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Dominated chain recurrent class with singularities

CHRISTIAN BONATTI, SHAOBO GAN AND DAWEI YANG

Abstract. We prove that for C1 generic three-dimensional vector fields, dom-
inated chain recurrent classes with singularities and periodic orbits are singular
hyperbolic.
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ondary).

1. Introduction

Hyperbolicity has been introduced by Smale [24] for understanding chaotic dynam-
ical behavior and it remains a very important concept for understanding even non-
hyperbolic systems. For flows on 3-manifolds, Lorenz attractor has been the first
discovered robustly non hyperbolic systems, first announced by using numerical ex-
periment [13], and then rigorously modeled in [1, 9, 10] by the so called geometric
model of Lorenz attractor. Lorenz-like attractors share many properties with hy-
perbolic attractors but involve singular and non-singular orbits in a same transitive
dynamics.

In [17] Morales, Pacifico and Pujals introduced singular hyperbolicity to for-
malize the hyperbolic properties of Lorenz attractors and their generalizations, in-
cluding the singularities it contains.

The aim of this paper is to give a C1-generic characterization of the singu-
lar hyperbolicity by a weaker notion called dominated splitting. In order to state
precisely our results, we need some definitions.

1.1. Definitions: singular hyperbolicity, partial hyperbolicity and dominated
splittings

Given a closed Riemannian manifold M , we denote by X r (M) the space of the Cr

vector fields on M with the usual Cr norm.
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Given a vector field X 2 X 1(M), we denote its flow by �Xt and its tangent
flow by 8X

t = d�Xt . If there is no confusion, we will use �t and 8t for simplicity.
We denote by Sing(X) = {x 2 M : X (x) = 0} the set of singularities of X . If a
subset 3 ⇢ M \ Sing(X), we say that 3 is non-singular.

One says that a compact invariant set 3 has a dominated splitting if there is a
continuous invariant splitting T3M = E � F , and two constants C � 1 and � > 0
such that for any x 2 3 and t � 0, one has

k8t |E(x)kk8�t |F(�t (x))k  Ce��t .

If dim E is a constant, then dim E is called the index of the dominated splitting.
An invariant bundle E ⇢ T3M is called contracting if there are two constants

C � 1 and � > 0 such that for any x 2 3 and t � 0, one has k8t |E(x)k  Ce��t .
An invariant bundle F is called expanding if it is contracting for the flow generated
by �X . If T3M = E � F is a dominated splitting and either E is contracting or F
is expanding, then one says that 3 is partially hyperbolic.

A continuous invariant bundle E ⇢ T3M is called sectional contracting if
there are two constants C � 1 and � > 0 such that for any x 2 3, t � 0 and any
two-dimensional subspace L ⇢ E(x), one has |Det (8t |L) |  Ce��t . A continu-
ous invariant bundle F is called sectional expanding if it is sectional contracting for
�X .

A compact invariant set 3 is called singular hyperbolic if 3 has a partially
hyperbolic splitting T3M = E � F , and either E is sectional contracting and F
is expanding, or E is contracting and F is sectional expanding. For instance, the
geometrical Lorenz attractor is singular hyperbolic, but not hyperbolic (see [2]).

Here a compact invariant set 3 is called hyperbolic if there is a continuous
invariant splitting T3M = Es � hXi � Eu , where Es is uniformly contracting, Eu
is uniformly expanding, and hXi is the subspace generated by the vector field. If
dim Es is constant, then dimEs is called the index (or stable index) of the hyperbolic
set 3.

The dynamical object we will consider are compact invariant sets satisfying
some recurrence. The most general setting is the chain recurrence defined by Con-
ley by considering pseudo-orbits; let us recall these notions.

Given x, y 2 M , " > 0, we say {(x0, t0), (x1, t1), · · · , (xn, tn)} is an "-pseudo-
orbit (or "-chain) from x to y if

• x0 = x and xn = y,
• ti 2 [1, 2] for each i ,
• d(�ti (xi ), xi+1) < " for any 0  i  n � 1.

If for any " > 0, there exists an "-chain from x to y, then one says that x is in the
chain stable set of y. If x is in the chain stable set of y and y is also in the chain
stable set of x , then one says that x and y are chain related or chain equivalent.
If x is chain related with itself, then x is called a chain recurrent point. Denote
by CR(X) the set of chain recurrent points of X . Since chain related relation is
a closed equivalent relation, one can divide CR(X) into closed equivalent classes.
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Each equivalent class is called a chain recurrent class. For x 2 CR(X), we denote
by C(x) the chain recurrent class containing x . A chain recurrent class is called
non-trivial if it does not reduce to a periodic orbit or a singularity.

To avoid some pathological phenomena, one may consider residual set of
X r (M). A subset R ⇢ X r (M) is residual if it contains a countable intersection
of dense open subsets of X r (M). Since X r (M) is complete, every residual set is
dense in X r (M). We usually use the phrase “for C1 generic X ...”, which means
that “there exists a residual subsetR such that for every X 2 R ...”.

