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A classification theorem for hypersurfaces of Minkowski spaces

JINTANG L1

Abstract. Let M" be a compact hypersurface of a Minkowski space (vl .
In this paper, using the Gauss formula of the Chern connection for Finsler sub-
manifolds, we prove that if the second mean curvature H, of M is constant and

the norm square S of the second fundamental form of M satisfies S < % Hp,

then M with the induced metric is isometric to the standard Euclidean sphere.
This generalizes the result of [2] from the Euclidean to the Minkowski space.

Mathematics Subject Classification (2010): 53C60 (primary); 53C40 (sec-
ondary).

1. Introduction

Let M be an n-dimensional smooth manifold and w : TM — M be the natural
projection from the tangent bundle. Let (x, Y) be a point of TM withx € M, Y €
T, M and let (x', Y') be local coordinates on T M with Y = Y! PR A Finsler metric
on M is a function F' : TM — [0, +00) satisfying the following properties:

(i) Regularity: F(x, Y) is smooth on T M\0;
(i1) Positive homogeneity: F(x,AY) = AF(x,Y) for A > 0;
(iii) Strong convexity: The fundamental quadratic form gy = g;;(x, Y)dx' @dx/
is positively definite, where g;; = %82(F2)/8Yi8Yj.

The simplest class of Finsler manifolds is Minkowski space. Let V"*! be a real
vector space. A Finsler metric F : T v+l 5 [0, 00) is called Minkowski if F is a
function of Y € V"*+! only. In this case (V"*!, F) is called a Minkowski space.
Riemannian submanifolds are important in modern differential geometry.
There has been a long history for the study of Riemannian submanifolds. For a
compact Riemannian hypersurface M of Euclidean space, the second fundamental
formis B = hf j+1 ' ®w! ®e, 41, where {w'} is the orthonormal coframe of M. The
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second mean curvature H, of M is defined by H, = n(%—l) > <i<j<n AiAj,where
A; are the eigenvalues of the second fundamental tensor h:.lj'H of M. For a compact
hypersurface M of Euclidean space, the Gauss equation is Zi’ j Rijij = n(n—1)H;,
which implies that the scalar curvature is constant if and only if the second mean
curvature Hj is constant.

As well kown, using Cheng-Yau’s self-adjoint operator [, Li [2] proved that if
the second mean curvature H, is constant and the norm square S of the second fun-
damental form of M satisfies § < %Hg, then M is a Riemannian sphere. As far
as we know, there are very few rigidity results on Finsler submanifolds. The main
purpose of this paper is to generalize the above result of Li from the Euclidean to
the Minkowski space. In this paper, using the Gauss formula for the Chern connec-
tion and defining a similar self-adjoint operator L1 on Finsler manifolds, we study
the hypersurfaces of Minkowski space (V”*!, F) and we obtain the following:

Main Theorem. Let M" be a compact hypersurface of Minkowski space (V"1 F).
If the second mean curvature H is constant and the norm square S of the second
SJundamental form of M satisfies S < %Hz, then M with the induced metric is
isometric to the standard Euclidean sphere.

2. Preliminaries

Let (M", F) be an n-dimensional Finsler manifold. Then F inherits the Hilbert
form, the fundamental tensor and the Cartan tensor as follows [1]:

__OF
Syl
gy =gij(x,Y)dx' ® dx’,
Ay :Aijkdxi Rdx! ® dxk,

w dxt,

Letg : (M", F) — (Mnﬂ' , F) be an isometric immersion from a Finsler manifold
to another one. We have [7]

F(Y) =F(p(Y), gr(U,V) =gy (g« (U), p:(V)), 2.1

Ay (U, V, W) = Ap, ) (9x(U), 9+(V), 9 (W), (2.2)

where Y, U, V,W € TM,g and ‘A are the fundamental tensor and the Cartan
tensor of M, respectively. It can be seen from (2.1) that ¢* (@) = w, where @ is the
Hilbert form of M.

In the following we simplify Ay and gy to A and g, respectively. Moreover
any vector U € T M will be identified with the corresponding vector ¢, (U) € TM
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and we will use the following convention:
I<i,j,---<nn+l=aB,---<n+p,1<i,pu,---<n—1,1<a,b,---<n+p.

