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Mean field propagation of infinite-dimensional Wigner measures
with a singular two-body interaction potential

ZIED AMMARI AND FRANCIS NIER

Abstract. We consider the quantum dynamics of many bosons systems in the
mean field limit with a singular pair-interaction potential, including the attractive
or repulsive Coulombic case in three dimensions. By using a measure trans-
portation technique developed in [3], we show that Wigner measures propagate
along the nonlinear Hartree flow. Such property was previously proved only for
bounded potentials in our works [5, 6] with a slightly different strategy.
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1. Introduction

The evolution of a non-relativistic system of many quantum particles is described
by an n-body Schrödinger equation. The mean field limit consists in replacing this
problem by a non linear 1-particle problem, by considering one generic particle in-
teracting with the average field of all the others, when the number of particles is
large and the interaction potential is weak. It is common knowledge that this ap-
proximation starts to be very effective when the number of particles exceeds a few
tens. In the last decades, many works have been devoted to justify this limit. Most of
them considered the mean field dynamics of well-prepared quantum states, coher-
ent states or Hermite states, by following and extending the phase-space approach,
also known as the Hepp method (see [25, 27, 32, 33, 39, 44, 58]), or by studying the
BBGKY hierarchy of reduced density matrices (see [8, 17, 19, 20, 42, 60]). Some
of these results deal with very singular pair interaction potentials in [9, 19, 20, 44]
or consider the rate of convergence (see [7, 44, 58]), sometimes motivated by the
modelling of Bose-Einstein condensates (see e.g. [1,21,48]). In this article we con-
tinue our program, which consists in deriving the mean field limit for general initial
data in the bosonic framework. Our strategy is inspired by older attempts to give
substance to the formal link between bosonic Quantum Field Theory and the finite-
dimensional microlocal or phase-space analysis (see [10, 23, 24, 45, 47]). With this
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respect, the small parameter " =
1
n asymptotics is the infinite-dimensional version

of semiclassical analysis. And it has been realized in the 90’s that the Wigner (or
semiclassical) measures provide a powerful tool in order to obtain the leading term
in the semiclassical limit (see [29, 30, 37, 49]), because they flexibly and efficiently
incorporate a priori estimates (see [13,14,22, 51, 54]).

In [4] Wigner measures were introduced in the infinite-dimensional setting and
their main properties were studied. The above-mentioned work exploited and clari-
fied the intimate relationship between pseudo-differential calculus, phase-space ge-
ometry and the probability approach, inherent to bosonic QFT. In [5], the dynamics
for well-prepared data and bounded interaction potentials was reconsidered within
this approach. The general propagation result was obtained in [6] for bounded inter-
action potentials. In particular, we showed that the BBGKY hierarchy dynamics is a
projected picture of the evolution of the Wigner measure, for which there is a closed
equation. One difficulty that was solved in [6] is concerned with the integration of
a weak Liouville equation valid after testing with cylindrical or polynomial observ-
ables: Such classes of observables are not preserved by the nonlinear Hamiltonian
mean field flow. For bounded interaction potentials, the number conservation al-
lows polynomial approximations of the nonlinear deformation in balls of the phase-
space. This is done by adapting a truncated Dyson expansion approach presented
in [25–27]. In applications, an important case is the 2-body Coulomb interaction
since it models the general non-relativistic motion of charged (or gravitational) par-
ticles. Again there are results about the mean field problem for specific initial data
(see [9, 44]), but the approach we have followed in [6] essentially fails. With a
singular pair interaction potential, a solution to this problem is provided by mea-
sure transportation techniques developed for optimal transport theory (see [3, 62]).
Hence, the dynamical mean field limit relies even more on the fact that Wigner
measures are probability measures on the phase-space.

We now expose our main result. The Hamiltonian of an n-body quantum sys-
tem, with a pair interaction potential, is given by the Schrödinger operator

H (n)
" = "

nX
i=1

�1xi + "2
X

1i< jn
V (xi � x j ),

where " is a positive parameter and xi , x j 2 Rd . We assume that the particles obey
Bose statistics. So, we consider H (n)

" as an operator acting on the space L2s (Rdn) of
symmetric square-integrable functions. This means that

92L2s (Rdn) if and only if 92L2(Rdn) and 9(x1, · · · , xn)=9(x�1, . . . , x�n ) a.e.

for any permutation � in the symmetric group Sn . The mean field asymptotics is
concerned with the limit as " ! 0 and n" ! 1, where n =

h
1
"

i
represents the

number of particles of the system.
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LetH be a direct sum of Hilbert spaces of the form

H =

1M
n=0

L2s (Rdn),

and consider the Hamiltonian of the many-bosons system (with arbitrary number of
particles) as

H" =

1M
n=0

H (n)
" . (1.1)

An obvious feature of the operator H" is the conservation of the number of particles.
Hence, it is useful to define the number operator

N =

1M
n=0

"n 1lL2s (Rdn).

The free Hamiltonian, corresponding to V = 0, will be denoted by H0" :

H0" =

1M
n=0

H0,(n)" , H0,(n)" = "
nX
i=1

�1xi .

Second quantization is a natural framework for the study of many-body problems
and, even more, it helps to understand the mean field limit and the structures behind
it. However, the result can be presented without using the language of quantum
field theory. We just mention that the operator H" can be formally rewritten as

H" =

Z
Rd

ra⇤(x).ra(x) dx +

1
2

Z
R2d

V (x � y)a⇤(x)a⇤(y)a(x)a(y) dxdy,

with the "-dependent canonical commutation relations
⇥
a(x), a⇤(y)

⇤
= "�(x � y) .

It is interpreted as the Wick quantization of the classical Hamiltonian

h(z, z̄) =

Z
Rd

|rz(x)|2 dx +

1
2

Z
R2d

|z(x)|2|z(y)|2V (x � y) dxdy. (1.2)

In our analysis, an operator which violates the number of particles conservation
will play an important role, namely the Weyl operator. Such operators are given for
f 2 L2(Rd) by

W ( f ) = e
i

p

2
[a⇤( f )+a( f )]

,

where a⇤( f ), a( f ) are the creation-annihilation operators on H satisfying the "-
canonical commutation relations (CCR):

[a( f1), a⇤( f2)] = "h f1, f2iL2(Rd ) 1l, [a⇤( f1), a⇤( f2)] = 0 = [a( f1), a( f2)].

Accurate definitions on second quantized operators can be found in Appendix B.
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Our approach is based on Wigner measures, which are Borel probability mea-
sures on the infinite-dimensional phase-space Z0 := L2(Rd

; C). The states of the
many-bosons system are positive trace-class operators on H of normalized trace
equal to 1 (i.e. normal states or density operators). To every family of such states
(%")"2(0,"̄) we asymptotically assign, when " ! 0, at least one Borel probability
measure µ on Z0 := L2(Rd

; C), called Wigner measure, such that there exists a
sequence ("k)k2N such that limk!1 "k = 0 and

lim
k!0

Tr[%"k W (
p

2⇡⇠)] = F�1(µ)(⇠),

under the sole uniform estimate Tr
⇥
%"N�

⇤
 C� for some � > 0. Here F�1(µ) is

the inverse Fourier transform of µ.
The problem of the mean field dynamics questions whether the asymptotic

quantities, namely Wigner measures, as " ! 0 associated with

%"(t) = e�i
t
" H"%"ei

t
" H" , t 2 R

are transported by the flow 8(t, s) = 8(t � s) generated by the classical Hamilto-
nian h(z, z̄) and given, after writing zt = 8(t, s)(zs), by

i@t zt = (@z̄h)(zt , z̄t ) = �1zt + V ⇤ |zt |2zt . (1.3)

After checking that the Hamiltonian (1.1) has a self-adjoint realization so that the
quantum dynamics are well-defined on H and after checking that the mean field
flow is well defined on Z1 = H1(Rd), our main result is stated below.

Throughout the paper, we assume that the real valued potential V satisfies the
assumptions

V (�x) = V (x) 2 R, (A1)

V (1�1)�1/2 2 L(Z0), (A2)

and (1�1)�1/2V (1�1)�1/2 2 L1(Z0). (A3)

We use the notation L(h) for the space of bounded operators on the Hilbert space
h and Lp(h), 1  p  +1, for the Schatten classes, L1(h) being the space of
compact operators for p = +1.

Theorem 1.1. Let (%")"2(0,"̄) be a family of normal states on H with a single
Wigner measure µ0 such that the bound

Tr[(N+ H0" )�%"]  C� < +1, (1.4)

holds uniformly with respect to " 2 (0, "̄) for some � > 0. Then for all t 2 R, the
family (e�i

t
" H"%"ei

t
" H")"2(0,"̄) has a unique Wigner measure µt which is a Borel

measure on Z1 = H1(Rd). This measure µt = 8(t, 0)⇤µ0 is the push forward of
the initial measure µ0 by the flow associated with (1.3), well-defined on Z1.
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At a formal level the proof of the above theorem is rather simple. First write
the integral formula

Tr[%"(t)W (⇠)] = Tr[%"W (⇠)] + i
Z t

0
Tr[%"(s)W (⇠)

4X
j=1

" j�1O j ] ds,

where %"(t) = e�i t/"H"%"eit/"H" andO j are some Wick quantized observables. By
taking the limit as " ! 0, only the term j = 1 is left in the right-hand side. So, we
formally end up with a transport equation on the Wigner measures

@tµ + i {h, µ} = 0, {h, µ} = @zh @z̄µ � @zµ @z̄h

which is then solved by appealing to the results in [3].

Outline: The self-adjointness of the Hamiltonian H" and the existence of a global
flow on Z1 = H1(Rd) for the Hartree equation (1.3) are proved in Section 2.
The derivation of the mean field dynamics is done in Section 3, where Theorem
1.1 is proved. Some additional properties are stated in Section 4: in particular, we
draw the link with former results on bounded potential and reduced density matrices
and provide non-trivial examples elucidated by the Wigner measure approach. The
article ends with several appendices dedicated to second quantization, absolutely
continuous curves in Prob2(Z) as well as some weak L p conditions for the potential
V ensuring the fulfillment of the assumptions (A2) and (A3).

2. Well-defined dynamics

In this section we shall prove that:

• the quantum dynamics is well-defined, namely H" has a natural self-adjoint re-
alization;

• the mean field dynamics is well-defined on Z1 = H1(Rd), with additional use-
ful estimates.

2.1. Self-adjoint realization of H"

The Hamiltonian H" has a particular structure explained in a general framework in
Appendix A.

Let V be a real-valued Lebesgue measurable function a.e. finite and satisfying
the assumptions (A1) and (A2). The multiplication operator

V (n)
" = "2

X
1i< jn

V (xi � x j )
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with its natural domain D(V (n)
" ) = {9 2 L2s (Rdn) : V (n)

" 9 2 L2s (Rdn)} is self-
adjoint on L2s (Rdn) as well as the differential operator

H0,(n)" = "
nX
i=1

�1xi , with D(H0,(n)" ) = L2s (Rdn) \ H2(Rdn).

Therefore, according to Appendix A

V" =

1X
n=0

V (n)
" , and H0" =

1X
n=0

H0,(n)"

endowed with their natural domains are self-adjoint onH.
Proposition 2.1. Under the assumptions (A1) and (A2):

(i) The operator H (n)
" := H0,(n)" + V (n)

" is self-adjoint on D(H0,(n)" ) ⇢ D(V (n)
" );

(ii) The operator

H" :=

1X
n=0

H (n)
" , D(H") := {9 2 H,

1X
n=0

kH (n)
" 9(n)

k
2 < 1},

is self-adjoint and essentially self-adjoint on �
alg
n2NDn , where Dn is any core

of H0,(n)" .

Proof. (i) By assumption (A2), V (n)
" is infinitesimally small with respect to H0,(n)" .

So that,D(H0,(n)" ) ⇢ D(V (n)
" ) and the operator H (n)

" = H0,(n)" +V (n)
" is self-adjoint

on the domain of H0,(n)" by the Kato-Rellich theorem.
(ii) Applying Proposition A.1, we see that H" is self-adjoint and essentially self-
adjoint on �

alg
n2NDn .

Later, it will be useful to use the reference operator

S"(�) =

1X
n=0

H0,(n)" + "n + �("n)3 (2.1)

which is self-adjoint by Proposition A.1. Moreover, by functional calculus of
strongly commuting self-adjoint operators we observe that D(S"(�)) is invariant
with respect to the parameter � > 0.

Proposition 2.2. Under the assumptions (A1) and (A2), for any � > 0, the opera-
tor V" is S"(�)-bounded with

89 2 D(S"(�)), kV"9kH  �kV (1�1)�1/2kL(L2(Rd )) kS"(��2)9kH.

Therefore H" is essentially self-adjoint on D(S"(�)).
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Proof. The multiplication operator by V (x1 � x2), at least defined as a symmetric
operator from S(R2d) into S 0(R2d), satisfies

eix2Dx1V (x1 � x2)(1�1x1)
�1/2e�i x2Dx1

= eix2Dx1V (x1 � x2)e�i x2Dx1 (1�1x1)
�1/2

= V (x1)(1�1x1)
�1/2

2 L(L2(R2d)).
(2.2)

For 9 2 H,8 2 D(S"(�)), taking advantage of the symmetry of those wave
functions, we compute

h9, V"8i =

1X
n=2

h9(n),
n(n � 1)

2
"2V (x1 � x2)8(n)

iL2s (Rdn)

=

1X
n=2

h9(n),
n(n�1)
2

"2V (x1�x2)(1�1x1)
�1/2(1�1x1)

1/28(n)
iL2s (Rdn).

By noticing that

(n2"2)2k(1�1x1)
1/28(n)

k
2
L2(Rnd ) = ("n)3h8(n), "

nX
i=1

(1�1xi )8
(n)

iL2s (Rdn)

= kN3/2(N+ H0" )1/28(n)
k
2
H,

the Cauchy-Schwarz inequality leads to

|h9, V"8i|  kV (1�1)�1/2k k9kH kN3/2 (N+ H0" )1/28kH. (2.3)

Now with the inequality ab  (�a)2 + (b/�)2, we see that

kN3/2 (N+ H0" )1/28k
2
H = h8,N3(N+ H0" )8i

 h8, ��2N6 + �2(N+ H0" )28i (2.4)
 �2kS"(��2)8k

2
H.

Putting together (2.3) and (2.5) yields the estimate.
To prove the last statement, observe that �

alg
n2ND(H0,(n)" ) is a core for H".

Owing to the inclusions

�
alg
n2ND(H0,(n)" ) ⇢ D(S"(�)) ⇢ D(V") \D(H0" ) ⇢ D(H✏),

H" is essentially self-adjoint on D(S"(�)).

We end this section with some invariance properties of the domain D(S"(�))
with respect to the Hamiltonian H" and the Weyl operators.
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Proposition 2.3. For any � > 0 and t 2 R

e�i
t
" H"D(S"(�)) ⇢ D(S"(�)).

Moreover there exists C� > 0 such that

kS"(�)e�i
t
" H"(S"(�) + 1)�1kL(H)  C�, for all t 2 R.

Proof. For any9 2 D(S"(�)) ⇢ D(H"), observe that e�i
t
" H"9 belongs toD(N3)\

D(H") since D(S"(�)) is contained in D(N3) and H" strongly commutes with N.
Proposition 2.2 implies D(S"(�) + V") = D(S"(�)) = D(S"(�)) when � > 0 is
large enough, so that for any 8 2 D(S"(�))

h(S"(�) + V")8, e�i
t
" H"9iH = h(H" + N+ �N3)8, e�i

t
" H"9iH

= h8, (H" + N+ �N3)e�i
t
" H"9iH

and hence e�i
t
" H"9 belongs to D((S"(�) + V")⇤) = D(S"(�)) = D(S"(�)).

Again for � large enough

1+ S"(�) + V" = (1+ V"(S"(�) + 1)�1)(S"(�) + 1),

and

(1+ N+ �N3 + H")�1 = (S"(�) + 1)�1(1+ V"(S"(�) + 1)�1)�1.

Therefore, the operators (1+ S"(�))(1+N+�N3+H")�1 and (1+N + �N3 +

H")(S"(�) + 1)�1 are bounded. Thus, we conclude that

S"(�)e�i
t
" H"(1+S"(�))�1= S"(�)(1+S"(�))�1(1+S"(�))(1+N+�N3+H")�1

� e�i
t
" H"(1+ N+ �N3 + H")(1+ S"(�))�1(1+ S"(�))(1+ S"(�))�1

is bounded.

Proposition 2.4. For any ⇠ 2 H2(Rd) and any � > 0, the domain D(S"(�)) is
invariant under the action of the Weyl operator W (⇠) with

k(S"(�) + 1)�1W (⇠)S"(�)kL(H)  C�,⇠ ,

uniformly with respect to " 2 (0, "̄) for some constant C�,⇠ > 0.

Proof. For all 8,9 2 D(S"(�)), one can write

h8,W (⇠)⇤S"(�)W (⇠)9i = h8, (S"(�) + QWick" )9i,
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where Q" is the polynomial

Q"(z) =

D
z+

i"
p

2
⇠,�1

✓
z +

i"
p

2
⇠

◆ E
Z0

�hz,�1ziZ0 + P"
✓
z +

i"
p

2
⇠

◆
� P"(z)

and P"(z) = |z|6Z0 + 3"|z|4Z0 + "2|z|2Z0 is the complete Wick symbol of N
3, ac-

cording to Proposition B.2 or by direct computation. The assumption ⇠ 2 H2(Rd)
ensures that Q" is uniformly bounded in�p+q3Pp,q(Z0) and the number estimate
of Proposition B.3 says that QWick" hNi

�
3
2 is a bounded operator and therefore

QWick" (S"(�) + 1)�1 2 L(H).

Hence for 9 2 D(S"(�)),

S"(�)W (⇠)9 = W (⇠)


S"(�)

S"(�) + 1
+ QWick" (S"(�) + 1)�1

�
(S"(�) + 1)9

andW (⇠)9 belongs toD(S"(�)), with kS"(�)W (⇠)9k  C�,⇠k(S"(�)+1)9k.

Proposition 2.5. For any function � 2 C1

0 (R2) and � > 0, the operator �(N, H")
satisfies

8k 2 N, kNk S"(�)�(N, H")kL(H)  Ck+1
�,�

for some C�,� > 0.

Proof. The operators N, H" (like N and N + H0" ) are strongly commuting self-
adjoint operators so that the functional calculus is well defined for the pair (N, H").
With a cut-off function �1 2 C1

0 (R) such that �1(x) ⌘ 1 on a neighborhood of
supp � , the operator Nk(1+ N+ �N3 + H")�1(N)�(H",N) is bounded with

k(1+ N+ �N3 + H")Nk�1(N)�(H,N)kL(H)  C�Ck
� .

For sufficiently large �, Proposition 2.2 says

k(1+ S"(�))(1+ N+ �N3 + H")�1kL(H)  C 0

� .

