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Partial Gaussian bounds for degenerate differential operators I1

A.F. M. TER ELST AND EL MAATI OUHABAZ

Abstract. Let A = — )" 9 ¢y 9 be a degenerate sectorial differential operator
with complex bounded mesaurable coefficients. Let 2 C RY be open and suppose
that A is strongly elliptic on 2. Further, let x € Cgo (R?) be such that an -
neighbourhood of supp x is contained in Q. Let v € (0, 1] and suppose that
the i € C 0"’(Q). Then we prove (Holder) Gaussian kernel bounds for the
kernel of the operator u — x S;(x u), where S is the semigroup generated by
—A. Moreover, if v = 1 and the coefficients are real, then we prove Gaussian
bounds for the kernel of the operator u — x S;u and for the derivatives in the first
variable. Finally we show boundedness on L p, (Rd ) of restricted Riesz transforms.

Mathematics Subject Classification (2010): 35J70 (primary); 35KO08 (sec-
ondary).

1. Introduction

If A is a strongly elliptic second-order operator on R? in divergence form with com-
plex bounded Holder continuous coefficients, then it is well known that it generates
a holomorphic semigroup S which satisfies Gaussian kernel bounds and Gaussian
bounds for first order derivatives in each of the variables. If A is merely partially
strongly elliptic on an open set & C R¢ then in general Gaussian bounds on R?¢
fail, but in a previous paper [5] we showed Gaussian kernel bounds on good parts
of Q if the coefficients of A are real and measurable. Precisely, if x € CgO(Q, R)
and if A is strongly elliptic on supp yx , then for all ¢ > 0 the operator M, S; M, has
a Holder continuous kernel satisfying (Holder) Gaussian bounds, where M, is the
multiplication operator with the function x . In this paper we extend this to (Holder)
derivatives of the kernel if the coefficients of the operator A are complex Holder
continuous on €2 and the distance d(supp x, 2¢) > 0, that is an e-neighbourhood
of supp x is still in Q. If in addition the coefficients are in W!°°(2) and real on
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R?, then we also show that for all # > O the operator M St has a kernel K; satisfy-
ing Gaussian bounds. This is remarkable, since there is no cut-off for the operator
M, S; on the right. Moreover, we show that there exists a representative of the
kernel K; such that (¢, x, y) — K;(x, y) is measurable on (0, co) x R4 x R? and
x — K;(x,y) is once differentiable for all y € R and r > 0, and the deriva-
tives satisfy (Holder) Gaussian bounds. This allows to prove boundedness of the
restricted Riesz transform V M, (I + A)~12 on LP(Rd) for all p € (1, 00).
Throughout this paper the field is C. Fix d € N and for all k,/ € {1, ..., d}
let c;: RY — C be a measurable bounded function. Suppose that the matrix
C(x) := (cr(x)) is uniformly sectorial for all x € R4, j e., there exists a 6 € [0, %)

such that
d

D cuEE €Ty

k=1

forall (&1, ...,&;) € C4 and x € R?, where
Yo ={re®:r>0anda € [—6,0]}.

Define the form a: W2(RY) x W2(RY) — C by

d
a(u, v) = Z /Rd cit (dkut) Opv.

k=1

Then a is a densely defined sectorial form. In general a is not closable, but never-
theless one can assign a semigroup generator A with a as follows. If u, f € Ly(RY)
then u € D(A) and Au = f if and only if there exist uy, us, ... € W12(R9) such
that limu, = u in Ly(RY), supRe a(u,) < oo and lima(u,, v) = (f, v) for all
v € WI2(RY). The operator A is well defined and is m-sectorial by Theorem 1.1
in [3]. If a is closable then A is the operator associated with the closure a of the form
a in the sense of Kato [15]. We call A the sectorial degenerate differential operator
with coefficients (cg;). Formally, A = — Zk,l 9y ¢k k. We denote by S = (51);~0

the contraction semigroup generated by —A on L,(R?). Then S is holomorphic
on the open sector X , where throughout this paper we define 0, = 7 — 6. Let
Q c R? open. We suppose that the coefficients of A are strongly elliptic on €2, that
is, there exists a i > 0 such that

d
Re Z e (x) E & > gl

k=1

forall§ € C? andae. x € Q.

The main results of this paper are the following. The first theorem is for com-
plex Holder continuous coefficients on €2, but with a multiplication operator on both
sides of the semigroup.
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Theorem 1.1. Let A be a sectorial degenerate differential operator with coeffi-
cients (cx1), where cx;: RY — C is a bounded measurable function for all k,1 €
{1,...,d}. Let Q ; R? be open and suppose that (cy;) is strongly elliptic on <.
Let v € (0, 1) and suppose that cyq € COv(Q) for all k,l € {1,...,d}. Let
X € Cgo(Rd) with x # 0 and suppose d(supp x, Q2°) > 0. Then there exists a
continuous function (z, x, y) — K (x, y) from Egu x R4 x R? into C such that the
following is valid.

e The function K is the kernel of the operator My S: My for all z € %7 , where
S is the semigroup generated by —A.

e The function K, is once differentiable in each variable and the derivative with
respect to one variable is differentiable in the other variable.

e For every multi-index o, B with |a|, || < 1,k > 0 and t € [0, 1) there exist
a,b > 0 such that

d-+lal+B| —b‘xTﬂz

102 08 K)(x, )| < alz| ™2 |z~ HEDZ (14 12T 2 e
and
(0% 08 K)(x + h, y +k) — (8% 0F K2)(x, y)|
< g |z~ |7l HIBD 2 ( 2] + Ik| )” (1 4 [y 2eipiiee bRt

Ix =yl + Izl
forall 7 € Ega and x,y, h,k € R with |h| + k| < T |x — y| + « V/]z].

The second result is for merely one multiplication operator on the left of the semi-
group, but it requires that the coefficients of the operator are real on R¢ and uni-
formly Lipschitz on €.

Theorem 1.2. Let A be a sectorial degenerate differential operator with real coef-
ficients (cyy), where cy; R? — R is a bounded measurable function for all k,l €
{1,...,d}. Let S be the semigroup generated by —A. Let Q2 ;Cé R4 be open and sup-
pose that (cxp) is strongly elliptic on 2. Suppose that ¢y € whoo(Q) forallk,1 e
{1,...,d}. Let x € Cgo(Rd) with x # 0 and suppose d(supp x, Q°) > 0. Then
there exists a measurable function (t,x,y) — K;(x, y) from (0, c0) X RY x R4
into R such that the following is valid.

The function K; is a kernel of M, S; for all t > 0.

The function x — K;(x, y) is continuously differentiable on R¢ for all t > 0
and y € RY.

The function t — K,(x,y) is continuous for all x, y € R?.

For every multi-index o with || < 1,v € (0,1),e >0,k > 0andt € [0, 1)
there exist a, b > 0 such that

=y

O K (e, )| < a2 ylel2 et e
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and

|h| ) ot b
lx—yl+/1
forallt > 0andx,y, h € R4 with |h| < T|x — y| +k /1.

(8% K¢)(x+h, y)— (0% K.)(x, y)| <ar=¥/?~ 11/ (

In Theorem 1.1 the function (¢, x, y) — K;(x, y) is continuous, whilst it is not
clear whether the function (¢, x, y) — K;(x,y) is continuous in the setting of
Theorem 1.2. Likely, there even does not exists a continuous function which is
equal to this function almost everywhere on (0, 00) x RY x R¢. On the other
hand, we prove measurability jointly in the three variables and do not work with
an equivalent class of functions, for which the representative changes all the time.
Since there are uncountable many y € R this complicates the proof.

We also investigate boundedness on L, of Riesz transform type operators. We
obtain the following result.

Theorem 1.3. Let A be a sectorial degenerate differential operator with complex
coefficients (cx). Let Q ; RY pe open and suppose that (cy;) is strongly elliptic
on Q. Let x € Cgo(]Rd) with x # 0 and d(supp x, Q) > 0. Then one has the
following.

() Let v € (0,1) and suppose that cyq € cov () forall k,1 € {1,...,d}.
Then the Riesz transforms ¥V M, (I + A2 pm  are bounded on L p(]Rd) for
all p € (1, 00).

(b) Suppose that cyj | € W12°(Q) and ¢y is real valued for all k,1 € {1, ...,d}.
Then the Riesz transforms ¥V M, (I + A)~Y2 are bounded on L p(Rd) for all
p € (1, 00).

(¢) Letv € (0, 1) and suppose that cyj g € CO'”(Q)for allk,l € {1,...,d}. Then
the Riesz transforms V M, (I + A)~Y2 are bounded on Ly(RY).

Using Morrey and Campanato spaces we prove Theorem 1.1 as in [5], if the operator
is strongly elliptic on R? and the coefficients are Holder continuous on R?. We
carefully control all the constants and show that they depend only on the ellipticity
constant on 2 and on the Holder continuity of the coefficients on 2. Then the
theorem follows by approximation arguments. We prove a quantitive version of
Theorem 1.1 in Section 2.
Since
M} S, = My S; My + My [My, S]

and one can use Theorem 1.1 to handle the first term, it suffices to obtain good
estimates on the commutator to derive the bounds of Theorem 1.2. This is done in
Section 3.

Finally, in Section 4 we prove the boundedness of the Riesz transforms of
Theorem 1.3 and the boundedness of several other Riesz transforms. For strongly
elliptic operators in divergence form with complex bounded measurable coeffi-
cients the boundedness of the Riesz transforms on L, (IR?) was the longstanding
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open Kato problem until it was solved by Auscher—-Hofmann—Lacey—McIntosh—
Tchamitchian [4]. For Holder continuous coefficients the Kato problem was solved
earlier by MclIntosh [16] and a simplified proof was given in [7]. In the proof
of Theorem 1.3(a) we adapt this simplified proof. In [6] Theorem 1.2 we proved
Theorem 1.3(a) for merely measurable coefficients, but with the restriction that the
coefficients are real symmetric and p € (1, 2].

In the proofs we need various times to transfer semigroup estimates into Gaus-
sian bounds, with control of large time behaviour, using the Davies perturbation
method. Note that we deduce polynomial growth for large time for the kernel
bounds in Theorem 1.1. The techniques are more or less folklore, however scattered
over the literature. In the appendix we collect them together for the convenience of
the reader. Finally, by decomposing yx into its real and imaginary part, for simplic-
ity we may and do assume throughout the rest of this paper that the various cut-off
functions y, x,... are always real valued.

2. Complex Holder continuous coefficients

We start this section with the definition of a number of classes of coefficients and
operators. The main aim is to obtain results for elements of these classes and that
the constants involved are uniformly for a given class.

Let 6 € [0, %) and M > 0. Define S(8, M) to be the set of all measurable

C: R? — C4%d guch that

(C(x)E,&) € Tg forall x € RY and & € C?, and,
ICx)|| <M  forallx € RY,

where ||C (x)|| is the £2-norm of C (x) in C? and (-, -) is the inner product on C4. For
all C € S(0, M) define the sectorial form form ac: W12(RY) x W-2(R?) — C
by

d
ac(u,v) = /Rd D cx (Bu) @)

k,I=1

and let Ac and S be the associated operator and semigroup. Here and in the sequel
ck1(x) is the appropriate matrix coefficient of C (x). If no confusion is possible then
we drop the C and write a = ac, A = Ac and S = S€.Forall C € S8, M) define
NC: RY — Chby

MO = H(C0) +Cw*),

Then RC € S(0, M) and Agc is self-adjoint. Moreover, agic (u) = Re a(u) for all
u € WE2(RY). Next, let £(0, M) be the set of all C € S(8, M) such that there
exists a ;o > 0 such that Re(C(x) &, &) > po |&|> forall x € R? and & € C¢. We
emphasise that the constant po depends on C.
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LetY c R¢beaset, 6 € [0, Z)and u, M > 0. Let S(Y, 6, i1, M) be the set
of all C € §(6, M) such that

Re(C(x)&,&) > p|g)> forallx € Y and £ € C?

and define
EX,0,u, M) =8,0,u, M)NEO, M).