1.2. The precise statement of our results

Our main result shows that, C1-generically on 3-manifolds, the notions of singular
hyperbolicity and dominated splitting coincide on chain recurrent classes containing
a singular point and a regular periodic orbit:

Theorem A. Assume that dimM = 3. For C1 generic X 2 X 1(M), if the chain
recurrent class C(� ) of a singularity � contains a periodic orbit and admits a
dominated splitting TC(� )M = E � F with respect to 8t , then C(� ) is singular
hyperbolic. Consequently, C(� ) is an attractor or repeller according to the index
of � equal to 2 or 1.

If we do not assume that C(� ) contains a periodic point, we get only a partially
hyperbolic splitting:

Theorem B. Assume that dimM = 3. For C1 generic X 2 X 1(M), if the chain re-
current class C(� ) of a singularity � is non-trivial and admits a dominated splitting
TC(� )M = E � F with respect to 8t , then C(� ) is partially hyperbolic.

This result is closely related to the following conjecture of Morales and Paci-
fico ( [16]) in the spirit of conjectures of Palis ([18], [19, page 500, Conjecture
5]).

Conjecture 1.1. Given a closed 3 manifold, every vector field can be Cr approxi-
mated by one of the following two kinds of vector fields:

• vector fields which are singular Axiom A without cycle,
• vector fields with a homoclinic tangency.

X is called singular Axiom A without cycle if X has only finitely many chain recur-
rent classes, and each chain recurrent class is singular hyperbolic. Singular Axiom
A vector fields is a generalization of Axiom A vector fields. One says that X has
a homoclinic tangency if for some hyperbolic periodic orbit � of X , Ws(� ) and
Wu(� ) have some non-transverse intersection.

Since we mainly consider 3 dimensional case in this paper, we will use M3 to
indicate the manifold M is 3-dimensional.
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2. Preliminaries

2.1. Dominated splittings

As in the introduction, every vector field X 2 X 1(M) generates a flow �Xt . We
identify the vector field and its generated flow as the same object. From the flow
�Xt , one can define its tangent flow 8X

t = d�Xt : T M ! T M . For every regular
point x 2 M \ Sing(X), one can define its normal space

Nx = {v 2 TxM : hv, X (x)i = 0}.

Define the normal bundle on regular points as:

N =

G
x2M\Sing(X)

Nx .

On the normal bundle N , one can define the linear Poincaré flow  X
t : for each

v 2 Nx ,
 t (v) = 8t (v) �

h8t (v), X (�t (x))i
|X (�t (x))|2

X (�t (x)).

 t (v) is the orthogonal projection of 8t (v) on N along the flow direction. For an
invariant (may be non-compact) set 3 ⇢ M \ Sing(X), one says that 3 admits a
dominated splitting with respect to the linear Poincaré flow if there are constants
C � 1, � > 0 and an invariant splitting N3 = 1s

� 1u such that for any x 2 3
and t � 0, one has k t |1s(x)kk �t |1u(�t (x))k  Ce��t . dim1s is called the index
of the dominated splitting if it is a constant.

If 3 is a non-singular compact invariant set, the existence of dominated split-
ting for the linear Poincaré flow is a robust property.

Lemma 2.1 (5, page 288-289). Given X 2 X 1(M), let 3 be a non-singular com-
pact invariant set of X . If 3 admits a dominated splitting of index i with respect to
the linear Poincaré flow, then there is " > 0 such that for each Y which is "-C1-
close to X , for any compact invariant set 3Y contained in the " neighborhood of
3, 3Y admits a dominated splitting of index i with respect to the linear Poincaré
flow.

For dominated splittings with respect to tangent flows, no matter compact in-
variant sets contain singularity or not, we always have the robust property.

Lemma 2.2 (5, page 288-289). Given X 2 X 1(M), let 3 be a compact invariant
set of X . If 3 admits a dominated splitting of index i with respect to the tangent
flow, then for any " > 0, there exists � > 0 such that for each Y which is �-C1-close
to X , for any compact invariant set 3Y contained in the � neighborhood of 3, 3Y
admits a dominated splitting of index i with respect to the tangent flow, which is "
close to the dominated splitting of 3.
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By the definition of linear Poincaré flow, one has the following lemma immediately:
Lemma 2.3. Given X 2 X 1(M), let 3 be a compact invariant set of X . If 3
admits a dominated splitting T3M = E � F with respect to the tangent flow and
X (x) 2 F(x) for any x 2 3, thenN3\Sing(X) admits a dominated splitting of index
dim E with respect to the linear Poincaré flow.