This is done with

Nk S"(�)�(N, H") = S"(�)(1+ S"(�))�1(1+ S"(�)(1+ N+ �N3 + H")�1

� (1+ N+ �N3 + H")Nk�(N, H"),

and C�,� = max
n
C� : C�C 0

�kS"(�)(1+ S"(�))�1k
o
.
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2.1.1. Mean field dynamics

We shall use another more convenient writing of the Cauchy problem
⇢
i@t zt = �1zt + V ⇤ |zt |2zt
zt=0 = z0.

(2.5)

After setting z̃t = eit (�1)zt = e�i t1zt it becomes
⇢
i@t z̃t = e�i t1

⇥
V ⇤ |eit1 z̃t |2(eit1 z̃t )

⇤
z̃t=0 = z0.

(2.6)

Proposition 2.6. Assume (A1) and (A2). For any z0 2Z1 = H1(Rd) the Cauchy
problem (2.5) admits a unique solution (t 7!zt )2C0(R;H1(Rd))\C1(R;H�1(Rd)).
More precisely, the Cauchy problem (2.6), which is equivalent to (2.5), admits a
unique solution in C1(R; H1(Rd)). Moreover these solutions verify

|zt |L2 = |z̃t |L2 = |z0|L2 (2.7)
and h(zt , zt ) = h(z0, z0), (2.8)

for h(z, z) =

Z
Rd

|rz|2(x) dx +

1
2

Z
R2d

V (x � y)|z(x)|2|z(y)|2 dxdy.

Finally, the time-dependent velocity field defined on R ⇥Z1 by

v(t, z) = e�i t1([V ⇤ |eit1z|2]eit1z)

satisfies the estimates

|v(t, z)|Z0  kV (1�1)�1/2k |z|2Z0 |z|Z1 (2.9)

and |v(t, z)|Z1  kV (1�1)�1/2k |z|2Z1 |z|Z0 . (2.10)

Proof. The first results are standard (see e.g. [16, 31]) in the analysis on nonlinear
evolution equation. Nevertheless, we recall the details of the proof because it also
contains (2.9)(2.10), which is crucial in our analysis.

By considering the second formulation (2.6), it suffices to prove that the map-
ping z ! (V ⇤ |z|2)z is locally Lipschitz in H1(Rd). After noticing that the distri-
butional derivative of (V ⇤ |z|2)z or more generally of (V ⇤ (z1z2)z3) is

@x [(V ⇤ (z1z2))z3] = (V ⇤ (@x z1z2 + z1@x z2))z3 + (V ⇤ (z1z2))(@x z3), (2.11)

it is reduced to the estimate of V ⇤ (z1z2)z3 in L2 in terms of the L2 and H1- norms
of z1, z2, z3. For ⇠ 2 L2(Rd), write

h⇠, (V ⇤ (z1z2))z3iL2(Rd ) = hz1 ⌦ ⇠, V (x1 � x2)z2 ⌦ z3iL2(R2d ).
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When b̃ is the multiplication operator by V (x1 � x2), the estimate (2.2) says that
b̃(1�1x1)

�1/2 is bounded, with

|h⇠ ⌦ z1, V (x1 � x2)z2 ⌦ z3iL2(R2d )|  kV (1�1)�1/2k |⇠ |L2 |z1|L2 |z2|H1 |z3|L2 .

A symmetric version of (2.2) says b̃(1�1x2)
�1/2 is bounded, with

|h⇠ ⌦ z1, V (x1 � x2)z2 ⌦ z3iL2(R2d )|  kV (1�1)�1/2k |⇠ |L2 |z1|L2 |z2|L2 |z3|H1 .

Finally the symmetry of the expression V ⇤ (z1z2)z3 with respect to the exchange
of z1 and z2 gives

|h⇠ ⌦ z1, V (x1 � x2)z2 ⌦ z3iL2(R2d )|  kV (1�1)�1/2k |⇠ |L2 |z1|H1 |z2|L2 |z3|L2 .

Thus we have proved, owing to (2.11),

|V ⇤ (z1z2)z3|L2  kV (1�1)�1/2k min
�2S3

|z� (1)|H1 |z� (2)|L2 |z� (3)|L2 (2.12)

which gives

|(V ⇤ (z1z2))z3|H1  kV (1�1)�1/2k min
�2S3

|z� (1)|H1 |z� (2)|H1 |z� (3)|L2 . (2.13)

Since z 7! eit1z preserves the L2 and H1 norms, the velocity field estimates (2.9)
and (2.10) are consequences of (2.12) and (2.13).

For the sake of completeness, let us finish the proof of the global well-posedness
of the Cauchy problem. The estimate (2.13) provides the Lipschitz property of
z ! V ⇤ |z|2z in H1(Rd). This implies the local in time existence and unique-
ness of a solution to (2.6) in C1((�Tz0, Tz0); H1(Rd)), and therefore the local in
time existence and uniqueness of a solution to (2.5) in C0((�Tz0, Tz0); H1(Rd)) \

C1([�Tz0, Tz0]; H�1(Rd)). The global in time existence then comes as usual from
the control of |zt |H1 = |z̃t |H1 deduced from the conservations of (2.7) and (2.8).
For (2.7), take the real part of the scalar product of each member of (2.5) with zt .
This implies @t |zt |2L2 = 0.

For (2.8) take the scalar product with �(�R�11)@t zt where � 2 C1

0 (R) sat-
isfies 0  �  1 and � ⌘ 1 in a neighborhood of 0, with R > 0:

0 = 2<h@t zt , �(�R�11)i@t zt i
= @t hzt , �1�(�R�11)zt i + 2<h@t zt , �(�R�11)[(V ⇤ |zt |2)zt ]i.

Integrating this identity from 0 to t and taking the limit as R ! 1 with the help of
(2.13) gives

Z
Rd

|rzt |2dx �

Z
Rd

|rz0|2 dx + 2
Z t

0
<h@s zs, (V ⇤ |zs |2)zsi ds = 0.
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Due to the symmetry of V (x) = V (�x), the last integrand equals

<h@s zs, (V ⇤ |zs |2)zsi =

Z
R2d

@s(|zs(x)|2)V (x � y)|zs(y)|2 dxdy

=

1
2
@s

Z
R2d

|zs(x)|2V (x � y)|zs(y)|2 dxdy.

The conserved quantities (2.7) and (2.8) combined with (2.12) imply |zt |H1 

C|z0|H1 for some constant independent of t 2(�Tz0, Tz0), and hence Tz0=+1.

3. Derivation of the mean field dynamics

This section contains the proof of our main Theorem 1.1. Below, we recall from our
previous work [4] the notion of infinite-dimensional Wigner measures and collect
some of their properties. We will often make use of Weyl and Wick quantization
throughout this section. So, we suggest first the reading of Appendix B.

Two phase-spaces will be necessary for this analysis: Z0 = L2(Rd
; C) (re-

spectively Z1 = H1(Rd
; C)) endowed with its scalar product h , i (respectively

hz1, z2iZ1 = hz1, (1 � 1)z2i), its norm |z|2Z0 = hz, zi = |z|2L2 (respectively
|z|2Z1 = |z|2H1), its real scalar product < hz, zi (respectively < hz1, z2iZ1). Only
on Z0, we will use the symplectic structure with � (z1, z2) = Im hz1, z2i. Mean-
while, the real euclidean structure on Z1 is important especially when the Liouville
transport equation is written as a gradient flow according to Appendix C.

3.1. Wigner measures

The Wigner measures are defined after the next result proved in [4, Theorem 6.2]:

Theorem 3.1. Let (%")"2(0,"̄) be a family of normal states onH parametrized by ".
Assume Tr

⇥
%"N�

⇤
 C� uniformly with respect to. " 2 (0, ") for some fixed � > 0

and C� 2 (0,+1). Then for every sequence ("n)n2N with limn!1 "n = 0, there
exist a subsequence ("nk )k2N and a Borel probability measure µ on Z0, such that

lim
k!1

Tr
h
%"nk b

Weyl
i

=

Z
Z0
b(z) dµ(z),

for all b in the cylindrical Schwartz space Scyl(Z0) defined in Subsection B.1.

Moreover this probability measure µ satisfies
Z
Z0

|z|2�Z0 dµ(z) < 1.

Definition 3.2. The set of Wigner measures associated with a family (%")"2(0,"̄)
(respectively a sequence (%"n )n2N) which satisfies the assumptions of Theorem 3.1
is denoted by

M (%", " 2 (0, "̄)) , (respectively M(%"n , n 2 N)).
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Moreover this definition can be extended to any family (%")"2(0,"̄) such that

k(1+ N)�%"(1+ N)�kL1(H)  C�

for some � > 0 with the decomposition %" = �R,+
" %R,+

" ��R,�
" %R,�

" + i�I,+" %I,+" �

i�I,�" %I,�" .
Wigner measures are in practice identified via their characteristic functions

according to the relation

M(%", " 2 (0, "̄)) = {µ} , lim
"!0

Tr
h
%" W (

p

2⇡⇠)
i

= F�1(µ)(⇠)

, lim
"!0

Tr
⇥
%" W (⇠)

⇤
=

Z
Z0
ei

p

2< h⇠,zidµ(z).

The expressionM(%", " 2 (0, "̄)) = {µ} simply means that the family (%")"2(0,"̄)
is ”pure” in the sense

lim
"!0

Tr
h
%"bWeyl

i
=

Z
Z
b(z) dµ,

for all cylindrical symbol b without extracting a subsequence. Actually the gen-
eral case can be reduced to this one, after reducing the range of parameters to
" 2

�
"nk , k 2 N

 
. For checking properties of the elements ofM(%", " 2 (0, "̄)),

extracting a subsequence in this way allows to suppose without loss of generality
M(%", " 2 (0, "̄)) = {µ}.

A simple a priori estimate argument allows to extend the convergence to sym-
bols which have a polynomial growth and to take Wick quantized symbols, with
compact kernels, belonging to P1

alg(Z0) = �
alg
p,q2NP1

p,q(Z0) (see [4, Corollary
6.14]).
Proposition 3.3. Let (%")"2(0,"̄) be a family of normal states onL(H) parametrized
by " such that Tr[%"N↵]  C↵ holds uniformly with respect to " 2 (0, "̄), for all
↵ 2 N,and such thatM(%", " 2 (0, "̄)) = {µ}. Then the convergence

lim
"!0

Tr
h
%"bWick

i
=

Z
Z0
b(z) dµ(z) (3.1)

holds for any b 2 P1

alg(Z0).
A variant of the above result was provided in [4, Theorem 6.13].

Proposition 3.4. Assume that the family of operators (%")"2(0,") satisfies��(1+ N)↵%"(1+ N)↵
��
L1(H)

 C↵

uniformly with respect to " 2 (0, ") for all ↵ 2 N. For any fixed � belonging to
P1

alg(Z0) the family (�Wick%")"2(0,") satisfies the assumptions of Definition 3.2 and

M
⇣
�Wick%"

⌘
=

�
�µ, µ 2M(%")

 
. (3.2)
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A closely related question is whether Wigner measures are completely identi-
fied via Wick-quantized observable. Of course this is related with the Hamburger
moment problem even in finite dimension and we again refer to [4] for further dis-
cussions about this.

3.2. Weak mean field limit of the dynamics
in terms of the characteristic function

After some extraction process and for some specific initial data (%")"2(0,"̄), a family
(µt )t2R of measures can be defined and weakly solves a transport equation. We
consider on L2s (R2d) the (unbounded) multiplication operators

Ṽ =

1
2
V (x1 � x2) and Ṽs = (e�is1x1 ⌦ e�is1x2 )Ṽ (eis1x1 ⌦ eis1x2 ),

and respectively associate to them the polynomials, well-defined onZ1 = H1(Rd),

V (z) =

1
2
hz⌦2, V (x � y)z⌦2iL2s (R2d ) and Vs(z) = hz⌦2, Ṽs z⌦2iL2s (R2d ), z 2 Z1.

Instead of considering
%"(t) = e�i

t
" H"%"ei

t
" H" ,

we will rather work with

%̃"(t) = ei
t
" H

0
" e�i

t
" H"%"ei

t
" H"e�i

t
" H

0
" . (3.3)

Our assumptions will be made in terms of the operator S"(1) already introduced in
(2.1) and which can be rewritten as a Wick observable.

Definition 3.5. The operator S" is defined by

S" =

1X
n=0

H0,(n)" + "n + ("n)3 = d0(1�1) + N3,

with domain D(S") =

n
9 2 H :

P
1

n=0 k(H0,(n)" + "n + ("n)3)9(n)
k
2
L2s (Rdn)

<1

o
and H0,(n)" = d0(�1)

��Wn Z0 .

Remember that it is self-adjoint with this domain (see (2.1)). Moreover it can
be written S" = sWick" with

s"(z) = hz, (1�1)zi +

h
|z|6Z0 + 3"|z|4Z0 + "2|z|2Z0

i
.
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Proposition 3.6. Let (%")"2(0,"̄) be a family of normal states on H satisfying for
some finite constant C > 0 the estimate

Tr
⇥
(1+ S")%"(1+ S")

⇤
 C uniformly with respect to " 2 (0, "̄) .

The operator S" is the one given in Definition 3.5 and %̃"(t) is the operator given by
(3.3). Then for any sequence ("n)n2N in (0, "̄) such that limn!1 "n = 0 there exist
a subsequence ("nk )k2N and a family (µ̃t )t2R of Borel probability measures on Z0
satisfying for any t 2 R

M(%̃"nk (t), k 2 N)={µ̃t },

with the Liouville equation

µ̃t (ei
p

2< h⇠,.i)

= µ̃0(ei
p

2<h⇠,.i)�2
p

2i
Z t

0
µ̃s(ei

p

2< h⇠,zi Im hz⌦2, Ṽs⇠ ⌦ zi)ds,

= µ̃0(ei
p

2< h⇠,.i) + i
Z t

0
µ̃s
⇣n
Vs(.); ei

p

2< h⇠,.i
o⌘

ds, for all ⇠ 2 Z1.

(3.4)

Proof. The proof uses several preliminary lemmas stated below. By an approxima-
tion argument, we may assume ⇠ 2 H2(Rd). The first step is to prove the existence
of Wigner measures defined for all times t 2 R. This is done in Proposition 3.9.
Let us now prove the Liouville equation. By Lemma 3.8 we have

Tr
⇥
%̃"(t)W (⇠)

⇤
=Tr

⇥
%"W (⇠)

⇤
+ i
Z t

0
Tr

"
%̃"(s)W (⇠)

4X
j=1
" j�1b j (s, ⇠)Wick

#
ds, (3.5)

where b j are the following polynomials

b1(s, ⇠) = �2
p

2 Im hz⌦2, Ṽs ⇠ ⌦ zi
b2(s, ⇠) = �< hz⌦2, Ṽs ⇠⌦2

i + 2h⇠ _ z, Ṽs⇠ _ zi
b3(s, ⇠) =

p

2 Im h⇠⌦2, Ṽs ⇠ ⌦ zi

b4(s, ⇠) =

1
4
h⇠⌦2, Ṽs ⇠⌦2

i.

With the number estimate in Proposition B.1, Lemma 3.7 below will ensure that
the sum in the right-hand side over j = 2, · · · , 4 converges to 0 when " ! 0.
On the other hand, the term with j = 1 has a limit according to Lemma 3.10
applied with %̃"(t) after noticing that Tr

⇥
(1+ S")%̃"(t)(1+ S")

⇤
 C 0 owing to

k(1+ S")±1ei
t
" H

"
0 e�i

t
" H"(1+ S")⌥1k  C 00 due to Proposition 2.3.
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The above proof is completed in essentially three steps:

1) The relation (3.5) is first established by extending Wick-calculus arguments
to the case when V is unbounded, and rough estimates for b j (s, ⇠)Wick, j =

1, . . . , 4, are given;
2) An Ascoli type argument, relying on these rough estimates allows to make the
subsequence extraction ("nk )k2N uniform for all t 2 R;

3) An additional compactness argument is given in order to ensure the convergence
of the term with j = 1 in (3.5).

3.2.1. Wick calculus with unbounded kernels

The results presented in this paragraph would be direct applications of theWick cal-
culus given in Proposition B.2 for a bounded potential V 2 L1(Rd). Although the
algebra is the same as in the bounded case, justifying the formulas for unbounded
potentials fulfilling (A1), (A2) and (A3) requires some analysis.

Lemma 3.7. The identity

⇣
VWicks W (⇠) � W (⇠)VWicks

⌘
9 = W (⇠)

 
4X
j=1

" j b j (s, ⇠)Wick
!
9 (3.6)

holds for any ⇠ 2 H2(Rd) and 9 2 D(S"), with S" given by Definition 3.5. Addi-
tionally, for all 9 2 D(S") ⇢ D(S1/2" ) ⇢ D(N 3

2 ), the estimates

kb j (s, ⇠)Wick 9k  C(1+ |⇠ |4Z1)k(1+ N)
3
29k

 C 0(1+ |⇠ |4Z1)k(1+ S")1/29k

(3.7)

hold uniformly with respect to j 2 {1, . . . , 4}, s 2 R, when ⇠ 2 H1(Rd).

Proof. We first remark that, owing to the assumption (A2) and the estimate (2.12),
the polynomials b j (s, ⇠), j = 1, · · · , 4 belong to the set �p,q3Pp,q(Z0), with

|b j |�p+q3Pp,q (Z0)  C(1+ |⇠ |4Z1).

Hence, Proposition B.1 and Proposition 2.2 prove (3.7) with

D(S")⇢D(N3/2)⇢D
⇣
b j (s, ⇠)Wick

⌘
, j=1, . . . , 4, and D(S")⇢D

⇣
VWicks

⌘
. (3.8)

By Proposition 2.4 the domain D(S") is invariant under the action of W (⇠) for all
⇠ 2 H2(Rd). A Taylor expansion yields, for all z 2 Z1, the equality

Vs
✓
z +

i"
p

2
⇠

◆
= Vs(z) +

4X
j=1

" j b j (s, ⇠)[z].
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The formula (3.6) is standard for bounded Ṽ due to W ⇤(⇠)bWickW (⇠) = b(. +

i"
p

2
⇠)Wick when b 2 Palg(Z0) = �

alg
p,q2NPp,q(Z0). Let us reconsider the proof of

this result for our unbounded Ṽ . With the previous estimates, the quantity A(t) =

h8,W (t⇠)Vs(. + i"
p

2
t⇠)WickW (t⇠)⇤9i is well-defined for all 8,9 2 D(S") with

A(t) =

4X
j=1

" j t j h8,W (t⇠)b j (s, ⇠)WickW (t⇠)⇤9i + h8,W (t⇠)VWicks W (t⇠)⇤9i.