Next, let v € (0, 1] and suppose that Y contains at least two elements x, y with
0 < |x —y| < 1. The space C 0.v(Y) is the space of all Holder continuous functions
on Y with seminorm

lu(x) —u(y)l

ulllcory) :sup{ T x,y€eY, 0<x —y| < 1}.

Let S¥(Y, 0, u, M) be the setof all C € S(Y, 0, u, M) such that
|||ckl|Y|||C0=V(Y) < M for all k,l (S {1, e ,d},

and define
EVY,0,u, M) =8"Y,0,u, M)yNE®B, M).

Finally, let EHV(Y, 0, u, M) be the set of all C € EV(Y, 0, u, M) such that
llexilllcowgay < oo forall k,1 € {1,...,d}. If C € SY(Y,0, u, M) then Ac
is sectorial on L (R?), whilst Ac is strongly elliptic on R? if C € £V(Y, 6, u, M).
Finally, Ac is strongly elliptic with Holder continuous coefficients on R? if C e
EHV(Y, 0, u, M). In any case, Ac is strongly elliptic on the set ¥ with ellipticity
constant at least .

In the proof of the theorems we frequently need the Davies perturbation. For all
p € Rand ¢ € W!°°(R?) define the multiplication operator U, by U,u = e "V u.
For all n € N let

Dy={y e WPRER) || Y 10l < 17

I<|a|=n

Thus
Dy = (Y € W°MRIR) : |Vl < 1)

Let C € S(0, M). Define St(c’p ) = St(p ' =vU »S:U_, to be the Davies perturbation
of §; forall t > 0. Let —Ac,, = —A, be the generator of § (€.r)  Moreover, define
the form ac , by

ac,p(u,v) =ac(U_pu, Uyv)

with form domain D(ac,,) = WL2(R9). Then Ac,p is the operator associated with

ac, 0
We frequently need the following lemma for estimates on L.
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Lemma 2.1. Let 6 € [0, %) and v, M > 0. Then one has the following.

@) IfC € SO, M) then ||S |lrr < e’ forallt > 0,y € Dy and p € R,
where w = 3(1 + tan0)%(1 + d*M).
(b) Let Y C R¢ and a0 € (—B4q, 04). Then

. 0
e’ C e S, 0+ |a, Mw’ M)
cos 6

forallC € S(Y,0, u, M).

() If x € W (RY) and C € S(supp x, 0, i, M), then MXD(A;{CZ) c WhZ(R9)
and
< o Xl 20
1(0m My — M, )ull; < | Agicullz (2.1)
m=1

for all u € D(Ay2).

(d) If x e WH°R?) and C e S(supp x, 0, w, M), then My S, Ly(RY) ¢ WH2(RY)
and
||X||.oo t_1/2

1 sinfg

forallt >0,u € Lyo(RY andm € {1, ...,d)}.

1 (Om MX - M?)mx)Sﬂ/‘HZ =< |22

Remark 2.2. Note that 9,, M, — M, , D M, 9,, in Statements (c) and (d).

The rotational invariance of Statement (b) allows to consider various bounds
on kernels K, merely for z € (0, 0o). Then the uniform bounds for z in a sector X7,
with 6’ € (0, 8,) follow since all bounds depend only on x, 2, u, M, v and 6.

Proof. (a). This follows from (14) in [3].

(b). Letx € Y and £ € C¢. Then

Re(e'® C(x) €, &) = cosa Re(C(x) €, &) — sina Im(C(x) &, €)
> cosa Re(C(x)é&,&) —sin|a| tan6d Re(C(x) &, &)
_ 8O F1D peicone. €
cos b
5 cos(0 + |a|)
gl oosd

v

This proves Statement (b).

(¢c). Lete > 0andn € N. Set C,, :C—I—%I.ThenC,, € E(supp x, 0, u, M+ 1).
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Letu € WH2(R?). Then

d

m=1

d
16 My = Mol = Y [ 1 3o
m=1
d

A

< 4 [ Re Yt Lo o G T

k=1

2
Xl 12 .2
=< _Moo ”Amcnuuz

lIx 1% 12, 2
L (eI + Axc,) ' “ull5.

IA

Now letu € Lo(R%), v e W'2(RY) andm € {1, ..., d}. Then

[((e] + Anc,) ™ 2, 3 (X V)| = (B My — My, ) (eI + Anc,) " *u, v)|
1%
"

Taking the limit » — oo and using [3, Theorem 3.7] (c¢f. [19, Theorem 3.2]), one
deduces that

IA

llull2 [[v]l2.

IxllZ
o

I((e] + Anc) ™ %u, 8 (x )| < lull2 V]2

So )
x5

|1ty 3 (x V)] < (eI + Anc)ull2 [v]l2

forallu € D(AY2), v e WI2(RY) andm € {1,.. ., d}. Taking the limit & | 0 one
obtains

x5 4172

|(u, (My 0m + My, x)v)| < [ Agicull2 vl (2.2)

Therefore

lIx 112 12
[(Myu, 9,v)| < (Too ||A9{CMII2 + 110m X lloo ||u||2>||v||2

forallv € W2(RY) and m € {1,...,d}. So Myu € WL2(R?) and then the
estimate (2.1) follows from (2.2).

(d). Let @ € (0, 84). Then it follows from Statements (a) and (b) that ||Sz(p ) lo—sn <
e?P’ il forallz € X2, p € Rand ¥ € Dy, where » = 3(1+tan(0+a))>(1+d>M).
Hence the Cauchy representation formula gives

1A, S amn < X't 2.3)

t sina
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forallt > 0,p € Rand ¢ € D,.If C € E(supp x, 0, u, M) then

lx 13

1/2
1O My — My, )SEull3 < | Ay S ull3
2
= Xl gecac sCu, sCu)
"
112
< 222 | Ac SCull2 I1SE ull2
"
Ix 112,
< llaell3.-
M tsina

Now take the limit & 4 6,. Finally, let C € S(supp x, 6, u, M). Foralln € N
define C,, = C + %I. Since lim,—, o Stc" = S,C strongly in L(Lr(R%Y) by [3]
Corollary 3.9, now Statement (d) follows as in the proof of Statement (c). O

The next theorem is a uniform version of Theorem 1.1.

Theorem 2.3. Let @ G R? be open, 6 € [0,5), u, M > 0,v € (0,1), k > 0,
1€[0,1),0 €(0,0,) and x € Cgo(Rd) with x # 0 and d(supp x, Q°) > 0. Then
there exist a, b > 0 such that for every C € 8" (2, 6, i, M) there exists a function
(z,x,y) = K:(x,y) from Eg % R? x R? into C such that the following is valid.

(@) The function (z, x, y) = K:(x, y) is continuous from £j x RY x R into C.
(b) Forall z € X, the function K is the kernel of the operator M, S, M,.

(c) Forallx,y € ]Rd the function z — K;(x, y) is holomorphic from X, into C.

(d) For all z € X, the function K is once differentiable in each variable and the
derivative with respect to one variable is differentiable in the other variable.
Moreover, for every multi-index o, f with 0 < ||, |B| < 1 one has

d-HaH—\ﬂ\ _b\’f 2
e [H]

0% 98 K)(x, p)| < alz| 2 2|02 (1 ey 2
and
|92 98 K)(x + b,y + k) — (0% 08 Ko)(x, )|

v 2
< a|z|79/? |z~ el HIED/2 (M) (1 + Iz |)d+\a|+|tf|+v b
) ¥ — v+ Vi

forallx,y, h,k € R with |h| + k| < 7 |x — y| +k V2]

Proof. We first prove the theorem with S¥(€2,0, u, M) replaced by EHY (2,0, 14, M).
For strongly elliptic operators on R¢ in divergence form and Holder continuous
coefficients all the kernels with stated holomorphy and continuity properties are
well known. The main point is to derive the uniform bounds. We emphasise that the
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constants in the proof do not depend on the ellipticity constant jo for elements in
EHY (2,0, u, M), nor on the Holder continuity of the coefficients on €. Then we
will approximate elements of £V(2, 8, u, M) by elements of EH" (2, 0, u, M) and
finally approximate elements of S¥(£2, 6, i, M) by elements of £V (2, 0, u, M).
Without loss of generality we may assume that d > 3. Let F C Q be a
closed set with F # @ and d(F,2°) > 0. Letry = %d(F, Q°). There exist

X1, X2 € Cgo(Rd) such that 0 < x1, x2 < 1l and

0ifd(x, F) < ro,
@ =1 . (24)
1ifd(x, Q° < rg,
) 1ifd(x, F) < 2ro, ) s
P N 0ifx ¢ @, (22)

for all x € Rd. Let M/ = 2||X2||W1,00(Rd) M =+ ||X1||W1,00(Rd) + 1. Let C €
EHY(R, 6, u, M). Define C' = xoC + x1I. Then C' € EHYRY, 0, u A 1, M').
Since the operator A¢ is a strongly elliptic operator on R? with CV-coefficients,
it satisfies various kinds of De Giorgi estimates. On bounded open sets these are
proved by Giaquinta [11,12], or Xu—Zuily [21]. The global estimates follow from
[9, Proposition 3.5] and [8, Proposition 2.6]. Precisely, there exist c/DG, ch >0
and for all V' € (0, 1) acpg > 0, depending only on ., M’, v and V', such that

5 r d—2+2v' 2
/ [Vul” < cpe (—) / |Vu| (2.6)
B(x,r) R B(x,R)

and

d

S = @ P
—1YB(x,r)
k=1 PP 2.7)

/ 2 ! 2 / 2v ¢ 2
<coo(F) [ = @kl cp Y [ vl
k=1YB(x,R) k=1YB(x,R)

forall R € (0,1],r € (0, Rl and u € W"2(B(x, R)) satisfying Acru = 0 weakly
on B(x, R), where v = %(1 +v).

Write a = ac, A = Ac and S = S€. It is well known that the semigroup gen-
erated by S has a kernel K3 satisfying continuity, holomorphy and Gaussian prop-
erties similar to (a)—(d) in the theorem. Define K,(x,y) = x(x) KZS(x, y) x ().
Then K is the kernel of M, S, M, . Moreover, K satisfies Properties (a)—(c).

Note that a(u, v) = ac(u, v) for all u, v € WH2(R?) with suppu C F. For
all y € [0,d] let M;,,(Rd) be the Morrey space and for all y € [0,d + 2) let
Mo, (R?) be the Campanato space as defined in [5] Section 2.
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For all y € [0, d) let P(y) be the following hypothesis:

For all x € Cgo(Rd) with supp x C F there exist a;, w; > 0, depending
only on x, 2,6, i, M and v, such that

—y /4 14-p2
My S0l pgy ) ay < @177 e O

and
_ _ 2
”V MX St(p)u”Mly(Rd) <apt V/4t 1/2 ew1(1+,0 )t ”u”2

uniformly forall > 0,u € Ly(R%), p e Rand ¢ € Dy.

