
. So we finally obtain

3 (QS + sR) + div, (Qsﬁ + éR) + div, (%) ="+ k. 2.12)

Let us observe after [6] that only the first two terms in the right-hand side of (2.11)
have a definite sign, satisfying the positivity of entropy production rate and that
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the last integral involving Sp is only positive up to a relativistic % correction. This
fact exhibit a lack of consistency of a model coupling a non-relativistic fluid to a
relativistic photon flow.

Let us give now some definitions used throughout the paper. For any second
rank tensor (matrix) we write the complete contractionas M : M = Z? w1 Mik M.
We denote L? := LP(R3) (resp. WP := WP (R3)) the standard Lebesgue
(resp. Sobolev) spaces for p > 1, with norms || - ||z (resp. || - ||wm.r). For a

function depending on space, angular variable and frequency, we will also note L”
for LP(R3 x 8% x Ry). We write || - || for || - [|;2, H™ for W2 and [ f dx for

fR3 f(x)dx.

We denote the vorticity tensor by @ = % (Vyii — V%ii), with components

1
wjj ‘= 5 (Biuj — Bju,-) . (2.13)
The Lagrangian derivative of a quantity f is given by
. d R
fsafzza,f—i—u.vxf. (2.14)
Moreover one has the commutation rule
d .
7 o®Pdx = | o Pdx. (2.15)

Recall the following Euler-Lagrange result (see [25, Lemma 3.2]).

Lemma 2.1. Let ty € [0, T'] be fixed. We define the family of particle trajectories
x(y, 1) by

dx -
E(ys t) = u(x(yvt)vt)v x(y9t0) = y

Let g € L', 7)), g > 0,andlett € [0, T]. Then each of the integrals

/g(x(y,t),t) dy and /g(x,t) dx

is bounded by C times the other, where C is a positive constant.

The effective viscous pressure F is generally defined by (see [19], and also
[25,26] in the constant coefficients case)

F(t) := (VXA_IVX) S—(p—T). (2.16)

It is well defined provided S € L?(0, T; L>(R>; R?)) (see [19]) and the singular
operator rewrites as

(VXA_IVX) =-RiR;,

L]



CAUCHY PROBLEM FOR RADIATIVE FLOW 7

where R; is the Riesz operator with symbol R; (&) = % Recall [19] that as A and
| are constant

(VXA_]VX> 'S

= fg__lm [l% (1 (& Femelui] + & Famelujl) + X5i,j§k-7:x—>g[uk])}

= 2u + V)divy i,

and we get the simple formula

F(t) := Qu+ M) divyii — (p — D). (2.17)

For an equilibrium state defined by (5, 0,7, 7), witho > 0, ¥ > 0and I > 0 with
the compatibility condition 7 = B(v, ), we put

e0 := lloo = @ll + lloo = @llz> + loll 1 + 190 = Dl 1

_ - (2.18)
+ I E§ — ER| 4+ 11Ul + llwoll 4

and

Eo == eo + [ Vxeoll + IVs0ollze + 1V Toll + IVilollze + 9Tl (2.19)

for 3 < a < 6, with
Uo == 0y ' (nAiio + (A + p) Vxdivyiio — Vi p(00, 90)) »

wo 1= wol;=o ,

and

[e.¢]
ER=/ B, 9) dv.
0

Finally for a T > 0, we measure the size of the solution by the quantity

A = sup {lle =8I + 19 =TI + 1717 + | Vil + | V22
t€[0,T]

HIER = ER2 4 i) + ol s + ¢21A017 + 31912} (o)
r (2.20)
+/ [IV2i12 4+ 19012 4 190l 4 12 + 1912 + 1 )12
0

HIAD I + Vil + IVt |2 + @IV |2 + [V 12} o) dr,

where ¢ = ¢(¢) := min{r, 1}.
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The main result of the present paper can be stated as follows:

Theorem 2.2. Let (00—, to, %o — 0, Ef — EX) € H3(R?) with inf 99 > 0. Then
there exists a positive constant €1 < 1 depending only on the physical constants
such that if Eg < €1, the Cauchy problem (1.3 - 1.6), has a global unique solution
(0, u, 0, I) satisfying

(Q - Es ﬁa 19 - 53 ER - ﬁ) € C([Oa OO), H3(R3))a

&, 8,9 € C([0, 00), H' (R*)) N L?([0, 00), H*(RY)),

d0 € C([0, 00), H*(R?)) N L*([0, 00), H*(R?)),

_ 1_ R TR l— .
supllo —@llze < z 0, sup[|[E™ — Ef|p~ < = E¥, inf 9¥(x,1) > 0.
>0 2 t>0 2 R3,R+

Using the same strategies as in [25] and [29], the proof of Theorem 2.2 will be
achieved provided that we prove a local existence result for the Cauchy problem (1.3
- 1.6), on a small interval [0, T, ], which will be obtained using a fixed point theorem
(see the Appendix), and provided we prove suitable global estimates allowing to
continuate the solution beyond 7.

These a-priori estimates are the matter of the following proposition:

Proposition 2.3. Let (o, u,®, 1) be a smooth solution of (1.3 - 1.6), defined for
t € [0, T]. Then there exist positive constants ¢ < 1 and K depending only on the
physical constants such that if e < € then

A =K, swp o —Blx + 010 = Flix + | EX — EF) 1]
te[0,T]

< Key,

and for all g € (2, 00)
{lo(T) =@l + 19(T) = Fla + 1F D)o + NERT) = ER |z} > 0

as T — oo.

