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Enumerative Geometry of Divisorial Families of Rational Curves

ZIV RAN

Abstract. We compute the number of irreducible rational curves of given degree
with 1 tacnode in P

2 or 1 node in P
3 meeting an appropriate generic collection of

points and lines. As a byproduct, we also compute the number of rational plane
curves of degree d passing through 3d −2 given points and tangent to a given line.
The method is ‘classical’, free of Quantum Cohomology.

Mathematics Subject Classification (2000): 14H50 (primary); 14N10 (secondary).

In the past 15 years or so a number of classical problems in the enumerative
geometry of curves in P

n were solved, first for n = 2, any genus [R1], then for
any n, genus 0. The latter development was initiated by Kontsevich-Manin who
developed and used the rather substantial machinery of Quantum Cohomology
(cf. e.g. [FP]). Subsequently, in a series of papers [R2]-[R5] the author de-
veloped an elementary alternative approach, free of Quantum cohomology, and
used it to solve a number of classical enumerative problems for rational, and
sometimes elliptic, curves in P

n , n ≥ 2. The present paper continues this series.
The object here is to enumerate the irreducible rational curves of given degree d
in P

2 with one tacnode passing through 3d − 2 general points (see Theorems 2
and 5 below), as well as the irreducible rational curves in P

3 with one ordinary
node which contain a general points and are incident to 4d − 2a − 1 general
lines (see Theorem 1 below). Note that the family of 1-tacnodal (resp. 1-nodal)
curves in P

2 (resp. P
3) is of codimension 1 in the family of all rational curves,

so that we are effectively computing the ‘degree’, in a sense, of certain natural
divisors in the family of all rational curves. Indeed by a result of Diaz and
Harris [DH] in the case of P

2, the general member of any such divisor, if
not nodal, is either 1-cuspidal (which case was enumerated in [P], [R2]) or
1-tacnodal or has 1 triple point (which case is enumerated in [R6]). It seems
very likely, but does not seem to be in the literature, that the natural analogue
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of this result also holds for any n ≥ 3: i.e. that the general member of any
divisor in the family of rational curves is either smooth, or 1-nodal reducible
(any n ≥ 3), or, if n = 3, 1-nodal irreducible. As a byproduct of the proof of
Theorem 2, we also obtain a formula for one of the ’characteristic numbers’
for rational plane curves, viz. the number of such curves of degree d passing
through 3d − 2 general points and tangent to a given line (cf. Corollary 4
below).

Enumeration of rational plane curves with a tacnode or triple point ap-
pears to be well within the range of interest, at least, of classical geometers.
For quartics, very far-reaching results of this kind, including all the charac-
teristic numbers for quartics with one cusp, one tacnode or one triple point,
were obtained by Zeuthen [Z]. Recently, enumerative results for curves with
‘few’ singularities on general surfaces were obtained by Kleiman and Piene
[KP]. Enumeration of 1-nodal rational curves in P

n for any n was recently an-
nounced by Zinger [Zi], using Quantum Cohomology. As we shall see below, the
1-nodal case in P

3 case is analogous to, but easier than the 1-tacnodal case
in P

2. Our proof is based on the intersection calculus on the nonsingular
model of the surface swept out by the appropriate 1-parameter family of ra-
tional curves, developed in earlier papers [R2]-[R4], together with elementary
residual-intersection (in particular, double-point) theory as in [F].

We begin by reviewing some qualitative results about families of rational
curves in P

n , especially for n = 2 or 3. See [R2]-[R4], the Appendix to [R6],
and references therein for details and proofs. In what follows we denote by V̄d

the closure in the Chow variety of the locus of irreducible nonsingular rational
curves of degree d in P

n, n = 3, with the scheme structure as closure, i.e. the
reduced structure (recall that the Chow form of a reduced 1-cycle Z is just the
hypersurface in G(1, P

3) consisting of all linear spaces meeting Z ); if n = 2
V̄d is just the (closure of) the Severi variety. Thus V̄d is irreducible reduced of
dimension

dim(V̄d) = 4d, n = 3

dim(V̄d) = 3d − 1, n = 2.