Arguing as in the proof of Lemma 3.3 in [5] it follows from (2.3) and the De Giorgi
estimates (2.6) that P(y) is valid for all y € [0, d).
Next, for all y € [0, d + 2v] let P’(y) be the following hypothesis:

For all x € Cgo(Rd) with supp x C F there exist aj, w; > 0, depending
only on x, €2,6, u, M and v, such that

_ 2
1My S0l o, ey < @177 e IO ]

and
_ _ 2
IV M, St(p)””/vlz,V(Rd) <ay VA2 IOy,

uniformly forall t > 0,u € Ly(R?), p € Rand ¢ € D>.

Since M, N Ly = M>, N L, for all y € [0, d), with equivalent norms, one
deduces from P(y) that also P’(y) is valid for all y € [0, d). But arguing as in [8],
proof of Proposition 3.2 and the proof of Lemma 3.3 in [5] it follows from the De
Giorgi estimates (2.7) that P’(y) is valid for all y € [0, d + 2v]. Hence there are
a,» > 0, depending only on x, 2,6, u, M and v, such that

109 M, S oo < @t~/ = 11/2 20001 238)

and

hli\v
(T — L(h)3* My SPulloo < a z—d/“r'a'ﬂ(%) D

for all multi-indices o with |«| < 1,7 > 0, u € Ly(RY), p € Rand ¥ € D;.
Here L(h) denotes left translation, defined by (L(h)u)(x) = u(x — h). Next,
1S 1as < €®P’t for all t > 0, where wy = 3(1 + tan8)2(1 + d> M) by
Lemma 2.1(a).

Then the bounds of Property (d) follow from Lemma A.1 in Appendix A uni-
formly for all z € £3, and C € EHY(RQ, 6, u, M). This proves the theorem with
SY (22,0, u, M) replaced by EHY (2,0, u, M).



48 A.F.M. TER ELST AND EL MAATI OUHABAZ

Let x ngo(]Rd) with x #0 and d(supp x, Q€) > 0. Letrg = %d(supp X, 2°)
and let Q' = {x € Q : d(x, supp x) < ro}. Then Q' is open, d(supp x, (2)°) > 0
and d(2', Q°) > rg > 0.

Let «, B be multi-indices with |«|, |8] < 1. Using the Cauchy representa-
tion formula on the sector Z;a one deduces that 9,07 85 K ZC satisfies Holder type
Gaussian bounds uniformly for all C € EH" (', 6, u, M), where K€ is the kernel
associated with z — M, SZC M, . Hence the set of functions

{@ox, y) > @YOPKE)(x, ) : C € EHY(RQ, 6, pu, M)}

is equicontinuous on compact subsets of g x R? x RY,

Fix t € C°(B(0,rp)) with r > 0 and ft = 1. For all n € N define
7, € CPMRY) by 1,(x) = n?t(nx). Now let C € £Y(R,6, u, M). For all
n € Nand k,] € {1,...,d} define cg) = ¢y * T, and define C™ = (c("))
Then C™ € EH(Y,0, u, M) for all n € N. Write S® = §C" | etc. Since
{(z,x,y) — (8)‘3‘851{2("))()(, y) : n € N} is equicontinuous on compact sub-
sets of Zga x R4 x R? for all ||, |8] < 1 it follows with a diagonal argument
from the Arzéla—Ascoli theorem that there exists a subsequence (K )y, eny of
(K™),en such that K©@A) = limy_, o 0¥ 85 K ) exists uniformly on compact
subsets of Z; x R x R and every multi-index «, 8 with ||, |8] < 1. Then
(z,x,y) — K(a ﬂ)(x y) is continuous on Eg x R? x R4. Set K = K@) where
|| = |B] = 0. Obviously for every z € Eo the function K is once differentiable
in each variable and the derivative with respect to one variable is differentiable in the
other variable. Also K, satisfies all the Gaussian bounds from the theorem and the
constants in the Gaussians depend only on x, 2,6, u, M and v. Let z € Egu. Let
u,veCr (R4). We shall prove below in Lemma 2.4 that lim,, Sz(")u = SZC u in
L>(R%). Hence

(SCu,v) = Jim (S, v)

= lim //Kz(”k)(x,y)u(y)mdxdy

k— o0
= fsz(x,y)u(y)mdxdy-

Since K satisfies Gaussian bounds it follows that K, is the kernel of SZC . This
proves the theorem with §¥ (€2, 0, u, M) replaced by £V (2, 0, u, M).

Finally, let C € 8Y(2,0, u, M). For all n € N define C, = C + L 7 Then
C,€&(R,0,u, M+1) foralln € N. Since lim,,_, S u= SCu in Lz(Rd) for
allz € EG and u € Ly(R) by [3] Corollary 3.9, a similar appr0x1mat10n argument
as in the previous step completes the proof of Theorem 2.3. O

It remains to show the next lemma.
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Lemma 2.4. Let 0 € [0, %) and M > 0. LetC € £E@,M) and T € Cfo(Rd) with
T >0and [t = 1. Foralln € N define v, € Cfo(Rd) by 1,(x) = nt(nx)
and set C™ = (c,i';)), where c(l) =1, xcy forallk,l € {1,...,d}. Then C™ ¢

£©O, M) foralln € N. Write S™ = SC" | § = SC, etc. Then limy_00 ST = S,
strongly in L(L,(R%)) for all z € 5.

Proof. Let n € Loo(R?) and u € Ly(R?). Then
(¢ = Leym)u = (1 = LeNGw) = L U = L)
forall x € R?. So
10 = 7 ke < s = 5 Gl + il [ 7060 1 = Lol d

forall n € Nand lim ||(n — 7, * n)ul|2 = 0.

There exists a ;o > O such that Re(C (x) &, £) > uo || for all x € RY and
£ € C4. Then Re(C™(x)£,&) > o l€]? and ||C™ (x)|| < M for all x € R?,
£ € C? and n € N. Hence there exists a ¢ > 0 such that ||VS,(”)u||2 <ct 12 ul,
forallt > 0,u € Lr(RY) and n € N (cf. the proof of (13) in [5]). By increasing

¢ if necessary, it follows similarly that |V S,ully < ¢#='/2|lull2, and [|[VS™*ull; <
ct™V2|u||, forall t > 0 and u € Lo(RY).

Without loss of generality we may assume that z € (0, 00). Next, let u, v €
Ly(R?). Then

Z
((S™ = Sou, v) = f —- Sy, SV"v) ds
/ (AS,_su, SW*v) — (S,_su, AX Si*v) ds

- / a((Sp—st, ST v) — a, ((Sy—su, S*v) ds
O

/ ((ert — Yok So—yut, 3 S™*v) ds
k=1

foralln € N. So
d z
I = Soula < ¢ 3 [ lew = S ulas ™2 ds
k=170
and the lemma follows from the Lebesgue dominated convergence theorem. O

The proof of Theorem 2.3 together with Lemma 2.4 gives estimates which we
need in the proof of Proposition 3.7.
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Lemma 2.5. Let @ S R be open, 6 € [0,%), u,M > 0,v € (0,1) and x €
C§°(Rd) with x # 0 and d(supp x, Q°) > 0. Then there exist a, w > 0 such that
forevery C € §"(R2,6, u, M) one has M, Siu WLooRY) and

1% My Stutlloo < at=* 17142 e Jlu)
for all multi-indices o with || < 1,t > 0andu € Lr(RY).

Proof. Let x € Cy° (R%) with x 0 and d (supp x,Q2°) >0. Let ro = %d(supp x,2°)
and Q' = {x € Q:d(x,supp x) < ro}. By (2.8) there exist a, w > 0 such that

10 My SCulloo < at™4/* 171172 0 |1y (2.9)

forall C € EHY(Q, 0, u, M), multi-indices o with || < 1,7 > Oand u € L, (RY).
Let C € £Y(2,0, u, M). Let T € C2°(B(0,r9)) with t > 0 and [ 7 = 1. For all
n € Nlet C™ be as in Lemma 2.4. Then C™ € EH"(Q,0, u, M). Lett > 0 and
u € Ly(R?). Then

(n) (n) _ _
1(SE™" u, My, 3%0)| = (8 My SE " u, v)| < at=4/* 171212 e 5 vy

for all multi-indices « with |a| < 1,v € C° (R?) and n € N. Now take the limit
n — oo and use Lemma 2 4. It follows that

[(My SFu, 3v)| < at™* 7142 e lull o], (2.10)

for all v € Cfo(Rd) and |a| < 1. Choosing |a| = 0, it follows that M, S;u €
Loo(R?). Next |a| = 1 and the density of C?O(Rd) in W1 (R4) give that (2.10) is
valid for all v € WH1(R?) and |ee| = 1. Hence M, S;u € W1°(R?) and (2.9) is
valid.

Finally, if C € SY(R2, 6, i, M) use the approximation C, = C + % I as at the
end of the proof of Theorem 2.3 and argue similarly. O

3. Real W!-*®_coefficients

Let QCRY be open, 0 €0, %) and u, M >0. Define S'(Q, 0, i, M, real) to be the

setof all C € S1(Q, 0, i, M) such that ¢y is real valued for all k,/ € {1,...,d}.
If C e SI(Q,0, w, M, real) then ac is closable. Moreover, if x € C{° (R9) with
supp x C €2 then there exists an @ > 0 such that [|[Myully12@rey < allullDac)

for all u € W'2(R). Hence M, (D(@c)) C W'2(R?) and ||Myully12ga, <
allullpg) for all u € D(@c). In particular, M, S,u € WH2(R9) for all # > 0 and
u € Ly(RY).

Throughout the remaining of this paper we set

Ckl = Crl + Clk

forallk,l € {1,...,d}, whenever C € S0, M).
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Lemma3.d. Let Q C RY be open, 6 € [0,%) and u,M > 0. Let C €
ENQ, 0, u, M, real). Let = 3d*M. Then

1 oo 00 < €@ PIHP?)

forallt >0,p € Rand ¢ € D;.

Proof. Let p € R and ¥ € D;. Obviously the form a,, is real. Integration by parts
gives

A, (u, v) = au, v) — p / D Oku) )V —p / > @) (k) uv

—p / Y e (O )y uv — p? / D ew () Ay uv

for all u, v € WH2(R?, R). Then the lemma follows from [17] Corollary 4.10. [

It follows from Lemma 3.1 that the conditions of the next lemma are valid for
p=1.

Lemma 3.2. Let Q C RY be open, 6 € [0, %), i, M > 0and p € [1, 00). Suppose

that for all e > 0 and x € C{° (RY) with x # 0 and d(supp x, Q°) > O there exist
a,w > 0 such that

_d_1 2
1My SPull, <at™ 2079 e o ||,

forallC € EY(Q,0,u, M,real),t > 0,u € Ly N Ly, p € Randy € Ds. Then
forallg € [p,o0l, v € (0,1), e > 0and x € C(RY) with % — ; <L x#0
and d(supp x, 2°) > 0 there exist a, w > 0 such that

_dq=1 2
1My S ully < ar™2070 7 e ully and

IA

d 1 v
(= LO)YM, SPully < alh]” e~ 2070 175 e ¢ |y,

A

forallC € EY(Q,0, u, M,real),t >0,u e LiNLy, peR, ¥ € Dyand h € R?.