Letg : (M", F) — (H"er , F) be an isometric immersion from a Finsler mani-
fold to another one. Take a g-orthonormal frame form {e,} for each fibre of 7*T M
and let {w“} be its local dual coframe, such that {¢;} is a frame field for each fibre
of m*T M and " is the Hilbert form, where w : TM — M denotes the natural
projection. Let 6 and a)’] denote the Chern connection 1-form of F and F, respec-
tively, i.e. Ve, = 9}1’ epand Ve; = a)l] ej, where V and V are the Chern connections
of M and M, respectively. We obtain that A(e;, e, e,) = Aleg, ep, en) = 0, where

e, = Yfl o7 is the natural dual of the Hilbert form "

The structure equations of M are given by

doT = —08 N 6P,

dof = —09 N Of + SRpeq0 A o + Pgaf AOY,
00 + 60 = —2Aupc0f,

0% + 61 =0, 6! =0.

By 6% = 0 and the structure equations of ‘M, we have that 9;?‘ A w! = 0, which
implies that 6% = hf;',  hf; = h$;. We obtain [3]

ol =6/ — W, (2.3)
where

lIIjik = h?nzkia - h% Jia hmAk]oz hgnzikszsja + hznzijszska

_ 2.4)
+ hﬁn Ajks Asia-
In particular, o
Wl = 0" — h%, Agigat. (2.5)
Using the almost g-compatibility, we have
90{ = (—h?j — thizj'alg + ZhQanMZMﬁ)wi — ZZja,\wﬁ. (2.6)

In particular, 6 = —h?; o'. We quote the following results:

Proposition 2.1 ([3]). Let ¢ : (M", F) — (MnﬂJ , F) be an isometric immersion
from a Finsler manifold to a Minkowski space. Then

(Ve A)(o, 0,0) =0,
A(e, o, V,e,) =0.
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Proposition 2.2 ([3] Gauss equations). Let ¢ : (M", F) — (M"er , F) be an iso-
metric immersion from a Finsler manifold another one. Then we have

Pio = Pio.+ ik — 2Wsik Ajsx — 2h% A jra
Ri'/kl = Eijkl — h?kh(}{l + h%h?k + Wik — ik
Wik W ot — Witk — 2hE I A jap + 2h ey A jup
+2h,qkh5nzj§azlsﬁ - z_h?[hgnz jsaAksp — %y Asia Py
+hs, Aska Pl + 1 Pl — B Py
where ;" and “|” respectively denote the vertical and the horizontal covariant

differentials with respect to the Chern connection V.

Proposition 2.3 ([3] Codazzi equations). Let ¢ : (M", F) — M" P F) be an
isometric immersion from a Finsler manifold to a Finsler manifold to another one.
Then we have

-

B = —Pijas , ,
o —o -

h?j\k - h?ku = =R +h,iPirg = hy Pijp

- 3 - Ho
—hyYiij + hi; Wik — hEnAljﬁ Py + hb, Aip Py

3. Hypersurfaces of a Minkowski space

Let (M", F) be a compact hypersurfaces of a Minkowski space (V"*!, F). Then
we have

n+1_k n+l_ A _ n+l _ pn+l_ k _ pnt+l k n+1n+1
hij @™ +hijo 0y = dhy™ — Iy op —hyoh + R0, 1 (3.1

Exterior differentiation of the left-hand side terms of (3.1), gives

n+1 k n+1 k n+1 A n+1 A
dhijie AN @" + hijpdo® +dhi Aoy 4 by doy

_ n+1 [ n+1 12 n+1 [ n+1 [ n+1 1 n+14n+1 k
_{hij|k\lw +h wn—i—hljlk wi+hil\k wj+hij|l w,—h; 0 }/\w

ijlk; ijlk “n+1
n+1 k /
+hij|k {—w] N o'}
n+l n+1 12 n+1 [ n+1 [ n+1_pn n+1n+1 A
+{hij;x|zw + @ Fhy 0y @ b o) —he 0, } N oy
n+1 A 1 1 pA / s A | 1
+hij;)»{ —CL)M/\CO” —+ jRnlsa) A w + Pnlﬂa) /\a),,} (32)

_ n+1 1pn+1 pi k / n+1 A I
= { — M T ihij;/\Rnkl}‘U ANt =R op A on

n+1 n+1 n+1 pi n+17% k A
"‘{ - hij|k;x + hij;Mk + hz’j;uPnkl + hij|k An+1ﬂ+lk}w N Wy

n+l 1 k n+l 1 k n+l 1 A n+1 1 A
+hlj|ka)l./\a) —|—hi”ka)j/\a) +h1j;xwi/\a’n+hi1;ij/\wn

__pn+lgn+l k _ pn+lgn+l A
hijic O N @" = hij5 0,15 Aoy
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Exterior differentiation of the right-hand side terms of (3.1), gives also
_dhn-H h”“dwff _ dhn+1 h”Hda)’J‘.