Our main goal in the following will be to prove Proposition 2.3. As our sys-
tem is a perturbation of the viscous compressible Navier-Stokes system studied by
S.Jiang in [29], we essentially follow his strategy (see also the closely related works
of D. Hoff [25,26] and [27]) and insist only on the difficulties involved in the ra-
diative coupling. As previously evoked, once we have shown Proposition 2.3, the
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proof of Theorem 2.2 will follow the lines of the proof in [29, Theorem 1.2] so we
will only sketch its proof in the last section.
3. A priori estimates on radiative and hydrodynamic variables

Let eg < 1 and assume that (o, 9, I') satisfy
lo(x,t) =3l <C, ¢@)|9 —9| <C, |[ER—ER| <, 3.1)

where C < % min{g, ¥, ER},forallx e R3, 1 € (0, T).

3.1. L?-estimates for density

We will show in this section that sup,- [0 — ol|L~ and fOT llo — @Hi4 dt can be
bounded by suitable powers of ¢g and A.

Lemma 3.1. Let 1 < p < 0o. The following estimates hold for the velocity i and
the effective viscous flux F

IVl <C (IFllzr +llolie+llo—alie+10 =D ee+I1I=TlLr),  (3:2)

IVeFlr <C (Wnu + 10 = Fllee + 11 —7||Lp) : (33)
t
[ 0PI ds < caren, (3.4)
0
t
/ IF || ds < CAYA(D), (3.5)
0
t t
/ IVyid : Viid|?ds < C (eg + AX(T) +/ o : w||2ds> : (3.6)
0 0

Proof.
1. Applying the divergence operator to (1.4) we get after (2.16)
Ap = divydiv,S — divyoii — divy SF. (3.7)

Then
AF = A (VXA_IVX S—(p— ﬁ)) — divy0ii — divy S
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As T and the radiative coefficients are independent of w, we have

SF. 1) = Sp@, 1) — Sp@, 1) = / f [St, x,®,v) =] ddv
/2/ O[Z@, I, x, &, v) — (v, $)I]do dv
S

+// ca)[oa(B—B)+aS(i—i)]da)du,
Sz Jo

with (v, 9) = o,(v, 9) + o5(v, ). Taking Fourier transform implies, after
(2.17)

£i&j §i&j
[HE 1§12

Using the Hormander-Mikhlin theorem (see [21,45]) with Fourier multiplier
m(E) == %8 we find (3.3).

0jFxoselFl = ]:x%g[ _u] Froe |:§F —E]

2. Estimate (3.2) is proved in the same stroke by introducing the vorticity and the
definition of F in (1.4). In fact checking the identity

O+ 20 Al = V. F + O+ 2u)divoo + Vo (p— ) — Sk + Sp. (3.8)

observing that, using a Taylor expansion, p — p rewrites

1
m@ﬂy—maawzf[@—§m¢§+ﬂg—@ﬁﬂ
0 (3.9)

+@ — D) py(@. 9 + s —))] ds
and taking Fourier transform in (3.8), we get

&i&; &k&i
— FioelF1+ (A +2u)—
g2 eI G20

D &
g Fimelp =P g P [ = ]

Applying once more the Hormander-Mikhlin theorem with the same Fourier

multiplier m (&) ";lg ,we find (3.2).

3. Estimates (3.4) and (3.5) follow from the definition of A(T).

A+ 2/L)fx_>g[8iuj] = fx—)f[a)jk]
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4. Estimate (3.6) is a consequence of (3.2) and (3.3).

Then we can estimate fOT lo — @H‘i4 dt. O
Lemma 3.2.
4 r 4 4 2
L swlo—allts+ fo lo — B, di < Cle + A(TY). (3.10)
t>0
2. sup [lo — 2l < Cleo + AV*(T)). (3.11)
t>0
Proof.

1. Using the definition of F, we rewrite (1.3) as
d _ —
A 420 (e —0) = —eF —elp—P) (3.12)
and multiplying by (0 — )3, we get
1 d —\4 —\3 — —3
7 A+ -0y =—ele—0)F —elp—Pp)e—o).
Using the previous decomposition
. 1
P )= p@ D =~2) [ %r@-+se-2.9)ds
1
+ @ =) f dyp@, 0 + s — 1)) ds,
0

and observing that, by (3.1) and thermodynamical stability

dp@+se—0),9) >Ci(9),
_ _ _ (3.13)
|09 p(@, 9 +s(® — )| < Ca(0. ),

for two positive constants C1, Co. We get after (3.1)

1 d 9] £
Zoa2w) Lot Cio—at< S o—a)*
4(+u)dt(g o)+ 12(Q 0) _4(9 0)

fa) _ _
+C8F4+Z (0—0)*+ C. (9 =),
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Choosing ¢ < %, integrating on a fixed particle trajectory x(y, t) and using
Lemma 2.1, we get

@—aﬂammn+ /Q?Qﬂﬂyww%

; + 2 (3.14)

< (0o(y) —@* ti oo, /(F4+(l9 NN (x(y,5), ) ds.

Applying Lemma 3.1 and using the definitions of " and A(T") and the inequality
lwll s < Cllwll'/*|Vw|*/#, we have

t

/XF“Hﬁ—ﬁﬁu@JL@m
0
t J—
< [ APIVFIE 419 =TV ) (300,99 s
! J—
SCA{OWJW+M—§WHW—ﬂD
x@wﬁHw—EﬁyHu—N;)kuwxww
4 [—
+C [ =TV} 5,950 ds

t
SCAG{é(WW+M%ﬁW+Hﬁ—mV+W—Jh)ﬁ
< CAX(T), fort e [0,T].