Proof. Let C € ENQ,0,u, M), e > 0,p € R,y € Dy, x € CZPR?) and
suppose x # 0 and d(supp x, 2°) > 0. Then
A, (Myu,v)— ap(u, Myv) = = (Myy 0 M u, v) + Y (M) (e V)
- Z(Mﬁlﬁkx Mc,u, v) (3.1)
—p Z(Mgkl M()klﬁ Mal)(us U)
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for all u, v € WI2(R%). Note that (8 x)(dxcx;) is a bounded function on R since
supp x C Q and ¢y € WH(Q). Since C is elliptic for all u, v € L>(R?) one
deduces

(M, SPu — S Myu, v)

' d
)
= _fo a(MX Sy u, S*v) ds
t
- / ( — (My Ay S0%u, SP*v) + (My S\, A% S§P>*v)> ds
0

t
- f a,(My S u, S0y — a, (S u, My SP*v) ds
0

d t
- Z f (Ss(p)MalX Ok MElet(E)su’ v)ds + R,
k=170

where R is the contribution of the last three terms in (3.1), which do not have a
derivative. Therefore

) ) (»)
M2 8" — My S, My = My [M,, S,”]

d t
=-Y / My S My, 01 Mz, S ds + R', (3.2)
k=170

with R’ the contribution of the last three terms in (3.1).
Fixk,l € {1,...,d}. Then

t
/ My P My & M, S, ds
R t (3.3)
- / My, S My 0 Mz, S0 ds + | My S My, , 0 Mz, S ds
0 12

for all # > 0. By Theorem 2.3 there are a, @ > 0 such that

d 1
_d_1 2
7 ( q) s 1/2 P8 gES

My S My dill1q < as and

IA

1+v

d 1
I = L) My SP My il < @]’ s™ 20700 575 g0 8

foralls > 0,p € R, ¢ € D, and h € R?. Suppose from now on that C is real
valued. Since the matrix of coefficients is r/eazl it follows from Lemma 3.1 that there
exists an @’ > 0 such that ||S,(p>||1_>1 <e?P e forallt > 0,p € Rand ¢ € D;,.
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Then

t
M, S My, 0 Mz, S uds

Ckl
12

‘ q

T _dq_1 2 ;2
< 2aM/ s s q)s—l/Zewp S o8 @' (t—s) ee(t—s) lull; ds
t
2

_dq-1 2
< 2d+1aMt 5(1 q)tl/Ze(w—i-w),o test ”M”]

_d_1 N2
< 2d+la871/2Mt 2(1 q)e(w+w )p 16281 ||M||1

forallz >0,u € LyNLy,p € Rand ¢ € D,. Similarly,

| q
B —dq=Ly _» o2
< 24 e 2y ) e 2070 g et Q2o )

t
(I — L(h))M, S My, o1 M,

a0 SO uds
t/2

forallt >0,u e LiNLy,peR, % € Dyand h € R?.

Next we estimate the L1 — L, norm of the first term in (3.3). There exists a
X € Cgo(Rd) such that x(x) = 1 for all x € supp x and d(supp x, 2°) > 0. Then
by assumption there exist a, @ > 0 such that

- _d_1 2
1% SPull, <at™ 2078 =P’ ot |y,

forallt > 0,u € LiNLy,p € Rand ¢ € D,. By Theorem 2.3 there are a’, @’ > 0
such that

del_ 1

_dcl__1 /2
”MX S§p)M3kxal”p—>q = ! 2(1’ q)Sil/zewpsegs and

A
IS
5%

l,i) 1+v

d ’
I — L) My SO Maydillpg < @ |B]” s~ 2070 575 o2/ o5

foralls > 0,p € R, € D and h € R?. Then

12
/O My, S My & Mz, S uds

q

t/2
< /0 1M, SO M3l pq 1My My SOl ds

N
t
2 _del_1 ;2. _d_1 204 _
SZaz/M/ 572G ) g2 @07 085 (¢ — )T 2T g0 (=9) =) |y s
0

d, 1 1

5(5—7)+1 /I a—1/2

2%p ¢ d 1
< 2 aa & Mt_fg(l_ﬁ)e(w /)pzt €2£t

llael1
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forallt > 0,u € Ly NLy,p € Rand ¥ € D,. Similarly

t/2
H/ (I = L(h)) M, Ss(/o) Moy 9 Mg, St(f)s uds
0

q

del_ 1 1
2207 g eTIM B a1,
< t 2 r
T 1w _d(1 1
2 2\pr ¢

forallt >0,u e LiNLy,peR,y € Dyand h € RY.
The term R’ in (3.2) can be estimated similarly. Using Theorem 2.3 to estimate

the Ly — Lg norms of M, s M, and (I — L(h))M, s M, one deduces that
there are a, w > 0 such that

2
t—% e(a)—!-w’)p te28t ”M”]

—dq_1 2
1M 8 ully < at™2170 77 e fufly - and

IA

_dn_1 v 2
I — L)M 2 SPully < alhlt 207 173 e e Jlu),

forallt > 0,u €e LiNLy,p € R,y € Dyand h € R?. Then the lemma
follows. N

Lemma 3.3. Let Q ;Cé R? pe open, 0 € [0, %), u,M>0,ve(1),e>0and

X € Cgo(Rd) with x # 0 and d(supp x, 2°) > 0. There there exist a > 0 and
w > 0 such that

2
at~ 42 e et ully  and

2
a |h|v t—d/2 t—v/2 ewp test ||I/l||]

1My S ulloo
11 = L(h)My S| oo

IA

A

forallC € SY(22,0, u, M,real),t >0,u e LiNLy, peR, ¢ € Drandh € R?.
In particular, M, S;u € COV(RY) forallt > 0 and u € Li(RY).

Proof. 1t follows by induction from Lemmas 3.1 and 3.2 that the current lemma is
valid if SH(Q, 6, u, M, real) is replaced by ENQ, 0, u, M, real). Then by approx-
imating C by C + % I the lemma follows. 0

Next we turn to derivatives of the semigroup.

Lemma 3.4. Letu € WH2(R?), v e Ly(RY) and k € {1, ...,d)}. Then

R — 2
(Oru, v) = i / ((I — L(rex))"u, ) d_r
0

co r r
1 /OO (I — L(re)u, (I — L(—re)v) dr
o c0 Jo r r ’

_ -T2
where ¢y = 0°° % dr—r
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Proof. Write D = ddi , the skew-adjoint operator in Ly(R¢).

Then ((I — L(r ex))?u,v) = ((I — e "P)%u, v). Now the lemma follows from
Fourier theory (or spectral theory). O

Lemma 3.5. Let ; RY pe open, 6 € [0, %), w, M >0,ve (0,1),¢ee (0,1]

and x € Cgo(Rd) with x # 0 and d(supp x, Q€) > 0. Then there exists ana > 0
such that

10 My Stll1—o00 < at™ 42712 e and

h v
ai—d/2 =172 <|_|> oo
Vi

forallC € EY(Q,0, u, M,real),t >0,m e {l,...,d}and h € R?.

(I = L(h))3m My Stll1-00

IA

Proof. We only prove the second estimate, the proof of the first one is similar. We
argue as in the proof of Lemma 3.2 and use the commutator (3.2). There exists a

X € CSO(R‘I) such that x (x) = 1 for all x € supp x and d(supp x, 2¢) > 0. Now
we have

(I — L(h))dn (sz S, — My S; MX>

(3.4)

d t
=-Y / (I — L(h))3m My, Sy M,y & Mz, Mz Si—sds + R,
k=170

where R is the contribution of the second and third term in (3.1), which do not have
a derivative. Note that the last term in (3.1) vanishes since p = 0. Again we split
the integral in two parts. Fix k,[ € {1, ..., d}. Then

(I — L(h))3m My Ss My, 01 Mz,

MZ Stfs ds

Hl—mo

t
|/,

IA

t
/ (I — L(h))3y My Ss My, 01ll1—00 | Mz, Mz St—sll1—1ds
12

h v
q 142 (%) oo

for a suitable a > 0, by the estimates of Theorem 2.3 and Lemma 3.1.
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For the integral over (0, %) we use Lemma 3.4 and write

t/2
H / (I — L(h))y My Sy My, 3 Mz, M ;s ds
0

1—-o00
|
= ¢y sup
u,veWh2(RY)NL| (RY)
lully, vl <1

t/2 poo
/ / ((I - L(l"el))M(’}kl M)? Sr—su,
0 0

d
(I — L(—re))) My, S My 8, (I — L(—h))v) r—; ds

IA

| t/2 poo
o sup / / (I — L(re)))Mgz, Mz Si—sullo
u,weWl2@RHNL (RY) YO 0
lully. vl <1

dr
XN = Lren) Mo S; My (I = L(=m)vll1 7 ds,

where cg is as in Lemma 3.4. Next split the integral over (0, co) in two parts: (0, 1]
and [1, 0o). There exist v;, v € (0, 1) such that v, +v < 1 and vi + vy > 1. By
Theorem 2.3 and Lemma 3.3 there exists an a > 0 such that

as_d/2 M B &5
,\/E ’

s—d/2 £t ,

(I = L(h1)) Mz, M5 Ssll1-c0

IA

||M5k1 M)? SS||1—>OO a

IA

_ [\ (|hal Y
(I —L(h1) My SE My (I —L(h2))l11 <as™'/? (— —— ) ¢ and

—1/2 |h2| Y
| Moy S* My (I — LoD 1>1 < as™ (%) o5

foralls > 0and iy, hy € RY. Letu, v € WH2(RY) N Ly (RY). Then

t/2 pl
/0 A (I = L(rep) Mg, My Si —sulloo||(I — L(—re1)) My Sy My 8 (I — L(—h))v]1

dr
X—d
r? s

t/2 pl vy R [ r \2
2 —dJ2 r e(t—s) ,—1/2 | es
<a t—s p— e S — — e u v
< /0 A (t—s) < t_s> (ﬁ) <ﬁ) lully vl

dr
X —d
r? s

_ _ |h| v 2—(vi+vp)
_a iy W(z e 1 E 2 ully ol

27(u1+v2) h v
<de Tz 212 (u) e lully vl

N Vi
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for a suitable @’ > 0. Similarly, since left translations are isometries, one deduces

t/2 o0
/0 I — L(ren) Mg, My St—sullooll (I — L(—7e€1)) My,  S§ My 0 (I — L(=h)v]ly
1

drd
X —ds
r2

t/2 poo A\ d
4a2‘/.5 / (l _ S)_d/2 e€(l—S)s—1/2 (%) eé‘s ||M||1 ||U||1 r_;ds
1

IA

1" —dj2 1/2 |h] ! et
=ad" 17"t )¢ lleelly vl

N —dp Ihl\"
< a2 (— ! ulli ol
- Vi
for a suitable a” > 0. As before, the contribution of the term R in (3.4) can be
estimated similarly and we leave the rest of the proof to the reader. O

We next replace ENQ, 0, u, M, real) by SR, 6, u, M, real) in Lemma 3.5.

Lemma 3.6. Let Q2 ; RY pe open, 6 € [0, %), u,M>0,ve(0,1),¢ee(0,1]
and x € C3° (RY) with x # 0 and d(supp x, Q) > 0. Then there exists an a > 0
such that

18m My Sill100 < at™ 21712 e and

h v
ai—d/2 =172 <|_|> oo
Vi

forall C € SI(Q, O,u,M,real),t >0,me{l,...,d}and h € R4, In particular,
M, Siu € WHY(RY) forall t > 0 andu € Li(RY).