Let
A1, . . . , Ak ⊂ P

n

be a generic collection of linear subspaces of respective codimensions a1,. . ., ak,

2 ≤ ai ≤ n (so if n = 2 these are just points). We denote by

B = Bd = Bd(a·) = Bd(A·)

the normalization of the locus (with reduced structure){
(C, P1, . . . , Pk) : C ∈ V̄d , Pi ∈ C ∩ Ai , i = 1, . . . , k

}
which is also the normalization of its projection to V̄d , i.e. the locus of degree-d
rational curves (and their specializations) meeting A1, . . . , Ak . We have

(1) dim B = (n + 1)d + n − 3 −
∑

(ai − 1).
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When dim B = 0 we set

(2) Nd(a.) = deg(B).

When n = 2, so all the ai = 2, they will be dropped. The integer k is
called the length of the condition-vector (a.). The numbers Nd and Nd(a.),
first computed in general by Kontsevich and Manin (see for instance [FP] and
references therein), are computed in [R2], [R3] by an elementary method based
on recursion on d and k.

Now suppose dim B = 1 and let

(3) π : X → B

be the normalization of the tautological family of rational curves, and

f : X → P
n

the natural map. The following summarizes results from [R2]-[R4]:

Theorem 0.
(i) X is smooth.

(ii) Each fibre C of π is either
(a) a P

1 on which f is either an immersion with at most one exception which
maps to a cusp (n = 2) or an embedding (n > 2); or

(b) a pair of P
1’s meeting transversely once, on which f is an immersion with

nodal image (n = 2) or an embedding (n > 2); or
(c) if n = 3, a P

1 on which f is a degree-1 immersion such that f (P1) has a
unique singular point which is an ordinary node.

(iii) If n > 2 then V̄d,n is smooth along the image B̄ of B, and B̄ is smooth except,
in case some ai = 2, for ordinary nodes corresponding to curves meeting some
Ai of codimension 2 twice. If n = 2 then V̄d,n is smooth in codimension 1
except for a cusp along the cuspidal locus and normal crossings along the re-
ducible locus, and B̄ has the singularities induced from V̄d,n plus ordinary nodes
corresponding to curves with a node at some Ai , and no other singularities.

Next, we review some of the enumerative apparatus introduced in [R3],
[R4] to study X/B. Let si be the section of X/B corresponding to Ai , i.e. the
unique 1-dimensional component of f −1(Ai ). Set

(4) mi = mi (a.) = −s2
i , i = 1, . . . , k.

Note that if ai = aj then mi = mj ; in particular for n = 2 they are all equal
and will be denoted by md . It is shown in [R2]-[R4] that these numbers can all
be computed recursively in terms of data of lower degree d and lower length
k. For instance for n = 2 we have (cf. [R2], display (1.8) page 113)

(5) 2md =
∑

d1+d2=d

Nd1 Nd2d1d2

(
3d − 4

3d1 − 2

)
.
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For n > 2, note that

si .sj = Nd(. . . , ai + aj , . . . , âj , . . . ), i �= j.

(so for n = 2 this is always 0). Also, letting Ri denote the sum of all fibre
components not meeting si , we have

(6) s1 · R2 =
∑

Nd1(A1
· , A1, P

s1)Nd2(A2
· , A2, P

s2).

the summations being over all d1 + d2 = d, s1 + s2 = 3 and all decompositions
A· = (A1, A2)

∐
(A1

· )
∐

(A2
· ) (as unordered sequences or partitions); similarly

for the other si .Rj . So all these numbers may be considered known. Then we
have

mi = 1

2
(si .Rj + si .Rp − sj .Rp) − si .sj − si .sp + sj .sp

for any distinct i, j, p, and the RHS here is an expression of lower degree
and/or length, hence may be considered known.

Next, set
L = f ∗(O(1)),

and note that

L2 = Nd(2, a.), L .si = Nd(a1, . . . , ai+1 . . . ), i = 1, . . . , k

(in particular, L .si = 0 if ai = n.) We computed in [R3] that, for any i ,

L ∼ dsi −
∑

F∈Fi

deg(F)F + (Nd(a1, . . . , ai + 1, . . . ) + dmi )F0

where F0 is the class of a complete fibre and Fi is the set of fibre components
not meeting si . Consequently we have

(7) Nd(2, a1, . . . ) = 2d Nd(a1 + 1, a2, . . . ) + d2m1(a.) −
∑

F∈F1(a.)