Plugging into (3.14), integrating on R? and using Lemma 2.1, we get (3.10).
2. Suppose first that 7 < 1 and integrate (3.12) on trajectories. We find

llo —ollLe < lloo —ellree

o ! _ -
- Flljeo+C — o4+Co||[0—1| o) ds,
+A 2% (|| (3 1lle —ollL 2|l (73 ) s

SO

t
m—ahwsm+c/ﬁm—§mwm
0 (3.15)

t
+C/ (IFllzoe + 119 — D liree) ds,
0
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forO <t < T < 1. The last term is bounded as follows:
t —
/O (IF I + 19 — Fllz) ds
t . J—
< C/o (WF I+ Niiliza + 19 = Bll2) ds
t J—
< c/o { (nwsidl* + e =21 + 1o — 91"

x (WP 4+ 19 = BIP 4 11 = T)) } ds

t . . t . 1/2
+ [ A s+ </ (12 =PI+ V.2 1P+ 1222) ds)
0 0

=AM (/Ot (niin®?) ds>3/8
+C (/Ot <|If}||2> ds>1/8 </O’¢,—3/4(s) ds>1/z </Oz (¢||Vxﬁllz> ds>3/s

+ CA(T)'/?

< CA(T)'.

Plugging into (3.15) and using Gronwall’s inequality we get (3.11) when 7" < 1.
For T > 1, multiplying (3.12) by o — 0, we get

1 d
5 O-+2m) —(0 - 0)> = —0(0 —0)°F —o(p — P)0 —2)*
We get after (3.1)

d _2, 0C; 2 2 =2
—(0 — — (0 — <C( Fll5ec + Co||0 — O oo).
dt(Q 0) +A+2/L(Q 0)" < C(lIFllz= + Call Iz

Reasoning as above by integrating on a fixed particle trajectory x(y, t) and using
Lemma 2.1, we get

t . —_—
le=2l3~ < lloo—al}+C /0 e P (IF T+ i+ 19 = 1. ds.
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with 8 = A§+C21;L . Then

lo = 2l3~ =< lleo — aliw+C sup (IFI2EI2+ 19 = B3, ) @)
1,T
et (3.16)

t . .
+C [ (WP + 19,817 ds = C+ A,
0
for 1 <t < T, and estimate (3.11) then also follows for 7 > 1. O

3.2. Estimates for the radiative quantities

Making use of the “cut-off”” hypothesis (2.2), we first deduce a uniform bound

0<I(t,x,v,0)

<c(T) (1 + sup Io) 3.17)

xeQ, v>0,0eS5?

<c(T)(1+ Ip) forany ¢t € [0, T].
Observe that hypothesis (2.4) together with (3.17) yield
ISEllzoo(0,7)x2) + ||§F||LW((O’T)XQ;R3) =C, (3.18)

which, combined with hypothesis (3.1), implies

12
+H—SF

C. 3.1
5 =< (3.19)

1S
5 OF

L®((0,T)x Q) L0, T)x 2R

Finally using a result concerning the velocity averages over the sphere S? estab-
lished by Golse et al. [23,24], see also Bournaveas and Perthame [5], and hypothe-
sis (2.4), we have the following result (see [23]):

Lemma 3.3. Let I € L9([0, T] x R"t' x8%), 9, +w- VI € LI([0, T] x R x
S?) for a certain q > 1. In addition, let Ip = 1(0, -) € L®(R"! x 8?). Then
[ = f I(-,v) d®
32

belongs to the space W*4([0, T] x R"*1) for any s, 0 < s < inf{1/q,1 — 1/q},
and
I 1lws.a < cUo)(Tlla + 101 + - VI|La).

Remark 3.4. Note that improved average lemma techniques have been developped
in a recent work of Berthelin and Junca [4].
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Lemma 3.5.

0 —4
1. sup/ / f |1 —1|" dodv dx
10 JR* Jo Js2

T [ —_u4
+/ / / / |1 —1|" dodv dx dt < C(ej + AX(T)),
o JR o Js2

2. sup||ER — ER|1~ < C(eg + AV3(T)). (3.21)
t>0

(3.20)

Proof. The proof is very similar to that of Lemma 3.2, so we only give the main
lines.

1. From the transport equation (1.6), we have

1 _ . _ _
Zonl - D+ 2 div, (w V(I — 1)4) ¥ (6, + o) (I —T)*
=0,(B=B)YI -1 +0,(I-11-1)>.

Integrating with respect to @, v and x and using Young inequality we find

o° —4
sup/ / / |1 —1[" dodvdx
=0 JR* Jo Js2
T [e9) —u4
+f (aa+as)f/ /|1—1| dé dv dx dt
0 R*Jo Js2
T o) 4
58/ aa// /|1—1; dé dv dx dt
0 R*Jo Js2

T —4
+ce[ / |9 — 9| dxds.
0o JR®

Observing that

T o T _ T
/O | —9||,4 dsf/o |9 —7| ||sz9||3ds§CA(T)/0 V2|12 ds,

we get (3.20).
2. Suppose first that T < 1. From the transport equation (1.6), we have
& (I —T) +divy (cd - VoI) = 04(B — B) —a,(I — 1) +o5s(I — I). (3.22)

Integrating with respect to @, v and using the characteristics, we have

RS -~ —_— t J—
IER — ER|| 00 < |EE — ER||1 + C/ 19 — Do~ ds. (3.23)
0
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Observing that
t _ ¢ —
/ ||l9—l9||LocdS§/ ||29—29||H2ds
0 0

t
<C (/O (19 = B2+ 19012 + 1 A212) ds)

< CA('?,

1/2

we get
|ER — ER|| = < CA(T)'/.

Plugging in (3.23), we find (3.21). For 1 <7 < T > 1, using the method of
characteristics, multiplying (3.22) by e*/(I — I) and integrating with respect to
, v and t, we get

_ _ t _
IER(t) — ER|5 o < IER(1) — ER|2 o + C/ e DY — Tl ds,
1
with ¢ = 1(04 + 0y). Then

|ER BRI} < IEFO) = ERI3x+C sup (19 = F1%, @) +14917) (),
se[1,T]

so we conclude that
IER — ER |} < C(ef + A(T)),

for 1 <t < T, and estimate (3.21) then also follows for T > 1. ]

3.3. L?-estimates for vorticity, velocity and temperature

In the spirit of [29], we have vorticity-velocity estimates. We will adopt the slightly
incorrect notation w” for (w;x)?