We first establish equality (3.6) in a weak sense: DifferentiateA(t) for any 9,8 2

D(S"),

d
dt
A(t)

=

4X
j=1

" j h8,W (t⇠)
n
[i�(⇠), b j (s, ⇠)Wick]t j + j t j�1b j (s, ⇠)Wick

o
W (t⇠)⇤9i

+h8,W (t⇠)[i�(⇠), VWicks ]W (t⇠)⇤9i

=

3X
j=0

" j t j h8,W (t⇠)
n
[i�(⇠), b j (s, ⇠)Wick] + ( j+1)b j+1(s, ⇠)Wick

o
W (t⇠)⇤9i

where b0(z) = Vs(z). Now, a direct calculation with �(⇠) =
1

p

2
(a(⇠) + a⇤(⇠))

gives h
i�(⇠), b j (s, ⇠)Wick

i
= �( j + 1)b j+1(s, ⇠)Wick

for j = 0, · · · , 3. ThereforeA(1) = A(0) and, knowing (3.8), we conclude that

W (⇠)

 
VWicks +

4X
j=1

" j b j (s, ⇠)Wick
!
W (⇠)⇤9 = VWicks 9 (3.9)

for any 9 2 D(S"). With 9 = W (⇠)9̃ in (3.9) for any 9̃ 2 D(S"), while 9 2

D(S") owing to ⇠ 2 H2(Rd), the claimed equality is obtained.

Lemma 3.8. Let (%")"2(0,"̄) be a family of normal states onH. Assume that %"(S"+
1) 2 L1(H) for all " 2 (0, "̄), with S" given by Definition 3.5 and %̃"(t) by (3.3).
Then for any ⇠ 2 H2(Rd), the map s 7! Tr[%̃"(s) W (⇠)] belongs to C1(R) and the
following integral formula holds true

Tr
⇥
%̃"(t)W (⇠)

⇤
= Tr

⇥
%"W (⇠)

⇤
+

i
"

Z t

0
Tr

"
%̃"(s)W (⇠)

4X
j=1

" j b j (s, ⇠)Wick
#
ds.
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Proof. Write

Tr[(%̃"(t) � %̃"(s))W (⇠)]

= Tr
h
%"(S"+1)(S"+1)�1

⇣
ei

t
" H"e�i

t
" H

0
" � ei

s
" H"e�i

s
" H

0
"

⌘
W (⇠)ei

s
" H

0
" e�i

s
" H"
i

+Tr
h
%"ei

t
" H"e�i

t
" H

0
"W (⇠)(S"+1)(S"+1)�1

⇣
ei

t
" H

0
" e�i

t
" H"� ei

s
" H

0
" e�i

s
" H

0
"

⌘i
.

The following limits hold true on D(S")

lim
s!t

1
t � s

(S" + 1)�1
⇣
ei

t
" H"e�i

t
" H

0
" � ei

s
" H"e�i

s
" H

0
"

⌘

=

i
"
(S" + 1)�1ei

t
" H"(H" � H0" )e�i

t
" H

0
"

lim
s!t

1
t � s

(S" + 1)�1
⇣
ei

t
" H

0
" e�i

t
" H" � ei

s
" H

0
" e�i

s
" H

0
"

⌘

=

i
"
(S" + 1)�1ei

t
" H

0
" (H0" � H")e�i

t
" H" ,

by Stone’s theorem and the invariance ofD(S") with respect to eit H
0
" and eit H" . Us-

ing the estimate in Proposition 2.3, the latter limits are limits in L(H) with respect
to the strong convergence topology. After noticing that %"ei

t
" H"e�i

t
" H

0
"W (⇠)(S"+1)

is trace class when ⇠ 2 H2(Rd)), owing to Proposition 2.4 and Proposition 2.3, we
take the trace and let s ! t . Now integrating the derivative from 0 to t yields

Tr[%̃"(t)W (⇠)] = Tr[%"W (⇠)]+
i
"

Z t

0
Tr
h
%̃"(s)

⇣
VWicks W (⇠) � W (⇠)VWicks

⌘i
ds.

When ⇠ 2 H2(Rd), the equality

Tr
h
(1+ S")%̃"(s)

⇣
VWicks W (⇠) � W (⇠)VWicks

⌘
(1+ S")�1

i

= Tr

"
%̃"(s)W (⇠)

4X
j=1

" j b j (s, ⇠)Wick
#

,

makes sense, since (1+ S")%̃"(s) 2 L1(H) and by Lemma 3.7
⇣
VWicks W (⇠) � W (⇠)VWicks

⌘
(1+ S")�1

= W (⇠)

"
4X
j=1

" j b j (s, ⇠)Wick
#

(1+ S")�1 in L(H).
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3.2.2. Subsequence extraction for all times

The first step in the proof of Proposition 3.6 is to show the existence of Wigner
measures for all times. This is accomplished below by following merely the same
lines as [6, Proposition 3.3].

Proposition 3.9. Let (%")"2(0,"̄) be a family of normal states on H satisfying for
some finite constant C > 0 the estimate

Tr
⇥
%"(1+ S")

⇤
 C uniformly with respect to " 2 (0, "̄) .

The operator S" and %̃"(t) are respectively given by Definition 3.5 and (3.3). Then
for any sequence ("n)n2N in (0, "̄) such that limn!1 "n = 0 there exists a subse-
quence ("nk )k2N and a family of Borel probability measures on Z0, (µ̃t )t2R, satis-
fying

M(%̃"nk (t), k 2 N) = {µ̃t }

for any t 2 R.

Proof. We only sketch the proof and essentially indicate the points which differ
from [6, Proposition 3.3]. Let us write

G"(t, ⇠) = Tr[%̃"(t)W (⇠)] .

Using Proposition B.1 and (1 + N)  2(1 + N3)  2(1 + S"), one can prove like
in [6] that

|G"(s, ⇠) � G"(s, ⌘)|  C|⇠ � ⌘|
1
2
Z0 (|⇠ |2Z0 + |⌘|2Z0 + 1)

1
4 (3.10)

for some constant C > 0. We have

|G"(t, ⌘) � G"(s, ⇠)| 

��Tr ⇥(%̃"(t) � %̃"(s))W (⇠)
⇤��

+ |G"(s, ⇠) � G"(s, ⌘)| .

On the other hand, making use of Lemma 3.8 we get

��Tr ⇥%̃"(t) � %̃"(s)
⇤
W (⇠)]

��


�����
Z t

s
Tr

"
%̃"(w)

4X
j=1

" j�1b j (w, ⇠)Wick

#
dw

�����
 C0|t � s|k(1+ S")1/2%"(1+ S")1/2kL1(H)

⇥ sup
w2[t,s]

k(1+ S")�1/2
"

4X
j=1

" j�1b j (w, ⇠)Wick

#

⇥(1+ S")�1/2kL(H)

 C1|t � s|(1+ |⇠ |Z1)
4,
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when ⇠ 2 H2(Rd). Taking an approximation ⇠n 2 H2(Rd), n 2 N, such that
limn!1 |⇠ � ⇠n|Z1 = 0, Z1 = H1(Rd), and taking the limit as n ! 1 of the
left-hand side with the help of (3.10), allows first to extend the previous inequality
to any ⇠ 2 Z1.

Thus, we conclude that

|G"(t,⌘) � G"(s,⇠)| C̃
⇣
|t� s|(|⇠ |Z1 + 1)4+ |⌘�⇠ |Z0

q
|⌘|2Z0+|⇠ |2Z0

⌘
(3.11)

holds for all (s, ⇠), (t, ⌘) 2 R⇥Z1, uniformly with respect to. " 2 (0, "). Remem-
ber also the uniform estimate |G"(s, ⇠)|  1.

Now, we apply the same Ascoli type argument as used in [6, Proposition 3.3]
in order to prove the existence of a subsequence ("nk )k and a continuous function
G(., .) : R ⇥ Z1 ! C such that G"k (t, ⇠) converges to G(t, ⇠) for any t 2 R and
⇠ 2 Z1. Furthermore (3.10) allows to extend G(., .) to a continuous function on
R⇥Z0. An “�/3”-argument shows that for any (t, ⇠) 2 R⇥Z0, limn!1 G"n (t, ⇠)
exists and equals G(t, ⇠), so that G(t, .) is a norm continuous normalized function
of positive type. Therefore, for any t 2 R, G(t, .) is a characteristic function of
weak distribution (or projective family of probability measures) µ̃t on Z0. Finally
the proof is ended as in [6, Proposition 3.3].

3.2.3. An additional compactness argument

Here, the compactness assumption (A3) is converted into some compactness prop-
erty of the Wick symbol b1. It allows to refer indirectly to Proposition 3.3 and to
take the limit as " ! 0 in the term with j = 1 in (3.5). With the rough estimates
used in Proposition 3.9, the terms in (3.5) corresponding to j > 1 with a factor
" j�1 will vanish as " ! 0. The next lemma applied with %̃"(s) in the integral term
of (3.5), will end the proof of Proposition 3.6.
Lemma 3.10. Let %" be a family of normal states on H satisfying for some finite
constant C > 0 the estimate

Tr
⇥
(1+ S")%"(1+ S")

⇤
 C uniformly with respect to " 2 (0, "̄).

Here S" is given by Definition 3.5. Assume thatM(%", " 2 (0, "̄)) = {µ}, then for
any ⇠ 2 Z1

lim
"!0

Tr
h
%"W (⇠)b1(s, ⇠)Wick

i
=

Z
Z0
e
p

2i< h⇠,zib1(s, ⇠)[z] dµ(z).

Proof. The polynomial b1(s, ⇠) 2 P1,2+P2,1 splits into two similar terms, namely

B1(z) = h⇠ ⌦ z, Ṽs z⌦2i and B2(z) = hz⌦2, Ṽs(z ⌦ ⇠)i

with their associated operators

B̃1 = (h⇠ | ⌦ 1l) Ṽs 2 L
⇣
L2s (R2d), L2(Rd)

⌘
and

B̃2 = S2Ṽs (1l⌦ |⇠i) 2 L
⇣
L2(Rd), L2s (R2d)

⌘
.
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Let � 2 C1

0 (R) with �(x) = 1 if |x |  1, �(x) = 0 if |x | � 2 and 0  �  1. For
m 2 N⇤, set �m(x) = �( xm ) and define

B̃1,m = �m(|Dx |)B̃1 (1l⌦ �m(|Dx |))S2 and
B̃2,m = S2(1l⌦ �m(|Dx |)) B̃2�m(|Dx |)

as bounded operators in L(L2s (R2d), L2(Rd)) and L(L2(Rd), L2s (R2d)) respec-
tively. We claim that both operators B̃1,m and B̃2,m are compact. Actually, B̃2,m =

B̃⇤

1,m and

B̃1,m =

1
2
(1l⌦ e�is1x2 )(heis1⇠ | ⌦ 1l)(e�i x1Dx2�m(|Dx2 |)V (x2)�m(|Dx2 |)e

ix1Dx2 )

⇥(eis1x1 ⌦ eis1x2 )S2.

Moreover, the linear norm continuous application

A 2 L(L2(Rd)) 7�! (heis1⇠ | ⌦ 1l)e�i x1Dx2 (1⌦ A) 2 L(L2s (R2d), L2(Rd))

preserves the class of Hilbert-Schmidt operators since

k(heis1⇠ | ⌦ 1l)e�i x1Dx2 (1⌦ A)kL2(L2s (R2d ),L2(Rd )) = |⇠ |Z0kAkL2(Z0)

comes by computing the Schwartz kernel with kKk
2
L2(L2(µ);L2(⌫)) =

R
|K (x, y)|2 ·

d⌫(x)dµ(y). Hence it maps compact operators into compact operators, because
the space of compact operators, L1, is the norm closure of L2 in L. Therefore,
by taking A = �m(|Dx |) V (x)�m(|Dx |) which is compact by assumption (A3), we
conclude that B̃1,m and B̃2,m are compact. Now, writing for j = 1, 2���Tr h%"W (⇠)BWickj

i
�µ

⇣
e
p

2i< h⇠,ziBj (z)
⌘��� ���Tr h%"W (⇠)

⇣
BWickj � BWickj,m

⌘i ���(3.12)
+

���Tr h%"W (⇠)BWickj,m

i
� µ

⇣
e
p

2i< h⇠,ziBj,m(z)
⌘ ��� (3.13)

+

���µ⇣ep2i< h⇠,ziBj,m(z)
⌘

� µ
⇣
e
p

2i< h⇠,ziBj (z)
⌘ ���, (3.14)

with Bj,m 2 P1

alg(Z0). The right-hand side (3.13) converges to 0 owing to Propo-
sition 3.4. Since s � limm!1 �m(|Dx |) = 1l, the polynomials Bj,m(z) converge to
Bj (z) for any z 2 Z0, while the estimate

|Bj,m(z)|  c|⇠ |Z1 k(1�1)�1/2Vk |z|3Z0
holds true uniformly with respect to m for some constant c > 0. Additionally, the
estimate Tr[%"N3/2]  C impliesZ

Z0
|z|3Z0 dµ  C.
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Therefore the dominated convergence theorem applies and the right-hand side
(3.14) tends to 0 as m!1. It remains to prove the convergence of the right-hand
side of (3.12). Writing

Tr
h
%"W (⇠)

⇣
BWickj � BWickj,m

⌘i
= Tr

h
(S" + 1)%"(S" + 1)(S" + 1)�1W (⇠)(S" + 1)

⇥

⇣
S" + 1)�1(BWickj � BWickj,m

⌘
(S" + 1)�1

i

and referring to Proposition 2.4 leads one to the estimate
���Tr h%"W (⇠)

⇣
BWickj � BWickj,m

⌘i��� c
��(S"+1)�1⇣BWickj � BWickj,m

⌘
(S"+1)�1

��
L(H)

.

By functional calculus of strongly commuting self-adjoint operators we see that
(S" + 1)�1(

p

N+ d0(1�1) + 1) is uniformly bounded with respect to " 2 (0, "̄).
Applying Lemma B.4 (with A = 1�1), we conclude that

|Tr[%"W (⇠)(BWickj � BWickj,m )]| . k(1�1x2)
�1/2(B̃ j � B̃ j,m)(1�1x2)

�1/2
k

. |⇠ |Z0 k(1�1)�1/2VkL(Z0)

⇥k(1�1x )
�1/2(1� �m(|Dx |))kL(Z0).

Again by functional calculus k(1 � 1x )
�1/2(1 � �m(|Dx |))k is estimated by 1

m
and the right-hand side of (3.12) goes to 0 as m ! 1 uniformly with respect to
" 2 (0, "̄). Finally, a ”�/3-argument” with the established convergence of (3.12),
(3.13) and (3.14) yields the result.

3.3. Asymptotic a priori estimates

In this section, a priori information on Wigner measures is derived from a priori
estimates on the state %". In particular, we shall prove the next result:

Proposition 3.11. Let S" be the operator given by Definition 3.5 and assume that
the family of normal states (%")"2(0,"̄) satisfies

8↵ 2 N, 9C↵ > 0,8" 2 (0, "̄), Tr
⇥
(1+ S")%"(1+ S")(1+ N)↵

⇤
 C↵,

andM(%", " 2 (0, "̄)) = {µ}. Then the measure µ is carried by Z1, its restriction
to Z1 is a Borel probability measure on Z1 and

Z
Z0

|z|4Z1 |z|
2
Z0 dµ(z) =

Z
Z1

|z|4Z1 |z|
2
Z0 dµ(z) < +1. (3.15)
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The proof of this proposition requires the two next results:

Lemma 3.12. Let b̃ be a non-negative (self-adjoint) operator on
Wp Z0 and as-

sume that the family of normal states (%")"2(0,"̄), with Tr
⇥
%"N↵

⇤
 C↵ for all

↵ 2 N, satisfies

Tr
h
%"bWick

i
 C and M(%", " 2 (0, "̄)) = {µ} .

Then Z0 3 z 7! b(z) = hz⌦p, b̃z⌦p
i 2 [0,+1] is a Borel function on Z0 andR

Z0 b(z) dµ(z)  C .

Proof. When b 2 P1

p,p(Z0) has a compact kernel b̃ we know after Proposition 3.3
(see [4, Corollary 6.14] for a complete proof) that

C � lim
"!0

Tr
h
%"bWick

i
=

Z
Z0
b(z) dµ(z).

We use the fact that b̃ ! bWick is operator monotone, in the following sense: if the
(possibly unbounded) non-negative operators b̃1, b̃2 in

Wp Z0 satisfy b̃2 � b̃1 � 0,
then the densely defined essentially self-adjoint operators bWickj , j = 1, 2 in H
satisfy bWick2 � bWick1 � 0 .

By taking b̃ 2 L(
Wp Z), for b 2 Pp,p(Z), as the supremum of b̃n with b̃n

compact, we obtain firstly for all n 2 N

C � lim inf
"!0

Tr
h
%1/2" bWick%1/2"

i
� lim
"!0

Tr
h
%1/2" bWickn %1/2"

i
=

Z
Z0
bn(z) dµ(z).

Secondly, the monotone convergence yields

C � sup
n2N

Z
Z0

hz⌦p, b̃nz⌦p
i dµ(z) =

Z
Z0
b(z) dµ(z).

When b̃ is unbounded, it can be approximated by b̃n =
b̃

1+ b̃
n

2 L
�Wp Z0

�
, for n �

1. Set bn(z) = hz⌦p, b̃nz⌦p
i. The function b(z) = hz⌦p, b̃z⌦p

i = supn2N bn(z) is
a Borel function on Z0 as a supremum of a sequence of continuous functions. The
uniform estimate

Tr
h
%"bWickn

i
 Tr

h
%"bWick

i
 C

with the result for b̃n 2 L
�Wp Z0

�
gives

R
Z0 bn(z) dµ(z)  C, for all n 2 N⇤.

Again by monotone convergence, we get
Z
Z0
b(z) dµ(z) = sup

n2N⇤

Z
Z0
bn(z) dµ(z)  C.
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Lemma 3.13. Let A be a non-negative, self-adjoint operator in Z0 with domain
D(A). Assume that the family (%")"2(0,"̄) satisfies the uniform estimate Tr

⇥
%"N↵

⇤


C↵ for all ↵ 2 N, andM(%", " 2 (0, "̄)) = {µ}. Then the following implications
hold:

�
8" 2 (0, "̄), Tr

⇥
%"d0(A)

⇤
 C

�
)

✓Z
Z0

hz, Azi dµ(z)  C
◆

,

⇣
8" 2 (0, "̄), Tr

h
%"d0(A)2

i
 C

⌘
)

✓Z
Z0

hz, Azi2 dµ(z)  C
◆

,

⇣
8" 2 (0, "̄), Tr

h
%"d0(A)2N

i
 C

⌘
)

✓Z
Z0

hz, Azi2|z|2Z0 dµ(z)  C
◆

.

In all the three cases, the measure µ is carried by the form domain Q(A) of A.

Proof. The first implication is a direct application of Lemma 3.12 applied with

b(z) = hz, Azi , b̃ = A , bWick = d0(A).