(deg F)2

and clearly the RHS is a lower degree/length expression, so all the Nd(2, . . . )

are known. We also have for n > 2 that

(8)

Nd(a1, a2 + 1, . . . ) − Nd(a1 + 1, a2, . . . )

= d Nd(a1 + a2, . . . ) −
∑

F∈(F1−F2)(a.)

(deg F) + Nd(a1 + 1, a2, . . . ) + dm1(a.)

and again the RHS here is ‘known’, hence so is the LHS, which allows us to
‘shift weight’ between the ai ’s till one of them becomes 2, so we may apply
(7), and thus compute all of the Nd(a.)’s.
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Next, it is easy to see as in [R3] that

(9) L .Ri =
∑

d1+d2=d

(
3d − 1

3d1 − 1

)
d1d2

2 Nd1 Nd2, n = 2

(in this case this is independent of i and we will just write it as L .R);

(10) L .Ri =
∑

d2 Nd1(a
1
· , s1)Nd2(a

2
· , s2), n > 2

the summation for n > 2 being over all d1 + d2 = d, s1 + s2 = 3 and all
decompositions

A· = (A1
· )

∐
(A2

· )

(as unordered sequences or partitions) such that Ai ∈ (A1
· ).

Finally, the relative canonical class K X/B = K X − π∗(K B), which we will
denote by K , was computed in [R3] as

(11) K X/B = −2si − mi F + Ri

for any i . Note that −R2
i equals the number of reducible fibres in the family

X/B, a number we denote by N red
d (a.), and which is easily computable by

recursion. From this we compute that

(12) L .K X/B = −2Nd(. . . ai + 1 . . . ) − dmi + L .Ri .

For n = 2 the first term in (12) vanishes, so in view of (5), (9) we get

(12′)
L .K X/B =

∑
d1+d2=d

(
3d − 1

3d1 − 1

)
d1d2

2 Nd1 Nd2 − d

2

∑
d1+d2=d

Nd1 Nd2d1d2

(
3d − 4

3d1 − 2

)
,

n = 2 .

Also,

(13) K 2
X/B = −N red

d (a.).

For n = 2 we denote by κd the number of rational curves with a cusp passing
through 3d − 2 generic points in P

2, a number that was computed in [R3] (see
the display on l.-6, p.11) as

(14) κd = 3(Nd + L .K ) − 2N red
d .

Now in case n = 3, for any condition-vector (a.) of weight∑
(ai − 1) = 4d − 1,

we denote by N×
d (a.) the number of 1-nodal irreducible rational curves in

P3 meeting a generic collection of linear spaces of respective codimensions
(a1, . . . , ak).
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Theorem 1. We have for any i = 1, . . . , k,

N×
d (a.) = (d − 2)Nd(2, a.) − 4Nd(. . . ai + 1 . . . ) − 2dmi + 2L .Ri + N red

d (a.).

Proof. We set things up so as to apply a relative double point formula from
[R6]. Let

X2
B

denote the fibre square of X/B, and

� � X ⊂ X2
B

the diagonal. Then X2
B is smooth except at points (p, p), where p is a singular

point of a fibre of X/B. Locally at such points, if X/B is given locally at p
by

xy = t,

then X2
B is given by

x1 y1 = x2 y2 = t,

and therefore has an ordinary 3-fold double point. Moreover the diagonal � is
defined by

x1 = x2, y1 = y2

and in particular is a non-Cartier divisor. Let

(15) b : Y → X2
B

denote the blow-up of �, with exceptional divisor

�′ = b∗(�).

Thus Y is the subvariety of X2
B × P

1 defined by the equation

U0(y2 − y1) = U1(x2 − x1)

where U0, U1 are homogeneous coordinates on P
1. In other words, Y is simply

the graph of the rational function (or rational map to P
1) given by y2−y1

x2−x1
As

usual, Y is covered by 2 opens on each of which either y2−y1
x2−x1

or x2−x1
y2−y1

is a

regular function. Then it is easy to see that b is a small resolution of X2
B with

exceptional locus
E =

∑
Ep

consisting of a P
1 for each relatively singular point p. Moreover the fibre of Y

over B corresponding to a reducible fibre C1 ∪p C2 of X/B is of a ‘honeycomb’
shape

B(p,p)C2
1 ∪ C1 × C2

C2 × C1 ∪ B(p,p)C2
2
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where
B(p,p)C

2
1 ∩ B(p,p)C

2
2 = Ep, C1 × C2 ∩ C2 × C1 = ∅.