+dh A e,;’jll +haoyt

= |l +nilen + ni ol 4 n o — nier ) A of
h”'H{ of Al + 1Rllsa) Ao + Pk o /\a))‘}

—{hf,:lrllwl +h;’k+){a) +h ol + R ol h”“@r’fjrrll} a)’j‘

h”H{—wf/\a) + 1lega) NN +Pk)ha) AW }

n+l1 n+1 n+l n+1 k n+1
{hmk + i X + Iy of + hiy wj}/\en—i-l

+h7’_+1{ h”HhZ Aontinsi —2h"+lhﬁ,flzm+1zzln+1}wk Ao (3.3)
2R R A0k A o)
_ { hn+1le1 lhn-HRkkl+2hn+1hn+lh:tl;rlzsn+ln+l
2 B B A1 At 1 A
~I—{ hn+1 s — h;’jJrlP +2h"+1h”+1Am+u}w" N w

n+1 n+1 n+1 n+1 k
hk]|lw /\w hk] )La) /\a) hzk|lw /\a) hlk Aw e

__pn+lgn+l k n+14n+1
hi; A A2 hlﬂenHAw

It can be seen from (3.2) and (3.3) that

n+1 1 n+1 n+1 1 n+1
{hijlkll h Rtkl h RJkl hl_/ ARnkl

1 1 1% 1 1 A Y
+2hn+ hn+ hn+ Asntin+1 — hn+ hn+ hz;l_lAstn-i-lAtln-ﬁ-l}wk Ao

(3.4)

n+1 n+1 n+1 pi n+1 n+1
+{hij|k;k hl_])»|k+hl]u,Pnk)\. + his P/kl h zkl hmk n+ln+1x

n+1 n+1 k n+1 )L "
FRIE R A ok A s W A o
=0.
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From (3.4) we immediately obtain the following:

Proposition 3.1. If M" be a hypersurface of Minkowski space (V"1 F), then

hn+l _ hn+1 — 0’

ijhsp ijsmsh
n+1 n+l _ _gn+lps _ pn+lps _ pn+l pi n+17%
R — Wi = —hs) Pig = his™ Pig — hii, Po + B Antins o
+1pn+17%
_2h?j h?k Asn-i—l)u
n+1 n+1 _ gn+l ps n+1 ps n+1 pi
hijien = hijue = ) Rigg +hig Rigg + i Rog

+1yn+1yn+17% +1ypn+lypn+l—73
_Zh?j h:lk th sn+1n+1+2h?j h?l h:lzk Asn+1n+l
n+1n+1 1% e
+2hij hsk hZ:zL Astn+lAtln+l
+1yn+1 3 Y
—2h;" hy R Agingt Arkn .-

The form B = h?fla)" ® w/ ® e,41 is called the second fundamental form of M

and H = %trB = % > hl'.li+len+ 1 is called the mean curvature vector. The norm
square S of the second fundamental form of M is § = }_; j (h;’lfl)z. Let A; be
n+1 -
ij
2 1 2
curvature Hp = -5 Zl§i<j§n Aidj = sopl(nH)” = S].
From the second formula of Proposition 2.1, we obtain that

the eigenvalues of the second fundamental tensor £ of M. The second mean

Z(.’ o, Veien) + Z(.5 o, e)\.)\p)unl + Z(.9 o, en‘l‘l)hz;‘rl = 0‘ (3'6)

Let P be an arbitrary point in M. There exists a local coordinate system {x’} such

that Y—Fn % = ey. Let y(¢) be a curve in M with y(0) = P and tangent vector field

y(t) = e,. Let X;(¢) be parallel vector fields along y (¢) with X;(0) = d |p. We

axl
have that V, % = YTVL% =0at P,ie. Tk, = 0at P, then we can obtain that
no9x I 0X ni
at P

Z(., o, Veien) = Z(., o, YTnvuli a)acn

Yy 3.7

Y Y" jrk 9\ _
= A(e, o, Fu; Fjﬂﬁ) =0.