The second one is a consequence of

d0(A)2 =

⇣
hz⌦2, (A ⌦ A)z⌦2i

⌘Wick
+ "d0(A2) �

⇣
hz⌦2, (A ⌦ A)z⌦2i

⌘Wick

and Lemma 3.12 with

b(z) = hz, Azi2 and b̃ = A ⌦ A.

For the last one, notice that N = d0(1) and d0(A) commute so that

d0(A)2N � N
⇣
hz⌦2, (A ⌦ A)z⌦2i

⌘Wick
.

With N = (|z|2Z0)
Wick, the composition formula of Proposition B.2 (extended to an

unbounded A) says that N
�
hz⌦2, (A ⌦ A)z⌦2i

�Wick
= bWick" with

b"(z) = |z|2Z0hz, Azi
2
+ 2"hz, Azi2.

Hence we get
d0(A)2N �

⇣
|z|2Z0hz, Azi

2
⌘Wick

.

So, the result is again a consequence of Lemma 3.12 with

b(z) = |z|2Z0hz, Azi
2 , b̃ =

1
3
(1l⌦ A ⌦ A + A ⌦ 1l⌦ A + A ⌦ A ⌦ 1l).

For the last statement it suffices to notice that the integrand is infinite in the Borel
subset of Z0, Z0 \ Q(A) = {z 2 Z0, hz, Azi = +1}.
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Proof of Proposition 3.11. With S" = d0(1 � 1) + N3, while d0(1 � 1) and N
commute, we know

(1+ S")(1+ N) � d0(1�1).

Hence Lemma 3.13 says that the measure µ is carried by Q(1�1) = Z1 withZ
Z0

|z|2Z1 dµ(z) =

Z
Z1

|z|2Z1 dµ(z)  C. (3.16)

Let us check that µ is a Borel measure on (Z1, | |Z1). The tightness property is
given by the above inequality. According to [4, 55, 59], it suffices to check that

G1(⇠) =

Z
Z1
e�2i⇡<h⇠, ziZ1 dµ(z)

with hu, viZ1 = hu, (1�1)viZ0,

is a positive type function which is continuous with respect to ⇠ restricted to any
finite-dimensional subspace of Z1. Consider the regularized version

G1,n(⇠) =

Z
Z1
e
�2i⇡<h

A
1+ A

n
⇠, ziZ0 dµ(z) =

Z
Z0
e
�2i⇡<h

A
1+ A

n
⇠, ziZ0 dµ(z)

with A = (1�1). For all ⇠ 2 Z1 the pointwise convergence

8z 2 Z1, lim
n!1

*
A

1+
A
n
⇠, z

+
Z0

= h⇠, ziZ1

and the uniform bound
|e

�2i⇡<h
A

1+ A
n
⇠, ziZ0

|  1

imply the pointwise convergence of the integrals

8⇠ 2 Z1, lim
n!1

G1,n(⇠) = G1(⇠).

But G1,n(⇠) equals G((1 +
A
n )�1A⇠), where G is the characteristic function of µ

in Z0:
G(⌘) =

Z
Z0
e�2i⇡<h⌘, ziZ0 dµ(z).

Hence for every n 2 N, the function G1,n(⇠) is a positive type function. As a
pointwise limit of G1,n , the function G1 is also a positive type function.

For the continuity, the equality

G1(⇠) � G1(⇠ 0)=

Z
Z1

⇣
e�i⇡<h⇠�⇠ 0,ziZ1 � ei⇡<h⇠�⇠ 0,ziZ1

⌘
e�i⇡<h⇠+⇠ 0, ziZ1 dµ(z)
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implies

|G1(⇠) � G1(⇠ 0)|  2⇡ |⇠ � ⇠ 0

|Z1

Z
Z1

|z|Z1 dµ(z)

 ⇡

✓Z
Z1
1+ |z|2Z1 dµ(z)

◆
|⇠ � ⇠ 0

|Z1,
(3.17)

and the function G1 is a Lipschitz function on Z1. This finishes the proof that µ is
a Borel probability measure on Z1. For the inequality (3.15), it suffices to notice
the inequality of (commuting) operators

(1+ S")2(1+ N) � (d0(1�1)2)N.

Applying Lemma 3.13 yieldsZ
Z1

|z|4Z1 |z|
2
Z0 dµ(z)  C.

3.4. Uniqueness of the mean field dynamics
via a measure transportation technique

Now we are in position to prove Theorem 1.1. This will be done in three steps:

1) Writing a transport equation, in a weak sense in Z1 for µt ;
2) Solving this equation as µt = 8(t, 0)⇤µ0 when the initial state %" fulfills strong
decay estimates;

3) Relaxing the strong decay estimates.

3.5. The transport equation on Z1
We shall need similar notions about cylindrical functions, as those used in Z0 and
recalled in Appendix B.1. Let P1 denote the set of all finite-rank orthogonal pro-
jections on Z1 and for a given } 2 P1 let L},1(dz) denote the Lebesgue measure
on the finite-dimensional subspace }Z1, with volume 1 for a Z1-orthonormal hy-
percube. A function f : Z1 ! C is said cylindrical if there exists } 2 P1 and a
function g on }Z1 such that f (z) = g(}z), for all z 2 Z1. In this case we say
that f is based on the subspace }Z1. The set of C1

0 (respectively S) cylindrical
functions on Z1, is denoted by C1

0,cyl(Z1) (respectively Scyl(Z1)). We shall also

need C1

0,cyl(Z1 ⇥ R), in which the algebraic tensor product C1

0,cyl(Z1)
alg
⌦ C1

0 (R) is
dense. Finally the Fourier transform of elements of Scyl(Z1) is given by

F1[ f ](⇠) =

Z
}Z1

f (⇠) e�2⇡ i < hz,⇠iZ1 L},1(dz),

f (z) =

Z
}Z1

F1[ f ](⇠) e2⇡ i < hz,⇠iZ1 L},1(d⇠).
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Proposition 3.14. Let S" and %̃"(t) be the operators given by Definition 3.5 and
(3.3). Assume that the family of normal states (%")"2(0,"̄) satisfies

8↵ 2 N, 9C↵ > 0, 8" 2 (0, "̄), Tr
⇥
(1+ S")%"(1+ S")(1+ N)↵

⇤
 C↵,

and consider a subsequence ("k)k2N, "k
k!1

! 0 such that

M(%̃"k (t), k 2 N) = {µ̃t }

according to Proposition 3.6. Then the measure µ̃t is a Borel probability measure
on Z1 which satisfies the following properties:

•

R
Z1 |z|2Z1 dµ̃t (z) +

R
Z1 |z|4Z1 |z|

2
Z0 dµ̃t (z)  C 0 for some C 0 independent of t 2

R;
• When (en)n2N⇤ is a Hilbert basis of Z1 and Z1 is endowed with the distance
d!(z1, z2) =

qP
n2N⇤

|hz1�z2,eni|2
(1+n)2 , µ̃t is narrowly continuous with respect to

t 2 R;
• The measure µt is a solution to the Liouville equation

@t µ̃t + i {Vt , µ̃t } = 0

in a weak sense, namely

8 f 2 C1

cyl,0(Z1 ⇥ R),

Z
R

Z
Z1

(@t f + i {Vt , f }) dµ̃t (x)dt = 0. (3.18)

Proof. Proposition 2.3 and the commutations [eit H" ,N] = [eit H0" ,N] = 0 ensure

8↵ 2 N, 9C 0

↵ > 0,8t 2R,8" 2 (0, "̄), Tr
⇥
(1+ S")%̃"(t)(1+ S")(1+ N)↵

⇤
C 0

↵.

Proposition 3.11 and (3.16) applied for any t 2 R, provides the first results. It
remains to check the narrow continuity and the Liouville equation.

a) Take the Z1-characteristic function

G1(⌘, t) = µ̃t (e�2i⇡<h⌘, ziZ1 ).

Inequality (3.17) and the uniform estimate
R
Z1(1+ |z|2Z1) dµ̃t (z)  1+ C 0 ensure

that the inequality

|G1(⌘, t) � G1(⌘0, t)|  ⇡(1+ C 0)|⌘ � ⌘0

|Z1 (3.19)

holds uniformly for all ⌘, ⌘0
2 Z1 and all t 2 R. From the identity (3.4), we deduce

µ̃t 0(ei
p

2< h⇠,.i) � µ̃t (ei
p

2<h⇠,.i)=�2
p

2i
Z t 0

t
µ̃s(ei

p

2< h⇠,zi Im hz⌦2, Ṽs⇠ ⌦ zi)ds.
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Estimate (2.13) implies

|Im hz⌦2, Ṽs(⇠ ⌦ z)i|  C|z|2Z1 |z|Z0 |⇠ |H�1(Rd ).

Taking ⇠ =

p

2⇡(1�1)⌘ with ⌘ 2 H1(R) = Z1 leads to

|G1(⌘, t) � G1(⌘, t 0)|  4⇡C|⌘|Z1 |t � t 0| sup
s2[t,t 0]

Z
Z1

|z|2Z1 |z|Z0 dµ̃s(z)

and, with the uniform estimate
R
Z1 |z|4Z1 |z|

2
Z0 dµ̃t (z)  C 0, to

8⌘ 2 Z1,8t, t 0 2 R, |G1(⌘, t)�G1(⌘, t 0)|  4⇡C(1+C 0)|⌘|Z1 |t � t 0|. (3.20)

When g 2 Scyl(Z1), based on }Z1, the relationZ
Z1
g(z) dµ̃t (z) =

Z
}Z1

F1[g](⌘)G1(⌘, t) dL},1(z),

combined with the continuity properties (3.19) and (3.20), implies that t !R
Z1 g(z) dµ̃t (z) is continuous. This continuity holds for all g 2 Scyl(Z1). The
uniform weak tightness property

R
Z1 |z|2Z1 dµ̃t (z)  C 0 and Lemma 5.12-f) in [3]

ensure that t 7! µ̃t is narrowly continous when Z1 is endowed with the distance
d!.

b) Integrating (3.4) with F1[g](⌘) L},1(dz) also provides
Z
Z1
g(z) dµ̃t (z) =

Z
Z1
g(z) dµ̃0(z) + i

Z t

0

Z
Z1

{Vs, g} (z) dµ̃s(z) ds.

Hence for any g 2 Scyl(Z1), the function Ig : t 7!

R
Z1 g(z) dµ̃t (z) belongs to

C1(R) with
@t Ig(t) = i

Z
Z1

{Vt , g} (z) dµ̃t (z).

By multiplying the above relation by '(t), with ' 2 C1

0 (R), and integrating
by part proves (3.18) when f (t, z) = '(t)g(z). We conclude by the density of

C1

0,cyl(Z1)
alg
⌦ C1

0 (R) in C1

0,cyl(Z1 ⇥ R).

3.6. Uniqueness of the measure for regular initial data

According to the notation of [3] and Appendix C, we consider the space Prob2(Z1)
of Borel probability measures µ such thatZ

Z1
|z|2Z1 dµ(z) < +1.
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On this space, we introduce the Wasserstein distance

W2(µ1, µ2) =

"
min

µ20(µ1,µ2)

Z
Z21

|z1 � z2|2Z1 dµ(z1, z2)

#1/2
(3.21)

where 0(µ1, µ2) is the set of Borel probability measures µ on Z1 ⇥ Z1 with the
marginals (51)⇤µ = µ1 and (52)⇤µ = µ2.
Proposition 3.15. Let S" and %̃"(t) be the operators given by Definition 3.5 and
(3.3). Assume that the family of normal states (%")"2(0,"̄) satisfies

8↵ 2 N, 9C↵ > 0,8" 2 (0, "̄), Tr
⇥
(1+ S")%"(1+ S")(1+ N)↵

⇤
 C↵

and M(%", " 2 (0, "̄)) = {µ0} .

Then for any time t 2 R, the family (%"(t) = e�i
t
" H"%"ei

t
" H")"2(0,"̄) admits a unique

Wigner measure µt = 8(t, 0)⇤µ0, where 8 is the Hartree flow defined by (1.3) on
Z1. It is a Borel probability measure on Z1 with t 7! µt being an absolutely
continuous curve in Prob2(Z1) with respect to the Wasserstein distance W2 and
which satisfies

8t 2 R,

Z
Z1

|z|4Z1 |z|
2
Z0 dµt (z)  C.

Proof. We still start with the state %̃"(t) defined in (3.3). Proposition 2.6 says that
the group8(t, s) associated with (1.3) and the dynamical system 8̃(t, s) associated
with

i@t z = v(t, z) , v(t, z) = e�i t1([V ⇤ |eit1z|2]eit1z)
are well-defined on Z1. Further it gives the estimate for the velocity field

|v(t, z)|Z1  kV (1�1)�1/2k |z|2Z1 |z|Z0 .

When µ̃t is the Wigner measure defined for all times and associated with a subse-
quence ("nk )k2N, we obtain

8t 2 R,

Z
Z1

|v(t, z)|2Z1 dµ̃t (z)  C
Z
Z1

|z|4Z1 |z|
2
Z0 dµ̃t (z)  C 0.

With Proposition 3.14, t 7! µ̃t is narrowly continuous (on (Z1, d!)) with respect
to time t 2 R. According to Lemma C.7, the Liouville equation (3.18) is nothing
but the weak form of

@tµ + r
T (v(t, z)µ) = 0.

According to Proposition C.1, the curve R 3 t 7! µ̃t 2 Prob2(Z1) is absolutely
continuous for the Wasserstein distance W2.

Therefore all conditions of Proposition C.8 are fulfilled and hence we deduce
that µ̃t = 8̃(t, 0)⇤µ0. Moreover this uniqueness impliesM(%̃"(t), " 2 (0, "̄)) =

{µ̃t } for the whole family (%̃"(t))"2(0,"̄) and all times t 2 R.
Going back to %"(t) = e�i

t
" H

0
" %̃"(t)ei

t
" H

0
" , it gives µt = 8(t, 0)⇤µ0.

The last uniform estimate is given by Proposition 3.14.
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3.7. Evolution of the Wigner measure for general data

We follow the truncation scheme used in [6]. When the initial data satisfies only

k(N+ H0" )�/2%"(N+ H0" )�/2k  C�

for some � > 0, we approximate %" by

%",R =

1
Tr
⇥
�R(N, H0" )%"�R(N, H0" )

⇤�R(N, H0" )%"�R(N, H0" )

as R ! +1 where �R(n, h) = �( nR , h
R ), with 0  �  1, � 2 C1

0 (R2) and
� ⌘ 1 in a neighborhood of 0. The time evolved state is defined by

%",R(t) = e�i
t
" H"%",R ei

t
" H" .

The assumptions ensure that for all times

k%"(t) � %",R(t)kL1(H)  ⌫(R)

with ⌫ independent of (t, ") and limR!1 ⌫(R) = 0. We recall the Proposition 2.10
of [6].

Proposition 3.16. Let (% j" )"2(0,"̄), j = 1, 2, be two families (or sequences) of nor-
mal states onH such that Tr

h
%
j
" N�

i
 C� uniformly with respect to " 2 (0, "̄) for

some � > 0 and C� 2 (0,+1). Assume furtherM(%
j
" , " 2 (0, "̄)) =

�
µ j
 
for

j = 1, 2. Then Z
|µ1 � µ2|  lim inf

"!0
k%1" � %2"kL1(H).

End of the proof of Theorem 1.1. For R 2 (0,+1), the state %",R fulfills the con-
ditions of Proposition 3.15 except the uniqueness of the Wigner measure at time
t = 0. Out of any sequence ("n)n2N, a subsequence ("nk )k2N can be extracted in
order to ensure

M(%"nk ,R, k 2 N) =

�
µ0,R

 
.

Thus after this extraction we obtain

8t 2 R, M(%"nk ,R(t), k 2 N) =

�
8(t, 0)⇤µ0,R

 
.

Take t 2 R and let µ belong toM(%"(t), " 2 (0, "̄)). There exists a sequence
("n)n2N such that

M(%"n (t), n 2 N) = {µ} .
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After extracting a subsequence like above and by using Proposition 3.16, we obtainZ
|µ �8(t, 0)⇤µ0| 

Z
|µ �8(t, 0)⇤µ0,R| +

Z
|µ0,R � µ0|  2⌫(R),

since the total variation of 8(t, 0)⇤µ0,R � 8(t, 0)⇤µ0 and µ0,R � µ0 are equal.
Taking the limit as R ! 1 implies µ = 8(t, 0)⇤µ0 and therefore

M(%", " 2 (0, "̄)) = {8(t, 0)⇤µ0} .

This also proves that limR!1

R
Z0 |µt �8(t, 0)⇤µ0,R| = 0, while all the measures

8(t, 0)⇤µ0,R are Borel probability measures carried by, and on, Z1. This implies
that µt is carried by Z1 and is also a Borel measure on Z1. This ends the proof of
Theorem 1.1.

4. Complements

Additional results are given in the three first paragraphs, concerned with the BBGKY
hierarchy or the propagation of energy. The fourth one shows some examples and
the last one is an informal discussion about the classical mean field problem.

4.1. BBGKY hierarchy

Although the analysis here is different from our previous work [6] it is possible to
combine them, in order to strengthen the result of Theorem 1.1. It is also interesting
to reformulate our result in terms of reduced density matrices since, in the literature,
several mathematical results on mean field limit use the BBGKY hierarchy method
(see for example [8, 9, 42]). For a family of normal states (%")"2(0,"̄) on H and
p 2 N, the reduced density matrices � (p)

" 2 L1(L2s (Rdp)) is defined according to

Tr
h
� (p)
" b̃

i
=

Tr
⇥
%"
⇤

Tr
⇥
%"(|z|2p)Wick

⇤Tr h%"bWicki , 8b̃ 2 L(L2s (Rdp)), (4.1)

with the convention that the right-hand side is 0 when Tr
⇥
%"(|z|2p)Wick

⇤
= 0 and

p > 0.

Theorem 4.1. Let (%")"2(0,"̄) be a family of normal states on H, satisfying the hy-
pothesis of Theorem 1.1, with a single Wigner measure µ0 such that

8↵ 2 N, lim
"!0

Tr[%"N↵] =

Z
Z0

|z|2↵ dµ0(z) < +1. (4.2)

Then for all t 2 R, the convergence

lim
"!0

Tr
h
%"(t)bWick

i
=

Z
Z0
b(8(t, 0)z) dµ0(z) =

Z
Z0
b(z) dµt (z)
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holds for any b 2 Palg(Z0) = �
alg
p,q2NPp,q(Z0), with µt = 8(t, 0)⇤µ0. Finally,

the convergence of the reduced density matrices

lim
"!0

� (p)
" (t) =

1R
Z0 |z|2p dµt (z)

Z
Z0

|z⌦p
ihz⌦p

| dµt (z)

holds in the L1(L2s (Rdp))-norm for all p 2 N.