Here we use the notation Bx Y to denote the blowup of a variety Y in a
subvariety (or point) x . Furthermore, the identity of rational functions, locally
at p,

y2 − y1

x2 − x1
= y1

x2
= y2

x1

shows that there b : Y → X2
B coincides with the blowup of the ideal (y1, x2),

and with that of the ideal (y2, x1) (since all these blowups are the graph of the
same rational function). This implies that �′ → � is just the blowing up of
all the points p.

We will need to know the normal bundle

ν = N�′/Y .

To this end, note that, identifying � with X as above, the map �′ → X is a
blowup of smooth points, hence

ω�′ = b∗ωX (E).

On the other hand, the map (15) is small, hence crepant, so

ωY = b∗ωX2
B

Now X2
B as divisor on X2 is the pullback of the diagonal divisor �B ⊂ B2,

whose normal bundle is ω−1
B . By adjunction, it follows that

ωX2
B

= p∗
1ωX ⊗ p∗

2ωX ⊗ π∗ω−1
B

and consequently

(16) ωY = b∗
1ωX ⊗ b∗

2ωX ⊗ c∗ω−1
B

where we use the evident maps

bi : Y → X, i = 1, 2, c : Y → B.

Therefore by adjunction again we conclude

(17) ν = b∗ω−1
X/B(E).

Now it is shown in [R6], and is in any case not hard to see, that Y admits
a natural map to the Hilbert scheme of X , in fact to B�X (X × X), which
dominates the Hilbert scheme and therefore Y can be used to enumerate double
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points. Specifically, the double-point formula of [R6, Corollary 3.4] uses the
natural map

f 2 = ( f1, f2) : Y → P
3 × P

3.

and shows that the cycle of points in Y corresponding to ordered pairs (x1, x2)

in X/B2 such that f (x1) = f (x2) is residual to �′ in f 2∗(�
P3) and is thus a

0-scheme of the rank-3 bundle on Y

f ∗
1 (O(1)) ⊗ f ∗

2 (Q) ⊗ O(−�′),

where Q denotes the universal quotient bundle on P
3 and p∗

1O(1)⊗ p∗
2 Q appears

as a ‘grassmannian bundle’, i.e. a bundle on P
3 × P

3 having the diagonal as
zero-set.

Therefore we find that

N×
d (a.) = 1

2
c3( f ∗

1 (O(1)) ⊗ f ∗
2 (Q) ⊗ O(−�′)).

Then a straightforward calculation, based on the intersection calculus reviewed
above, yields the formula stated in Theorem 1.

Remark 1.1. Rather than appeal to a relative double-point formula, we
could have used the usual double-point formula applied to the map

f × π : X → P
3 × B.

This alternative approach is available generally, and will be explained in more
detail in the course of the proof of Theorem 2.

We turn next to the enumeration of rational plane curves with a tacnode.
Denote by N tac

d the number of rational curves with a tacnode passing through
3d − 2 generic points in P

2 .

Theorem 2. We have

(18) N tac
d = (3d − 11)Nd + (d − 6)L K + 4N red

d .

Proof. We use an analogous setup and notation as above, this time for
a pencil of rational curves in P

2 through 3d − 2 points. To begin with, we
describe an algebraic setup for the (relative) Gauss mapping. Consider the
relative principal parts sheaf for L on X/B, which fits in an exact sequence

(19) 0 → �X/B(L) → PX/B(L) → L → 0.

Setting V = H 0(O
P2(1)), we have a natural map V → PX/B(L) which combines

with the Euler sequence to yield an exact diagram

0 → f ∗�
P2(1) → V ⊗ OX → f ∗O

P2(1) → 0
↓ ↓ ‖

0 → �X/B(L) → PX/B(L) → L → 0.
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Let P ′ denote the pushout of PX/B(L) by the natural map

�X/B(L) → ωX/B(L).

Lemma 3. The image of the composite map

f ∗�
P2 → �X/B → ωX/B

coincides with JωX/B where J is the ideal in X of the fibre nodes and the ‘cuspidal’
points i.e. points x such that f (x) is a cusp of f (π−1(x)).

