
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XIV (2015), 221-231

A classification theorem for hypersurfaces of Minkowski spaces

JINTANG LI

Abstract. Let Mn be a compact hypersurface of a Minkowski space (Vn+1, F).
In this paper, using the Gauss formula of the Chern connection for Finsler sub-
manifolds, we prove that if the second mean curvature H2 of M is constant and
the norm square S of the second fundamental form of M satisfies S 

n(n�1)
n�2 H2,

then M with the induced metric is isometric to the standard Euclidean sphere.
This generalizes the result of [2] from the Euclidean to the Minkowski space.

Mathematics Subject Classification (2010): 53C60 (primary); 53C40 (sec-
ondary).

1. Introduction

Let M be an n-dimensional smooth manifold and ⇡ : T M ! M be the natural
projection from the tangent bundle. Let (x,Y ) be a point of T M with x 2 M,Y 2

TxM and let (xi ,Y i ) be local coordinates on T M with Y = Y i @
@xi . A Finsler metric

on M is a function F : T M ! [0,+1) satisfying the following properties:

(i) Regularity: F(x,Y ) is smooth on T M\0;
(ii) Positive homogeneity: F(x, �Y ) = �F(x,Y ) for � > 0;
(iii) Strong convexity: The fundamental quadratic form gY = gi j (x,Y )dxi ⌦dx j

is positively definite, where gi j =
1
2@
2(F2)/@Y i@Y j .

The simplest class of Finsler manifolds is Minkowski space. Let V n+1 be a real
vector space. A Finsler metric F : T V n+1

! [0,1) is called Minkowski if F is a
function of Y 2 V n+1 only. In this case (V n+1, F) is called a Minkowski space.

Riemannian submanifolds are important in modern differential geometry.
There has been a long history for the study of Riemannian submanifolds. For a
compact Riemannian hypersurface M of Euclidean space, the second fundamental
form is B = hn+1i j !i⌦! j

⌦en+1, where {!i } is the orthonormal coframe of M . The
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second mean curvature H2 of M is defined by H2 =
2

n(n�1)
P
1i< jn �i� j , where

�i are the eigenvalues of the second fundamental tensor hn+1i j of M . For a compact
hypersurface M of Euclidean space, the Gauss equation is

P
i, j Ri ji j = n(n�1)H2,

which implies that the scalar curvature is constant if and only if the second mean
curvature H2 is constant.

As well kown, using Cheng-Yau’s self-adjoint operator⇤, Li [2] proved that if
the second mean curvature H2 is constant and the norm square S of the second fun-
damental form of M satisfies S 

n(n�1)
n�2 H2, then M is a Riemannian sphere. As far

as we know, there are very few rigidity results on Finsler submanifolds. The main
purpose of this paper is to generalize the above result of Li from the Euclidean to
the Minkowski space. In this paper, using the Gauss formula for the Chern connec-
tion and defining a similar self-adjoint operator ⇤ on Finsler manifolds, we study
the hypersurfaces of Minkowski space (V n+1, F) and we obtain the following:

Main Theorem. Let Mn be a compact hypersurface of Minkowski space (V n+1,F).
If the second mean curvature H2 is constant and the norm square S of the second
fundamental form of M satisfies S 

n(n�1)
n�2 H2, then M with the induced metric is

isometric to the standard Euclidean sphere.

2. Preliminaries

Let (Mn, F) be an n-dimensional Finsler manifold. Then F inherits the Hilbert
form, the fundamental tensor and the Cartan tensor as follows [1]:

! =

@F
@Y i

dxi ,

gY =gi j (x,Y )dxi ⌦ dx j ,
AY = Ai jkdxi ⌦ dx j ⌦ dxk,

Ai jk :=

F@gi j
2@Y k

.

Let ' : (Mn, F) ! (Mn+p
, F) be an isometric immersion from a Finsler manifold

to another one. We have [7]

F(Y ) = F('⇤(Y )), gY (U, V ) = g'⇤(Y )('⇤(U),'⇤(V )), (2.1)

AY (U, V,W ) = A'⇤(Y )('⇤(U),'⇤(V ),'⇤(W )), (2.2)

where Y,U, V,W 2 T M, g and A are the fundamental tensor and the Cartan
tensor of M , respectively. It can be seen from (2.1) that '⇤(!) = !, where ! is the
Hilbert form of M .