2.2. Minimally non-hyperbolic set of C2 vector fields

When we discuss non-hyperbolic set, the non-hyperbolicity usually concentrates
on some smaller parts, which are called minimally non-hyperbolic set ([12, 15]).
Precisely, a compact invariant set 3 is called minimally non-hyperbolic if 3 is not
hyperbolic and every compact invariant nonempty proper subset of3 is hyperbolic.
From [3,22], one has the following two lemmas.
Lemma 2.4. Let X 2 X 1(M3) and 3 a minimally non-hyperbolic set of X with
3 \ Sing(X) = ;. If N3 admits a dominated splitting with respect to the linear
Poincaré flow, then 3 is transitive.
Definition 2.5. X is called weak Kupka-Smale if every periodic orbit and every
singularity of X are hyperbolic.
Lemma 2.6. Let X 2 X 2(M3) be weak Kupka-Smale and 3 a minimally non-
hyperbolic set of X such that3\Sing(X) = ;. IfN3 admits a dominated splitting
with respect to the linear Poincaré flow, then 3 is a normally hyperbolic torus and
the dynamics on 3 is equivalent to an irrational flow.

2.3. Chain recurrence

A compact invariant set 3 is called chain transitive if for any x, y 2 3 and any
" > 0, there exists an "-chain {(x0, t0), (x1, t1), · · · , (xn, tn)} from x to y such that
xi 2 3, i = 0, 1, · · · , n.

The following result is folklore for diffeomorphism case. We give here a proof
for flows for the convenience of the reader.
Lemma 2.7. If 3 is a non-trivial chain transitive set and contains a hyperbolic
periodic orbit or a hyperbolic singularity � , then 3 \ Ws(� ) \ {� } 6= ; and 3 \

Wu(� ) \ {� } 6= ;.
Proof. Since 3 is non-trivial, there is x0 2 3 \ � . Since � is a hyperbolic periodic
orbit or a hyperbolic singularity, it is isolated, i.e., there is an open neighborhoodU
of � such that x0 /2 U and

� =

\
t2R

�t (U).

Take V =

T
t2[�2,2] �t (U) and fix a point y 2 � . Since 3 is chain transitive, for

every n 2 N, there is a 1/n-chain
{(x0,n, t0,n), (x1,n, t1,n), · · · , (xkn,n, tkn,n)}
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from x0 to y with xi,n 2 3. Choose jn 2 [1, kn] such that,

• x jn�1,n 62 V .
• xi,n 2 V for jn  i  kn .

Let z be an accumulation point of {x jn,n}. Then z 2 V \ 3. Since �[�2,0](z) \

int(V ) 6= ;, z 62 � . According to the second condition on jn and the definition
of V , we have that �t (z) 2 U for t � 0. Since � is isolated, !(z) = � . Hence,
z 2 Ws(� ) \3 \ � .

The conclusion for Wu(� ) can be proved similarly.

As a corollary of the above lemma, we have

Lemma 2.8. If 3 is a non-trivial chain transitive set admitting a dominated split-
ting T3M = E � F with respect to the tangent flow and X (x) 2 F(x) for any
regular point x 2 3, then for every hyperbolic singularity � 2 3, ind(� ) > dim E .

Proof. Suppose on the contrary that ind(� )  dim E for some hyperbolic singular-
ity � 2 3. Now, we have two dominated splittings at � :

T�M = E(� ) � F(� ), and T�M = Es � Eu .

Since ind(� )  dim E , i.e., dim Es  dim E(� ), according to [8, Lemma 3.5],
one has Es(� ) ⇢ E(� ). By Lemma 2.7, there is x 2 Ws(� ) \ 3 \ {� }. Thus,
X (�t (x)) ⇢ T�t (x)Ws(� ) for any t > 0. By the assumption one has X (�t (x)) ⇢

F(�t (x)). On the other hand, one has limt!+1hX (�t (x))i ⇢ Es(� ) ⇢ E(� ). This
fact contradicts to the continuity of dominated splittings.

For each compact set K (K may not be invariant), one can define the chain re-
current set CR(X, K ) in K . We say that x 2 CR(X, K ) if for any " > 0, there exists
an "-chain in K from x to x , i.e., there exists "-chain {(x0, t0), (x1, t1), · · · , (xn, tn)}
from x to x with xi 2 K for i = 0, 1, · · · , n. CR(X, K ) has the following upper-
semi continuity.

Lemma 2.9. Given X 2 X 1(M) and a compact set K , if there are a sequence of
C1 vector fields {Xn} and a sequence of compact sets Kn such that

• Xn ! X as n ! 1 in the C1 topology,
• Kn ! K as n ! 1 in the Hausdorff topology,

then lim supn!1
CR(Xn, Kn) ⇢ CR(X, K ).

Proof. Given a point x 2 lim supn!1
CR(Xn,Kn), we will prove that x2CR(X,K ).