Proof. Our map is obviously surjective at points that are neither cuspidal
nor fibre nodes. Consider then a fibre node p. In local coordinates at p, the
family X/B is given by

xy = t

with f = (x, y). Since

ωX/B = Hom(π∗ωB, ωX )

and ωB, ωX are generated respectively by dt, dx ∧ dy, ωX/B is generated by
dx ∧ dy.dt−1 (i.e the unique homomorphism taking dt to dx ∧ dy). Moreover
the natural map

�X/B → ωX/B

takes a 1-form α to the homomrphism

(gdt �→ gdt ∧ α) ∈ ωX/B .

Since
dx ∧ dt = xdx ∧ dy, dy ∧ dt = −ydx ∧ dy,

we have that the image of f ∗�
P2 is generated by xdx ∧dy.dt−1, ydx ∧dy.dt−1,

as claimed.
Consider now the cuspidal case. There the tautological family is locally

universal over B̄ by [DH], hence is locally given by an equation

y2 = x3 + b1x + b2

where (b1, b2) are coordinates on B̄ and satisfy

27b3
1 = 8b2

2.

The normalization of this local family is smooth, with coordinates (u, t), t being
a coordinate on B, and with normalization map given by

x = u2 − 2

3
t,

y = u(u2 − t),

(b1, b2) =
(

1

3
t2,

2

27
t3

)
.
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Thus

(20) f =
(

u2 − 2

3
t, (u2 − t)u

)
= (x, y).

Now ωX/B is generated by du with dt going to 0, and the image of the map
from f ∗�

P2 is generated by

(21) dx = 2udu, dy = (3u2 − t)du,

hence clearly coincides with the subsheaf generated by udu and tdu, as
claimed.

Now let B1 → B be any 2:1 cover whose branch locus contains the critical
values, i.e. points π(p) where p is a fibre node, and which is unramified over
the cuspidal values, i.e. the images of the cuspidal points. Then the induced
map

X B1 := X ×B B1 → X

is ramified over the reducible fibres and X B1 has A1 singularities over the fibre
nodes. Let X ′/B1 be the blowup of X B1 in those singularities, as well as in
the preimages of the cuspidal points, with Eσ and Eκ the respective exceptional
divisors and E = Eσ + Eκ ,

b : X ′ → X

the natural map and f ′ = f ◦ b. It follows from Lemma 3 that if we let P
denote the image of the natural map

V ⊗ OX ′ → b∗ P ′,

then we get a diagram with exact rows and columns

(22)

0 → f
′∗�

P2(1) → V ⊗ OX ′ → f
′∗O

P2(1) → 0
↓ ↓ ↓

0 → b∗ωX/B(L − E) → P → b∗L → 0
↓ ↓ ↓
0 0 0

.

In the cuspidal case, note that by (21), the left vertical map in (22) is given by

(23) dx �→ 2du, dy �→ (2u2 − t)du

Now let
φ : I → P

2

be the incidence (or flag) variety, with universal flag

V ⊗ OI = F0 ⊃ F1 = φ∗�
P2(1) ⊃ F2 ⊃ (0),

F0/F1 = φ∗O(1).
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Now the diagram (22) gives rise to a lifting of f ′ to a morphism

g : X ′ → I

with

(24) g∗(F0/F1) = L|X ′ := b∗(L), g∗(F1/F2) = b∗(ωX/B)(L − E)

(we shall often use the same letter to denote a divisor and its pullbacks). Clearly,
the value of g at a point

(x, b) ∈ X ′ \ E

mapping to
y ∈ P

2

is the pair
(y, Ty( f (Xb))

consisting of y and the tangent line to f (Xb) at f (y); in particular, each tacnode
in the family X/B yields 2 double points and 4 ordered double points of g,
which we propose to count as in the proof of Theorem 1. Before proceeding
it is convenient to note from (22) that the map f v : X ′ → P

2v obtained by
composing g with the natural projection of I to the dual projective plane of
lines in P

2 corresponds to the invertible quotient (cf. (22))

V v → V v/Pv → 0

and it is clear from (22) that

(25) V v/Pv � det(P) � 2L + K − E .

The plan now is to apply the relative double-point formula as in the proof
of Theorem 1 to the map g : X ′ → I relative to B1. Thus consider the fibre
square

Ȳ = X ′ ×B1 X ′.