Proof. By Theorem 1.1 the the family of normal states (%"(t))"2(0,"̄) admits a single
Wigner measure µt equal to 8(t, 0)

⇤
µ0. Since the quantum and classical flows

preserve the total number, the state %"(t) satisfies as well condition (4.2) for any
time t 2 R. Then [6, Proposition 2.11, 2.13] provide the claimed results.

4.2. Moment upper bounds

In [4], it was proved that the sole a priori estimate Tr
⇥
%"N�

⇤
 C� for a given � > 0

(possibly small), withM(%", " 2 (0, "̄)) = {µ} leads to
Z
Z0

|z|2� dµ(z) < +1.

The a priori estimate, assumed in Theorem 1.1 at time t = 0, leads to
Z
Z1

|z|2�Z1 dµ(z) < +1,

according to the following result which is a variation of Lemma 3.12:

Proposition 4.2. Let (A,D(A)) be a self-adjoint operator on Z0 such that A � 11.
If the family of normal states (%")"2(0,"̄) satisfies Tr

⇥
%"(d0(A))�

⇤
 C� for some

� > 0 andM {%", " 2 (0, "̄)} = {µ}, then
Z
Z0

hz, Azi� dµ(z) < +1.

Proof. By Wick calculus (see Proposition B.2 when A is bounded), one gets

d0(A)k �

⇣
hz, Azik

⌘Wick
,8k 2 N.

Let (e j ) j2N be an orthonormal basis of Z0 such that e j 2 D(A) for all j 2 N, and
set

AJ =

JX
j=0

A1/2|e j ihe j |A1/2 =

JX
j=0

|A1/2e j ihA1/2e j |.
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The inequality A⌦k
� A⌦k

J holds for all J 2 N, while b̃ ! bWick is operator
monotone when restricted to operators b̃ acting in

W2k Z0. Therefore, we obtain

(1+ d0(A))n =

nX
k=0

Ck
nd0(A)k �

 
nX

k=0
Ck
nhz, Azi

k

!Wick

�

 
nX

k=0
Ck
nhz, AJ zi

k

!Wick
=

⇥
(1+ hz, AJ zi)n

⇤Wick
.

(4.3)

We shall use the same argument as the one in [4, Theorem 6.2] when A = Id,
relying on the semiclassical calculus in finite dimension (see [12,40,50, 53, 57]).

Let }J be the orthogonal projection from Z0 onto �
J
j=0A

1/2e j . The symbol
1 + hz,AJ zi is a cylindrical symbol based on }JZ0. Since ker A1/2 = {0} and
e0, . . . , eJ are linearly independent, the symbol

(1+ hz, AJ zi) = 1+

JX
j=0

|hA1/2e j , zi|2

is an elliptic symbol on }JZ0 ⇠ CJ+1 in the Hörmander class S
⇣
1 + |z|2CJ+1,

|dz|2
CJ+1

1+|z|2
CJ+1

⌘
. The functional calculus of Weyl "-quantized elliptic operators in finite

dimensions gives

8s 2 R,
h
(1+ hz, AJ zi)Weyl

is
� (1� CJ,s")

⇥
(1+ hz, AJ zi)s

⇤Weyl
. (4.4)

The finite-dimensional comparison of Wick and Weyl quantization, also gives

8n 2 N,
⇥
(1+ hz, AJ zi)n

⇤Wick
� (1� CJ,n")

h
(1+ hz, AJ zi)Weyl

in
. (4.5)

From (4.3)(4.5) and the operator monotonicity of B ! Bt for t 2 (0, 1], we deduce

8s 2 R, (1+ d0(A))s � (1� C 0

J,s")
h
(1+ hz, AJ zi)Weyl

is
,

and (4.4) gives

8s 2 R, (1+ d0(A))s � (1� C 00

J,s")
⇥
(1+ hz, AJ zi)s

⇤Weyl
. (4.6)

The definition of Wigner measures, recalled in Theorem 3.1, says

lim
"!0

Tr
h
%"bWeyl

i
=

Z
Z0
b(z) dµ(z),
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for all b 2 Scyl(Z0), in particular the b’s based on }JZ0. Take now s = � in (4.6).
The a priori estimate

Tr
h
%"
⇥
(1+ hz, AJ zi)�

⇤Weyli
 (1+CJ,�")Tr

⇥
%"(1+ d0(A))�

⇤
 C�(1+CJ,�"),

and the ellipticity of (1+ hz, AJ zi)� allows to extend the above convergence to any

cylindrical b = f � }J with f 2 S
⇣
(1 + |z|2CJ+1)

�,
|dz|2

CJ+1
1+|z|2

CJ+1

⌘
. In particular, this

leads to

C 0

� � lim sup
"!0

Tr
⇥
%"(1+ d0(A))�

⇤
� lim
"!0

Tr
h
%"
⇥
(1+ hz, AJ zi)�

⇤Weyli

=

Z
Z0

(1+ hz, AJ zi)� dµ(z).

Since A = supJ AJ with AJ 0 � AJ for J 0
� J , the monotone convergence implies

C 0

� �

Z
Z0

(1+ hz, Azi)� dµ(z) �

Z
Z0

hz, Azi� dµ(z).

Proposition 4.3. Within the framework of Theorem 1.1with the assumption Tr[(N+

H0" )�%"]  C� for �  6, the measure µt satisfies the additional estimateZ
Z1

|z|
2�
3
Z1 dµt (z)  C�

for all times t 2 R.
Proof. The functional calculus of commuting operators implies

c�(1+ S")�/3  (1+ N+ H0" )�  (1+ S")�.

Thus the initial state %", satisfies

Tr
h
%"(1+ S")�/3

i
 C 0

�.

From Proposition 2.3, we deduce

ei
t
" H"(1+ S")2e�i

t
" H"  C(1+ S")2.

Since B ! Bs is operator monotone for s 2 (0, 1], this implies

ei
t
" H"(1+ S")�/3e�i

t
" H"  C�/6(1+ S")�/3

as soon as �3  2. The inequality

Tr
h
%"(t)(d0(1�1))�/3

i
 Tr

h
%"(t)(1+ S")�/3

i
 C 0

�

and the previous Proposition 4.2 applied with A = (1�1), yields the result.

A more accurate version of this last result is given below by making use of the
conservation of energy.
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4.3. Convergence of moments and energy conservation

For a family (%")"2(0,"̄) of normal states with a single Wigner measure µ0 condi-
tion (4.2) is an important and non-trivial assumption. Indeed, we proved in [6] the
following equivalence

✓
8↵ 2 N, lim

"!0
Tr
⇥
%"N↵

⇤
=

Z
Z

|z|2↵ dµ0(z)
◆

,

✓
8b 2 Palg(Z0), lim

"!0
Tr
h
%"bWick

i
=

Z
Z
b(z) dµ0

◆
.

(4.7)

Hence condition (4.2), although it involves only the number operator, is exactly the
one which leads to a good asymptotic behaviour of the reduced density matrices.

Proposition 4.4. Let (%")"2(0,"̄) be a family of normal states on H, satisfying the
hypothesis of Theorem 1.1, with a single Wigner measure µ0. Assume Tr[%" N↵] 

C↵ uniformly with respect to " 2 (0, "̄), for all ↵ 2 N. Then for every ↵ 2 N, the
quantity

lim inf
"!0

Tr[%"(t)N↵] �

Z
Z0

|z|2↵Z0 dµt (z),

does not depend on time when %"(t) = e�i
t
" H"%"ei

t
" H" andM(%"(t), " 2 (0, "̄)) =

{µt }. Condition (4.2) is satisfied by (%"(t))"2(0,"̄) and µt , for all times t 2 R, as
soon as it is true for one t0 2 R.

Proof. According to Theorem 1.1, we know thatM(%"(t), " 2 (0, "̄)) = {µt } with
µt = 8(t, 0)⇤µ0. Conservation of the |.|Z0-norm by the nonlinear flow 8(t, 0)
yields Z

Z0
|z|2↵Z0 dµt (z) =

Z
Z0

|z|2↵Z0 dµ0(z)

for any t 2 R. On the other hand, H" and N are strongly commuting self-adjoint
operators therefore Tr[%"(t)N↵] = Tr[%"N↵] for every ↵ 2 N.

Proposition 4.5. Let (%")"2(0,"̄) be a family of normal states on H with a single
Wigner measure µ0 satisfying the hypothesis of Theorem 1.1 with � = 2 and condi-
tion (4.2). Then for any t 2 R

lim
"!0

Tr[%"(t) H"] =

Z
Z1
h(z, z̄) dµt (z) 2 (�1,1) (4.8)

where %"(t) = e�i
t
" H"%"ei

t
" H" , µt = 8(t, 0)⇤µ0 and h(z, z̄) is the classical energy

given in (1.2), and both sides of the identity do not depend on time.

Proof. With the energy conservation, it suffices to prove (4.8) for t = 0. Let � 2

C1

0 (R) such that 0  �  1, �(s) = 1 if |s|  1 and �(s) = 0 if |s| � 2. For
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m 2 N⇤, set �m(x) = �( xm ). Let B1(z) and B2(z) be respectively the polynomial
hz,�1zi and B2(z) = V (z) =

1
2 hz

⌦2, V (x � y)z⌦2i well-defined for z 2 Z1.
Remember that although the kernels of B1 and B2 are unbounded operators their
Wick quantization still have a meaning as densely defined operators on H (see
Appendix B). Write for j = 1, 2
���Tr h%"BWickj

i
�

Z
Z1
Bj (z)dµ0(z)

��� ���Tr h%" (BWickj � BWickj,m )
i ��� (4.9)

+

���Tr h%" BWickj,m

i
�

Z
Z0
Bj,m(z) dµ0(z)

��� (4.10)

+

���
Z
Z1
Bj,m(z) dµ0(z) �

Z
Z1
Bj (z) dµ0(z)

���, (4.11)
where B1,m(z)=hz,�1[�m(�1)]zi and B2,m(z)= 1

2 hz
⌦2,V (x�y)[�m(�1x )]z⌦2i.

Observe that Lemma B.6 leads to
���(d0(�1) + N+ 1)�1 d0(1[(1� �m)(�1)]) (d0(�1) + N+ 1)�1

���


���� �1

(1�1)2
[(1� �m)(�1)]

���� m!1

! 0

and

k (d0(�1) + N+ 1)�1 (BWick2 � BWick2,m ) (d0(�1) + N+ 1)�1k

 CV k(1�1)�1/2(1� �m)(�1)k
m!1

! 0.

Therefore the right-hand side (4.9) tends to 0 whenm ! 1 thanks to the regularity
of %". Now, since Bj,m, j = 1, 2 belong to Palg(Z0) then by the statement (4.7),
proved in [6, Proposition 2.12], the right-hand side (4.10) converges to 0 when " !

0. Further, by the dominated convergence theorem and with the help of Lemma
3.13, the right-hand side (4.11) vanishes as m ! 1. Hence a �/3-argument gives

lim
"!0

Tr[%" BWickj ] =

Z
Z1
Bj (z) dµ0(z) for j = 1, 2.

Thus (4.8) is proved.

4.4. Examples

We give here two examples, other can be found in our previous articles [4–6]. The
first one recalls that the transport of the Wigner measure takes into account some
correlations. The second one is about the mean field dynamics of states, which do
not satisfy (4.2) and makes a connection with Bose-Einstein condensation.
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4.5. Deformed tori

For two elements  1, 2 2 Z1 ⇢ Z0 such that k 1k = k 2k = 1 and h 1,  2i =

0, the space Z0 can be decomposed into

Z0 = C 1
?

� C 1
?

�  ?.

This decomposition is second-quantized into the Hilbert tensor product

H = 0s(Z0) = 0s(C 1) ⌦ 0s(C 2) ⌦ 0s( 
?),

which allows an analysis by separating the variables. The number observable is
now

N = (N1 ⌦ 1l⌦ 1l) � (1l⌦ N2 ⌦ 1l) � (1l⌦ 1l⌦ N0),

simply written asN = N1+N2+N0, whereN1, N2 andN0 are respectively the num-
ber operators on 0s(C 1), 0s(C 2) and 0s( ?). Consider in this decomposition,
the state

%" = %1" ⌦ %2" ⌦ (|�0

ih�0

|)

where |�0
i is the vacuum state of 0s( ?) and

%1" = | 
⌦n1
1 ih 

⌦n1
1 | , %2" = | 

⌦n2
2 ih 

⌦n2
2 |,

with lim
"!0

"n1 = lim
"!0

"n2 =

1
2
.

InH = 0s(Z0), this state is explicitly written (see [6]) as

%" = | _(n1,n2)
ih _(n1,n2)

| (4.12)

with  _(n1,n2)
=

1
p

"n1+n2n1!n2!

n1 timesz }| {
a⇤( 1) . . . a⇤( 1)

n2 timesz }| {
a⇤( 2) . . . a⇤( 2) |�i. (4.13)

The state satisfies

lim
"!0

Tr
h
Nk%"

i
=

✓
1
2

+

1
2

◆k
= 1,

owing toN = N1+N2+N0. Moreover, with (4.12) and (4.13),N+H0" = d0(1�1)
and the help of Wick calculus, it also fulfills

lim
"!0

Tr
h
(N+ H0" )%"

i
=

| 1|
2
Z1 + | 2|

2
Z1

2
.

Meanwhile the separation of variables allows to compute explicitly the (it is unique)
Wigner measure of (%")"2(0,"̄)

µ0 = �S
1

p

2
2  1

⌦ �S
1

p

2
2  1

⌦ �0 on Z1 = (C 1) ⇥ (C 2) ⇥  ?,

with �S
1

u =

1
2⇡

Z 2⇡

0
�ei✓u d✓ .



192 ZIED AMMARI AND FRANCIS NIER

We get
Z
Z1

|z|2k dµ0(z) =

Z
Z1

⇣
|z1|2 + |z2|2 + |z0|2

⌘k
dµ0(z) = 1 = lim

"!1

Tr
h
Nk%"

i
.

Hence all the assumptions of Theorem 1.1 and Theorem 4.1 are fulfilled. This
measure is carried by a torus in Z1 better described by using an other orthonormal
basis of C 1 � C 2:

 0 =

p

2
2

( 1 +  2) ,  ⇡
2

= i
p

2
2

( 1 �  2),

 ' = cos(') 0 + sin(') ⇡
2
,

p

2
2

(ei✓ 1 + ei✓
0

 2) = ei
✓+✓ 0

2  ✓�✓ 0

2
,

µ0 =

1
2⇡

Z 2⇡

0
�S

1
 '

d'.

Two elements ei✓ ' and ei✓
0

 '0 in the support of µ0 are equal when
�
✓ 0

= ✓ and '0

= '
�

or
�
✓ 0

= ✓ + ⇡ and '0

= ' + ⇡
�
.

Hence a one-to-one parametrization of the torus can be done by ' 2 [0, 2⇡) and
✓ 2 [',' + ⇡).

Let  '(t) = 8(t, 0) ' , be the solution to the Hartree equation
⇢
i@t '(t) = �1 '(t) + (V ⇤ | '(t)|2) '(t)
 '(t = 0) =  ' = ei

⇡
4 cos(') 1 + e�i

⇡
4 sin(') 2.

The gauge invariance of the equation says that for any ✓ 2 [0, 2⇡], ei✓ '(t) =

8(t, 0)
⇥
ei✓ '

⇤
. By applying the result of Theorem 1.1 and Theorem 4.1 we get

µt =

1
2⇡

Z 2⇡

0
�S

1
 '(t) d' =

1
4⇡2

Z 2⇡

0

Z 2⇡

0
�ei✓ '(t) d'd✓

8p 2 N, lim
"!0

� (p)
" (t) =

1
2⇡

Z 2⇡

0
|[ '(t)]⌦p

ih[ '(t)]⌦p
| d'.

Since the Hartree flow is nonlinear, the complete hierarchy of reduced density ma-
trices have to be taken into account if one wants to write evolution equation for
them. More simply, they can be computed after solving an autonomous equation
for the Wigner measure. Due to the nonlinear term the dynamics of correlations is
by far non-trivial. This can also be thought geometrically: The initial measure is
initially supported by a torus which lies in a 2-dimensional complex vector space
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0.
Rψ0

.
Rψ0

.0.

. Rψπ
2

. Rψπ
2

× .
.×.ψϕ(t)

ψϕ.

. ψ⊥

Figure 4.1. Evolution of the measure initially carried by a torus in C 0 � C ⇡
2
. The

complex gauge parameter ei✓ is represented by the small circle.

(think of the circle in the planeR 0�R ⇡
2
); along the time evolution, the measure

µt is still carried by a torus in Z1, which nevertheless, is a priori not embedded in
any finite-dimensional subspace. In Figure 4.1, the deformed torus for time t 6= 0,
has to be imagined in the infinite-dimensional phase-space Z1 ⇢ Z0. Contrary to
the picture, there might be no intersection with the real plane R 0 � R ⇡

2
.

This discussion can also be extended to higher dimensional tori after taking a
finite (or countable) orthornormal family ( n)1nN for building the initial states
%" with a measure

QN
j=1 �

S1
� j j

(see [6]).

4.6. Propagation without the convergence of moments

In [4] we considered the thermodynamic limit of a free Bose gas on a torus with the
one particle energy given by �1. We showed that in the regime which may exhibit
a Bose condensation, condition (4.2) fails and illustrates what we called a dimen-
sional defect of compactness, in opposition to the phase space or microlocal defect
of compactness (see [28, 61]). Others examples were given. In [6] the propagation
result for bounded interactions but without any compactness condition, cannot be
applied for such initial states. With Theorem 1.1 the propagation holds for this kind
of initial states. Since our analysis is valid on Rd the analysis for the torus does not
apply directly and we adapt the presentation of the Bose-Einstein condensation.

Moreover the dimensional defect of compactness which plays with all the di-
rections of the phase-space Z0= L2(Rd), can be geometrically thought in the one
particle phase-space T⇤Rd. Condition (1.4), which leads to estimates of

R
Z0|z|

2�
H1dµ,

suggests that the dimensional defect of compactness is due to mass going to 1 in
the position variable rather than in the momentum variable, in T⇤Rd . The mean field
limit that we consider here, can be tested by using the harmonic oscillator Hamilto-
nian A = �@2x +

x2
4 �

d
4 . The motivated reader will then see that the dimensional

defect of compactness %" is incompatible with condition (1.4).
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We work in dimension d � 2. Let e0 be an L2-normalized C1 function sup-
ported in the hypercube (�1

2 ,
1
2 )
d and set

8k 2 Nd , ek(x) = e0(x � k).

The family (ek)k2N is orthonormal in Z0 = L2(Rd). The spanned Hilbert subspace
and the corresponding orthogonal projection are respectively denoted by Ze and
5e, Ran5e = Ze. Note that

5e(�1)5e =

✓Z
R

|re0|2
◆
5e.

Consider now the self-adjoint operator defined on Z0 = L2(Rd) by

A =

X
k2Nd

|k||ekihek |, |k| =

dX
j=1

k j ,

which restricted toZe is unitarily equivalent to the harmonic oscillator Hamiltonian
A = �@2x +

x2
4 �

d
4 on Rd . We use the tensor decomposition

Z0 = Ze
?