In the following we simplify AY and gY to A and g, respectively. Moreover
any vector U 2 T M will be identified with the corresponding vector '⇤(U) 2 T M
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and we will use the following convention:

1 i, j, · · ·  n, n+1↵,�, · · ·n+ p, 1�, µ, · · ·n�1, 1a, b, · · ·n+ p.

Let ' : (Mn, F) ! (Mn+p
, F) be an isometric immersion from a Finsler mani-

fold to another one. Take a g-orthonormal frame form {ea} for each fibre of ⇡⇤T M
and let {!a} be its local dual coframe, such that {ei } is a frame field for each fibre
of ⇡⇤T M and !n is the Hilbert form, where ⇡ : T M ! M denotes the natural
projection. Let ✓ab and !

i
j denote the Chern connection 1-form of F and F , respec-

tively, i.e. rea = ✓ba eb and rei = !
j
i e j , where r and r are the Chern connections

of M and M , respectively. We obtain that A(ei , e j , en) = A(ea, eb, en) = 0, where
en =

Y i
F

@
@xi is the natural dual of the Hilbert form !

n .
The structure equations of M are given by

8>><
>>:
d✓a = �✓ab ^ ✓b,

d✓ab = �✓ac ^ ✓cb +
1
2 R

a
bcd!

c
^ !d + Pabcd!c ^ ✓dn ,

✓ab + ✓ba = �2Aabc✓cn ,
✓an + ✓na = 0, ✓nn = 0.

By ✓↵ = 0 and the structure equations of M , we have that ✓↵j ^ ! j
= 0, which

implies that ✓↵j = h↵i j!
i , h↵i j = h↵j i . We obtain [3]

!
j
i = ✓

j
i �9 j ik!

k, (2.3)

where

9 j ik = h↵jn Aki↵ � h↵kn A ji↵ � h↵in Ak j↵ � h↵nn Aiks As j↵ + h↵nn Ai js Ask↵
+ h↵nn A jks Asi↵.

(2.4)

In particular,
!ni = ✓ni � h↵nn Aki↵!

k . (2.5)

Using the almost g-compatibility, we have

✓ j↵ = (�h↵i j � 2h�ni A j↵� + 2h�nn A j�↵Ai��)!i � 2A j↵�!
�
n . (2.6)

In particular, ✓n↵ = �h↵ni!
i .We quote the following results:

Proposition 2.1 ([3]). Let ' : (Mn, F) ! (Mn+p
, F) be an isometric immersion

from a Finsler manifold to a Minkowski space. Then
⇢

(rei A)(•, •, •) = 0,
A(•, •, rei en) = 0.
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Proposition 2.2 ([3] Gauss equations). Let ' : (Mn, F) ! (Mn+p
, F) be an iso-

metric immersion from a Finsler manifold another one. Then we have8>>>>>><
>>>>>>:

P j
ik� = P j

ik� +9 j ik;� � 29sik A js� � 2h↵ik A j�↵,

R j
ikl = R j

ikl � h↵ikh
↵
jl + h↵ilh

↵
jk +9 j ik|l �9 j il|k

+9sik9 jsl �9sil9 jsk � 2h↵ikh
�
nl A j↵� + 2h↵ilh

�
nk A j↵�

+2h↵ikh
�
nn A js↵Als� � 2h↵ilh

�
nn A js↵Aks� � h↵nn Asl↵P

j
iks

+h↵nn Ask↵P
j
ils + h↵nl P

j
ik↵ � h↵nk P

j
il↵

where “; ” and “|” respectively denote the vertical and the horizontal covariant
differentials with respect to the Chern connection r.

Proposition 2.3 ([3] Codazzi equations). Let ' : (Mn, F) ! (Mn+p
, F) be an

isometric immersion from a Finsler manifold to a Finsler manifold to another one.
Then we have8><

>:
h↵i j;� = �P↵i j�,
h↵i j |k � h↵ik| j = �R↵i jk + h�nj P

↵
ik� � h�nk P

↵
i j�

�h↵lk9li j + h↵l j9lik � h�nn Al j� P
↵
ikl + h�nn Alk� P

↵
i jl .

3. Hypersurfaces of a Minkowski space

Let (Mn, F) be a compact hypersurfaces of a Minkowski space (V n+1, F). Then
we have

hn+1i j |k !
k
+ hn+1i j;�!

�
n = dhn+1i j � hn+1k j !ki � hn+1ik !kj + hn+1i j ✓n+1n+1 . (3.1)

Exterior differentiation of the left-hand side terms of (3.1), gives

dhn+1i j |k ^ !k + hn+1i j |k d!
k
+ dhn+1i j;� ^ !�n + hn+1i j;�d!