It is singular in its diagonal points corresponding to fibre nodes of X ′/B1, and
may be desingularized with small blowups as in the proof of Theorem 1. Let

bY : Y → Ȳ

be the global desingularization thus obtained, and �′′ ⊂ Y the proper (=total)
transform of the diagonal. It is easy to see that the map

b′ : �′′ → X ′

identifies �′′ with the blowup X ′′ of X ′ = �′ in its own fibre nodes over
B1, i.e. the two intersection points of each component of Eσ with the other
components of its fibre, plus the one intersection point of each component of
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Eκ with the other component of its fibre; call the new exceptional divisors thus
obtained E ′′

σ , E ′′
κ and set

E ′′ = E ′′
σ + E ′′

κ .

The normal bundle
ν = N�′′/Y

can be computed much like before: first,

ω�′′ = (b′)∗ωX ′(E ′′)

because b′ blows up smooth points; second

(b′)∗ωX ′(E ′′) = (b′)∗b∗ωX (E ′′)

(because b blows up A1 singularities, hence does not change the canonical
sheaf). As Y → Ȳ is a small blowup, it too does not change the canonical
sheaf, hence as before,

ωY = ωȲ = p∗
1ωX ′ ⊗ p∗

2ωX ′ ⊗ ω−1
B1

,

therefore

ν = ω−1
Ȳ

ω�′′ = ω−1
X ′ ωB1(E ′′) = ω−1

X1/B1
(−Eκ + E ′′)|X ′′ = ω−1

X/B(−Eκ + E ′′)|X ′′

the last equality because relative canonical sheaves commute with base change.
Putting these together we see that, using divisor notation and setting K =
K X − K B,

(26) ν = (−K − Eκ + E ′′
κ + E ′′

σ )|X ′′ .

Consequently, we have

(27) ν2 = 2K 2 − 2N red
d − 2κd = −4N red

d − 2κd

where κd is the number of cuspidal rational plane curves of degree d through
3d − 2 generic points, computed in [R3]. Of course, we also have

(28) L .ν = −L .X ′′ K = −2L .X K = 2(2dm − L .R) .

Now, we want to proceed as in the proof of Theorem 1 and use the relative
double-point formula of [R6, Corollary 3.4]. To this end we need to show, in the
terminology of [R6], that I is ‘pseudo-grassmannian’, that is, we must produce
a rank-3 vector bundle on I × I having the diagonal �I as zero-scheme. To
this end, consider the cartesian product I 2 = I × I with projections

pi : I 2 → I, i = 1, 2, φ2 : I 2 → (P2)2.
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Let F. be the dual filtration to F ., defined by

Fi = (F0/Fi )∗ ⊂ (F0)∗.

In I 2, φ2∗�
P2 is defined as the zero- locus of a map

p∗
1 F1 → p∗

2(F3/F1),

and inside this, �I is defined as the zero- locus of a map

p∗
1(F2/F1) → p∗

2(F3/F2).

Thus �I is a zero scheme of a vector bundle A on I × I where

A = (φ2)−1(A
P2) ⊕ OI×I (1, 1) ⊗ p∗

1(det B)

where A
P2 is a vector bundle on (P2)2 with the diagonal as zero-scheme, e.g.

p∗
1(O(1)) ⊗ p∗

2�P2(1),

B is a vector bundle on P
2 with

I = P(B)

(e.g. B = �
P2), and

OI (1) = OP(B)(1).

Considering as before the map

g2 = (g1, g2) : Y → I 2,

double-point theory in the form of [ R6, Corollary 3.4], shows that the virtual
number of ordered double points of g (i.e. twice the virtual number of double
points) is

c3((g
2)∗(A)(−�′′))

=c2(g
∗
1(F∗

1 )⊗g∗
2((V ∗⊗O)/F1)⊗O(−�′′))c1(g

∗
1((F2/F1)

∗)⊗g∗
2(F3/F2)⊗O(−�′′)).

Using (24), the c2 factor can be identified, writing Li = p∗
i L , Ki = p∗

i (ωX/B),
as

(L2
2 + L1L2 − L2�

′′ + (L1 − �′′)2)|X ′′

while the c1 factor is

(K1 + K2 + L1 + 2L2 − E1 − E2 − �′′)|X ′′ .
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Then a routine computation, using as above the necessary intersection theory
on Y and X yields

(29) c3((g
2)∗(A)(−�′′)) = (4d − 24)K .X L + (12d − 32)Nd + 2N red

d .