First, there exists a sequence xn 2 CR(Xn, Kn) such that limn!1 xn = x .
According to the continuity of �t , for any " > 0, there exists � 2 (0, "/4)

such that if d(x, y) < � then d(�t (x),�t (y)) < "/4 for t 2 [�2, 2]. Since
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limn!1 Xn = X , for any " > 0, and n large enough, for any x 2 M , t 2 [�2, 2],
d(�

Xn
t (x),�Xt (x)) < "/4. Assume that

{(x1, t1), · · · , (xm, tm)}

is an "/4-chain in Kn of Xn . Since limn!1 Kn = K , for n large enough, there
exist yi 2 K such that d(xi , yi ) < � for i = 1, 2, · · · ,m. We claim that

{(y1, t1), · · · , (ym, tm)}

is an "-chain in K of X . In fact,

d(�ti (yi ), yi+1)  d(�ti (yi ),�ti (xi )) + d(�ti (xi ),�
Xn
ti (xi ))

+d(�
Xn
ti (xi ), xi+1) + d(xi+1, yi+1)

< ".

So, given " > 0, for n large enough, since there exists "/4-chain from xn to xn for
Xn , we can get an "-chain from x to x for X , which proves that x 2 C(X, K ).

By the upper-semi continuity, one has

Lemma 2.10. Given X 2X 1(M) and a compact set K , ifCR(X, K )= ;, then there
is a C1 neighborhood U of X and a neighborhood U of K such that CR(Y,U) = ;

for every Y 2 U .
Proof. If the conclusion is not true, there are a sequence of vector fields {Xn} and a
sequence of neighborhoods {Un} of K such that

• lim
n!1

Xn = X and lim
n!1

Un = K ,

• CR(Xn,Un) 6= ;.

By Lemma 2.9, we have that CR(X, K ) 6= ;which contradicts the assumption.

Combining the upper-semi continuity and robustness of hyperbolic set, we
have

Lemma 2.11. Given X 2 X 1(M) and a compact set K , if CR(X, K ) is hyperbolic,
then there are a C1 neighborhood U of X and a neighborhood U of K such that
CR(Y,U) is hyperbolic.

Proof. By the robustness of hyperbolicity, if CR(X, K ) is a hyperbolic set of X ,
then there exist neighborhoods U1 of X in X 1(M) and U of CR(X, K ) such that
for any Y 2 U1 and any compact invariant set 3 ⇢ U of Y , 3 is a hyperbolic set
of Y .

By the upper semi-continuity of chain recurrence (Lemma 2.9), for the above
neighborhood U of CR(X, K ), there is a C1 neighborhood U2 of X , such that for
any Y 2 U2, CR(Y,U) ⇢ U .

Take U = U1 \ U2. Then for any Y 2 U , CR(Y,U) is hyperbolic.



90 CHRISTIAN BONATTI, SHAOBO GAN AND DAWEI YANG

2.4. Ergodic closing lemma for flows

We need the flow version [25] of Mañé’s ergodic closing lemma [14].

Definition 2.12. a 2 M \ Sing(X) is called strongly closable if for any C1 neigh-
borhood U of X , and any � > 0, there are Y 2 U and p 2 M , ⇡(p) > 0 such
that

• �Y⇡(p)(p) = p,
• X (x) = Y (x) for any x 2 M \

S
t2R B(�t (a), �),

• d(�Xt (a),�Yt (p)) < � for each t 2 [0,⇡(p)].

Denote by 6(X) the set of strongly closable points of X .

Lemma 2.13 (Ergodic closing lemma for flows [25]). µ(6(X) [ Sing(X)) = 1
for every T > 0 and every �XT -invariant probability Borel measure µ.

2.5. Generic results

We need the following generic results in this paper.

Lemma 2.14. There is a dense G� set G ⇢ X 1(M) such that for each X 2 G, one
has

1. Every periodic orbit and every singularity of X are hyperbolic.
2. For any non-trivial chain recurrent classC(� ), if � is a hyperbolic singularity of
index dimM � 1, then C(� ) is Lyapunov stable and every separatrix of Wu(� )
is dense in C(� ). Especially, C(� ) is transitive.

3. Given i 2 [0, dimM � 1], if there is a sequence of vector fields {Xn} such that

• lim
n!1

Xn = X ,
• each Xn has a hyperbolic periodic orbits �n of index i such that limn!1

�n =

3,

then X itself has a sequence of hyperbolic periodic orbits � 0

n of index i such that
lim
n!1

� 0

n = 3.

4. Every chain recurrent class C(� ) is continuous with X: for any " > 0, there is a
neighborhood U of X such that for any Y 2 U , one has dH (C(�Y ),C(� )) < ".

Remark 2.15. Item 1 is the classical Kupka-Smale theorem [11, 23]. Item 2 is a
corollary of the connecting lemma for pseudo-orbits [4]. [16, Section 4] gave some
ideas about the proof of Item 2without using of the terminology of chain recurrence.
One can find the proof item 3 in [26] for diffeomorphism case. Item 4 holds because
the upper semi-continuity of chain recurrent classes.