(I = L(7))3m My St 11— 00

IA

Proof. By Lemma 3.5 there exists an a > 0 such that
[ 0m MXSt”l—moSal_d/zf_]/zeg[ 3.5

for all C € 51(Q,G,M,M+ I,real), t > Oand m € {l,...,d}. Fix C €
SY(Q,0, 1, M,real). Foralln € Ndefine C™ = C+ 11. Lett > 0,m €

{1,...,d}andu,v € Cfo(Rd). Then it follows from (3.5) that
My, SE" u, )| < at= 2 V2 5 )y vl

for all n € N. Since limSC"” = SC strongly in L,(R?) by [3] Corollary 3.9 it
follows that
|(My SEu, dm)| < at™ 24712 e ully vl (3.6)

for all u,v € C°(R?). By continuity it then follows that (3.6) is valid for all
ue Li(RY and v € Cfo(Rd). This implies that M, S,Cu e WH*(R?) and the
first estimate of the lemma is valid. The second one follows similarly. O
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It follows from Lemma 3.3 that for each ¢+ > 0 there exists a measurable func-
tion L;: R x R? — R such that L, is a kernel of M x St and L, satisfies Gaussian
bounds. But then it is unclear whether x — L;(x, y) is Holder continuous or dif-
ferentiable for some y € R?. Even worse, there is no reason that the combined
map (¢, x,y) — L(x,y) from (0, co) X R? x R? into R is measurable. In order
to circumvent this measurability problem with the uncountable many null sets, we
first obtain a measurable map on (0, co) x R? x R? for the kernels of M ¥ St and
its derivatives 9,, M, S, and then consider continuity and differential properties in
Theorem 3.9.

Proposition 3.7. Ler Q & R4 be open, 6 € [0, ) u, M > 0and x € Cﬁo(Rd)
with x # 0, & > 0 and d(supp x, Q) > 0. Then there exist a, b > 0 such that for
all C e SI(Q, 0, u, M,real) and m € {1, ..., d} there exist measurable functions
(t,x,y) — Ki(x,y) and (t,x,y) Kt(m)(x, y) from (0, 00) x RY x R? into R
such that K, is a kernel of the operator M, S; and K t(m) is a kernel of the operator
Om My S; for all t > 0. Moreover,

_ P
d/2 et ,—b "5

IK;(x, )| < at and

Y*VZ
K (x, y)| < a 142712 ot gmb BT
forallt > 0and (x,y) € R x R4,

Proof. Let a, w be as in Lemma 3.3 (with v = %). Let C € S'(Q,6, u, M, real).
Then M, S; is a continuous operator from Lr(R?) into Loo(RY) for all 1 > 0
by Lemma 2.5. Moreover, z — S, is a holomorphic contraction semigroup on
Ega. Hence M, S; maps Lo (RY) continuously into Loo(RY) for all z € Ega and

Z + M, S;u is holomorphic for all u € Lo (RY). It follows from the discussion after
Definition 1.8 in [2] and [2] Theorem 3.1 that there exists a measurable function
(z,x,y) = K (x,y) from 27 x R? x R? into C such that z — K_(x,y) is
holomorphic for all x, y € R? and K, is the kernel of My S; forall z € %j .
In particular, K; is a kernel of M, S; for all #+ > 0. By the usual minimising
argument the estimates of Lemma 3.3 give Gaussian bounds for the kernel K; for
each ¢t > 0. Precisely, for each ¢t > 0 one has |K;| < G, a.e. on R? x R?, where

"
Gi(x,y) = a =412 pet e‘bl ~ forallz > Oand x,y € R, where b depends

only on w and d. Obviously (¢, x, y) — G,(x,y) is a continuous function from
(0, 00) x R? x R? into R, therefore it is measurable. Then (—G;) V K; A Gy is also
a kernel of M, S; for each r > 0. Now the proposition follows for M, S; with K;
replaced by (—G;) Vv K; A Gy.

The argument for 9,, M, S; is similar. O

The next lemma is also valid for complex coefficients. The complex version
will be used in the proof of Proposition 4.11.
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Lemma 3.8. Ler @ & RY be open, 6 € [0, %), u, M > 0,C € S'(Q.6, u, M)
and x € C(RY) with x # 0 and d(supp x, Q) > 0. Let ¥ € C°(RY) be such
that d(supp x, Q°) > 0 and x(x) = 1 for all x € supp x. Then

d t
M3S; = MySiMy — ) fo M, S My, y & Mz, Mz S;—s ds (3.7)
k=1

d t
+ Z / M, Sy <M815k1 My« St—s — My, M5, % Stfs) ds
k=170

for all t > 0, where the operators act in Ly(RY).

Proof. 1t follows from Lemma 2.1(d) that the integrals on the right hand side of
(3.7) are convergent.

If C € £EY(Q, 0, u, M) then (3.7) follows from (3.2). Foralln € Nlet C,, =
C+11.ThenC, € (R, 0, u, M + 1). We use (3.7) with respect to C™). Write
S = S€ and S® = SC . It follows from Lemma 2.1(d) that there exist a, @ > 0
such that

1My ST My dillomz < as™'/? e

for all s > 0 and n € N. Obviously ||S§")||2ﬁ2 <1foralls >0andn € N.

Let u,v € Ly(R?). Then lim,— oo S™u = Syu in Ly(R?) for all s € (0, 7]
by [3, Corollary 3.9]. Note that My Ssu € WH2(R?) for all s > 0. Let k,1 €
{1,...,d}. Then
Mz S u, v) — (M, Sy My, ) Mz

t—s"

[(My, S My, & M7,

™y

o My Si—su, v)|
< LMy $™ My, 8 Su, )|
(M, (S — Sy—gut). 8 My S™° M)
(0 Mz, My Si—_sut, My, (S Myv — S* M, v))|
forall s € (0,¢) andn € N. So

u,v) = (M, Sg My, 01 M;

kl

My Si—su, v)

N

i —_ _ o)
Jim (M, S My, 9 Mz, My "
for all s € (0, t). Moreover,

—1/2
My SV, v)| < as™ e Jlullz [|v]l2

|(My S My 8 M5

foralls € (0,¢) and n € N. So

t
lim / (My S My M5 My Su,v) ds
0

n—oo S
t
= / (My S My, 0y Mz, M5 S;_su, v)ds
0

by the Lebesgue dominated convergence theorem.
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One can treat similarly the last term on the right hand side of (3.7) and the
lemma follows. O

The next theorem is a uniform version of Theorem 1.2.

Theorem 39. Ler @ & R be open, 6 € [0, %), 1, M > 0,v € (0,1),x > 0,
T €[0,1),c € (0,11 and x € Cgo(]Rd) with x # 0 and d(supp x, Q°) > 0.
Then there exist a, b > 0 such that for all C € SslQ,0, i, M, real) there exists a
measurable function (t, x, y) — K,(x, y) from (0, 00) x R? x R? into R such that
the following is valid.

(a) For allt > O the function K, is a kernel of My S;.

(b) Forallt >0andy € R4 the function x — K;(x,y) is continuously differen-
tiable on RY.

(c) The function t — (0¢K;)(x,y) is continuous for all x,y € R? and multi-
index o with |a| < 1.

(d) For every multi-index o with || < 1 one has

lx—y|2
(2K (x, )| < ar=/2g7lel2 got o =b == (3.8)

and
|(3Y K)(x +h,y) — 0y Kp)(x, y)]

|h| ' oyl
< gt 4/2 el < ) ot p—b
lx =yl + 1
forallt > 0andx,y, h € R with |h| < T |x — y| 4+« /1.
(e) (3% My Siu)(x) = / O K)(x, Y u(y)dy forallt > 0, u € Li(RY, x €
R4
R? and multi-index o with || < 1.

Proof. Without loss of generality we may prove the proposition with M, S; re-
placed by M)z( S¢. We consider each of the operators in the terms on the right hand
side of (3.7). It is possible to differentiate all terms in (3.7) at least once in L,-sense.
Let o be a multi-index with |«| < 1. Clearly % M, S; M, has a kernel satisfying the
stated requirements by Theorem 2.3. Let k,/ € {1,...,d}. For all t > 0O consider
the operator

t
/ 0% My Sy My, 8 Mz, M3 S ds. (3.9)
0

By Theorem 2.3 there exist a continuous function (¢, x, y) > L;l’a) (x, y) from

(0, 00) x R4 x R? into R and suitable constants a;, b; > 0 such that for all 7 > 0

the function Lfl’a) is a kernel of the operator 0% M, S; My, 5,

—d/2 .- _p, k2
IL,(I’“)(x,y)I < ap t~42 71el/2 pot p=br T g

h1\" by ?
LM+ y) = L )] < a2 (L—[l) et T
t
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forallt > 0 and x, y, h € R¢ with || < %|x — y| + /1. Next, by Proposition 3.7
there exist a measurable function (z, x, y) +— Lt(z) (x, y) from (0, 00) x R4 x R¢
into R and suitable constants ay, b» > 0 such that for all # > 0 the function L§2) is

a kernel of the operator 9; Mz, My S; and

iyl
ILP (x, Y <agt= 21712 et o2 "7

for all # > 0 and x, y € R?. Define the function (z, x, y) +—> L§3’a)(x, y) from
(0, 00) x R? x R? into R by

t
L, y) = / /R L@, 2) L2 (2. y) dzds.
0

Since the convolution of two Gaussians is a Gaussian, it follows that the integral
is convergent and L% has appropriate Gaussian bounds. Moreover, (¢, x, y) —
L§3’a)(x, y) is measurable and L?’a) is a kernel of the operator (3.9) for all ¢+ > 0.
Define Lf3) = L3P if |B| = 0. It is an elementary exercise in integration theory
to prove that x > Lf3’a)(x, y) is continuous for all t > 0 and y € R4, that
t Lf3’“)(x, y) is continuous for all x, y € R? and that for all > 0 and y € R?
the function x +— Lt(3)(x, y) is differentiable and (8}3‘L§3))(x, y) = Lf3’a)(x, y) for
all x e RY,

The last term in (3.7) can be treated in a similar way and Statements (a)—(c)
and the first part of Statement (d) follow. Let K be the so obtained kernel.

Next, let r > 0 and u € L;(R). Since (x,y) +—> (0YK;)(x, y) is a kernel
of 9% M, §; it follows that (0% M, S;u)(x) = de(a;}Kt)(x, y)u(y)dy for ae.
x € R, Hence this is valid for all x € R? since 3* M, S;u is continuous by
Lemmas 3.3 and 3.6. This proves Statement (e).

Finally we establish the Holder Gaussian bounds of Statement (d). Set v =
%(1 + v). By Lemma 3.6 there exists an a; > 0, depending only on 2,60, u, M, v,
¢ and y, such that

a1 (101N
(I — L(1)3m My Sill1—00 < art=4/27V (ﬁ) !

forallr > 0,m € {l,...,d}andh € R?. Letx, h € Ret>0andm € {1,...,d}.
Then it follows from Statement (e) that

[ (@m0~ @ o= )t dy| = | (1= Lk M, Sir) o)

< ap t*d/2 t71/2 <ﬂ Gegt”l/l”l
- Vi
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for all u € L(RY). Hence there exists a null set N htm C R such that

[

ﬁ) e (3.10)

|Bx.m KX, ¥) — @rm K)(x — R, y)| < ay 17427172 (

forall y € RY \ Ny j.r.m. Then

d
N = U U U Nx,h,t,m

x,heQd te(0,00)NQ m=1

is a null set in R¢ and (3.10) is valid forall y e R\ N, x, h € Q1 € (0,00) NQ
and m € {1, ...,d}. Then by density and continuity (Statements (b) and (c)) one
deduces that (3.10) is valid forall y € Rd\N,x, heRe t>0andme{l,...,d}).
Let a, b be as in (3.8). Then it follows as in the proof of Step A of Lemma A.1
that there are ap, b, > 0, depending only on a, b, a;, x, 7, &, v and v, such that

|(8x,m Ki)(x, y) - (ax,m Ki)(x —h, }’)|

—d)2 —oc|/2( |h| )” o —p, ool
<axt t —— ) e 2
lx —yl+ 1

forally e RE\N,x,h e Rt >0andm € {1,...,d} with |h| < T |x — y| +
Kk +/t. Now the theorem follows by replacing (¢, x, y) — K;(x, y) by the function
(t’xvy)'_)Kt(x9y) H]Rd\N(y)- g

Corollary 3.10. Let ;Cé R? be open, 6 < [0, %), w,M > 0and x € Cl‘)’o(Rd)
with x # 0 and d(supp x, 2°) > 0. Then there exists a ¢ > 0 such that M, (I +
AL,(RY) ¢ WHP(RY) and

[0m Myullp < cl|(I 4 Aullp

forall C € SI(Q,Q,/L, M,real), p e [1,00],u € D(A)andm € {1, ...,d}.