Lemma 3.6. The following bounds hold:

T
sup (|}, + / (leols + olSe) dr = € (e + 4% + 4%), (3:24)
tel0,T] 0

T
/ IVl dt < C (eg A3 4 A3) : (3.25)
0
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Proof.

1. Applying 9 to equation (1.4), we get

d .o
paaku,‘ = UAOu; + (A + ) o;divu
— 0o Ui — 00k ((il - Vy)u;) — dip — % SFi.

Subtracting the same relation with k <> i we have

d . .
P @ik = 1Awik — 0 tii + 30 i (3.26)

+ 0 [0 (i - Viug — 0 (i - Vi)ui | — % Spi + 9; Sk

Multiplying by (@ : w)w;x and integrating by parts on [0, ] x R3, we get

||a)||L4 / /a) |V a)l dx ds

< C(ef + A%

. . . (3.27)
+Cf / |qu|2|w|3+|u||a)|2|an)| +|a)|3|qu|) dx ds
0

+C > (SF; — 0;Spy) dx ds| .

After the definition of F, using the Gagliardo-Nirenberg inequality, we find

t t
/ /w4 dx ds < / / (la)lm/3 + |a)|6> dx ds
0 0

t
scﬁomwwwwﬂwmﬂds
t
5cﬂ“+cfumﬁw.
0
So, adding [; [ (|ol* + |w|®) dx ds to (3.27), we get

t
leoll] 4 +/0 /w2 (|w|2+ ol® + |wa|2) dx ds

t . C t
§C<e(2)+A2+A5/3>+8/ Vil s ds—l—;/ lwll® ds
0 0

t
+C/ /(Iﬁ|2|w|2+|w|3|vxﬁ|) dx ds
0

t
+ ‘/ /(a) :w)wik (0kSF; — 0;SFy) dx ds
0

(3.28)
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Integrating by parts in J := f(; [ @?wik((SF — SF);)—3i(SF — Sp))| dx ds,
we see that

t
J = —2/ /ak (wap@apwik) (SF — SF)i dx ds.
0

Then

t
[J|<C |:e(2) + Z/o / |0k (wa,swaﬂwik)|2 (SF — Sp)i dx dsi|
J

and using (3.21)

t __
|J| <C [e§+ sup {f lo|* dx / /|an)|2dx ds + |[EX — ER||LOOH
[0.7] 0

=C(f+47).
Plugging into (3.28), we get

t C t
|Q|gc(e3+A2+A5/3)+sf loll*, ds+;/ loll ds
0 0

t . 2/3 t 1/3 t 1/2
+C</ f||ﬁ||z3 ds) (f ||a)||6ds> +CAl? (/ ||a)||6ds) .
0 0 0

Applying now Gagliardo Nirenberg’s inequality, we get

t t
[ [l ax <ca [ [ jorvio ax (329)
0 0

t
/ / i35 dx < CA>>, (3.30)
0
then plugging (3.29) and (3.30) into (3.28), we obtain

and

t C t
ol +/O (||w||j4 + ||w||fL’6) ds < — (eg + A4 AV 4 8/0 loll*, ds
and taking ¢ small enough, we get (3.24).
. After Lemma 3.1
Vil < C (I1F Il + lloll s + e —@ll+ + lle — 2l 2) -
and , .
/ | Vyii|l 4 ds < C <e(2) + A2) + c/ leold, ds.
0 0

Using (3.24) gives (3.25). ]
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Lemma 3.7. The following bound holds:

sup (lle =@ + 2 + 12 = 912 + | EX — EF|1?)
tel0,T]

T
+/ (IVaiil2 + 19:017) dr (331)
0
=C(f+A% 4 A%).
Proof.

1. Let us consider first the case T < 1. Multiplying (1.4) and (1.5) respectively by
i and ¥ — ¥ and integrating by parts on [0, T] x R3, we get

t
il + 119 —z9||2+/0 (IVaiil + 1V.212) ds
t
<ci+ [ (lo—alP +19 ~71R) ds
t —_—
+C/ /(|vxﬁ|4+ 19 = 7)) dx ds
0

t _ t R

//(z?—z?)Sdeds //ﬁ-SFdxds
0 0

where the last two terms are respectively bounded by C ( fOt 9 — 9% ds + e%)

(3.32)

- +

’

and C (fot ||| ds + e%). Multiplying the equation ¢ = —p div,i by 0(0 — 0)
and integrating on [0, T] x R3, we get

2 ' 2 L 2
le-alP =C [ le-aPds+; [ 1%l as
0 0
Adding to (3.32) and applying Gronwall’s inequality, we find
2 2 =12 ' 2 2
lloe —oll” + llull”+ 10 =2 —i—/o (IIqull + V0| ) ds
<C (e§+A4/3 +A3) ,

forany0 <¢ <T <.

2. When T > 1, we consider [21] the Helmholtz function

Hgz(o,0) = [e(o, ) — 9s(0, )],
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and from (1.7) we have the energy identity

d (1. _ _ = 5T
T [5 i@’ + E® + Hy(0,9) — (0 — 0)3, Hz(0,?) — Hy(@, ) — 2998} dx

—/ﬁ-S‘Fdx.

From the equation of entropy we get

2
_/ﬂpsdx—/{ﬂ[ (divyii)? + 2uD : D]+ z?'vﬁﬁ' }dx
(3.33)

+/g<ﬁ-§F—SE> dx.