� Z?

e , H = 0s(Z0) = 0s(Ze) ⌦ 0s(Z?

e ),

N = Ne ⌦ 1l+ 1l⌦ N?

e = Ne + N?

e , |�i = |�ei ⌦ |�?

e i,

8Be 2 L(Ze), kBek  1, 0(Be) ⌦ (|�?

e ih�?

e |) = 0(5eBe5e),

8B 2 L(Z0), kBk  1, 0(5eB5e) = 0(5e � B|Ze) ⌦ (|�?

e ih�?

e |).

In particular the last relation with B = ei"t1 differentiated at time t = 0 gives

0(5e)d0(�1)0(5e) =

✓Z
Rd

|re0|2
◆
Ne.

Consider onH, the "-dependent gauge invariant (tensorized) quasi-free state

%" =

1
Tr
⇥
0(5ee��"(A�µ")5e)

⇤0(5ee��"(A�µ")5e)

=

1
Tr
⇥
0(5e Z"e��" A5e)

⇤0(5e Z"e��" A5e)

=

1
Tr
⇥
0(Z"e��" A|Ze\D(A) )

⇤0(5e)0(Z"e��" A|Ze\D(A) )0(5e).

(4.14)

The chemical potential µ" is negative of order "1�1/d and the temperature is large
according to

Z" = e�"µ" = 1�

"

⌫C
, �" = "1/d .
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With the "-dependent definition of a( f ), a⇤( f ),
⇥
a(g), a⇤( f )

⇤
= "hg, f i, and

W ( f ), this quasi-free state is characterized by the two-point function

Tr
⇥
%"a⇤( f )a(g))

⇤
= "

D
5eg, Z"e��" A"(1� Z"e��" A")�15e f

E
or (4.15)

Tr
⇥
%"W ( f )

⇤
=exp

h
�"h5e f, (1+Z"e��" A")(1�Z"e��" A")�15e f i/4

i
. (4.16)

In particular the total number (multiplied by ") is given by

Tr
⇥
%"N

⇤
= Tr

⇥
%"Ne

⇤ X
k2Nd

Tr
⇥
%"a⇤(ek)a(ek)

⇤

= ⌫C + ⌫ + r(") with lim
"!0

r(") = 0, and (4.17)

⌫ =

Z
Rd

e�|u|

1� e�|u| du = |Sd�1
|

Z
+1

0

e�t

1� e�t
td�1 dt (d�2). (4.18)

We deduce

lim
"!0

Tr
⇥
%"N

⇤
= ⌫C + ⌫ ,

lim
"!0

Tr
h
%"H0"

i
= lim
"!0

Tr
⇥
%"0(5e)d0(�1)0(5e)

⇤
=

✓Z
Rd

|re0|2
◆

(⌫C + ⌫),

and condition (1.4) of Theorem 1.1 is satisfied.
Actually ⌫C > 0 corresponds, in the analysis of the free Bose gas (see [4]), to

the density associated with the condensate phase. In the scaling that we consider,
it is the other part which produces the dimensional defect of compactness. Let
us compute the Wigner measure, by considering the limit of Tr

h
%"W (

p

2⇡ f )
i
as

" ! 0. With

f =

X
k2Nd

fkek + f ?, | f |2 =

X
k2Nd

| fk |2 + | f ?

|
2

= |5e f |2 + | f ?

|
2,

expression (4.16) gives

Tr
h
%"W (

p

2⇡ f )
i
= e�"⇡

2
|5e f |2/2

⇥ exp

"
�"⇡2

X
k2Nd

| fk |2
Z"e�"

1/d
|k|

(1�Z"e�"1/d |k|)

#

"!0
! e�⇡

2⌫C | f0|2 .

(4.19)

The family (%")"2(0,"̄) admits the unique Wigner measure

µ0 =

e�
|z0|2
⌫C

⇡⌫C
⌦ �0 on Z0 = (Ce0) ⇥ e?0 ,
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which is carried by Ce0 ⇢ Z1 and which can also be written as

µ0 =

Z
Ce0

e�
|z|2
⌫C

⇡⌫C
�ze0 LCe0(dz) =

Z
+1

0

e�
u
⌫C

⌫C
�S

1
p

ue0
du.

In particular, we get
Z
Z1

|z|2Z0dµ0(z) = ⌫C < ⌫C + ⌫ = lim
"!0

Tr
⇥
%"N

⇤

and
Z
Z1

|z|2Z1dµ0(z) = ⌫C

✓Z
Rd

|re0|2
◆

< (⌫C + ⌫)

✓Z
Rd

|re0|2
◆

= lim
"!0

Tr
⇥
%"d0(1�1)

⇤
,

and condition (4.2) does not hold. Even at time t = 0, no formula is available for the
reduced density matrices in terms of the Wigner measure. Nevertheless the time-
dependent Wigner measure of %"(t) = e�i

t
" H"%"ei

t
" H" is given by Theorem 1.1,

since condition (1.4) is verified. Consider the solutions to the Hartree initial value
problems ⇢

i@t u = �1 u + (V ⇤ | u |
2) u

 u(t = 0) =

p

ue0, u 2 (0,+1).

Then the Wigner measure of %"(t) = e�i
t
" H"%"ei

t
" H" is given by

µt =

Z
+1

0

e�
u
⌫C

⌫C
�S

1
 u(t) du.

Again like in the example of the previous section, the measure µt is carried by sur-
face containing 0 and topologically equivalent to C, but this 2-dimensional surface
does not remain a priori in any finite-dimensional subspace of Z1 for t 6= 0.

4.7. About the classical mean field problem

The classical analogue of our analysis is the derivation of the Vlasov equation
8<
:
@t f + v.@x f �

1
m (@xV f (x, t)).@v f = 0

f (t, x, v) = f0(x, v)
V f (x, t) = V ⇤ % f (x, t) , % f (x, t) =

R
Rd f (x, v, t) dv

where f (x, v, t) represents the particle density in the 1-particle phase space R2dx,v ,
from the classical Hamilton many body system

⇢
ẋi = vi ,

v̇i = �
1
mN (

PN
j=1 @xi V (xi � x j ))

, i = 1, . . . , N ,
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in the limit N ! 1. This problems is still open for singular potential and C. Vil-
lani, in a recent survey article about the Landau damping [52] quotes the work of
Hauray-Jabin [36] as the most advanced one in this direction. It works for a po-
tential such that |rV | = O(|x |�s), s 2 (0, 1), and does not include the Coulomb
interaction.

Indirectly, our result justifies the mean field model up to Coulomb interaction
in dimension d = 3. In [49] and more recently [2], the Vlasov equation is proved
to be the semiclassical limit of the semiclassical Hartree equation. This means
that there are two “semiclassical” limits, one in the phase-space L2(Rd

; C) with
the small parameter 1/N , another one on the phase-space T ⇤Rd

⇠ R2d for the
one particle nonlinear problem. This double asymptotic regime is well presented
in [25,27,35].

A possible strategy for directly deriving the classical mean field limit from the
classical many body problem consists in adapting our approach by, as usual, replac-
ing traces by integrals. For information, we refer the reader to the presentation [18]
by J. Derezinski of the classical analogue of second quantization. Of course clas-
sical mechanics, although living in the commutative world, is often more singular
than quantum mechanics, from the analysis point of view. With the Coulomb inter-
action, the Kustaanheimo-Stiefel desingularization of the Hamiltonian flow may be
useful (see a.e. [15, 38, 41, 43, 46]).

Appendices

A. Commuting self-adjoint operators on a graded Hilbert space

We briefly study the general structure of self-adjoint operators on a graded Hilbert
space. Properties collected in this section are useful for the analysis of the quantum
Hamiltonian (1.1). In this appendix, the small parameter is not required and we
work with " = 1.

Remember that a graded Hilbert space H is a direct sum of Hilbert spaces
Hn, n 2 N, of the form

H =

1M
n=0

Hn.

Let (An)n2N be a sequence of self-adjoint operators where each An acts onHn . We
define the operator

D(A) =

(
9 2 H :

1X
n=0

kAn9(n)
k
2
Hn

< 1

)
,

A9 =

1X
n=0

An 9(n), for all 9 2 D(A).

(A.1)
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Taking in particular An = n1lHn for n 2 N, we obtain the number operator

N =

1X
n=0

n1lHn . (A.2)

We say that two self-adjoint operators B and C on a Hilbert space strongly commute
if their spectral projections mutually commute. This is equivalent to the commuta-
tion of their resolvents for some z 2 C \ R and also to the commutation of their
associated unitary groups. More precisely, B and C strongly commute if and only
if for all t, s 2 R

eitCeisB = eisBeitC .

Proposition A.1. Let A and N be the operators given by (A.1) and (A.2). The
following assertions hold:

(i) A and N are self-adjoint;
(ii) For any bounded Borel function on R

f (A) =

1X
n=0

f (An);

(iii) The operators A and N strongly commute;
(iv) If Dn is a core for An for each n 2 N then �

alg
n2NDn is a core for A;

(v) For any real polynomial p the operator A+ p(N )|D(A)\D(p(N )) is essentially
self-adjoint and

A + p(N )|D(A)\D(p(N )) =

1X
n=0

An + p(n)1lHn .

Proof. (i) Clearly, A is a densely defined operator. It is also symmetric, since for
any 9,8 2 D(A)

h8, A9iH =

1X
n=0

h8(n), An9(n)
iHn =

1X
n=0

hAn8(n),9(n)
iHn = hA8,9iH.

For any 9 2 D(A) and 8 2 D(A⇤),

hA⇤8,9i =

1X
n=0

h8(n), An9(n)
iHn .

Hence the following inequality holds:
�����

1X
n=0

h8(n), An9(n)
iHn

�����  kA⇤8kH k9kH.
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Taking any 9(n)
2 D(An), this means that 8(n)

2 D(A⇤

n) = D(A⇤

n) = D(An).
Extension to any 9 2 H gives 8 2 D(A). This proves that A and N are self-
adjoint.

(ii) For each n 2 N, the map t 7! eit Ae�i t An9(n) is of class C1 for any 9(n)
2

D(An) by Stone’s theorem with derivative

d
dt
eit Ae�i t An9(n)

= ieit A(A � An)e�i t An9(n)
= 0.

Hence, for any 9 2 �
alg
n2ND(An) (and then for any 9 2 H, since �

alg
n2ND(An) is

dense inH) we see that for all t 2 R

eit A9 =

1X
n=0

eit An9(n). (A.3)

By functional calculus we extend identity (A.3) to any bounded Borel function f
on R.
(iii) By using (ii), we get for all s, t 2 R and 9 2 H

eit N eis A9 = eit N
1X
n=0

eis An9(n)
=

1X
n=0

eitneis An9(n)
= eis Aeit N9.

(iv) The algebraic direct sum Dfin = �
alg
n2ND(An) ⇢ D(A) is dense in H and

invariant with respect to the group (eit A)t2R. Therefore, Dfin is a core for A. On
the other hand, the subspace D0fin = �

alg
n2NDn satisfies

A|Dfin ⇢ A
|D0fin

⇢ A|D(A).

Hence D0fin is also a core for A since A|Dfin = A|D(A).

(v) The operator B =

P
1

n=0 An + p(n)1lHn (with its natural domain) is self-adjoint
by assertion (i). It is clear that

Dfin = �
alg
n2ND(An) ⇢ D(A) \D(p(N )) ⇢ D(B),

and furthermore

B|Dfin = A + p(N )|Dfin ⇢ A + p(N )|D(A)\D(p(N )) ⇢ B|D(B).

Therefore, the operator A + p(N )|D(A)\D(p(N )) is essentially self-adjoint since
B|Dfin = B|D(B).
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B. Second quantization

For the reader’s convenience, the general framework of second quantization and
some related notations are recalled. The phase-space, a complex separable Hilbert
space, is denoted by Z with the scalar product h., .i. The symmetric Fock space
over Z is defined as the following direct Hilbert sum

0s(Z) =

1M
n=0

n_
Z,

where
Wn Z is the n-fold symmetric tensor product. The orthogonal projection

from Z⌦n onto the closed subspace
Wn Z is given by

Sn(⇠1 ⌦ ⇠2 · · · ⌦ ⇠n) =

1
n!

X
�2Sn

⇠� (1) ⌦ ⇠� (2) · · · ⌦ ⇠� (n).

Algebraic direct sums or tensor products are denoted with an alg superscript. Hence

Hfin =

algM
n2N

n_
Z

denotes the subspace of vectors with a finite number of particles. The creation and
annihilation operators a⇤(z) and a(z), parameterized by " > 0, are then defined by:

a(z)'⌦n
=

p

"n hz,'i'⌦(n�1)

a⇤(z)'⌦n
=

p
"(n + 1) Sn+1( z ⌦ '⌦n), 8', z 2 Z.

They extend to closed operators and they are adjoint of one another. They also
satisfy the "-canonical commutation relations (CCR):

[a(z1), a⇤(z2)] = "hz1, z2i1l, [a⇤(z1), a⇤(z2)] = 0 = [a(z1), a(z2)]. (B.1)

The Weyl operators are given for z 2 Z by

W (z) = e
i

p

2
[a⇤(z)+a(z)]

,

and they satisfy Weyl commutation relations in the Fock space

W (z1)W (z2) = e�
i"
2 Im hz1,z2i W (z1 + z2), z1, z2 2 Z. (B.2)

The number operator is also parametrized by " > 0,

N
|

Wn Z = "n1l
|

Wn Z .

For any self-adjoint operator A : Z � D(A) ! Z, the operator d0(A) is the
self-adjoint operator given by

d0(A)
|

Wn,algD(A)
= "

2
4 nX
k=1

1l⌦ · · · ⌦ A|{z}
k

⌦ · · · ⌦ 1l

3
5 .
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B.1. Weyl, Anti-Wick quantized operators

Let P denote the set of all finite-rank orthogonal projections on Z and for a given
} 2 P let L}(dz) denote the Lebesgue measure on the finite-dimensional subspace
}Z , with volume 1 for an orthonormal hypercube in }Z . A function f : Z ! C
is said cylindrical if there exists } 2 P and a function g on }Z such that f (z) =

g(}z), for all z 2 Z . In this case we say that f is based on the subspace }Z . We
set Scyl(Z) to be the cylindrical Schwartz space:

( f 2 Scyl(Z)) , (9} 2 P, 9g 2 S(}Z), f (z) = g(}z)) .

The Fourier transform of a function f 2 Scyl(Z) based on the subspace }Z is
defined as

F [ f ](⇠) =

Z
}Z

f (z) e�2⇡ i < hz,⇠i L}(dz)

and its inverse Fourier transform as

f (z) =

Z
}Z
F [ f ](⇠) e2⇡ i < hz,⇠i L}(d⇠).

With any symbol b 2 Scyl(Z) based on }Z , a Weyl observable can be associated
according to

bWeyl =
Z
}Z
F [b](z) W (

p

2⇡z) L}(dz). (B.3)

Notice that bWeyl is a well-defined bounded operator on H for all b 2 Scyl(Z) and
that this quantization of cylindrical symbols depends on the parameter ".

We also recall the Anti-Wick quantization through its usual finite-dimensional
relation to Weyl operators:

bA�Wick
=

0
B@b ⇤

}Z

e�
|z|2}Z
"/2

(⇡"/2)dim}Z

1
CA
Weyl

(B.4)

=

Z
}Z
F [b](⇠) W (

p

2⇡⇠) e�
"⇡2
2 |⇠ |2}Z L}(d⇠), (B.5)

for any b 2 S(}Z) by setting b ⇤}Z � (z) =

R
}Z b(z)� (z � z0) L}(dz0).

B.2. Wick quantized operators

For any p, q 2 N, the space Pp,q(Z) of complex-valued polynomials on Z is
defined with the following continuity condition:

b2Pp,q(Z) if and only if there exists b̃2L
 p_

Z,

q_
Z
!
such that b(z)=hz⌦q,b̃z⌦p

i.
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On these spaces the norms are given by |b|p,q = kb̃kL(
Wp Z;

Wq Z). The subspace
of Pp,q(Z) made of polynomials b such that b̃ is a compact operator is denoted by
P1

p,q(Z). TheWick monomial of a ‘symbol’ b 2 Pp,q(Z) is the linear operator

bWick : Hfin ! Hfin

defined as

bWick
|

Wn Z = 1[p,+1)(n)
p

n!(n + q � p)!
(n � p)!

"
p+q
2 Sn�p+q

⇣
b̃ ⌦ 1l(n�p)

⌘
, (B.6)

where b̃ ⌦ 1l(n�p) is the operator with the action (b̃ ⌦ 1l(n�p)'⌦n
= (b̃'⌦p) ⌦

'⌦(n�p). Notice that bWick depends on the scaling parameter ". When b̃ is an
unbounded operator with domain D(b̃) containing

Wp,algD, formula (B.6) makes
sense when applied to 9 2

Wn,algD.

Proposition B.1. For b 2 Pp,q(Z) the following number estimate holds:
���hNi

�
q
2 bWick hNi

�
p
2
���
L(H)

 |b|Pp,q . (B.7)

An important property of our class of Wick polynomials is that a composition of
bWick1 � bWick2 with b1, b2 2 �

alg
p,qPp,q(Z) is a Wick polynomial with symbol in

�
alg
p,qPp,q(Z). This was checked with a convenient writing in [4] and widely used

also in [5, 6]. We need some notation: For b 2 Pp,q(Z), the k-th differential is
well-defined according to

@kz b(z) 2

 
k_
Z
!

⇤

and @kz̄ b(z) 2

k_
Z

for any fixed z 2 Z . Actually (
Wk Z)⇤ is the dual of (

Wk Z) with a C-bilinear
duality bracket. For two symbols bi 2 Ppi ,qi (Z), i = 1, 2, and any k 2 N, the new
symbol @kz b1.@kz̄ b2 is now defined by

@kz b1 . @kz̄ b2(z) = h@kz b1(z), @
k
z̄ b2(z)i(Wk Z)⇤,

Wk Z . (B.8)

We also use the following notation for multiple Poisson brackets:

{b1, b2}(k) = @kz b1.@
k
z̄ b2 � @kz b2.@

k
z̄ b1,

{b1, b2} = {b1, b2}(1).
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With this notation the composition formula of Wick symbols has a very familiar
form:

Proposition B.2. Let b1 2 Pp 1, q 1(Z) and b 2 2 Pp 2, q 2(Z). For any k 2

{0, . . . ,min {p1, q2}}, @kz b1.@kz̄ b2 belongs to Pp1+p2�k,q1+q2�k(Z) with the esti-
mate

|@kz b1.@
k
z̄ b2|Pp1+p2�k,q1+q2�k



p1!
(p1 � k)!

q2!
(q2 � k)!

|b1|Pp1,q1
|b2|Pp2,q2

.