By the discussion above, this equals 4N tac
d plus the contribution from ‘extra-

neous’ double points of g that do not come from tacnodes, i.e. that appear
along the exceptional curves, and we shall analyze those below. Before doing
so, however, we shall give another derivation of the formula (29), avoiding any
explicit use of relative multiple point theory and using only the ‘usual’ double
point formula of [F, Theorem 9.3].

The idea, which is valid more generally, is simply that relative (ordered)
double points for a map such as g with respect to π : X ′ → B1 are the same as
(ordered) double points in the usual (non-relative) sense for the product mapping

h = g × π : X ′ → I × B1.

The number of ordered double points (= twice the number of double points) is
given by Fulton’s formula by

(30) h∗h∗[X ′] − c2(N )

where N is the ‘virtual bundle’

(31) N = h∗TI×B1 − TX ′ = g∗(TI ) − (TX ′ − π∗TB1).

To compute the first term in (30), note that A2(I × B1) is generated by the
classes

H 1
1 , H 2

2 , β H 1, β H 2

where Hi are the pullbacks of the hyperplane classes via the two projections
of I to P

2 and β is the class of a point on B1. Note that

g∗ H1 = L , g∗ H2 = 2L + K − E

(the latter by (22)), therefore

g∗ X ′.β.H1 = d, g∗ X ′.β.H2 = 2d − 2,

g∗ X ′.H 2
1 = 2Nd , g∗ X ′.H 2

2 =: 2Md ,

where, by (22) and (14),

(32) 2Md = (2L + K − E)2
X ′ = 2(4Nd +4L .X K −2N red

d −κd) = 2(Nd + L .X K ).

Consequently, we have

(33) h∗[X ′] = (2d − 2)H 2
1 + d H 2

2 + 2Md H1β + 2Nd H2β
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from which it is immediate that

(34) h∗h∗[X ′] = (12d − 8)Nd + 4d L K

(where we set L K = L .X K ).
The computation of the second term in (30) is straightforward, and can be

shortened somewhat by realizing N as the virtual bundle (or ‘K-theory element’)
g∗TI −TX ′/B1

where TX ′/B1
is the virtual bundle TX ′ −π∗TB1 , and also coincides

with the torsion-free sheaf ω−1
X ′/B1

(−σ), where σ is the set of critical point of

π , whose number is 2N red
d + 2κd . From this it is immediate that

(35) c(TX/B) = 1 + [ω−1
X ′/B1

] + [σ ] = 1 − K − Eκ + [σ ].

The Chern classes of I can be computed in many ways, for example realizing
it as a divisor of type (1,1) on P

2 × P
2, and we get

(36) c1(TI ) = 2(H1 + H2), c2(TI ) = 6H1 H2.

Then putting (35) and (36) together we get

(37)
c2(N ) = 6H1 H2 + 2(H1 + H2).X ′(K + Eκ) + (K + Eκ)

2 + [σ ]

= 24Nd + 24L K − 8N red
d

and combining this with (34) we get (29) again.
It remains to work out the contributions from the extraneous double points

of g, beginning with those related to cusps. Consider a component Eκ,1 of Eκ

and its unique intersection q with the other fibre component F . Locally near
b(q), f has the form (20). Therefore near q, we have local coordinates

u, v := t

u

and g is given by

(38)
(

f,
dy

dx

)
=

(
u

(
u − −2

3
v

)
, (u − v)u2,

3

2
u − v

)

while h is given by

(39)
(

f,
dy

dx
, t

)
=

(
u2 − 2

3
t, (u − v)u2,

3

2
u − v, uv

)
.

It is clear from this that the image of the differential dgq is 1 dimensional,
equal to T M := Tg(q)M , where M is a fibre of φ (that is, the P

1 of lines
through f (q)), and that there is a unique length-2 subscheme z supported at q
(viz. the one contained in the line v = 2

3 u) that is a double point for g and h.
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Moreover, z clearly coincides with the scheme-theoretic fibre of h over h(q),
and it is elementary from (39) that h is scheme-theoretically injective over any
point other than h(q), hence z counts once as a double point of h, so twice as
ordered double point of h. Recalling that in the 2:1 cover B1 → B there are
2κd ‘cuspidal values’, we get a total of 4κd to be subtracted from (29) (recall
that κd is given by (14)).