�
n

=

n
hn+1i j |k|l!

l
+ hn+1i j |k;µ!

µ
n + hn+1l j |k !

l
i+ hn+1il|k !

l
j+ hn+1i j |l !

l
k� hn+1i j |k ✓

n+1
n+1

o
^ !k

+hn+1i j |k {�!kl ^ !l}

+

n
hn+1i j;�|l!

l
+ hn+1i j;�;µ!

µ
n +hn+1l j;� !

l
i+h

n+1
il;� !

l
j+h

n+1
i j;µ!

µ
� �hn+1i j;� ✓

n+1
n+1

o
^ !�n

+hn+1i j;�

n
� !�µ ^ !

µ
n +

1
2 R

�
nls!

l
^ !s + P�nlµ!

l
^ !

µ
n
o

=

n
� hn+1i j |k|l +

1
2h

n+1
i j;� R

�
nkl

o
!k ^ !l � hn+1i j;�;µ!

�
n ^ !

µ
n

+

n
� hn+1i j |k;� + hn+1i j;�|k + hn+1i j;µP

µ
nkl + hn+1i j |k An+1n+1�

o
!k ^ !�n

+hn+1l j |k !
l
i ^ !k + hn+1il|k !

l
j ^ !k + hn+1l j;� !

l
i ^ !�n + hn+1il;� !

l
j ^ !�n

�hn+1i j |k ✓
n+1
n+1 ^ !k � hn+1i j;� ✓

n+1
n+1 ^ !�n .

(3.2)
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Exterior differentiation of the right-hand side terms of (3.1), gives also

�dhn+1k j ^ !ki � hn+1k j d!ki � dhn+1ik ^ !kj � hn+1ik d!kj

+dhn+1i j ^ ✓n+1n+1 + hn+1i j d✓n+1n+1

= �

n
hn+1k j |l !

l
+ hn+1k j;�!

�
n + hn+1l j !lk + hn+1kl !lj � hn+1k j ✓n+1n+1

o
^ !ki

�hn+1k j

n
� !kl ^ !li +

1
2 R

k
ils!

l
^ !s + Pkil�!

l
^ !�n

o

�

n
hn+1ik|l !

l
+ hn+1ik;�!

�
n + hn+1lk !li + hn+1il !lk � hn+1ik ✓n+1n+1

o
^ !kj

�hn+1ik

n
� !kl ^ !lj +

1
2 R

k
jls!

l
^ !s + Pkjl�!

l
^ !�n

o

+

n
hn+1i j |k !

k
+ hn+1i j;�!

�
n + hn+1k j !ki + hn+1ik !kj

o
^ ✓n+1n+1

+hn+1i j

n
2hn+1sk hn+1nl Asn+1n+1 � 2hn+1sk hn+1nn Astn+1Atln+1

o
!k ^ !l

+2hn+1i j hn+1sk Asn+1�!k ^ !�n

=

n
�

1
2h

n+1
s j Rsikl �

1
2h

n+1
is Rkjkl + 2hn+1i j hn+1sk hn+1nl Asn+1n+1

�2hn+1i j hn+1sk hn+1nn Astn+1Atln+1
o
!k ^ !l

+

n
� hn+1s j Psik� � hn+1s j Pkjk� + 2hn+1i j hn+1sk Asn+1�

o
!k ^ !�n

�hn+1k j |l !
l
^ !ki � hn+1k j;�!

�
n ^ !ki � hn+1ik|l !

l
^ !kj � hn+1ik;�!

�
n ^ !kj

�hn+1i j |k ✓
n+1
n+1 ^ !k � hn+1i j;� ✓

n+1
n+1 ^ !�n .

(3.3)

It can be seen from (3.2) and (3.3) that

n
hn+1i j |k|l �

1
2h

n+1
s j Rsikl �

1
2h

n+1
is Rsjkl �

1
2h

n+1
i j;� R

�
nkl

+2hn+1i j hn+1sk hn+1nl Asn+1n+1 � 2hn+1i j hn+1sk hn+1nn Astn+1Atln+1
o
!k ^ !l

+

n
hn+1i j |k;� � hn+1i j;�|k + hn+1i j;µP

µ
nk� + hn+1is Psjkl + hn+1s j Psikl � hn+1i j |k An+1n+1�

+2hn+1i j hn+1sk Asn+1�
o
!k ^ !�n + hn+1i j;�;µ!