DOMINATED CHAIN RECURRENT CLASS WITH SINGULARITIES 91

2.6. Saddle value of singularity

Let X 2 X r (M3) and � a hyperbolic singularity of X of index 2. Assume that the
three eigenvalues of DX (� ) satisfy

Re(�1)  Re(�2) < 0 < �3.

I (� ) = Re(�2) + �3 is called the saddle value of � .

Lemma 2.16 ([27, page 207-219, Theorem 3.2.12]). Given X 2 X 1(R3), assume
that � is hyperbolic saddle and the three real eigenvalues of DX (� ) satisfy

�1 < �2 < 0 < �3 < ��2.

If one branch Wu
+
(� ) of the unstable manifold Wu(� ) is a homoclinic orbit of � ,

then for any " > 0, there exists Y 2 X 1(R3) such that

sup{|X (x) � Y (x)|, kDX (x) � DY (x)k : x 2 R3} < ",

and Y has a hyperbolic sink �Y . Furthermore, Wu
+
(�Y ) \ {�Y } is contained in the

attracting basin of �Y , where �Y andWu
+
(�Y ) are the continuations of � andWu

+
(� )

Remark 2.17. In Lemma 2.16, one can require that the support of Y � X is in an
arbitrarily small neighborhood of the homoclinic orbit.

By using the C1 connecting lemma for pseudo-orbits [4], we have

Lemma 2.18. There exists a C1 open dense subsetO ⇢ X 1(M3) such that for any
X 2 O, if � is a hyperbolic singularity and the three real eigenvalues of DX (� )
satisfy

�1 < �2 < 0 < �3 < ��2,

then C(� ) is trivial.

Proof. According to the upper-semi continuity of CR(X), if C(� ) is trivial, then
there exists a C1 neighborhood U of X such that for any Y 2 U , C(�Y ) is also
trivial, where �Y is the continuation of � . So, to prove the lemma, we only have
to show that for any X 2 X 1(M3), there exists an arbitrary small perturbation Y
such that if a singularity of Y satisfies the assumption of the lemma, then its chain
recurrent class is trivial.

After an arbitrary small perturbation, we may assume that every singularity of
X is hyperbolic. Consider a singularity � satisfying the assumption of the lemma.
If C(� ) is non-trivial, by using the C1 connecting lemma, an arbitrary small pertur-
bation Y of X has a homoclinic loop associated to the singularity �Y . According to
Lemma 2.16, there exists arbitrary small perturbation Z of Y such that one branch
Wu

+
(�Z ) is attracted by a hyperbolic sink �Z . After another arbitrary small perturba-

tion when necessary, we may assume that Z satisfies the generic property of Lemma
2.14. And hence C(�Z ) is trivial. But this contradicts to Item 4 of Lemma 2.14.
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Since there exist only finitely many hyperbolic singularities, after finitely many ar-
bitrary small perturbations, we will get a vector field whose singularities satisfying
the assumption of the lemma all have the property: their chain recurrent class is
trivial.

Note that [17] proved that singularities with the properties in Lemma 2.18 is
disjoint from robustly transitive sets for three-dimensional flows.

3. Lyapunov chain recurrent classes: Proof of Theorem A

First, we get a C1 generic property from the C2 result of Lemma 2.6.

Lemma 3.1. For C1 generic X 2 X 1(M3), if 3 is non-singular chain transitive
set and admits a dominated splitting N3 = 1s

�1u with respect to  t , then 3 is
hyperbolic.

Proof. Let {Un} be a countable basis of M and O = {On}n2N the family of finite
union of {Un}. For each n, define

Hn = {X 2 X 1(M) : CR(X, On) is hyperbolic or CR(X, On) = ;},

Nn = Int
⇣
X 1(M) \Hn

⌘
.

According to Lemma 2.11 and Lemma 2.10,Hn is an open set. And henceHn[Nn
is open and dense in X 1(M). Therefore,

G =

\
n2N

(Hn [Nn)

is a dense G� set. We will prove that G satisfies the lemma. In fact, given X 2 G, let
3 be a non-singular chain transitive set with a dominated splittingN3 = 1s