Substituting (3.7) into (3.6) yields that A(e, e, ;)W ,; + A(e, 8, xR =0 at

P, which together with (2.4) yields that —A+ 1A i1 Agrj + 1 Ay = 0 at P,
so by (2.4) we have that

Wik =0and h"FA(e, e, €,11) =0, Vi, j,k, at P. 3.8)
It follows from the first formula of Proposition 2.1 and Ae, o, ¢); = 0 that
Ae,0,0); Wiy + Ale, 0, 0),4 11" =0 ar P. (3.9)
It can be seen from (3.8) and (3.9) that
A, 0, 0)., 117" =0 at P. (3.10)
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Now taking the exterior differentiation of A;j; = Zi‘,-k, we obtain that
Aijkit = Agjica Vot + Aijicnni bl
+A51k\ljs11 + Atskqjsﬂ + At/s\pskl (3-11)
+An+l]kh + A1n+1kh + Aljn+1hk1

By (3.8) and (3.11), we obtain that
Aijkn =0 at P. (3.12)

Define §Y' = dY' + N;.dxj. The pull-back of the Sasaki metric g;;jdx’ ® dx/ +
gij8Y' ® 8Y/ from T M\{0} to the sphere bundle SM is a Riemannian metric g =
gijdxi ®dx! + Sab@ls @ a),l;.
We quote the following results:
Lemma 3.2 ([5]). For X=)_; x;' €T (@*T*M), divgX =", xiji+_,, , Xu P}l .-
Lemma 3.3 ([6]). Let B be a real symmetric matrix with tr B = 0. Then
B3 < 2 _(rB))i.
Vi —T)

Lemma 3.4 ([4]). All Landsberg spaces of nonzero constant flag curvature must be
Riemannian.

Letgp = Zi’ j Pij o' ® w/ be a symmetric tensor defined on the sphere bundle
SMandy =), Yo' € T'(*T*M). Now we can define an operator [] associated
to ¢ by

Of = qu,]f.,u + ) g fi Pl + Zw,ﬁ,, VfeC®(SM). (3.13)
i,A
Proposition 3.5. Let (M, F) be a compact manifold. Then the operator [ is self-
adjoint if and only if )~ ; ¢ij)j — ¥i = 0.
Proof. Let X = Zi’j g¢,~jf|,-a)j eTT(*T*M), Vf, g e C®(SM). Then we have
from Lemma 3.2

divgX = Z{gu@jﬁi + 8ij1 fii + 8ij firjy + D, 8bin fi Pl

[
(3.14)
= Zgws,m, + th/f,f“ + ngnjfw + ) 8hinfii Pl
[N

Integrating (3 .14) yields

/ Uf)gdVsm = —/ Zg|j¢ijfidVSM- (3.15)
SM SM 77
Hence we get
[ ©ngavsu= [ ©Cordvn. (3.16)
sM sM

which completes the proof. O
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4. Proof of the main theorem

Substituting (3.8) into the second formula of Proposition 2.2, by Proposition 2.3
and Proposition 3.1, we obtain that at P

n+1 __ gpn+l n+1 . n+1 .

hij|k1|l = Ryt g Wsiji + g Wik
n+1 __ pn+l n+1 ps n+1 ps

hien = M + 15T Rig + hiy™ Ry @.1)
J o o oo .. _ ..

Rij = —hiihy + hihSe + ik — Wi

Letw = dS = Sj;0' + S.;0',. Then w is a global section of 7*T*M. By the first
formula of (2.24), we have S.; = 0,ie. ® = dS = S|,-wi. In the following, the
computation is pointwisely estimated. Using the first formula of (4.1) and Lemma
3.2, we have that

s n+1gn+1 n+lypn+1 pn
divew =2 |: E hl-j hij|k:| +2 E hij hij|A P
i,j.k k i,j,k

YU 2 3 M e (42
i,j.k i,j.k i,j.k,s

n+1yn+1 . n+lypn+1 pn
+2 D WG ik 2 3R P
ik Tk

It can be seen from (4.1) and (4.2) that

S +1,2 +1 [, ntl +1 +1
divgo=2 Y (5Eh2 +2 D w I + Ry R
i,j.k i,j,k,s

+2) R a2 R g +2) R R P

ijlx " ppd
i,j.k,s i,jk,s i,j.k
_ n+152 n+1yn+1 n+lypn+1 pn
= D (i +2 ) w2y P,
i,j.k i,jk,s i,j.k
+nH Z(X,- — H)} +3nH?S — 2n°H* — §? (4.3)
i