The formulas

(i) bWick1 � bWick2 =

 min{p1,q2}X
k=0

"k

k!
@kz b1.@

k
z̄ b2

!Wick

=

⇣
e"h@z,@!̄ib1(z)b2(!) |z=!

⌘Wick
,

(ii) [bWick1 , bWick2 ] =

 max{min{p1,q2},min{p2,q1}}X
k=1

"k

k!
{b1, b2}(k)

!Wick
,

hold as identities onHfin.

Combined with Proposition B.1 and (bWick)⇤ =

⇣
b(z)

⌘Wick
this also gives:

Proposition B.3. For b 2 Pp,q(Z), hNi
�

(p+q)
2 bWick and bWickhNi

�
(p+q)
2 extend

as bounded operators on H with norm smaller that Cp,qkb̃kL(
Wp Z;

Wq Z) for all
" 2 (0, "̄).

Wewill also need somemore particular estimates stated in the following two results:

Lemma B.4. Let A be a self-adjoint operator on Z with A � 1l. For any polyno-
mials b1 2 P1,2(Z) and b2 2 P2,1(Z) the following estimates hold true:

(i) k(d0(A) +

p

N+ 1)�1 bWick1 (d0(A) +

p

N+ 1)�1k
 kA�1/2 b̃1 (1l⌦ A�1/2)kL(

W2Z,Z)
;

(ii) k(d0(A) +

p

N+ 1)�1 bWick2 (d0(A) +

p

N+ 1)�1k
 k(1l⌦ A�1/2) b̃2 A�1/2

kL(Z,
W2Z)

.

Remark B.5. The term
p

N can be absorbed in d0(A)+ 1 if one accepts constants
larger than 1 as factors of the right-hand sides of (i) and (ii).
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Proof. Estimate (ii) follows from (i) by taking the adjoint. Let us prove (i). For
8,9 2 �

alg
n2N

Wn,algD(A), we write

h9, bWick1 8i

=

1X
n=2

"3/2
p
n(n � 1)2h9(n�1), (b̃1 ⌦ 1l(n�2))8(n)

i

=

1X
n=2

"3/2
p
n(n�1)2h(A1/2 ⌦ 1l(n�2))9(n�1), BA(1l⌦ A1/2 ⌦ 1l(n�2))8(n)

i,

with
BA = [(A�1/2b̃1)(1l⌦ A�1/2)] ⌦ 1l(n�2).

Hence, by the Cauchy-Schwarz inequality, we get

|h9, bWick1 8i|  kA�1/2b̃1 (1l⌦ A�1/2)kL(
W2Z,Z)

⇥

 
1X
n=2

"3/2
p
n(n � 1)2k(A1/2 ⌦ 1l(n�2))9(n�1)

k
2

!1/2

⇥

 
1X
n=2

"3/2
p
n(n � 1)2k(1l⌦ A1/2 ⌦ 1l(n�2))8(n)

k
2

!1/2
.

Now, observe that

"3/2
p
n(n � 1)2k(A1/2 ⌦ 1l(n�2))9(n�1)

k
2

 2
p
"(n � 1)h9(n�1), ("(n � 1))(A ⌦ 1l(n�2))9(n�1)

i

 2h9(n�1),
p

Nd0(A)9(n�1)
i

and

"3/2
p
n(n�1)2k(1l⌦ A1/2 ⌦ 1l(n�2))8(n)

k
2


p

n"h8(n), n"(1l⌦ A⌦1l(n�2))8(n)
i



p

n"h8(n), n" (A ⌦ 1l(n�1))8(n)
i

 h8(n),
p

Nd0(A)8(n)
i.

On the other hand, with the inequality 2ab  a2 + b2, we see that

2h9(n�1),
p

Nd0(A)9(n�1)
i  h9(n�1), (N+ d0(A)2)9(n�1)

i

 k(
p

N+ d0(A))9(n�1)
k
2

and 2h8(n),
p

Nd0(A)8(n)
i  h8(n), (N+ d0(A)2)9(n)

i

 k(
p

N+ d0(A))8(n)
k
2,
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where the last inequalities come from 2
p

Nd0(A) � 0. Therefore, we obtain

|h9, bWick1 8i|  kA�1/2b̃1 (1l⌦ A�1/2)k k(
p

N+d0(A))9k k(
p

N+d0(A))8k

and hence the estimate extends to 8,9 2 D(
p

N + d0(A)) \ Hfin. This means
that the operator (d0(A) +

p

N+ 1)�1bWick1 (d0(A) +

p

N+ 1)�1
|D(

p

N+d0(A))\Hfin
extends to a bounded operator satisfying (i).

Lemma B.6. Let A, B two self-adjoint operators on Z with D(A) ⇢ D(B) and
B � 0. Let C be a self-adjoint operator on

W2Z such that D(C) ⇢ D(B2) where
B2 = B ⌦ 11+ 11⌦ B. Then the following estimates hold true:

(i) k(d0(B) + N+ 1)�1 d0(A) (d0(B) + N+ 1)�1k
 k(1+ B)�1 A (1+ B)�1kL(Z);

(ii) k(d0(B) + N+ 1)�1 CWick (d0(B) + N+ 1)�1k
 k(1+ B2)�1/2 C (1+ B2)�1/2kL(

W2Z)
.

Proof. We follow a similar argument as in the proof of Lemma B.4. Indeed, the
Cauchy-Schwarz inequality gives for every 9,8 2 �

alg
n2N

Wn,algD(B)

|h9,d0(A)8i|  k(1+B)�1A(1+B)�1kL(Z)

 
1X
n=1
"nk((1+B)⌦1l(n�1))9(n)

k
2

!1/2

⇥

 
1X
n=1

"nk((1+ B) ⌦ 1l(n�1))8(n)
k
2

!1/2
.

Now, observe that

"nk((1+ B) ⌦ 1l(n�1))9(n)
k
2

= h9(n), d0((1+ B)2)9(n)
i

 kd0(1+ B)9(n)
k
2Wn Z ,

since in the sense of quadratic forms d0((1+ B)2)  d0(1+ B)2. Hence we obtain

|h9, d0(A)8i|  k(1+ B)�1A (1+ B)�1kL(Z) kd0(1+ B)9k kd0(1+ B)8k.

This proves (i). Expressing CWick as a quadratic form for9,82�
alg
n2N

Wn,algD(B)
and then applying the Cauchy-Schwarz inequality yields

|h9,CWick8i|  k(1l+B ⌦ 1l+1l⌦ B)�1/2C(1l+B ⌦ 1l+1l⌦ B)�1/2kL(
W2Z)

⇥

 
1X
n=2

"2n(n�1)k[(1l+B ⌦ 1l+1l⌦ B)1/2 ⌦ 1l(n�2)]9(n)
k
2

!1/2

⇥

 
1X
n=2

"2n(n�1)k[(1l+B ⌦ 1l+1l⌦ B)1/2 ⌦ 1l(n�2)]8(n)
k
2

!1/2
.
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Due to the symmetry of the vector 8(n) we remark that

"2n2k[(1l+ B ⌦ 1l+ 1l⌦ B)1/2 ⌦ 1l(n�2)]8(n)
k
2

= "2n2h8(n), [(1l+ B ⌦ 1l+ 1l⌦ B) ⌦ 1l(n�2)]8(n)
i

= h8(n), (N2 + 2d0(B)N)8(n)
i

 k(1+ d0(B) + N)8(n)
k
2.

So we obtain

|h9,CWick8i|  k(1+ B2)�1/2C (1+ B2)�1/2kL(
W2Z)

k(1+ d0(B) + N)9k

⇥k(1+ d0(B) + N)8k.

This proves (ii).

C. Absolutely continuous curves in Prob2(Z1,R)

This section firstly gathers results presented in [3] about Borel probability measures
on a separable real Hilbert space which are weak solutions to continuity equations.
In a second step, we shall adapt it to a complex Hilbert space Z1 endowed with its
real euclidean structure.

C.1. Absolutely continuous curves in Prob2(E)

Let E be a real Hilbert space, with scalar product h , i and norm | |. The symbol
Probp(E) (respectively Prob(E)) refers to the set of Borel probability measures µ
on E such that

R
E |x |p dµ(x) < +1 (respectively with no momentum condition),

and we simply work with p = 2. On Prob2(E), the 2-Wasserstein distance, W2, is
defined by

W 2
2 (µ

1, µ2) := min
⇢Z

E2
|x1 � x2|2E dµ(x1, x2) ; 5 j,⇤µ = µ j

�
,

where 5 j : E2 ! E is the natural projection, j = 1, 2. The narrow conver-
gence of a sequence (µn)n2N of Prob2(E), with a uniform control of

R
E |x |2 dµn

is equivalent to the W2 convergence on Prob2(E) (see [3, Proposition 7.1.5]). Re-
member also that the tightness property of subsets of Prob2(E) can be checked in
the infinite-dimensional case with the weak topology, or after introducing a Hilbert
basis (en)n2N⇤ , with the distance d!(x1, x2) =

qP
n2N⇤

|hx1�x2,eni|2
(1+n)2 . This use of

weak or d! topology is done also when considering probability measures on the set
of absolutely continuous curves in E .

This tightness property is called the weak tightness property in [3] since it
refers to the weak topology on E . Especially when one considers the narrow con-
vergence in Prob2(E), there is a weak narrow convergence and a strong narrow
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convergence (see the discussions about this in [3, Chapter 5 and 7]). The terms
“narrow convergence” or “narrow continuity” refer to the strong ones and we shall
specify “weak narrow convergence” and “weak narrow continuity” when necessary.

We recall two results of [3] and give a complete proof in the infinite-dimen-
sional case of the second one, for the sake of completeness (it is left as an exercise
to the reader in [3]).

The following result is the second part in [3, Theorem 8.3.1] with p = 2.
Although it is not clearly stated in [3, Theorem 8.3.1], the proof contains a “weak)
strong” result about the narrow continuity with respect to time.

Proposition C.1. Let I be an open interval in R. If a weakly narrowly continuous
curve µt : I ! Prob2(E) satisfies the continuity equation

@tµt + r
T (vtµt ) = 0 (C.1)

in the weak senseZ
I

Z
E
(@t'(x, t)+hvt (x),rx'(x, t)iE ) dµt (x)dt=0, 8' 2 C1

0,cyl(E ⇥ I ), (C.2)

for some Borel velocity field vt , with |vt |L2(E,µt ) 2 L1(I ), then µt : I ! Prob2(E)

is absolutely continuous with W2(µt 0, µt ) 

R t 0
t |vs |L2(E,µs) ds. Moreover for

Lebesgue-almost every t 2 I , vt belongs to the closure in L2(E, µt ) of the sub-
space spanned by

n
r',' 2 C1

0,cyl(E)
o
.

Proof. The proof is given in [3]. We simply insist here on the “weak) strong”
narrow continuity argument. The proof of Theorem 8.3.1 ends with the following
statements. For any time t 2 I , µt is the weak narrow limit of a sequence (µ̂d

t )d2N
(of which the definition is recalled below) which satisfies

W2(µ̂d
t2, µ̂

d
t1) 

Z t2

t1
|vt |L2(E,µt ) dt.

Then the authors refer to the weak narrow lower semicontinuity of W2,

W2(µt2, µt1)  lim inf
d!1

W2(µ̂d
t2, µ̂

d
t1)

stated in their Lemma 7.1.4 and relation (7.1.11).
This implies absolute continuity in terms ofW2 and the narrow continuity with

respect to time:

W2(µt1, µt2) 

Z t2

t1
|vt |L2(E,µt ) dt.

Finally notice that the weak narrow continuity of µt suffices for the strong narrow
continuity of µ̂d

t with respect to t 2 I because µ̂d
t is constructed after taking the

image of µt via a finite-rank projection.
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The previous result concerns non-regular (non-Lipschitz) vector fields for
which there is no uniqueness result for the Cauchy problem. Remember that the
infinite-dimensional case, which relies on the cylindrical integration of vt and cylin-
drical disintegration of the measure µt , requires the introduction of such singular
vector fields (see the proof in [3, Theorem 8.3.1]). Nevertheless an interpretation of
the continuity equation (C.1)(C.2) in terms of characteristic curves can be done via a
probabilistic representation. For the sake of completeness, we adapt the proof stated
in [3, Theorem 8.2.1] for the finite-dimensional case, to our infinite-dimensional
case. For T 2 (0,+1), consider the set 0T = C0([�T, T ]; E) endowed with the
norm |� |1,T = maxt2[�T,T ] |� (t)|E or for weak topology argument with the dis-
tance maxt2[�T,T ] d!(�1(t), �2(t)). For a Borel probability measure ⌘ defined on
E ⇥ 0T , consider the time dependent Borel probability measure µ

⌘
t defined byZ

E
' dµ

⌘
t =

Z
E⇥0T

'(� (t)) d⌘(x, � ), 8' 2 C0b,cyl(E), t 2 [�T, T ]. (C.3)

The measure µ
⌘
t is the push-forward of ⌘ by the evaluation map

et : (x, � ) 2 E ⇥ 0T ! � (t) 2 E, for t 2 [�T, T ].

Proposition C.2. Let µt : [�T, T ] ! Prob2(E) be a W2-continuous solution to
the continuity equation (C.1) and (C.2), with I = (�T, T ), for a suitable Borel
vector field v(t, x) = vt (x) such that |vt |L2(E,µt ) 2 L1([�T, T ]). Then there exists
a Borel probability measure ⌘ in E ⇥ 0T such that:

(i) ⌘ is concentrated on the set of pairs (x, � ) such that � 2 AC2([�T, T ]; E) is
a solution to the ODE �̇ (t) = vt (� (t)) for Lebesgue almost every t 2 (�T, T )
with � (0) = x;

(ii) µt = µ
⌘
t for any t 2 [�T, T ], with µ

⌘
t defined as in (C.3).

Conversely, any ⌘ satisfying (i) and
Z T

0

Z
E⇥0T

|vt (� (t))|E d⌘(x, � )dt < +1

induces via (C.3) a solution to the continuity equation, with µ0 = � (0)⇤⌘.

Remark C.3. The notation AC2([�T, T ]; E) refers to the set of absolutely con-
tinuous curves in E with L2([�T, T ]; E) derivative. We keep the notation 8⇤µ of
differential geometry, for the push-forward or direct image of a measure µ, by the
Borel map 8.

Proof. The result is proved in [3] when E is finite-dimensional. The proof of the
second (converse) part of the statement is exactly the same as in finite dimen-
sion, after replacing regular (Lipschitz) test functions by cylindrical ones. We
now show, for the first part, how the infinite-dimensional case is deduced from
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the finite-dimensional result, following an approximation scheme like in the proof
of [3, Theorem 8.3.1]. After introducing an Hilbert basis (en)n2N⇤ of E , the maps
⇡d : E ! Rd , ⇡d,T

: Rd
! E and ⇡̂d : E ! E are defined according to

⇡d(x) = (he1, xi, . . . , hed , xi),

⇡d,T (y1, . . . , yd) =

dX
j=1

y j e j ,

⇡̂d = ⇡d,T
� ⇡d .

With the measure µt 2 Prob2(E), the measure µd
t 2 Prob2(Rd) is defined by

µd
t = ⇡d

⇤
µt and

�
µt,y, y 2 Rd denotes the disintegration of µt with respect to µd

t .
Within the space E endowed with the basis (en)n2N⇤ , µ̂d

t is nothing but µd
t ⌦ �0 in

the decomposition Z = Fd ⇥ F?

d with Fd = span(e1, . . . , ed). The vector field vdt
(respectively v̂dt ) is defined on Rd (respectively on E) by

vdt (y) =

Z
(⇡d )�1(y)

⇡dvt (x) dµt,y(x), y 2 Rd

respectively v̂dt (y) =

Z
(⇡̂d )�1(⇡̂d y)

⇡̂dvt (x) dµt,⇡d y(x), y 2 E .

Within the proof of Theorem 8.3.1 in [3], it was checked that µd
t (respectively µ̂d

t )
is a weak solution to the continuity equation

@tµ
d
t + r

T (vdt µ
d
t ) = 0,

respectively @t µ̂
d
t + r

T (v̂dt µ̂
d
t ) = 0

with the following properties:

1) |v̂dt |L2(E,µ̂dt )
= |vdt |L2(Rd ,µdt )

 |vt |L2(E,dµt ) ;
2) W2(µd

t1, µ
d
t2) 

R t2
t1 |vdt |L2(Rd ,µdt )

dt 

R t2
t1 |vt |L2(E,µt ) dt , for �T < t1  t2 <

T ;
3) the sequence (µ̂d

t )d2N⇤ converges weakly narrowly to µt with the estimate

W2(µt1,µt2) lim infd!1

W2(µd
t1, µ

d
t2)

Z t2

t1
|vt |L2(E,µt ) dt, �T < t1 t2<T . (C.4)

Additionally a time rescaling argument (see in [3, Lemma 1.1.4 and Theorem 8.1.3])
allows to assume without restriction

|vt |L2(E,µt ) 2 L1((�T, T )).

The set of continuous maps from [�T, T ] to Rd is denoted by 0dT . The mapping
from 0T to 0dT , still denoted by ⇡

d is defined by [⇡d� ](t) = ⇡d(� (t)). By using
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the finite-dimensional result, stated in Theorem 8.2.1 of [3], there exists for any
d 2 N a probability measure, ⌘d , on Rd

⇥ 0dT such that the properties (i) and (ii)
hold when (µt , vt , E) is replaced by (µd

t , v
d
t , Rd). Equivalently the result can be

formulated in E after using (µ̂d
t , v̂

d
t , E) instead of (µd

t , v
d
t , Rd) and using ⌘̂d =

(⇡d,T
⇥ ⇡d,T )⇤⌘

d . Hence we have a sequence (⌘̂d)d2N of probability measures on
E ⇥ 0T which satisfyZ
E
' � ⇡d dµ̂d

t =

Z
Rd
' dµd

t =

Z
Rd

⇥0dT

'(� (t)) d⌘d(x, � )

=

Z
E⇥0T

' � ⇡d(� (t)) d⌘̂d(x,� ), 8'2C0b(Rd), t 2 [�T, T ],

(C.5)

where ' � ⇡d can be replaced by ' � ⇡̂d with ' 2 C0b(Fd).
After some regularization done in [3, pages 179-180], it is proved that any

measure ⌘̂d satisfies
Z
0T

Z T

�T
|�̇ (t)|2 dtd⌘̂d 

Z T

�T

Z
E

|vdt (x)|
2 dµ̂d

t dt 

Z T

�T

Z
E

|vt (x)|2 dµ̂t dt.

Since the functional g !

R T
�T |ġ(t)|2 dt , defined on {g 2 0T : g(0) = 0} and set to

+1 if g 62 AC2([�T, T ]; E), has compact sublevel sets in 0T , the two mappings

r1 : (x, � ) 2 E ⇥ 0T ! x 2 E, r2 : (x, � ) 2 E ⇥ 0T ! g� ,x = � � x 2 0T

give rise to (weakly) tight families of marginals (r1
⇤
⌘̂d)d2N=(µ̂d

0)d2N and (r2
⇤
⌘̂d)d2N.