�1u

on the normal bundle N3 with respect to the linear Poincaré flow  t . We will
prove that 3 = CR(X,3) (since 3 is chain transitive) is hyperbolic. Otherwise,
by Lemma 2.4, 3 contains a minimally non-hyperbolic set 0, which is transitive.
Since 0 is compact, for some n 2 N, 0 ⇢ On . According to Lemma 2.1, there is a
C1 neighborhood U of X such that the maximal invariant set in On of Y 2 U has a
dominated splitting on the normal bundle with respect to  Y

t
Since 0 is not hyperbolic, one has X 2 Nn . Take a C2 weak Kupka-Smale

vector field Y 2 Nn \ U . Y 2 Nn implies that CR(Y, On) is not hyperbolic. On
the other hand, Y 2 U implies that the maximal invariant set in On of Y has a
dominated splitting on the normal bundle with respect to the linear Poincaré flow.
By Lemma 2.6, CR(Y, On) = 31 [32 with31 \32 = ;, where31 is hyperbolic
and32 = [1imT2i such that T2i is a normally hyperbolic torus, and the dynamics
on T2i is equivalent to an irrational flow. Note that T2i is isolated in CR(Y ). Fix a
small neighborhood U of 32 so that CR(Y ) \U = 32.
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Since Morse-Smale vector fields on T2 are dense, there is a small perturbation
Z 2 Nn \U of Y such that Z(x) = Y (x) for x 62 U , �Zt T2i = T2i and the dynamics
on T2i of Z is Morse-Smale. Hence, CR(Z , On) ⇢ 31 [ 32 is hyperbolic, which
contradicts Z 2 Nn .

We need the following lemma to prove exponentially contracting/expanding
properties:

Lemma 3.2. Let 3 be a compact invariant set of �t and f : 3 ! R a continuous
function. Fix T > 0. If for any x 2 3, there is n(x) 2 N such that

n(x)�1X
i=0

f (�iT (x)) < 0,

then there are constants C 2 R and � > 0 such that for any x 2 3 and any n 2 N,
we have

n�1X
i=0

f (�iT (x))  C � �n.

Proof. By the continuity of the flow and the function, for any x 2 3, there is a
neighborhood U(x) of x and a number c(x) > 0 such that for any y 2 U(x), we
have

n(x)�1X
i=0

f (�iT (y)) < �c(x).

Because 3 is compact, there are x1, x2, . . . , xm in 3 such that 3⇢

S
1im U(xi ).

Let N= max{n(x1), n(x2), · · · , n(xm)} and � = min{c(x1), c(x2), · · · , c(xm)}/N .
Let

C = max
x23, 1iN

(
i�1X
j=0

f (� jT (x))

)
+ �N .

Now for any x 2 3 and any n 2 N, consider the orbit arc �[0,nT ](x). Since
x 2 3 ⇢

S
1in U(xi ), we can fix a k1 2 [0,m] such that x 2 U(xk1). Let

n1 = n(xk1). And then fix a k2 2 [0,m] such that �n(xk1 )T (x) 2 U(xk2). Let
n2 = n1+n(xk2). Inductively, we get a partition 0 = n0 < n1 < n2 < · · · < nl = n
such that n j+1 � n j  N for any 0  j  l � 1 and

n j+1�n j�1X
i=0

f (�iT (�n j T (x)))  ��(n j+1 � n j ), 80  j  l � 2.

The above inequalities imply the conclusion.

By using Lemma 3.2, usually we take f to be log k8T |E(x)k or log |Det(8�T |F(x))|.
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Lemma 3.3. For C1 generic X 2 X 1(M3), if a compact invariant set 3 of X has
a dominated splitting T3M = E � F of index 1 with respect to the tangent flow8t
such that

• There is T > 0 such that for every singularity � 2 3, |Det(8T |F(� ))| > 1.
• For every x 2 3 \ Sing(X), hX (x)i ⇢ F(x).
• F is not sectional expanding,

then there is a sequence of sinks {Pn} such that limn!1 Pn = 0 ⇢ 3.

Proof. Assume that X 2 X 1(M3) has the generic properties in Lemma 2.14. If
3 contains a periodic sink itself, then just take Pn to be the periodic sink. If 3
contains a periodic source � , then � admits a hyperbolic splitting

T�M = hXi � Eu, dim Eu = 2.

By the assumptions, T3 = E � F is a dominated splitting w.r.t. the tangent flow,
where dim F = 2. Thus, we have Eu(� ) = F(� ). But this contradicts to the fact
that hX (x)i ⇢ F(x) for any x 2 3 \ Sing(X).

From now on, we assume that 3 contains neither periodic sink nor periodic
source.

Define '(x) = log |Det(8�T |F(x))| for each x 2 3. We will prove this lemma
by absurd. If for any x 2 3, there is n(x) 2 N such that

n(x)�1X
i=0

'(��iT (x)) < 0,

then by Lemma 3.2 (by considering the flow ��t ), there are C and � > 0 such that
for any n 2 N

log |Det(8�nT |F(x))| =

n�1X
i=0

log |Det(8�T |F(��iT (x)))|

=

n�1X
i=0

'(��iT (x))  C � �n.

Thus, there is C 0 > 0 such that for any t � 0, one has |Det(8�t |F(x)|  C 0e��t .
This will imply that F is sectional expanding.

Since F is not sectional expanding, there is x 2 3 such that for any n 2 N,
one has

1
n

n�1X
i=0

'(��iT (x)) � 0.