Recalling the definition of the radiative entropy production rate

.S
v

1 n(l) n(B) -
/0 /Szg[log 2D+ 1 login(B)+1:|aa(B—I) dwdv
— k—f}/w/ Hiog M joq D Vo (7 1) daav.
hJo Js2v n(1)+1 n(l)+1

plugging into (3.33) and integrating on [1, t] x R?, we find

<

9 ok

Il
|

RIS

-9
oo

/ [% i’ + Hy(0,9) = (@ = )9, — Hy(@, 9) + EX — #s* —ﬁ] dx
+§/1/ v (di _’)2_|_2 D:D+ §|Vx79|2 dx d
1 5“ Wtk H K 52 xds
kS ! 00 1 n(l) n(B) )
7/ // fgz; |:10g n(I)4-1 _IOgn(B)+1:|Ua(B—I)dwdv dx ds
./// / ) — log n"(l) O's(i_l)dc_bdvdxds
sV n(1)+1 n(l)+1
:f[z + Hy (0, 9) = (@ — @) — Hy(@ 9) + E - ESR} dx

t=1
—/ﬁ'gp dx.

Using the convexity of the functions Hy (o, ?) — (0 — ©)d, — Hy(0, 9) and
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ER —9sR — ER and hypothesis (3.1), we conclude that
sup (llo =2l + I + 19 = 917 + | EX — ER?)
t€[0,T]
T
+/ (IVaiil + 1V.212) dr = € (& + A%+ 4),
0

forT > 1. L]

3.4. Estimates for derivatives

Lemma 3.8. The following bounds hold:

T
Lo sup (IVAl2+ 1901 +f (Nt + 1317 ar
tel0,T] 0 (3.34)
<C <e§+A4/3 +A3),
T
2. / IA9|? dt < C (eg +AY3 4 A3) , (3.35)
0
T
3, f IVeo|?dt < C (e§ A3 4 A3) . (3.36)
0

Proof.

1. Using the formula

t t t t
//fgdxds=/fgdx —/ /fgdxds—/ /fgdivxﬁdxds,
0 0 0 0

multiplying (1.4) by i and (1.5) by 1, adding and integrating by parts, we get

/Q (1712 + 619192) dx

d . o
- _E/{,L|vxu|2+(x+m(dwxu)2+K|W|2} dx

—/(pr-ﬁ+§SE+ﬁ-§F> dx

+c/ {ﬁ2|vxﬁ|2+|vxﬁ|4+|vxﬁ||vxﬁ|2+|vxﬁ|3} dx.
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Integrating in ¢ and using Young’s inequality we have

= t
o 5 : 1 -
5/0 (10 + e99?) dx = Cef — 5 (ul V> + V2 1?)

t
+/ /{(p—ﬁ)divxﬁ—SEzé} dx
0
t
+C/ /(w —§|4+IVxﬁ|2+|Vxﬁ|4+|sz9|8/3> dx ds.
0

Now observe that

l .
//(p—ﬁ)divxﬁdx
0
d d t _
Sf /(P—ﬁ)adivxﬁdxds+f /(1+|l9—z9|)|Vxﬁ|2dxds
0 0
d ! t
< /(P—ﬁ)—divxﬁdx —/ /p'divxﬁdx ds
dt o Jo
t
— / f p(divyii)® dx ds
0
d ! t
< /(P—?)—divxﬁ dx +/ /pQQ (divyii)? dx ds
dt o Jo
t 3 t
—/ /pﬁl?divxﬁ dx ds—/ /p(divxﬁ)z dx ds
0 0

_ — 1 .
< C(G+llo =212 +119 —FI) + JulVial’

1_ e,
+ —oep | 1P"ds
4 0

t
+Cf /(Iz?—5|4+lvxﬁ|2+|vxﬁ|4) dx ds.
0

(3.37)
Let us estimate the right-hand side. We first find

t .
‘/ /(p —Pp)div,i dx
0

1
< C (e + A+ A7) + Vi
| t (3.38)
+—§e_§f 13112 ds.
4 0
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We also have

t
/ /'Vxlﬂg/’j dxds <C (e(z) + A4/3 + A3>
0

t
+C/ IV Y3 A0 ds
0

(3.39)
< C(e§+A4/3+A3+A5/3>
= C(G+ A"+ %),
t' ] t .
/ 9 SE dx ds 5ce§+zaeﬁ/ 191 ds, (3.40)
0 —Jo
and
r 1 [
/ USr dx ds 5Ce§+§§/ llit||? ds. (341)
0 0

Plugging (3.38), (3.39), (3.40) and (3.41) into (3.37), we get (3.34).

2. Multiplying (3.26) by w;;, integrating by parts and using (3.34) gives estimate
(3.35).

3. Finally (3.36) follows from (1.5) and (3.34). O

Lemma 3.9. The following bounds hold:

T

1. sup ||ii||2+/ IVyii )2 dt < C(e§+A4/3+A3), (3.42)

t€l0,T] 0
. T .

2. sup ¢ ()|19)? +/ d($)|IVeD > dt < C (eg + AY3 4 A3) . (343)

tel0,T] 0
3. sup 2| AV < C (eg LAY A3) : (3.44)

t€l0,T]

Proof.

1. Applying % to the momentum equation (1.4), we get

0ilj = pu{Aduj + divy i Au;} + (A + 1){8; (divyd;id) + div, (idd;divyii))

—3j9p + divy(iid; p) — Sr .
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Multiplying by i and integrating by parts, we get
o ! :
S il + f [ (u Vit ;24 (0 + M)(divxu)z) dx ds
0
t .
:/ f(k+u){8kuj8jukdivxﬁ — (divy i) (divyid)? + Bkﬂjajukdivxii} dx ds
0
t . . .
- / / { pdivi + p(ivaiidivii — oo jux — it Se ;| dx ds.
0

So we get

t
||»zj||2+f0 fuvxajnzds
t . ) .
§Ce§+cf /{|Vxﬁ|4+|ii|2+|19|2+ 02|vxﬁ|2+|vxﬁ|2+|ER|2} dx ds.
0
Using (3.1) and Lemma 3.8, we get (3.42).