Proof. The Gaussian bounds of Theorem 3.9 imply bounds [0, My Sillp—p =<
ct~1/2 ¢!/2 Then the corollary follows by a Laplace transform. O

4. Riesz transforms

In this section we shall prove that various Riesz transforms like oy M, (1 + A)~1/2

and oy M, (I + A)~1/2 M, are bounded on L or L. The first results on L; for the

Riesz transform merely use that x € W (R?).
If n € WH(R?), then

Reac(nu) < 2||nllec Reac () +2M |Vl lul3
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forallu € WI2(RY), 60 € [0,%), M > 0 and C € S, M). Therefore for
self-adjoint operators the boundedness of the Riesz transforms on L, (R9) is trivial.

Throughout this section let L = — ZZ: 1 8,3 be the Laplacian and let H = Agc.
The first lemma is a variation of Lemma 2.1(c).

Lemmad4.1. Ler0 [0, Z), u, M>0, x e WH-°(R?) and C e S(supp x, 6, i, M).
Then M, D(H'?) ¢ W'2(R?) and

ok Myullz < 11+ L)'/> Myullz < c1 (1 + H)'ul
forallu e D(H'?)andk € {1, ...,d}, where

IxlI2,
M

2 9 1/2
1= (IIXIIOO+2 +2||Vx||oo>

Proof. We only have to prove the last estimate. It follows from Lemma 2.1(c) that

d
I +L)"> Myull3 = [ Myul3 + ) 110k Myull3
k=1
d d
< N3 lell3 + 2> 1@k My — Maullz + 2 [|My, ul3
k=1 k=1
2 2 13 1/2, 12 2
< 03 lully + 275722 1 a3 + 20V 0ull3
< I+ H)'ul)3

as required. O

Lemmad4.2. Let6 € [0,%), u,M > 0,y € (0,1) and x € WH*(RY). Then
there exists a co > 0 such that MXD(AV/Q) c D(L"'?) and

(I 4 LYY? Myulla < c2 (1 4 A ull

forall C € S(supp x, 6, ju, M) and u € D((I + A)Y/?).

Proof. Let c¢1 be as in Lemma 4.1. Then M, is continuous from D((/ + H)'/?)

into D((I + L)'/?) with norm bounded by ¢/ . Then by interpolation, Proposition G
together with Theorem G in [1], it follows that M, D((I + H)?/?) ¢ D((I+L)"/?)
and

I+ LYY* Myulla < | |+ H)?ull,
forall u € D((I + L)Y/?), where ¢} = ¢! |l xlo” . But D((I + H)*/%) = D((I +
A)?/?) with equivalent norms by [13] Theorem 3.1. Explicitly,

1
I+ H)Pully < - 1T+ A Pullz
—tanT

forall u € D((I + A)Y/?). Then the lemma follows. O
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Lemmad43. Let6€[0, %), u, M>0, x e W'°(R?) and C € E(supp x., 6, ., M).
Then

(I 4+ H)'Y>Myully <201+ H)7Y2My (I + Aully +4M2 ||V x [loo llull2
forallu € D(A).

Proof. The proof is a variation of the proof of Lemma 1 in [14]. If u € D(A) then

I + H)'2Myu)); = Rea(Myu) + || Myul);
= Rea(u, M%u) —Re Z(Ckl O (x u), (O x)u)
+Re Y (cur ex) u, (Bx) u)
+Re Y (cur Brx) u, (x w)) + | Myul3.

But

Rea(u, Myu) + | Myul3 = Re(Au, Myu) + || Myull3

= Re((I + H)"'?>M, (I + A)u, (I + H)'*M,u)
I+ H)V2My (1 + Aull2 11+ H)'2Myull
A+ 2 Myul)3 + 1T+H) ™2 My (I + Ayul3

IA

IA

and

—Re > (cx O (x ), Q) ) +Re Y (car (Bx) u, (3rx) 1)
+Re Y (eur (Bex0) u, 3 (x )
1/2
< 2(Rea(MXu))1/2<ReZ/Ckz (3kX)(8ZX)|M|2>
+Re Y [ e @) @0

2(Re a(Myu)' > M2 | Vxlloo lulla + M [V 12 lull3
A+ D2 Myul3 +5M IV x11Z llull3.

IA

IA

So

I+ H)'>Myull3 < 201+ H)™'V2My (1 + Aull; + 10M [V I3, ul3

and the lemma follows. O

The next lemma is well known, but we need uniform constants.
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Lemmad4d4. LetO <y <v < landn € CO"(RY) N Loo(R?). Let u € D(LY/?).
Then Myu € D(L"/?) and

1T+ L)Y Myulla < cea (Inllos V Inlllcos) 1K+ L)Y 2ul,

where cqy = 1 + C;l 24+3 F(%) and ¢, = 000 t_l_%(l —e ) dt.

Proof. Let T be the semigroup generated by —L and for all # > 0 let G; be the
kernel of T;. If u € L>(R?) and ¢ > 0 then

(T, MyJi) () = / G () (n0x =) = 1@ Jutx = y) dy
for all x € RY. But
G (0 = » = n@)| =2M G Iy = 24 M 2 Gy ()

for all x,y € R4, where M = Inlloc V llInlllcov. Therefore ||[T;, Mylull, <
293 M V72 |lu]|5. Next,

1 x
(I+L)Y"?=— / T e T dr.
CV 0

So for all u € C2°(R?) one obtains

1 o0
[(I+ LY Myu=—— [ =% ¢7'[T,, My ludt.
Cy 0
Therefore
2030 o0y 293 M T ()
I +L)2, Mylul < / T e dt ulo=———2 ul
Cy 0 Cy
and
1T+ L) Myullz < ea |1+ LY ?ul.
Then by density the lemma follows. O

Lemmad4.5. Letf € [0, %), u, M >0,v € (0, 1) and x € WH(R?). Sery = §.
Then there exists a cs > 0 such that M)Z(D(L(HV)/Z) c D(AYY/2y and

I+ A2 Mully < es (1 + L)),

forall C € E(supp x, 6, i, M) and u € D(L+7)/2),
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Proof. The proof is a variation of the proof in [7]. Let u € D(LU*V)/2)
WI2(R9) and v € D(A*) € WI2(RY). Then

(M2u, (I + AH T/ 2y)
= (M)Z(u, (I + AT + A*)~0=1/2y)
= Z(Ckz O M)z(u, o (I + A*)*(lfy)/Zv) + (M)z(u, I + A*)f(lfy)/zv)
= Z(Ckl My du, & My (I + AF)~(1=7)/2y) @D
- Z(Ckl My, du, (3 x) (I 4 A%)~U=1)/2y)
+2 Z(Ckl Okx)u, 9y My (I + A*)~U=)/24y
~2> (ew @) u, @) (I + A ~07112y)
F(Myu, My (I 4+ A*)~1=0/2y),

Fix k,l € {1,...,d}. Then x ciy € CO*"(RY) N Loo(RY) and |||x cuilll o may <
2M ”X”Wl,oo SO

|(crt My B, & My, (I + A*)~171)/2y))
= [((I + L) My oy g, (1 + L)/ 3 My (I + AH~070/2))
< I+ L)% My ey httlla (2 + L) 7720 My (I 4+ 4%~ 2y .

If ¢4 is as in Lemma 4 4, then

I+ L) My oy dgulla < 24 M ([ x oo (1 + L) dul]
< 24 M || x e 1T+ L)TF72u5.

Alternatively,

I+ 2oy My (1A% ™ol < [+ 2 M (14 A5,
By Lemma 4.2 there exists a ¢ > 0, depending only on 6, i, M, v and , such that
I+ D)2 Mywly < ealld + A% 2w

forall w € D((I 4+ L)'=7)/2). Hence

I +L) 7720 My (14 AT R0y < el (1AM T2 (1445 712y
=2 |vll2.

The other four terms in (4.1) can be estimated similarly.
Combining the contributions, it follows that there exists a ¢ > 0, depending
only on 6, ;, M, v and x, such that

((Myu, (I + A% 20 <o ||+ L) u)y (o]l
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for all v € D(A*). Since D(A*) is a core for (I + A*)(177)/2 one deduces that
Mzu € D(AU*Y)/2) and

I+ A2 Mul, < ||+ L),
as required. O

Now we are able to prove a uniform version of Theorem 1.3(c).

Theorem 4.6. Let 6 € [0, %), u, M > 0, v € (0,1) and x € W-°(R?). Then
there exists a ¢ > 0 such that M;u e WL2(RY) and

10k M ulla < [I(1 4+ A)?ully

forallC € S¥(supp x, 0, u, M), u € D(AY?) and k € {1, ..., d}.

Proof. First suppose that C € £Y(Q2, 0, u, M). Let ¢cs > 0 be as in Lemma 4.5.
Then by interpolation, Proposition G together with Theorem G in [1], one estab-
lishes that M; D((I 4 L)'/?) € D(( + A)'/?) and

I+ A2 M2 ullz < &I+ L) ul)
i e
for all u € WI2(RY) = D(L'/?), where c5 = 051” lxlloe” . Hence if ¢; > 0 is as
in Lemma 4.1 then

I+ A2 M3 ully < IU+ L)Y My ully < v s I+ H)2ull,.

So
I+ A2 M (I + H) 7 pmn < 1 ¢

and then by duality
I+ E) ™2 M (I + A% 2 mn < 1 ¢ (4.2)

Since £Y(L2, 0, i, M) is invariant under taking adjoints, one may replace A* by A
in (4.2). Then Lemma 4.3 gives

I+ H)'2 Myully < 211+ H)™Y2 M; (I + Aulla + cs lul)2
< 2¢1 5 1T+ A)Y2ulls + 6 llull
< (c1cs +co) 11+ A 2ull

for all u € D(A), where c6 = 4M ||V(x?)|loo. Therefore

10 Myully < w21+ ' Mjully < ™% Qe ¢ + o) (1 + A)Pulla.
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This extends to all u € D(A!/?) by density. It follows that
|(M; (I + A~ 2u, )| < w7 ey ¢ + co) ull2 vl 4.3)

forall u € Ly(RY),v e WH2(RY), ke {1,...,d}and C € E'(supp x, 0, i, M).
By approximating C by C + % I it follows as before that (4.3) extends to all C €
SV (supp x, 0, u, M) and the theorem follows. O

The theorem has many corollaries.