�
n ^ !

µ
n

= 0.

(3.4)
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From (3.4) we immediately obtain the following:

Proposition 3.1. If Mn be a hypersurface of Minkowski space (V n+1, F), then8>>>>>>>>>>>><
>>>>>>>>>>>>:

hn+1i j;�;µ � hn+1i j;µ;� = 0,

hn+1i j |k;� � hn+1i j;�|k = �hn+1s j Psikl � hn+1is Psjkl � hn+1i j;µP
µ
nk� + hn+1i j |k An+1n+1�

�2hn+1i j hn+1sk Asn+1�,

hn+1i j |k|l � hn+1i j |l|k = hn+1s j Rsikl + hn+1is Rsjkl + hn+1i j;� R
�
nkl

�2hn+1i j hn+1sk hn+1nl Asn+1n+1 + 2hn+1i j hn+1sl hn+1nk Asn+1n+1
+2hn+1i j hn+1sk hn+1nn Astn+1Atln+1
�2hn+1i j hn+1sl hn+1nn Astn+1Atkn+1.

The form B = hn+1i j !i ⌦ ! j
⌦ en+1 is called the second fundamental form of M

and H =
1
n tr B =

1
n

P
i h

n+1
i i en+1 is called the mean curvature vector. The norm

square S of the second fundamental form of M is S =

P
i j (h

n+1
i j )2. Let �i be

the eigenvalues of the second fundamental tensor hn+1i j of M . The second mean
curvature H2 =

2
n(n�1)

P
1i< jn �i� j =

1
n(n�1) [(nH)2 � S].

From the second formula of Proposition 2.1, we obtain that

A(•, •,rei en) + A(•, •, e�)9�ni + A(•, •, en+1)hn+1ni = 0. (3.6)

Let P be an arbitrary point in M . There exists a local coordinate system {xi } such
that Y

n

F
@
@xn = en . Let � (t) be a curve in M with � (0) = P and tangent vector field

�̇ (t) = en . Let Xi (t) be parallel vector fields along � (t) with Xi (0) =
@
@xi |p. We

have that ren
@
@xi =

Yn
F r @

@xn
@
@xi = 0 at P , i.e. 0kni = 0 at P , then we can obtain that

at P
A(•, •,rei en) = A(•, •, Y

n

F ru ji
@

@x j

@
@xn )

= A(•, •, Y
n

F u
j
i 0

k
jn

@
@xk ) = 0.

(3.7)

Substituting (3.7) into (3.6) yields that A(•, •, e j )9 jni + A(•, •, en+1)hn+1ni = 0 at
P , which together with (2.4) yields that�hn+1nn A jin+1Ast j +hn+1ni Astn+1 = 0 at P ,
so by (2.4) we have that

9i jk = 0 and hn+1ni A(•, •, en+1) = 0, 8i, j, k, at P. (3.8)

It follows from the first formula of Proposition 2.1 and A(•, •, •)|i = 0 that

A(•, •, •);�9�ni + A(•, •, •);n+1hn+1ni = 0 at P. (3.9)

It can be seen from (3.8) and (3.9) that

A(•, •, •);n+1hn+1ni = 0 at P. (3.10)
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Now taking the exterior differentiation of Ai jk = Ai jk , we obtain that

Ai jk|l = Ai jk;�9�nl + Ai jk;n+1hn+1nl
+Asjk9sil + Aisk9s jl + Ai js9skl
+An+1 jkhn+1il + Ain+1khn+1jl + Ai jn+1hn+1kl .

(3.11)

By (3.8) and (3.11), we obtain that
Ai jk|n = 0 at P. (3.12)

Define �Y i = dY i + Ni
jdx

j . The pull-back of the Sasaki metric gi j dxi ⌦ dx j +

gi j�Y i ⌦ �Y j from T M\{0} to the sphere bundle SM is a Riemannian metricbg =

gi j dxi ⌦ dx j + �ab!
a
n ⌦ !bn .

We quote the following results:
Lemma 3.2 ([5]). For X=

P
i xi!i20(⇡⇤T ⇤M), divbg X=

P
i xi |i+

P
µ,� xµPn��µ.

Lemma 3.3 ([6]). Let B be a real symmetric matrix with tr B = 0. Then

|tr B3| 

n � 2
p

n(n � 1)
(tr B2)

3
2 .