2. In the same stroke, applying % to the energy equation (1.5), we get

0ep ¥ = oepdivyii — 0egp 0D — 0egp D — [9pow© + (py + Pppsd)] divyii

L d d .. . d .
= Opydivii +2u - (D : D) + XE(dlvxu)z e (AD) = S,

or
oest = pep O divyii + Qzegﬁbdivxﬁ — ey’
+ 00 poo (divyid)® — (py + Opyo)Ddiveii — ¥ pydivyii
+2uD;; [3iu'j + 0ju; — OjuyOku; — a_,-ukaku,-]
o+ 20divai [divi — e 0jue | + e (AD — A div,ii) - S
Observing that

P . 1 1 S | .
oesgd =2 Qawewz} +5 o¢'esd? — 3 0 pegy ¥ 2divii + 5 od'essd’,

and that

o0
Sg = / / c {(aﬁoadivxﬁ - Qaﬂaaz'?) (B—=1)+o0, (879819 - I)} do dv,
0 S?
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multiplying by ¢ (¢)%, integrating by parts on [0, f] x R, using (3.1) together
with Lemma 3.8 and (3.42) we obtain

1 . 4 .
Efg(]ﬁeﬁz?z dx+/ fK¢|Vxﬁ|2 dx ds
0
t
§C/ /[|z§|2+|1|2] dx ds
0
t
[ [ o {01 (019,72 + 19,35 +1P + 19,7115
0 (3.45)
191Vt + Vil Vil ) + V21V, 012 dx ds
t
< C/O 1912+ 1712 + Vil + @11 Vi1 ] ds
t —— .
+c/ /¢[(|be7|2+|z9—§|2+|ER—ER|2>|0|2+|Vx19|2]dxds.
0

Now observing that

t t
f / wf® dx ds < / (||w||‘;4 + ||w||§6) dx ds <C (eg LAY 4 A3) ,
0 0

and using Lemma 3.1, we get

t
/ /<|Vxﬁ|5+ |9 —EP) dx ds
0
t -
< /0 (||vxF||25+ 9 — 01 s+ |EX — ERD s+ ol s+ lo —a|‘;4) dx ds
2 4/3 3 1/4 ! =02 2 9/4
= C(+ A"+ 4%) +caV f (il +1v,012) " dx ds
0
5C(e§+A4/3+A3),
so we can bound the second term in (3.45) as follows:
t e .
/ f¢ [(mez L1 — TP+ |ER - ER|2) 1912 + |vxﬁ|2] dx ds
0
t t
<C (eg + AY3 4 A3) + C/ & P33 VD ds + CA/ |AD|? ds
0 0
5C(e§+A4/3+A3>.

Inserting into (3.45) we get (3.43).
3. Using the energy equation (1.5), (3.1) and (3.43), we get (3.44). ]
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Lemma 3.10. There is a positive constant C such that the following inequality
holds

AT =C (e + A(T) + D)) (3.46)

Proof. The proof follows by combining the definition (2.20) of A(T") and the esti-
mates in Lemmas 3.2,3.6, 3.7,3.8 and 3.9. O

4. Proof of Proposition 2.3

As one checks that A(0) < 2C e(z), and due to the continuity of T — A(T), it follows
from Lemma 3.10 that the inequality

A(T) < 2Cé} 4.1

also holds for any T > 0, provided ¢ is small enough, say ey < 1(C).
Using Lemma 3.2 and (4.1) we get

sup {llo = 2l + W1 = Tl + | EF — Ellu |

t>0
< Cleg+ AX(T)) + Csup {pO)[|® — Tl + | Vad I~ + 1A [} (4.2)
t>0
1

< Cleo + AV3(T)) < e < 3 min{ i/, 9}

provided that

. il v
eo < min { n(C), S_ﬁ’ 3_ﬁ = €.

So for data such that ¢g < ¢ and provided that (3.1) holds, estimate (4.2) is valid.
Since (4.2) is true for + = 0 and holds also for any 7 > 0 after continuity of ¢ and
¥}, one sees that (4.1) is also valid for any 7 > 0. Then provided that ey < € , one
concludes that (4.1) and (4.2) are valid for any 7" > 0.

Now using the Sobolev imbedding theorem, we deduce that

#2(1) <||vxﬁ||j4 + ||ﬁ||‘{oo) <Cé? foranyt € [0, T], 43)
and for T > 1

10/3 <1110/3 = =
IFIEE + 10 =L < € (112 + 1Vl + IV 12 + a0 1)
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So, multiplying (3.12) by sgn(o —0)|o — 2|”/? and integrating by parts on [1, T] x

R3, we find

—,10/3 — —,10/3
o(T) —al, 2> < e Dio(1) —al} %

T
+C / T (IFIEE + 19 = L) dr
1

T
SCe_V% +C/

r
2

(N2 + 19l + 1Va212 + 1 A2 12) dr,

gPete™)  which shows that [|o(T) — Gl — O when T — co. As
one checks that t — [ Viil|® + [|[Vx?|? and t — & (|V,ii|® + ||V, 9]|?) are
in L'(1, 00), we also see that |V u(T)||> — 0 when T — oo and also that
IV (T)II> — 0 when T — oo. Ast — (|li], llo —ell. lllz>. le —@llL=)
are uniformly bounded for ¢ > 1, we conclude that ||u||z ¢ — 0 when T — oo and
le —ellLs - 0 when T — oo.

Finally, multiplying (1.6) by I — T and integrating by parts on [1, 7] x R3 x
S? x Ry, we find

with y =

I =T <Dy -1
T
—8(T—1) 52
+C/] ¢ loall g, . qvyxro®, a1 BIL®R, qnyxre®?, an P —? 172,

with § = c(o4 + oy), which shows that ||1(T) — I|| - 0 when T — oo, and

consequently by integrating on R3 || ER(T') — E|| — 0 when T — oo, which ends
the proof of Proposition 2.3.