It remains to compute the contribution to the number of virtual double
points coming from a component E1

σ of Eσ . This can be done either using
relative double points and the space Y above, or working directly with double
points of h. We will work out the latter approach, the former being rather
similar. Now using local coordinates as in the proof of Lemma 3 on X , X B1
is locally embedded in x, y, s space with the equation

xy = s2

the map to B1 given by π(x, y, s) = s. After the blowup we get, near one
of the two intersection points of E1

σ with the other fibre components, local
coordinates x, z on X ′ with

s = xz, y = zs = xz2

and in terms of x, z the lift of f is given by (x, xz2). To work out g, note
that the relative dualizing sheaf ωX ′/B1

is locally generated by

η = dx

x
= −dz

z

so
dx = xη, dy = z2dx + 2zxdz = −z2xη,

thus g is given by (
f,

dy

dx

)
= (x, xz2, −z2)

and h by
(x, xz2, −z2, xz).

From this it is elementary that h is scheme-theoretically injective off the locus
x = 0 (i.e. E1

σ ) and, identifying the target locally with 4-space with coordinates
(w.), the image of h is defined by the equations

w2 = w1w3, w
2
4 = w2

1w3,

hence has 2 branches with distinct tangent planes on the w3-axis off the origin;
moreover h maps E1

σ 2:1 to this w3-axis, which is just a fibre M of I over P
2,

that is, the P
1 of lines through the appropriate node in P

2 and h|E1
κ

is branched

precisely at the two intersection points of E1
σ with the other fibre components.
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This gives rise to a 1-dimensional double locus component of g and h,
day D, which is a divisor of type (1,1) on E1

σ × E1
σ Now standard double-point

theory computes the double locus of h as follows: let Z denote the blow-up
of X ′ × X ′ in its diagonal, with exceptional divisor EZ , and let

h2 : Z → (I × B1)
2

be the natural map. Then the double-point scheme D on Z is a zero-scheme
of the rank-4 bundle

h∗
2(A ⊕ O(�B1))(−EZ ),

and c4 of this bundle, pushed down to X ′ is the virtual number (29). Now
residual-intersection theory as in [F] show that the contribution on D to this c4
is given by

(40) c1(A ⊕ O(�B1)(−EZ )).D − c1(ND/Z ).

Note that D.�B1 = 0 because D maps to a point in B2
1 . Therefore the first

term in (40) equals

D.(3L1 + 3L2 + K1 + K2 − E1 − E2 − 4EZ ) .

Where L1, L2 are the pullbacks of L to Z via the two projections, etc. Now
clearly

E1
σ E = (E1

σ )2 = −2

and
D.EZ = 2

(the 2 branch points), and of course Ki .D = 0 because K X ′ .E1
σ = 0 (as blowing

up an A1 singularity does not change the canonical bundle), so the total is
4 − 8 = −4. The second term in (40) is, by the adjunction formula, equal to

deg K
P1 − K Z .D = −2 − (K1 + K2).D − EZ .D = −4.

So the contribution of D is zero. Totalling things up and dividing by 4, we
get the result (18).

Remark. The analogous computation of the contribution of D, carried out
on Y , yields

c1(A).D − c1(ND/Y )

where the first term equals

D.(3L1 + 3L2 + K1 + K2 − E1 − E2 − 3EZ ) = −2

and the second term equals

deg K
P1 − KY .D = −2

so again we get a zero contribution.
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Check. for d = 4 we use the inputs Nd = 620, N red
d = 2124, L .K =

1564, κ4 = 2304 to conclude N tac
d = 1296, a number first computed by Zeuthen

[Z], who was also the first to compute κ4. I am very grateful to Joachim
Kock for this and numerous other enlightening references which have led me
to correct an error in an earlier statement of Theorem 2.

Note that the number Md which appeared above is none other than the
number of curves in the pencil B which are tangent to a fixed line in P

2, so
by (32) we conclude

Corollary 4. The number of rational curves of degree d in P
2 through 3d − 2

fixed points and tangent to a fixed line is

(41) Md = Nd + L K .

Note that L K is computed in (12′). As Kock points out, Zeuthen already
computed that M4 = 2184.

Remark. In a previous version of this paper we included a computation
of the number of rational plane curves of degree d with a triple point going
through 3d − 2 fixed points. This result is now treated in [R6] with general
relative multiple-point techniques, a proof that is very similar to the one we
gave originally. Thus it seems best to omit that proof and simply refer to [R6].
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