Remember that the compactness of subsets of E or 0T is considered with the weak
topology on E or the distance d!. Hence the family (⌘̂d)d2N is (weakly) tight in
Prob(E ⇥ 0T ) and we take for ⌘ a weak narrow limit point of ⌘̂d . By assuming the
test function ' in (C.5) to depend only on d 0 coordinates with d 0

 d, and by taking
the limit d ! +1 while d 0 and ' are fixed, we get

Z
E
(' � ⇡d

0

) dµt =

Z
E⇥0

(' � ⇡d
0

)(� (t)) d⌘(x, � )

for all ' 2 C0b(Rd 0

) and t 2 [�T, T ], where ' � ⇡d
0 can then be replaced by any

cylindrical function or Borel bounded function on E . It remains to prove condition
(i) for ⌘, namely that this measure is concentrated on curves verifying �̇ = v(� (t))
for Lebesgue almost every t 2 (�T, T ) (� (0) = x is already known).

The estimate (8.2.6) used in [3] for the finite-dimensional case, provides the
inequality
Z

Rd
⇥0dT

|� (t)�x�
Z t

0
ws(� (s)) ds|2 d⌘d(x, � )  (2T )

Z T

�T

Z
Rd

|vdt �wt |
2dµd

t dt,
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for any family ws(x) = w(s, x) of uniformly bounded continuous functions from
[�T, T ] ⇥ Rd to Rd . After assuming that w actually belongs to C0b([�T, T ] ⇥

Rd 0

; Rd 0

) with fixed d 0
 d, using ŵt = ⇡d

0,T
� wt � ⇡d 0 2 C0b([�T, T ] ⇥ E; E),

and taking the limit as d ! 1 gives
Z
E⇥0T

|� (t)�x�
Z t

0
ŵs(� (s)) ds|2 d⌘(x,� )(2T ) lim sup

d!1

Z T

�T

Z
Rd

|v̂dt �ŵt |
2dµ̂d

t dt.

But condition 1) for |v̂dt |L2(E,µ̂dt )
is easily extended to

|v̂dt � ŵt |L2(E,µ̂dt )
 |vt � ŵt |L2(E,µt )

by the same argument, relying on
����
Z
E
hv̂dt � ŵt , �i dµ̂d

t

���� 

����
Z
E
h⇡̂d(vt (x) � ŵt (x)), �(⇡̂d(x))i dµt (x)

����
 |vt � ŵt |L2(E;µt )|� |L2(E,µ̂dt )

, 8� 2 L2(E, µ̂d
t ).

This uniform upper bound leads to
Z
E⇥0T

|� (t)�x�
Z t

0
ŵs(� (s)) ds|2 d⌘(x, � )(2T )

Z T

0

Z
E

|vt (x)�ŵt (x)|2 dµt dt.

According to the last statement of Proposition C.1, vt can be approximated in
L2(E, µt ) by a sequence of bounded regular cylindrical functions, (ŵt,n)n2N. By
possibly truncating with respect to times t ! ŵt,n so that |vt � ŵt,n|L2(E,µt )  1
for a.e. t 2 (�T, T ) and all n 2 N⇤, Lebesgue’s Theorem implies

Z
E⇥0T

|� (t) � x �

Z t

0
vs(� (s)) ds|2 d⌘̂(x, � ) = 0,

which ends the proof.

Below is a consequence of the above probabilistic interpretation when the Cauchy
problem �̇ (t) = vt (� (t)), � (0) = x admits a unique solution for all x 2 E . The fact
that we have to pass by the probabilistic representation is a real question. Contrary
to the finite-dimensional case, the well-posedness of the Cauchy problem, even with
the standard Picard’s contraction argument, defining a flow on the whole space E ,
does not give a representation formula for observables. The point is that the natural
observables, or test functions, are cylindrical functions, a property which is not
generally preserved by the nonlinear flow.

Proposition C.4. Let µt : R ! Prob2(E) be a W2-continuous solution to the
continuity equation (C.1) and (C.2) for a suitable Borel velocity field v(t, x) =
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vt (x) such that |vt |L2(E,µt ) 2 L1([�T, T ]) for all T > 0. Assume additionally that
the Cauchy problem

�̇ (t) = vt (� (t)), � (s) = x or � (t) = x +

Z t

s
vs(� (s)) ds,

admits a unique global continuous solution on R for all s 2 R and all x 2 E , such
that � (t) = 8(t, s)� (s) defines a Borel flow on E (i.e.,8(t, s) : E ! E is a Borel
function for all t, s 2 R). Then the measure µt satisfies

8t, s 2 R, µt = 8(t, s)⇤µs .

Proof. It suffices to work with t 2 [�T, T ] as in Proposition C.2. Since the evalu-
ation map et : (x, � ) 2 E ⇥0T ! � (t) 2 E is a continuous, thus Borel, map. The
relation µt = µ

⌘
t defined according to (C.3) extends to any bounded Borel function

' on E : Z
E
' dµt =

Z
E⇥0T

'(� (t)) d⌘(x, � ).

Using � (t) = 8(t, s)� (s), with 8(t, s) Borel, we deduceZ
E
' dµt =

Z
E⇥0T

[' �8(t, s)](� (s)) d⌘(x, � ) =

Z
E
[' �8(t, s)] dµs

which is nothing but µt = 8(t, s)⇤µs .

C.2. Application to Hamiltonian fields

We finally specify how these results apply to our case, when the phase-space Z0
is a complex Hilbert space and the velocity field is associated with a (singular)
Hamiltonian vector field, only defined on Z1 ⇢ Z0.

Consider a complex Hilbert triple Z1 ⇢ Z0 ⇢ Z�1, with Z1 densely con-
tinuously embedded in Z0 and Z�1 being the dual of Z1 for the duality bracket
extending hz1, z2iZ0 . The dual of a complex Hilbert space Z while keeping the
C-bilinear duality bracket, written u. v in (B.8), is still denoted by Z⇤. In the case
treated in the article Z0 = L2(Rd , dx), Z1 = H1(Rd) and Z�1 = H�1(Rd). The
spaceZ0 is endowed with its scalar product hz1, z2iZ0 , real euclidean structure with
<hz1, z2iZ0 and its symplectic structure � (z1, z2) = Im hz1, z2iZ0 . On Z1 we will
use the hermitian hz1, z2iZ1 and euclidean scalar product

hz1, z2iZ1,R = <hz1, z2iZ1 .

For a cylindrical function f 2 Scyl(Z0), based on }Z0, the differentials @z f (z) and
@z̄ f (z) are defined by

@z f (z) =

Z
}Z0

i⇡h⇠ |e2i⇡<hz, ⇠iF [ f ](⇠) L}(d⇠)

@z̄ f (z) =

Z
}Z0

i⇡ |⇠ie2i⇡<hz, ⇠iF [ f ](⇠) L}(d⇠).
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Hence @z f (z) is a continuous C-linear form on Z0, while @z̄ f (z) 2 Z0. This
notation is coherent with the definition of @zb(z) and @z̄b(z) when b is a Wick
symbol in �

alg
p,qPp,q(Z). A function f 2 Scyl(Z1) is given by

f (z) = '(h⇠1, ziZ1, . . . , h⇠N , ziZ1) = '(h⌘1, zi, . . . , h⌘N , zi)

with '(w1, . . . wN ) 2 S(RN ) and ⇠1, . . . , ⇠N 2 Z1 and ⌘1, . . . , ⌘N 2 Z�1, such
that h⇠ j , ziZ1 = h⌘ j , zi for all z 2 Z1. The derivatives @z f and @z̄ f are thus given
by

8z 2 Z1, @z f (z) =

NX
j=1

@w j'(h⌘1, zi, . . . , h⌘N , zi)h⌘ j | 2 Z⇤

1 ,

8z 2 Z1, @z̄ f (z) =

NX
j=1

@w j'(h⌘1, zi, . . . , h⌘N , zi)|⌘ j i 2 Z�1.

When h(z) is an unbounded polynomial on Z0 but which happens to be a real-
valued, Fréchet C1-function on Z1, the derivatives @zh(z) and @z̄h(z) are defined
only for z 2 Z1 and we have

8z 2 Z1, @z̄h(z) 2 Z1 , @zh(z) 2 Z⇤

�1.

When f 2 Scyl(Z0) (respectively g 2 Scyl(Z1) or h) is real-valued, differentiating
f (z + te) at t = 0, t 2 R, for any e 2 Z0 (respectively any e 2 Z1) leads to

@z f (z).u = hu, @z̄ f (z)i, z 2 Z0, u 2 Z0 (C.6)

@zg(z).u = hu, @z̄ g(z)i, z 2 Z1, u 2 Z1 (C.7)

@zh(z).u = hu, @z̄h(z)i, z 2 Z1, u 2 Z�1. (C.8)

Note that the Poisson bracket

i {h, b} (z) = i (@zh.@z̄b � @zb.@z̄h) (z), z 2 Z1

is well-defined for b 2 Scyl(Z1; R), and our aim is to write it as the real scalar
product

hv(z), (rb)(z)iZ1,R, z 2 Z1.
Definition C.5. For a cylindrical function on Z1, f 2 Scyl(Z1), the gradients rz̄
and r are defined by

8z 2 Z1, u 2 Z1, hu, rz̄ f (z)iZ1 = hu, @z̄ f (z)i,
r = 2rz̄ .
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Remark C.6.

• Although it is not necessary, these definitions can be justified by introducing
a complex conjugation u ! ū on Z0, which remains a conjugation on Z1,
that is an isometric C-antilinear application such that hu, viZ0,1 = hu, viZ0,1 .
When Z0 = L2(Rd

; C) and Z1 = H1(Rd) this is the usual pointwise complex
conjugation. For real valued functions, set

rR f = rz̄ f + rz f and rI f =

1
i

(rz̄ f � rz f ) .

so that
rz̄ f =

1
2

(rR f + irI f ) .

Similarly, an element X ofZ1 can be written X = XR + i X I with XR,I = XR,I

or X =

✓
XR
XI

◆
and the real scalar product

hX, Y iZ1,R = <hX, Y iZ1 = hXR,YRiZ1 + hXI , YI iZ1 .

Then the definition of the gradient of a real cylindrical function f becomes

r f =

✓
rR f
rI f

◆
.

• It is important to notice that we do not use the Z1-gradient for the real-valued
function h(z), but keep the derivative, @z̄h(z) modeled on the duality bracket
h , i. With a complex conjugation and since h is real valued, it can be decom-
posed into @z̄h =

1
2 (@Rh + i@I h) and

�i@z̄h =

1
2
@I h �

i
2
@Rh.

Lemma C.7. With the above notation and assumptions the equality

8z 2 Z1, i {h, b} (z) = 2<h�i@z̄h(z), rz̄b(z)iZ1 = hv(z), rb(z)iZ1,R

holds for any b 2 Scyl(Z1; R) with v(z) = �i@z̄h(z).

Proof. It suffices to compute

i {h, b} = i [@zh.@z̄b � @zb.@z̄h]
= i

⇥
h@z̄b, @z̄hiZ0 � h@z̄h, @z̄biZ0

⇤
= �2Im h@z̄h, @z̄bi = 2<h�i@z̄h, @z̄bi = 2<h�i@z̄h, rz̄biZ1
= h�i@z̄h, rbiZ1,R.
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Proposition C.8. Let Z1 ⇢ Z0 ⇢ Z�1 be a Hilbert triple of separable complex
Hilbert spaces. Consider a time dependent real sesquilinear form z ! h(z, t) on
Z1 which is Fréchet-C1 and such that Z1 ⇥ R 3 (z, t) ! (@z̄h(z, t), @zh(z, t)) 2

Z1 ⇥ Z⇤

�1 is strongly continuous. Assume also that the time-dependent Hamilton
equation

i@t zt = @z̄h(zt , z̄t , t) , zt=s = z

admits a unique continuous solution zt = 8(t, s)z for all t, s 2 R and all z 2

Z1, with 8(t, s) : Z1 ! Z1 Borel. Consider a time dependent measure µ(t) 2

Prob2(Z1) which satisfies
• t ! µt 2 Prob2(Z1) is W2-continuous,
• For all T > 0, |@z̄h(t)|L2(Z,µt ) 2 L1([�T, T ]),
• The time-dependent probability measure µt is a weak solution to

@tµ + i {h(t), µ} = 0,

namely for all ' 2 C1

0,cyl(Z1 ⇥ R; R),Z
R

Z
Z1

(@t'(z, t) + i {h,'} (z, t)) dµt (z)dt = 0.

Then the measure µt satisfies

8t, s 2 R, µt = 8(t, s)⇤µs

and it is unique when µ0 is fixed.

Proof. We apply Proposition C.4 while E = Z1 is endowed with its Euclidean
structure hz1, z2iZ1,R = <hz1, z2iZ1 . Lemma C.7 says that the weak Liouville
equation is

8' 2 C1

0,cyl(Z1 ⇥ R),

Z
R

Z
Z1

(@t'(z, t) + hv, r'i(t, z)) dµt (z)dt = 0,

with v(z, t) = �i@z̄h(z, t). The measure µt is a weak solution to
@tµ + r

T (vµ) = 0

where r and r
T are defined according to the real structure on Z1. Our hypotheses

on µ and h cover all the assumptions of Proposition C.4.

D. Weak L p conditions for the potential V

Let LRd be the Lebesgue measure on Rd . For 0 < p < 1, a Lebesgue measurable
function f : Rd

! C is said to belong to weak-L p(Rd), or shortly to L p,1(Rd),
if there exists a constant c > 0 such that for all t > 0

LRd {x : | f (x)| > t}  cp/t p.
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Two functions in L p,1(Rd) are equal if they are equal LRd -almost everywhere.
The quantity

k f kp,1 = inf{c : LRd {x : | f (x)| > t}  cp/t p,8t > 0}
= sup

t>0
{t LRd {x : | f (x)| > t}1/p}

defines a complete quasi-norm on L p,1(Rd) with k f kp,1  k f kp.
By combining the Hunt and Marcinkiewicz interpolation theorems according

to [11, 34, 56]), the Young and Hölder inequalities can be extended to weak L p
spaces:

Proposition D.1 (generalized Young inequality). Let 1 < p, q, r < 1 such that
1
p +

1
q = 1+

1
r . There exists a constant cp,q > 0 such that for all f 2 L p(Rd) and

g 2 Lq,1(Rd)
k f ⇤ gkr  cp,q k f kp kgkq,1.

Proposition D.2 (generalized Hölder inequality). Let 1 < p, q, r < 1 satisfy
1
p +

1
q =

1
r . There exists a constant cp,q such that for all f 2 L p,1(Rd) and

g 2 Lq(Rd)
k f.gkr  cp,q k f kp,1 kgkq .

Proposition D.3 (Hardy inequality). Suppose that d � 3 and V 2 Ld,1(Rd).
There exists a constant c > 0 such that for all u 2 H1(Rd)

kVuk2  ckukH1(Rd ).

Proof. For u 2 L2(Rd), we can write (1 � 1)�1/2u(x) = G ⇤ u(x) with G the
inverse Fourier transform of (1 + |x |2)�1/2. It is not difficult to prove that G 2

L
d

d�1 ,1 (see [56, Exercice 50]). Hence, we conclude that

kV (1�1)�1/2uk2 = kV G ⇤ uk2
Hölder
 C1 kVkd,1 kG ⇤ uk 2d

d�2

Young
 C2 kVkd,1 kGk d

d�1 ,1
kuk2.

The above proposition provides a class of potentials which are bounded multipli-
cation operators from H1(Rd) into L2(R) when d � 3. For lower dimension, the
Sobolev embeddings give at once:

• if d = 1, V 2 L2(R) + L1(R) then V 2 L(H1(R), L2(R));
• if d = 2, V 2 L p(R2) + L1(R2) for p > 2, then V 2 L(H1(R2), L2(R2)).

We denote by L p(Rd) + L1

0 (Rd) the space of Lebesgue measurable functions f
such that there exists ( fn)n2N 2 L p(Rd)N satisfying limn!1 k f � fnk1 = 0.
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Lemma D.4. For 0 < p < q,

Lq,1(Rd) ⇢ L p(Rd) + L1

0 (Rd).

Proof. For ✏ > 0, decompose each f 2 Lq,1(Rd) into a sum f = f✏ + f ✏ such
that f✏ = f 1| f |>✏ and f ✏ = f 1| f |✏ . Observe that for any ✏ > 0

k f✏k
p
p = p

Z
1

0
t p�1LRd {x : | f✏(x)| > t} dt

= p
Z

1

✏
t p�1LRd {x : | f (x)| > t} dt + ✏ pLRd {x : | f (x)| > ✏}

 c
Z

1

✏

t p�1

tq
dt + ✏ pLRd {x : | f (x)| > ✏} < 1.

Moreover, when ✏ ! 0

k f ✏k1 = k f 1| f |✏k1  ✏ ! 0.

Therefore, each f 2 Lq,1(Rd) belongs to the space L p(Rd) + L1

0 (Rd).

Proposition D.5. For any V 2 L2(Rd) + L1

0 (Rd) such that V (1 � 1)�1/2 2

L(L2(Rd)) the operator (1�1)�1/2V (1�1)�1/2 is compact.
Proof. Let g(⇠) = (1 + |⇠ |2)�1/2 and gm(⇠) = 1[0,m](|⇠ |)g(⇠). The following
norm convergence holds

lim
m!1

gm(D) V gm(D) = g(D) V g(D)

using the fact that lim
m!1

kgm(D)�g(D)kL(L2(Rd )) =0 and kV g(D)kL(L2(Rd )) <1.

By Lemma D.4, there exist Vn 2 L2(Rd) such that limn!1 kV � Vnk1 = 0.
We observe now that the Hilbert-Schmidt norm of gm(D)Vn(x)gm(D) is

kgm(D) Vn gm(D)kL2(L2(Rd ))  kVnk2 kgmk
2
2 < 1.

Therefore, by norm convergence, the operator g(D) V g(D) is compact.

Corollary D.6. The potential V satisfies the assumptions (A2)-(A3) in the follow-
ing cases:
• if d = 1 and V 2 L2(R) + L1

0 (R),
• if d = 2 and V 2 L p(R2) + L1

0 (R2) with p > 2,
• if d � 3 and V 2 Ld,1(Rd).
Proof. Combine Proposition D.3, Lemma D.4 and Proposition D.5 with, in dimen-
sion d = 2, the observation

L p(R2) + L1

0 (R2) ⇢ L2(R2) + L1

0 (R2) for p > 2.

In particular, in dimension d = 3 the Coulomb potential V (x) = ±
1
|x | satisfies the

assumptions (A1), (A2) and (A3) because 1
|x | 2 L3,1(R3).
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