Lemma 3.4 ([4]). All Landsberg spaces of nonzero constant flag curvature must be
Riemannian.

Let � =

P
i, j �i j!

i
⌦ ! j be a symmetric tensor defined on the sphere bundle

SM and =

P
i  i!

i
2 0(⇡⇤T ⇤M). Now we can define an operator⇤ associated

to � by

⇤ f =

X
i, j
�i j f|i | j +

X
i,�,µ

�i� f|i Pnµµ� +

X
i
 i f|i , 8 f 2 C1(SM). (3.13)

Proposition 3.5. Let (M, F) be a compact manifold. Then the operator ⇤ is self-
adjoint if and only if

P
j �i j | j �  i = 0.

Proof. Let X =

P
i, j g�i j f|i! j

2 0(⇡⇤T ⇤M), 8 f, g 2 C1(SM). Then we have
from Lemma 3.2
divbg X =

X
i, j

{g| j�i j f|i + g�i j | j f|i + g�i j f|i | j } +

X
i,�,µ

g�i� f|i Pnµµ�

=

X
i, j

g| j�i j f|i +

X
i
g i f|i +

X
i, j

g�i j f|i | j +

X
i,�,µ

g�i� f|i Pnµµ�.
(3.14)

Integrating (3.14) yieldsZ
SM

(⇤ f )gdVSM = �

Z
SM

X
i, j

g| j�i j f|i dVSM . (3.15)

Hence we get Z
SM

(⇤ f )gdVSM =

Z
SM

(⇤g) f dVSM , (3.16)

which completes the proof.
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4. Proof of the main theorem

Substituting (3.8) into the second formula of Proposition 2.2, by Proposition 2.3
and Proposition 3.1, we obtain that at P

8><
>:
hn+1i j |k|l = hn+1ik| j |l + hn+1sk 9si j |l + hn+1s j 9sik|l

hn+1i j |k|l = hn+1i j |l|k + hn+1s j Rsikl + hn+1is Rsjkl
R j
ikl = �h↵ikh

↵
jl + h↵ilh

↵
jk +9 j ik|l �9 j il|k .

(4.1)

Let ! = dS = S|i!
i
+ S;i!

i
n . Then ! is a global section of ⇡⇤T ⇤M . By the first

formula of (2.24), we have S;i = 0, i.e. ! = dS = S|i!
i . In the following, the

computation is pointwisely estimated. Using the first formula of (4.1) and Lemma
3.2, we have that

divbg! =2

"X
i, j,k

hn+1i j hn+1i j |k

#
|k

+ 2
X
i, j,k

hn+1i j hn+1i j |� P
n
µµ�

=2
X
i, j,k

(hn+1i j |k )2 + 2
X
i, j,k

hn+1i j hn+1ik| j |k + 2
X
i, j,k,s

hn+1i j hn+1sk 9si j |k

+ 2
X
i, j,k,s

hn+1i j hn+1s j 9sik|k + 2
X
i, j,k

hn+1i j hn+1i j |� P
n
µµ�.

(4.2)

It can be seen from (4.1) and (4.2) that

divbg!= 2
X
i, j,k

(hn+1i j |k )2 + 2
X
i, j,k,s

hn+1i j

n
hn+1ki |k| j + hn+1si Rsk jk + hn+1ks Rsi jk

o

+ 2
X
i, j,k,s

hn+1i j h
n+1
sk 9si j |k+2

X
i, j,k,s

hn+1i j hn+1s j 9sik|k+2
X
i, j,k

hn+1i j hn+1i j |� P
n
µµ�

=

X
i, j,k

(hn+1i j |k )2 + 2
X
i, j,k,s

hn+1i j hn+1kk|i | j + 2
X
i, j,k

hn+1i j hn+1i j |� P
n
µµ�

+ nH
X
i

(�i � H)3 + 3nH2S � 2n2H4 � S2

�

X
i, j,k

(hn+1i j |k )2 +

X
i, j,k,s

hn+1i j hn+1kk|i | j +

X
i, j,k

hn+1i j hn+1i j |� P
n
µµ�

+

n � 1
n

[S � nH2]
n
2(n � 1)H2 �

n � 2
n

S

�

n � 2
n

p
(n(n � 1)H2 + S)(S � nH2)

o
,

(4.3)
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where the second mean curvature H2 =
1

n(n�1) [(nH)2 � S]. Let

⇤ f =

X
i, j

(nH�i j � hn+1i j ) f|i | j +

X
i,�,µ

(nH�i� � hn+1i� ) f|i Pnµµ�

+

X
i, j,k

(hn+1k j 9k ji � hn+1ki 9k j j ) f|i .