Let �x be the Dirac atomic measure supported on x . Define

⌫n =

1
n

n�1X
i=0

���iT (x).



DOMINATED CHAIN RECURRENT CLASS WITH SINGULARITIES 95

Let ⌫ be an accumulation point of {⌫n}n2N. Note that ⌫ is an invariant measure with
supp(⌫) ⇢ 3. Because ' is a continuous function, one hasZ

'd⌫ � 0.

By using the ergodic decomposation theorem, there is an ergodic invariant measure
µ with supp(µ) ⇢ 3 such that Z

'dµ � 0.

By Lemma 2.13, for the set of strongly closable set 6(X), one has µ(6(X) [

Sing(X)) = 1. Since for each singularity � 2 3 one has |Det(8T |F(� ))| > 1 by
assumption, one gets µ(6(X)) = 1. Since ' is continuous, by Birkhoff ergodic
theorem, for µ almost every point x 2 supp(µ) \6(X),

lim
n!1

1
n

n�1X
i=0

'(��iT (x)) =

Z
'dµ.

We claim that x is not periodic. Otherwise, since X is C1 generic, one may assume
that x is a hyperbolic periodic point. Since 3 contains neither periodic sink nor
periodic source, x is a saddle. We assume that Orb(x) has the following hyperbolic
splitting:

TOrb(x)M = Es � hXi � Eu .

Since dim F = 2, we have F = hXi � Eu . By the continuity and invariance of the
splitting, for some constant c, we have \(hX (y)i , Eu(y)) > c for any y 2 Orb(x).
Thus, we have

|Det(8�nT |F(x))|=k8�nT |Eu(x)kk8�nT |hX (x)ik sin\(Eu(��nT (x)),X (��nT (x)))

tends to zero exponentially. This implies

lim
n!1

1
n

n�1X
i=0

'(��iT (x)) < 0.

The above inequality contradicts to

lim
n!1

1
n

n�1X
i=0

'(��iT (x)) =

Z
'dµ � 0.

Since x is a strong closable point, for any " > 0 there are Y which is "-C1-close to
X and p" 2 M , ⇡(p") > 0 such that

• �Y⇡(p")(p") = p",
• d(�Xt (x),�Yt (p")) < " for each t 2 [0,⇡(p")].
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Since x is non-periodic, one has ⇡(p") ! 1 as " ! 0. By the robustness of
dominated splitting (Lemma 2.2), the Y -orbit of p" also has a dominated splitting
E" � F" and F" ! F , E" ! E as " ! 0 in the Grassman metric. As a corollary,
one has

lim
"!0

1
[⇡(p")/T ]

n�1X
i=0

log |Det(D8Y
�T |F"(�Y

�iT (p")))| � 0.

Since the orbit of each periodic orbit has the dominated splitting, for each p", the
largest Lyapunov exponent along the orbit of p" tends to zero as " ! 0.

By Franks Lemma for flows [6,14], since the largest Lyapunov exponent of p"
is arbitrarily close zero, after an arbitrarily small perturbation one can change the
index of {Orb(p")} to get a sink (see the proof in [7, Proposition 2.2 ] for details).
As a corollary, there is a sequence of vector fields {Xn} such that

• limn!1 Xn = X in the C1 topology.
• Each Xn has a sink �n such that lim supn!1

�n ⇢ Orb(x).

By taking subsequence when necessary, we may assume that limn!1 �n = 0 ⇢

Orb(x). Since X is C1 generic, by item 3 of Lemma 2.14, X itself has a sequence
of periodic sinks � 0

n such that limn!1 � 0

n = 0 ⇢ Orb(x).

Now we will manage to prove Theorem B. Assume that we are under the
assumptions of Theorem B. First we have

Lemma 3.4. Under the assumptions of Theorem B, we have

• either for every x 2 C(� ) \ Sing(X), X (x) 2 E(x),
• or for every x 2 C(� ) \ Sing(X), X (x) 2 F(x).

Proof. By Lemma 2.14, C(� ) is transitive. We can take a point a 2 C(� ) such that
!(a) = C(� ).

If X (a) 2 E(a) or X (a) 2 F(a), then one can get the conclusion according to
the invariance and continuity of dominated splitting. Now, assume X (a) 62 E(a) [

F(a). Since a 2 !(a), there exists a sequence tn ! +1 and �tn (a) ! a as
n ! 1.

By the dominated property, one will have lim
n!1

8tn (X (a)) 2 F(a). Since
8tn (X (a)) = X (�tn (a)), one has X (a) = lim

n!1

X (�tn (a)) = lim
n!1

8tn (X (a)) 2

F(a), which gives a contradiction.

Corollary 3.5. If ind(� ) = 2, then for any y 2 C(� ) \ Sing(X), X (y) 2 F(y). As
a corollary, singularities in C(� ) have the same index.