5. Proof of Theorem 2.2

In this section, we suppose that the initial energy is close to equilibrium: we assume
that ¢p < ¢ where the ¢ is the same as in the previous section. Following [25], we
define

BT = sup (IVaol® + IVsel) 0)
tel0,T]

o[ =112 R TR
+/0 (||19—19||Loo+||E —ER||LOO) ds
$(T) . g
+ /0 (IVxell + [V20l% + [ Veiill o) ds

max{1,T} 5 s
+/ (IVzel? + 1Vl ) ds.
1
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First note that, applying d; to equation (3.12), we get

d o
(A + 2M)Ean +00pp(0, ) 90
= —00;F — Fdjo — [9,p(0.9) — d,p(@. 9)]dj0 — 0dsp 3;9 — (p — P)dj0

— (A +2) 0 ugdko.

Multiplying, for p >2 and m €N, this identity by sgn(d;0)013;01”~!l0"/?d;0l7,,
integrating on R? and using Holder’s inequality, and the definition of F we find

d o
(h+ zmangwamuﬂ +3,p@, D) lle"/7d;017,

< C{lle —@llzee + IVyiillzee + 19 = Flirse + IIFliLee} 18017 (5.1

+C (Wil + 10,215 + 19 =B + 11 =TI ).

Consider the case T < 1. Taking m = 1 and successively p = 2 and p = «,
summing, integrating over [0, ¢] for # < T < 1 and using the definition of B(T),
we have

T
sup (IIVxQI|+IIVxQIILa)+/ (IVxell + IIVxellLe) ds
1€[0,T] 0

(5.2)

T
SC(E0+B)+C/ (VoI +1AD ) ds < C (Eo + B).
0

When T > 1, using equation (1.5), estimates (4.1) and (4.2), and the elliptic regu-
larity of uA + (u + A)V,div,, we get

Vil = € (Vi + | Vil + 1| Vil o)

< CEo+C (419 =TI+ 0 =T+ 1%+ 0561)

+C (liillze + 19 = Fle + 17 = The + 1V pllze + 15Fl1 e
= C (Eo+ B2 + Vi)

Taking m = 1 and successively p = 2 and p = « in (5.1), summing, integrating
over [1,¢] fort < T < 1 and using the definition of B(T) together with bounds
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(5.2) and (5.3), we now have

T
sup  (IVz0ll + [1Vxoll o) +f (IVsoll + IVsollze) ds
tel[l1,T] 1
< C (IVsell + IVsellze) (1)
T
+C/ [(Eo+ B2+ 195+ 1V:0114+ 19:11) (195012 + 1 ValFa) - 54
1
HI Vil + V201 + il + Va0 | ds
<C (Eg + BYX(T) + B2(T)> .

Taking (5.2) into account, we finally get

min{1,7) 2
sup_(1Vx0l + IVsolle) + {/ (19:01l + IV:elle) ds}
0€[1,7T] 1

max{1,T}
[ kel Vel ds = € (B3 + BT + D)),

forany T > 0.
From the Sobolev imbedding theorem, we have

min{1,T} _
/ 19 — D)3 ds < CEZ, (5.5)
1

and by the same arguments leading to (5.2), one finds

min{1,7}
/ Vil wds < € (Eo + BYH(T) + B(T)). (5.6)
1
Combining (5.4), (5.5) and (5.6) to (4.2), we get
B(T) < C (Eg + BYX(T) + BZ(T)> .

As B(0) < 2C E2, we finally obtain:
Lemma S.1. The following bound holds

B(T) < 2CE} (5.7
provided that Eg < min {%, e} := &', where ¢ is the small number in (4.2).

Now after Proposition 2.3 and Lemmas 5.2 and 5.1, using (4.1), (4.2) and (4.3)
and following straightfully the estimates of Jiang for higher order derivatives, we
obtain the final following a-priori estimates:
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Proposition 5.2. Let T, be a fixed number such that 0 < T, < min{1, T}.

Under the hypotheses of Theorem 2.2, the following estimates hold:
I p<ole,n<p, 0<9x 1) <0 forall (x,1) e R’ x [T, T],

2. sup (e =l + 1l + 19 = T + I1E" = EF
Ty, T

Hanell 2+ 108 L2 + 100l + 10,211 ) < K,
where K depends on physical constants and of p, p, 0 and 0,
’ 2 2 2 R 2
S0 [ {1kl 1L + 190 s 19,

+l0:ll g2 + 10 ERl g2 + 104 i1 + |I3t19I|H1} ds < K,

provided that Ey < &', where &’ is the small number in Lemma 5.1.

(5.8)

(5.9

(5.10)

Now we have the following local existence theorem (proved in the Appendix):

Theorem 5.3. Suppose that ||0—0 || 3 +liil| gz + 110 =0 | s + | ER—ER || 3 < 00
and that infRs 00(x) > 0. Then there exists a positive constant Ty such that the

Cauchy problem (1.3-2.1) has a unique solution (o, ii, 9) on [0, Ty] x R> and I on

[0, To] x R? x 8% x Ry, satisfying:
1. (0.ii, ¥, E®) € %0, Ty; H?),
(0. % E) € C°0, To; H?),
(9ii, 99) € €°(0, Ty; HY,
30 € C0, Ty; H?),
(ii,» — D) € L*0, Ty; H*).
2. For some M > 0 independent of T

1
o(x,1) > = infog(x), on [0, Tp] x R?,
2 R3

sup [l =l + 1> + 19 = Tl + I1E* = Rl |

T
+/T (19012 + 1VD 1 + IV BRI, ) ds

< M (lloo = Bl + liioll > + 190 — Bll s + NS — Bl ).