Corollary 4.7. Let Q2 ;Cé R4 pe open, 0 € [0, %), u,M>0,ve0,1),pe(,o0)
and x € Cgo(Rd) with x # 0 and d(supp x, Q°) > 0. Then there exists ac > 0
such that

IV M, I+ A7 My <c

forallC € SV (2,0, u, M).

Proof. Forall t > 0 let K, be the continuous kernel of the operator M, S; M, . Fix
m e {1,...,d}. By Theorem 2.3 there are ¢ > 0 and b € (0, 1) such that

ey
@emK) (r, y)| < a1~ U2 712 o112 =0 B35
and

h kY x—y[?
(o K) x4, 34— (B K, y)| < a1~ 1172 (%) o b
t

forallr > 0and x, y, h, k € R? with |1] + k| < § |x — y|. Forall x, y € R? with
x # y define

1 o _
L(x,y>:ﬁ/ V2 e 3y mKo) (x, y) dt.
0

Then
(O My (1 + A2 M) (x) = /R L(x, y)u(y) dy

forall u € Ly(R?) and x € R? \ suppu. Moreover, for all x,y,h € RY with

|h| < % |x — y| one has
o0 hl\" lx—y[%
:5;:1/‘ 142t ({7l> et T dt
T Jo t

(+250) w=
= s
Ix =yl |x—yH

|L(-x +hv y) —L(.X', y)'

IA
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00 _l_dﬂ

where ¢ = - [ ~1=F ¢=7 dr. Similarly,

1
Ix — y|4

h v
|L(x,y+k)—L(x,y)|sc< i )
|x — ¥yl

forall x, y, k € R4 with k| < % |x — y|. In addition,

1 o v
Ll s = | T e ar
VI lx =yl Jo

for all x,y € RY with x # y. Therefore 3, M, (I + A)~'/2 M, is a Calderén—
Zygmund operator. Since it is bounded on L,(R?) by Theorem 4.6, it is also
bounded in L,,(]Rd) for all p € (1, oo) by Theorem L in [1], or [20]. ]

Corollary 4.8. Let @ S R? be open, 6 € [0,5), 1, M > 0,v € (0,1), p €
(1,00), k,1 € {1,. }andx € COO(Rd) with x # 0 and d(supp x, 2¢) > 0.
Then there exists a ¢ > O such that

13k My (I + A~ My 81l psp <
forallC € S5V (R2,0, u, M).
Proof. Note that in L, the operator oy M, (I + A)~1/2 is bounded by Theorem 4.6.

So by duality the theorem follows for p = 2. Then the rest of the proof is similar
to the proof of Corollary 4.7. O

Corollary 4.9. Let @ S R? be open, 6 € [0, %), n, M > 0, p € (1,00), m €
{1,...,d}and x € Cgo(Rd) with x # 0 and d(supp x, QF) > 0. Then there exists
a ¢ > 0 such that

19m My (I + A2 pesp < c
forall C € SY(Q, 0, u, M, real).

Proof. It suffices to prove the corollary with M, replaced by M;. We use again a
commutator. It follows from Lemma 3.8 that on L,(R?) one has

I M, (I+ A2 =8, My I+ A7 M

1 x
= 7/ V2 e 8, My (M, Si1dt

= 1/2 fa M S¢ My, , 0 Mz, M7 S;_sdsdt + R
kx Ol Meyy My Or—s dS ’
\/_kl 1/ /
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where R is the contribution of the last term in (3.7) and x € Cg° (R%) is such that
d(supp x, 2° > 0and x (x) = 1 for all x € supp x. Using the Gaussian bounds of
Theorem 3.9 it follows that there exists a ¢ > 0 such that

18m My St My yll psp < ct™2e!/2 and
10; M o My St||p—>p = ct1/2 2
forall k,1 € { d}and ¢t > 0. Then
H / / e~ B My Sy M, & Mz, My S,—g ds dt H
p—p

< / / 112 712 5712 (¢ — V2 g

=ctaV2
The contribution of R can be estimated similarly and the current corollary follows
from Corollary 4.7. O]

We end with two propositions on second-order Riesz transforms.
Proposition 4.10. Let @ & RY be open, 6 € [0,5), u, M > 0, p € (1,00),
m,n € {l,...,d}and x € C]‘D’O(Rd) with x # 0 and d(supp x, Q°) > 0. Then
there exists a ¢ > 0 such that M, (I + A)_le(Rd) c W2PR?) and
18 80 My (I + ) psp < €
forall C € SY(Q, 0, u, M, real).

Proof. First let C € EHI(Q, 0, u, M,real). Let F = supp x and define x1, x2
as in (2.4) and (2.5). Let M’ = 2||X2||W1,00(Rd) M + II)(IIWn,OO(Rd) +1land C' =

x2C+x11.ThenC’ € EH'(R?, 6, u A1, M'). By [8] Proposition 5.1 there exists
a suitable ¢ > 0 such that (I + A’)_le(Rd) c W2P(R?) and

(| Oy anu”p%p <cld+ A/)u”p
for all u € W2P(R?), where A’ = A¢cr. Then
10m 30 Myutllp—sp < c |1 + A") Myull, = c (I + A) Myul|p.

But

d

I+AMyu=M,(I+ Au— Z ((31)() Ckl Ol + 0f Ciy (ka)u).
k=1

Hence it follows from Corollary 3.10 that there exists a suitable ¢’ > 0 such that
[0y O MXM”[)—)p <c I+ A)u”p

for all u € W>P(R%)= D(A). Then the proposition follows by approximation. []
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On L, the same argument works for operators with complex coefficients.

Proposition 4.11. Let @ G R? be open, 6 € [0, %), u, M > 0, p € (1,00),
m,n e f{l,...,d}and x € Cgo(Rd) with x # 0 and d(supp x, Q°) > 0. Then
there exists a ¢ > 0 such that M, (I + A "LyRY ¢ W22(RY) and

18m 8 My (I + A) a2 < ¢

forall C € SY(Q, 0, u, M).

A. Gaussian bounds

The main aim of this appendix is to transfer weighted semigroup bounds into Gaus-
sian kernel bounds, with optimal large time behaviour and optimal control of the
constant in the Gaussian, including the Holder bounds. Throughout this appendix
we write C” = C%V(RY) forall v € (0, 1).

Lemma A.l. Let N, N* € Ny and v,v* € (0,1). Let S be a Cy-semigroup
on Ly(RY) and Ty, T» € L(L2(RY)) such that Ty S;(CX[R?Y)) ¢ WV (RY)
and Ty S} (CX(RY)) ¢ WV RY) for all t > 0. Assume that [Ty, U,] =
[T2,U,]l =0 forall p € Rand € Dy. Let ap, a1, w1, w > 0 and suppose that

2
”Up A U7p||2*>2 < a et
forallt >0, p € R and € Dy. Moreover, suppose that

—d/4 —|a|/2 ,—v/2 14-p2
118 Uy Ty S U—pulllcv < ay t=V* 71002 470/2 oo 0H000 ) 1

* 2
107 U, T3 S; U_pulllgwe < ay =4 7 IPV2 477 /2 gon 000 gy

IA

forallt > 0,p € R, ¢ € Dgpipvi, u € CXRY) and multi-indices o, B with
|| < N and |B] < N*. Let ¢ > 0 be such that

sup{yy (x) — ¥ (y) : ¥ € Dnun=vi} = clx — | (A.1)
forallx,y € RY and set b = %.

Then for all t > O the operator Ty S; Ty has a continuous kernel K; which is
Ni-times differentiable in the first variable and N,-times in the second one, in any
order. Moreover, there exists an a > 0, depending only on ag, ay, w, w1, N, N*, v,
v 5, Ty || and ||T> || such that

2 d+tle|+IB]
2

)

forallx,y € R?, t > 0 and multi-indices «,  with || < N and Bl < N*.

by

et (A2)

|(8)(Cx 85[(;)()(:, y)l Sat_ 2 t+

d+|a|+|8] —
el + <1+ |x ty|
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Finally, let y, y* € (0, 1),k > 0,7 € [0, 1),

0<by <b(l—1)°
<br<b( t)c+2r

and a, B multi-indices with || < N, |B] < N*, |a|+y < N+vand |B|+y* <
N* + v*. Then there exists an a > 0, depending only on ag, a1, by, N, N*, v, v¥,
v, vk, T, |T1|| and || T2 such that

12 AP K ) +h,y + k) — (2 08 Kp)(x, )] (A3)

- (1+t)d+a|+|§|+y+y*<( |7 )V+< k| )V*) by \x—tyF
a e
B Vitlx—yl Vit|x—yl

forallx,y, h,k € R andt > O with |h| + |k| <k /T4 7 |x — y|.

In the proof of Lemma A.1 we need some estimates which are of independent
interest.

Lemma A.2. Letv € (0, 1).
(@) IfueC’NL)thenu € Ly and

lulloo < 7% & [lullley + [B) ™2 &4 ul),
forall e € (0, 1].
() Ifk € {1,...,d}and u € W't (R?) then
lakulloo < 1 & dkullley + &~ ullles
forall e € (0, 1].
() Ifu € W (RY), then
1—
lulller < 211VullX lullo”

forally € (0,1).
(d) If0 <y < v, then

Y 1-2
Mulller < 21{[ullley lulloo

forallu € C' N L.
Proof. Letx € R? and h € B(e). Then lu(x)| < |ulx) —ux+h)|+|ux+h)| <
[A]Y [llulllcv + |u(x + h)|. Integration over i gives
e B Ju(x)] < |I|uI|Icv/ Ihl”dh—i-/ lu(x + h)|dh
B(e) B(e)

£
< |lulllcvd |B(1>|/0 p” 0 Vdp + |B()V? |lul

= lllulllcr = IB(D)| T + B[22 ||ul

+v
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from which Statement (a) follows.
For Statement (b) note that

ux +eex) —ulx) = fg(aku)(x +tey)dt
0
= & () (x) +/0 <(8ku)(x fie) — (Bku)(x)) dr.
So

| (k) (X))

IA

1 1 [
~Jutx + e e0) — )| +—/
& & Jo

(Opu)(x + 1 eg) — (Bku)(x)‘ dr

IA

1 1 [¢
g~ ( U)Illulllcv+g/ 1" |19gulllcv dt
0

= e jul||cv +

eV |110ku|||cv
T+ [0kulllc

forall x € R,
The proof of Statements (c) and (d) is easy. O

Proof of Lemma A.1. We follow arguments as in [9,10] and [18]. Set No = N Vv
N*Vv 1.