Proof. Now, we have two dominated splittings at � :

T�M = E(� ) � F(� ), and T�M = Es � Eu .
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Since ind(� ) = 2, dim F(� ) � dim Eu , according to [8, Lemma 3.5], F(� ) � Eu .
According to Lemma 2.7 and 2.14, Wu(� ) ⇢ C(� ). Take a regular point x 2

Wu(� ), then X (��t (x)) ! Eu ⇢ F(� ) as t ! +1. By Lemma 3.4, one has
X (��t (x)) ⇢ F(��t (x)) for t large enough. Using Lemma 3.4 again, we have that
for any regular point y 2 C(� ), X (y) 2 F(y).

If singularities in C(� ) have different indices, then there are hyperbolic singu-
larities �1, �2 2 C(� ) such that ind(�1) = 1 and ind(�2) = 2. Thus by previous
arguments, for every x 2 C(� ) \ Sing(X), X (x) 2 E(x) and X (x) 2 F(x). This
contradiction ends the proof.

Lemma 3.6. If ind(� ) = 2, then dim E = 1 and E is contracting.

Proof. First by Corollary 3.5, for every x 2 C(� ) \ Sing(X), X (x) 2 F(x). Ac-
cording to Lemma 2.7, C(� ) \ Ws(� ) \ {� } 6= ;. This implies that the stable
subspace Es of hyperbolic splitting at � has non trivial intersection with F(� ).
Hence dim F = 2 and then dim E = 1.

We will prove that E is contracting. According to Corollary 3.5, every singu-
larity � 0 in C(� ) has index 2 and E(� 0) ⇢ Es(� 0). For any point x 2 6, there are
two cases:

1. !(x) ⇢ Sing(X),
2. !(x) \ Sing(X) 6= ;.

In the first case, there is t > 0 such that k8t |E(x)k < 1. In the second case, take
y 2 !(x) \Sing(X) and a small neighborhoodU of y such that for any y1, y2 2 U ,

1
2



|X (y1)|
|X (y2)|

 2.

Since y 2 !(x), there exists a sequence tn ! +1 such that �tn (x) ! y as
n ! 1. So, we may assume that �tn (x) 2 U for all n. Thus,

|X (�tn (x))|
|X (x)|

=

|X (�t1(x))|
|X (x)|

|X (�tn (x))|
|X (�t1(x))|

 2
|X (�t1(x))|

|X (x)|
.

Since E � F is a dominated splitting and X 2 F , there are constants � > 0 and
C � 1 such that

k8tn |E(x)k  Ce��tn
|X (�tn (x))|

|X (x)|
 2Ce��tn

|X (�t1(x))|
|X (x)|

.

When n is large enough, one has k8tn |E(x)k < 1
So, for any x 2 C(� ), there is t > 0 such that k8t |E(x)k < 1. By Lemma 3.2,

E is uniformly contracting.

Since dimM = 3, every hyperbolic singularity in a non-trivial chain recurrent
class is either index 1 or index 2, Lemma 3.6 ends the proof of Theorem B. ⇤

We will manage to prove Theorem A now.
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Proof of Theorem A. We assume that X 2 X 1(M3) has all the generic properties
in Lemma 2.14, Lemma 2.18, Lemma 3.1 and Lemma 3.3.

Without loss of generality, we assume that ind(� ) = 2. By Lemma 2.18, we
have I (� ) > 0 since C(� ) is non-trivial. By Lemma 3.6, the dominated splitting
over C(� ) is a partially hyperbolic splitting TC(� )M = Ess � F with dim Ess = 1.

Suppose on the contrary that F is not sectional expanding. By Lemma 3.3,
there is a sequence of sinks {Pn} of X such that limn!1 Pn = 3 ⇢ C(� ).

We claim that 3 \ Sing(X) 6= ;. In fact, otherwise, by Lemma 3.1, 3 is a
hyperbolic set in C(� ), which could not be approximated by periodic sinks Pn .

Now take a singularity � 0
2 3. According to Corollary 3.5, ind(� 0) = 2.

And Lemma 2.7 tells us that 3 \ Wu(� 0) \ {� 0
} 6= ;. By Lemma 2.14, every

separatrix of Wu(� 0) is dense in C(� ). Hence, 3 = C(� ). By the assumption of
this theorem, 3 contains the hyperbolic periodic point p. Thus, there are pn 2 Pn
such that limn!1 pn = p. Since C(� ) is Lyapunov stable (by Lemma 2.14),
Wu
loc(Orb(p)) ⇢ C(� ). So, for n large enough, Wss

loc(pn) \ Wu
loc(Orb(p)) 6= ;,

which implies pn 2 C(� ). This contradiction proves that F is sectional expanding.
Finally, according to Theorem D in [16], C(� ) is an attractor. This finishes the

proof of Theorem A.
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