Moreover ifinfRa Do(x) > 0, then ¥ (x,1) > 0 on [0, Tp] x R3.
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Using this local result, we can end the proof of Theorem 2.2. Under the condi-
tions of Theorem 2.2, the Cauchy problem (1.3-2.1) has a unique solution (o, i, ¥)
on [0, Ty] x R? and I on [0, Tp] x R? x 8% x R after Theorem 5.3. Using the a
priori estimates of Proposition 5.2, this solution can be continued globally in time
and the estimates of Proposition 5.2 are valid for any 7" > 0.

The asymptotic behaviour follows by observing that after (2.14)

*|d
/1 T A{1ael? + nair? + 12012 + 1A R} | as

[e°]
< / {1ad01? + 188,12 + 180,017 + | a0, E7)?
1

Aol + AR + [ A21% + |AER|?| ds < oc.

Combining this to (5.10), we see that || Ag||> + || Aii||> + | AD >+ | AER|? — O as
t — o00. Using now (5.8) and Gagliardo-Nirenberg’s inequality, we conclude that

lo —@llLe + lliill e + 19 — Dl + |EX — ER|| 1
_ - — R =\
= C (lo =2l + Nl + 19 = 91 + I EX — ER)

. R \3/4
x (Iaell + 1] + 1401 + IAER]) " — o,

as t — oo, which ends the proof of Theorem 2.2.

A. Appendix: Proof of Theorem 5.3

In fact a proof can be derived in various ways from the works of Nash [41], Matsu-
mura-Nishida [37], or Solonnikov-Kazhikov [44] (among others) and we only
sketch the extension to the radiative case. Let us mention that the existence lo-
cal in time for the inviscid case was proved in [33,48]. It will be convenient to
switch to Lagrangian variables. Conserving the same notation for the variables and
the unknowns, the problem rewrites as

0;0 + o divii =0,

0 3ii + Vp — V (A divii) — 2V - (uD) = —SF,

oey % + Opy divii + div (k V) — 2uD : D — A (divii)> = —Sg, (A.D)
%I+ (cod—i) VI =cS,

(0(0,x),1(0,x),9(0,x),1(0,x, ®,v)) = (00 (x),lo(x),00(x),Io(x,0,)) ,

for (t,x,w,v) € (0, T) x R3 x S% x R4, where V and div are the new operators.
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We consider the auxiliary linear Cauchy problem

0,0 + o divi =0,

o' i + p,Vo + py Vo — V (x divii) — 2V - (uD) = S},

0'el, 0,9 + 9’ pydivii + div (« V) — 2uD" : D — Adivu'divi = —S7, (A2)
W+ (co—u')-VI=cS§,
(0(0,x),1(0,x),9(0,x),1(0,x,&,v)) = (00 (x),1io (x), 90 (x), lo(x,&,v)) ,

where

Pp=po@,®), py=po, ), ey =es@,?),

/ / / / 1 = =
S =0, ,v) (BO,v) = 1)+ 05, v) (—/ 1(-, ®) da)—I),
4 S2
and
Sp = / &S' déddv, Sy = / S' dé dv.
S? S2

Clearly, the first and last equations in (A.2) are hyperbolic equations which can be

solved explicitly through the method of characteristics, and system (A.2) can be
considered as a linear parabolic problem for the pair U := (i, ) and rewrites as

LWUNU = hU"),
L A3
{ Uli—o = Uo = (iig, Do) (A-3)
The initial problem corresponds clearly to U’ = U
LUO)YU = h(U),
. A4
{ Ul = Uo = (iig. Do), A4

and we can reduce this nonlinear problem to a fixed point problem in the Banach
space (C2+o"1+%(2r), Il - ||(22:ra)> where ¥, is the domain ¥, = {(¢, x) € [0, T] x

R3}, where T > 0 is small enough. So we define the vector U; as the solution of
the Cauchy problem in X,

{ L(Un)U; = h(Uy), (A.5)

Utli—o = Uo = (iio, Vo).
Introducing the difference V = U; — Uy and subtracting (A 4) to (A.5), we get
LWV = [LW) — LW+ W] Uy + V) + h(Uy + V) — h(Uy)

+[L(Uo) — LW Ui + h(Uy) — h(Uy) = BV, (A.6)
V=0 =0.
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This problem is equivalent to the nonlinear equation

V=R A[LW) - LW+ V)] U +V)+hU +V)—hUD)}

(A7)
+ R {[LWUo) — LWND]| UL +h(Uy) — h(Up) = BV} = B, V,
where R; is a linear operator defined on the Banach space (C L3 (S,), | - ||(2“r)>
by considering W = R, f as the solution of the Cauchy problem
LUNW = f
’ A8
{ Wli=o =0. ( )
Choosing 7 sufficiently small, such that
(x2 ) gt < 6 (A9)

holds for a small 8, the vector 2(U) and the coefficients of the operator L(U) are
smooth functions of their arguments. Then, if Uy, U; 4+ V and U 4+ W satisfy (A.9)
and V|;,—_g = W|;—o =0, then

2 2 2
IBVIET = IR (CIVIET + Callto = U1 EF) . (A10)

and
1BV = BWISH < C3o? RNV = WIS, (A.11)

foray > 0 and constants C; independent of 7, V or W.
Choosing now the positive numbers 7 and n > 0 such that

- - )
(14 T2 oG <6 (TP o < 50 aa)

1
CTY IRyl <1, CiTY Ry, < 5 (A.13)

and
)

2 (T* 4 T*l/Zfa/2> ’

2
26,1 IR, Uo — U 157 < < (A.14)

and denoting by /C, the set
Ky={V eCH* (3, vr,00=0, VIS <1},

we observe after (A.10)-(A.14) that Uy and U; + V together with any element of /C,,
satisfy (A.9) and that the norm ||R7, || is bounded. Moreover By, is a contraction
from /C, into itself then equation (A.7) has a unique solution in the Holder frame-
work. Passing to the Sobolev setting is routine and we omit this step. This ends the
proof of Theorem 5.3.
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