Step 1. Since 77 and 7> commute with U, one has estimates

2
IUp T1 St U-plla—2 < ao | Ti|| e

and similarly for 7,. It then follows from the first two statements of Lemma A.2
with & = /2 ¢~ that

1% Up Ti S U—ptlloo < §ag a4 a1/ en (0000 g,

107 Uy T3 7 U—pitllo < & an 174/ 1718172 204020
forallt > 0,p € R, € Dy,,u € C?O(Rd) and multi-indices «, 8 with || < N
and |B| < N*, where ay = 4ai +2|B()|™' 2 (Il V | T2Dao and @ = (w1 +
1—v)V(w+ %). Then using the last two statements of Lemma A.2 one deduces
that

110% Uy T1 S, U—pulller < ay 14/ 7100/2 =712 20020y 1,

* 2
18P U, Ty SFU_pulllcy < ayt™ 417 P12 47v7/2 o200 1y

forallt > 0,p e R, € Dy,,u € Cfo(Rd),multi-indices a,Band y, y* € (0, 1)
with || +y < N+4+vand |B]| + y* < N* 4+ v*.
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Step 2. Let y € (0, 1) and @ be a multi-index with |¢| +y < N 4+ v. Note that
U, = % Uy + p My, Uy and |p| t"TD/2 < ! U+ forall n e Np. Hence it
follows by induction to || that

18% U, 8" Ty S; U_pulllcr
<(1+N! 2N)|a"| a t*d/4 t*(la’|+|a”|)/2 t*)’/2 e(w2+\(¥”|)(1+02)t lluel2

forallt > 0,p € R,y € Dy,,u € Ly and multi-indices o', &” with |o/| + |a”| <
||. In particular,

11Uy 8% T S, U—pullicr < az eyt~ 4/4 =162 17712 oontNA+000 1y
where ¢; = (1 + N!2V)N | Similarly,
U, 0% Ty S; U—pitlloo < az 1 1~ 4/4 1710172 gt M)A+ 1
If h € RY with |h| > 1 then

(I = L(h)Up 3% T1 S U-pulloc
< 2ay ¢y 174 12 @ N0y

A

llaell2.

2ay ¢y 1A 12 (@)Ve(w2+zv+1)(1+pz),
Jt

So

h|\Y
I = LU, 6% Ty § U-—ptllog < a4/ a2 (%) ey
t

forallt > 0,h € RY, p € R, € Dy, and u € Ly, where a3 = 2a;c; and
w3 =wy)+ N + 1.

Step 3. Let y € (0, 1) and o be a multi-index with || +y < N +v. Leth € R?,

1
¥ € Dny,p e Randu € Ly. Setty = m.lft € (0, t9] then

h|\Y
I — LA)U, 0% T S; U—pit]| oo < azet™ /4171412 (L—fi) luell2

and if t € (¢p, 00) then

(I = L(h)U, 3% T1 S; U_pullo
= ||(I = L(h)Upd* Ty Sy U_p Up Si—1y U—ptl oo
—a/s —al2 { 1R\
t t — U, S;—, U_
as el 0 («/5 NUp St—1o U—pull2

d | lel+y

2\ —aga a2 (Y wpri—n)
avaze (03(1+01) 1ty 7) e lula.

IA

IA
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Hence

(1 = L(h)Up 3 T1 $; U—pulloo
d 4 lalty

+ h
5a4(1+w3(1+p2)t)4 ’ td/4t|“/2(i—[l)yewp2f||u||2

for all + > 0, where a4 = a3(1 V ap)e. Similarly,

SIS

-i-M 2
1Up 0 Ty S U—pttloo < as (14 @31+ pDr) T T (g mlelr2 gonty

forall y € Dy,,p € R,t >0, |a|] < N and u € L. Also similar bounds are valid
with 7 and S}

Step 4. Let h,k € R4, Y € Dny,p € Ryt > 0,y,y" € (0,1) and o, B be
multi-indices with |¢| +y < N +vand |B| + y* < N* 4+ v*. Then

IL(R)Y U, 8% Ty S, T2 8P U_p L(—k) — U, 3Ty S, T2 9P U_pl1—00
<N —=L()Upd* Ty St/2 U—pll2—ocoll(I = L) U, 8° T3 12 U=pll2—oo
+ 11 = LU, 8 Ty St)2 U—plla—oo U, 3° T 72 U-plla—>o00
+ 11U, 3 T1 Sija U—pllasoo (1 = LNU, 3P T3 Sfn Uyl 00 (Ad)

d+la|+|Bl+y+y*

d+|e|+|B]
<as (1 + w31+ ,oz)t> e ?

2Pt

(G () + () ()
<((=) (=) +(=) +(=) ).
Vi) \Vi NG NG
where a5 = 2(@HeFIAIF2)/2 42 Similarly,

d+la|+18]
d+]al+|B] 2

10U 0% T3 5, T2 0P U_plliono <as (1+as(i4p70) 5 e (As)

Step 5. Let ¢+ > 0 and «, 8 be multi-indices with |e¢| < N and |8] < N*. Choos-
ing p = 0 it follows from (A.5) and the Dunford—Pettis theorem that the operator

9% Ty S, T> 3% has a kernel K t(“’ﬂ ) e Loo(RY xRY). If L denotes the w*-continuous
left regular representation of RY x R? in Loo(R? x R?), then it follows from (A.4)
that

I = L(h, k) K“P |l

<4 t_d+\a2|+|ﬁ\ (1 T t)d+\a|+|g|+v+v* (m)l) <|k_|>y* . <|h_|>v+ (V{_l)v*
=0 : NIAW NG i

for all (h, k) € RY x RY. So limg. gy 0.0 I — L, k) K P log = 0 and K
is uniformly continuous on R¢ x R?.
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Define K; = K,*? if |a| = |B| = 0. Thus K, is the kernel of T} S; T». Let
| < N, |Bl < N*andt > 0. Thenforall u, v € C?Q(Rd) one has

(= DleHAl / / K (x,y) (3%u)(x) (8P v)(y) dx dy
R4 JRY
= (=BT, 8, T5 8P v, 9% w)
= (=DP1@* T, S, T»8Pv, )
— (=P /d u(x) (0“1 S; T P v)(x) dx
R

= (D! / f KP (x, y) u(x) v(y) dx dy.
R4 JRRd
So by density
(—Dlttipl / K (x, y) (0% 9 w)(x, y)d(x, y)
R4 x R4

= (= /R KD s v di )

forallw € C° (R4 x R?) and the (—1)!PIK ,(“”3 ) are the successive distributional

derivatives of K;. Since the K ,(a’ﬂ ) are continuous one deduces from the lemma

of Du Bois—Reymond that K; is N times differentiable in the first variable, the
derivatives are N*-times differentiable in the second variable and all derivatives are
continuous.

Step 6. Let || < N, |B] < N*,t > 0 and x, y € R?. Then it follows from (A.5)
that

dt|o|+|B]

d+|a|+|B]
KD 0 < as (1+ 31+ 7)) (= g0t gmp b W—¥ ()

forall p > 0 and ¥ € Dy,. Minimizing over ¥ and using (A.1) gives

d+|a|+|B]

d+la|+|B] .
KDl = as (14 oa 4 D) 5 7T 3 et ok

and with the choice p = % one deduces that

d+la|+|B]

21y — |2 2 dtlo| 4Bl g Ly
1K P (x, y)| < as (1 + w3 (t + M)) T e (A

402 ¢t

This proves the bounds (A.2).
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Step 7. Let «, 8 be multi-indices, y, y* € (0, 1) and suppose that |a|+|y| < N+v
and |B] + y* < N*+v*.Letk > 0and t € [0, 1). There exists a t; € (t, 1) such

that
c

by =b( —1)? .
: ( 2 c+2t

Set A = :_1 > 1. Further, lete,n € (0, 1). Letx, y,h,k € R4, ¢t > 0 and suppose

that || + |k| <k /Tt +7|x —y|.Let p € Rand ¢ € Dy,.
If RHS = as... denotes the right hand side of (A.4), then it follows from
(A 4) that

‘efpw(x)Kt(a,ﬂ)(x’ ) ePV o) _ e*pvf(xfh)Kt(“’ﬁ)(x —h,y—k) ep‘”(y*k)‘ < RHS.

So
’ K@ (x,y) — ePWQO—VG=) g @B (o e—p(wy)—w(y—k))‘

< RHS - PV @y )

and
kP ) = K P = by~ b))
< RHS - ePW@=v()

+‘1 _ P @)=Y (a—h)) e—p(w<y>—w(y—k>)‘|Kt<a,ﬁ>(x —hy—k)|

< RHS - PV =Y G)) ol (k| + |k]) el PIURIFIKD |Kt(°‘~'3)(x —h,y—k)|.
Suppose p > 0. Optimizing over i gives

[P0 = K P @ =y 0|

< RHS -e~ Pyl 4 o (1h] + k] P UhI+IK]) |K,(a”3)(x Chy—h)|
2 \E _F 2
=as (1 +w3(14+p )t) tE poot g—cplx—y|

() G (B (5))
Vit Vit Vit Vt
+ o (h| + k) P PHED g @B (o — Ly — k),

\ -
A Ty Y and F = 4HHBL Choose p =

where for brevity we set £ =

‘lﬁ;f | Before we estimate both terms in (A.7) we need one more estimate to re-

place the denominator /7 by /¢ + |x — y|.
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lx—y|?

Since |x\ky | < ﬁ ¢ it follows that
— 2 lx—y[%
—1/2 \/— . _ lx —yl L ekt
t t+ |x =1+ < 1
( lx — y[) NG 7
and ,
t_l/z S i 1 es |X_t}'|
Ve Vi |x -yl
Therefore

() () () () )

and

*

(%)y (%)y : g(«/ﬂlﬁ —yI)y (ﬁ+|il —y|)y S

4 . |h| Vo
2+ 1) <7> T
€ Vitilx =yl

We estimate both terms in (A.7) separately.
For the first term note that

IA

_Czlx—yIZZ)»—l<_2|x—y|2:_b Ix — y|?
4wt A2 T A t : r

wplt—cplx —y| =
Therefore the first term in (A.7) can be estimated by

6 o —yP\" _z h o\
- 1 1 4+ — - _
saS( to(T+ost+ A\2 2t ((ﬁ-l—lx—yl)

*

n <|k7|>y >€—<b1—2e>"‘+’2'
Vi x =yl

For the second term we use (A.6) to estimate

2 2\\F )
clx—y—h+k| )) t_ge_blx—.v—tthk\

K P (x—h, y—k)| < as (1 + w3 (t - -
4w- t

Clearly

X —y —h4+k|? <2lx =y + 2(1h] + k])? < 6]x — y|* + 4«> 1.
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2
For the exponential set = 11‘ o > Oand § = z—lz — 1> 0. Then

v 2 W2 2
oy —htkT X -y |h — kI

t - A+t nt
2
x — b
< - '(Hzlt+E((1+5)r2|x—y|2+(1+3—1)x2z)
—y|? 7] — T2
:—19(1—t1)2u+b/c2 12 L
t T —1?

So

1KP (x =,y — k)|

w3ctic? 3a)3c2|x—y|2 Lo 2 lx—yl? T —1}
<as |1+ twst+——" | 7 Ee U= expbi? L.

w? 2wt
Next we estimate the factor p (|i] + |k|) e?"IT1kD  One has

clx —yl ct+ni) lx—yP e«
h k) < ———— t — < .
PRI+ IK) = —— KVt +Tlx—yl) < T ; e

and alternatively

clx =yl lhl + Ikl
h| + k) <
p(|hl |I)_2Awﬁ NG

clx—y| |hl+ k| o =l

< e
VEL@ T+ 1x =yl

*

c(1+«)? ZSX_yZ(( |h| )V ( k| )V )
< ———eF i — ) +{— .
erw Vitlx =y Vit lx =yl
So

1+x)? )
p(1h|+k|) e (HIFIKD < ct+6) exp< i )exp ((C(T—H?K) +2€> = )

elw 2niw 20w t

(=) =)
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Using the identity b (1 — 71)% — C—Tw = b one deduces that the second term in (A.7)
can be estimated by

2\

2,2

L) f—12 322 x — v 2
asc(1+«) exp( s )exp pe2 LT H_w3€2K st t w3c|x —y|
w

7212

el 2niw ; 2wt

*

xt‘E<< |hl )y+< k| )y )e—(bl—za—%)—xr>’2
i+ [x—yl Vi+lx—yl

Then (A.3) follows. 0
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