By the second formula of Proposition 2.3, we can obtain thatX
j

(nH�i j � hn+1i j )| j �

X
j,k

(hn+1k j 9k ji � hn+1ki 9k j j ) = 0,

which together with Proposition 3.5 implies that the operator ⇤ is self-adjoint.
When H2 is constant, we have the following computation by (4.3)

⇤(nH) =

X
i
nH(nH)|i |i �

X
i, j,k

hn+1i j hn+1kk|i | j

+

X
i,�,µ

(nH�i� � hn+1i� )(nH)|i Pnµµ�

+

X
i, j,k

(hn+1k j 9k ji � hn+1ki 9k j j )(nH)|i

�

X
i, j,k

(hn+1i j |k )2 �

X
i

(nH|i )
2

+

(n � 1)
n

[S � nH2]
n
2(n � 1)H2 �

n � 2
n

S

�

n � 2
n

p
(n(n � 1)H2 + S)(S � nH2)

o

+

X
i,�,µ

(nH�i� � hn+1i� )(nH)|i Pnµµ�

+

X
i, j,k

(hn+1k j 9k ji � hn+1ki 9k j j )(nH)|i .

(4.4)

Using the fact that Pni j� = �Ai j�|n , by (3.12) and (3.8) we have

⇤(nH) �

X
i, j,k

(hn+1i j |k )2 �

X
i

(nH|i )
2

+

(n � 1)
n

[S � nH2]
n
2(n � 1)H2 �

n � 2
n

S

�

n � 2
n

p
(n(n � 1)H2 + S)(S � nH2)

o
.

(4.5)

On the other hand, let x = xa @
@xa be the position vector field of the Minkowski

space V n+1 with respect to the origin. By a direct simple computation, we get
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rZ x = Z , 8Z = za @
@xa on V

n+1. This together with the second formula of
Proposition 2.1 implies that rei x2 = 2hei , xi and rei hei , xi = ✓

j
i (ei )he j , xi +

hn+1i i hen+1, xi+1. Then, when M is compact, there exists a point P 2 M such that
hn+1i i (P) > 0,8i , hence we have that n(n � 1)H2(P) =

P
1i< jn �i (P)� j (P) >

0, thus the constant H2 > 0, which yields (nH)2 > S. On the other hand, we have

X
i

(nH)2(nH|i )
2

=

X
i

"X
j,k

hn+1jk hn+1jk|i

#2
 S

X
i, j,k

[hn+1jk|i ]
2. (4.6)

Hence
(nH|i )

2
 (hn+1jk|i )

2. (4.7)

It can be seen that our assumption S 
n(n�1)
n�2 H2 is equivalent to

2(n � 1)H2 �

n � 2
n

S �

n � 2
n

p
(n(n � 1)H2 + S)(S � nH2) � 0, (4.8)

therefore the right-hand side of (4.5) is non-negative by (4.7) and (4.8). Because
of the compactness of M , we get that hn+1i j is constant and hn+1i j = 0,8i 6= j on
M . Exterior differentiation of hn+1na = 0 yields hn+1aa = hn+1nn , 8a = 1, · · · , n � 1,
i.e., hn+1i i = H,8i . Since hn+1i j |k = 0, it can be seen from the second formula of
Proposition 2.3 that

hn+1lk 9li j � hn+1l j 9lik = 0. (4.9)

Set j = n, k = � in (4.9); by hn+1i j = 0,8i 6= j we obtain that

hn+1�� 9�in � hn+1nn 9ni� = 0, (4.10)

which together with (2.4) yields

hn+1nn Ai jn+1 = 0,8i, j. (4.11)

So we get that 9i jk = 0 on M . Using the first formula of Proposition 2.2, we have
that Pni j� = 0 on M , thus M is a Landsberg space. It is easy to see from the second
formula of Proposition 2.2 and hn+1i j = H�i j that

R j
ikl = H(�il� jk � �ik� jl). (4.12)

It can be seen from hn+1i i = H and the constant H2 =
1

n(n�1) [(nH)2 � S] > 0
that H 6= 0 is constant, hence we get that M is a Landsberg space with the nonzero
constant flag curvature H , which together with Lemma 3.4 finishes the proof of
Theorem 4.2.
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