> O RS nny K N nay e
—Z(hmk) + hu hkk\l|1+ hl] ht]lkpwk
i,j.k i,j.k,s i,j.k

n—1 n—2
+ SIS = nHal {201 = DHy = "=
n n

-2
_n p \/(n(n —DH, + S)(S —”lHZ)}7
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where the second mean curvature H, = m[(n H)? — S]. Let

Of = Z(nH&J — Y fij+ D (nHSu — R fi Pl

LA

; Z(h i = BT ) fi

i,j.k

By the second formula of Proposition 2.3, we can obtain that

Y HS; — R = (g Wi — B ) =0,
. =

which together with Proposition 3.5 implies that the operator [J is self-adjoint.
When H, is constant, we have the following computation by (4.3)

O@nH) = ZnH(nH)mz Zh”“hﬁz;ﬁh,
i

i,j,k

+ > (nH8; — hTY(H) P,

A,
+ Z(h"+l‘1’kji — W Y (nH D

i,j.k

> Y (hh? - Z(nbm

i,j.k

n—1) n—2 4.4)
+ [S—nHz]{Z(n — 1)H, — S

n
— nHz)}

+ Y (HS; — Y (H) P,

A,
+ Y (g — R G ) (nH)).

i,j.k

Using the fact that Pl.’J‘.)L = —Ajjun,by (3.12) and (3.8) we have

OH) = Y (h5H* = (nHy)?
i,j,k i

J(n -1 n—2

+ [S—nHz]{Z(n— 1) Hy —

S 4.5)

—nHz)}.

On the other hand, let x = f“% be the position vector field of the Minkowski
space V"*! with respect to the origin. By a direct simple computation, we get
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sz =Z7Z, VZ =77¢ ag‘l on V"t This together with the second formula of
Proposition 2.1 implies that Vgl.xz = 2(e;, x) and V,,(e;, x) = Ql.j(ei)(ej,x) +
h;’iH (eén+1,x)+ 1. Then, when M is compact, there exists a point P € M such that
h;’iH(P) > 0, Vi, hence we have that n(n — 1) H,(P) = Zl§i<j§n Ai(P)X;(P) >

0, thus the constant H, > 0, which yields (n H )2 > §. On the other hand, we have

2
Y H)(nH) =" [Z h’;,jlh’;,jl}} <SY W 46)
J.k

i i i,jk
Hence
2 12
(nHy)? < (2. @.7)
It can be seen that our assumption § < ”n”__Zl) H, is equivalent to

n—2 n—2
S —
n n

2(n — 1Hp — \/(n(n —1Hy + 8)(S —nH) >0, (4.8)

therefore the right-hand side of (4.5) is non-negative by (4.7) and (4.8). Because

of the compactness of M, we get that hl'.’;rl is constant and h;’jH =0,Vi # jon
M. Exterior differentiation of 2"} = 0 yields A2}! = h" 1 Va=1,... ,n—1,

ie., h;’iﬂ = H,Vi. Since h;’;lrkl = 0, it can be seen from the second formula of
Proposition 2.3 that
Ry Wy — h gy =0, 4.9)

. . . +1 . . .
Set j = n,k = A in (4.9); by h7j =0, Vi # j we obtain that

W Wi — Bt Wi = 0, (4.10)

which together with (2.4) yields

R A1 = 0, Vi, j. (4.11)
So we get that W;;x = 0 on M. Using the first formula of Proposition 2.2, we have

that Pi’]’.A = 0on M, thus M is a Landsberg space. It is easy to see from the second

formula of Proposition 2.2 and h;’j“ = HJ§;;j that
R}y = H(u8jx — 88 1) 4.12)

It can be seen from h;’iﬂ = H and the constant H, = m[(nH)2 —S1>0
that H # 0 is constant, hence we get that M is a Landsberg space with the nonzero

constant flag curvature H, which together with Lemma 3.4 finishes the proof of
Theorem 4.2.
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