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An existence theorem for steady Navier-Stokes equations
in the axially symmetric case

MIKHAIL KOROBKOV, KONSTANTIN PILECKAS AND REMIGIO RUSSO

Abstract. We study the nonhomogeneous boundary value problem for the
Navier-Stokes equations of steady motion of a viscous incompressible fluid in a
bounded three-dimensional domain with multiply connected boundary. We prove
that this problem has a solution in some axially symmetric cases, in particular,
when all components of the boundary intersect the axis of symmetry.

Mathematics Subject Classification (2010): 35Q30 (primary); 76D03, 76D05
(secondary).

1. Introduction

Let � be a bounded domain in R3 with Lipschitz boundary @� = 00 [ . . . [ 0N ,
consisting of N + 1 disjoint connected components 0 j . Consider the stationary
Navier–Stokes system with nonhomogeneous boundary conditions

8><
>:

�⌫1u+

�
u · r

�
u+ r p = 0 in �,

div u = 0 in �,

u = a on @�.

(1.1)

The continuity equation (1.12) implies the compatibility condition
Z
@�

a · n dS =

NX
j=0

Z
0 j

a · n dS =

NX
j=0
Fi = 0 (1.2)
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necessary for the solvability of (1.1), where n is the unit outward normal vector to
@� and F j =

R
0 j

a · n dS.

Starting from the famous paper of J. Leray [23] published in 1933, problem
(1.1) was studied in many articles (see, e.g., [1], [2], [8]– [13], [18]– [21], [26]–
[36], etc.). However, for a long time the existence of a weak solution u 2 W 1,2(�)
to problem (1.1) was established only under the assumption that

F j =

Z
0 j

a · n dS = 0, j = 1, 2, . . . , N , (1.3)

or for sufficiently small fluxes (see [23], [20]– [21], [9], [36], [18], etc.). Condition
(1.3) requires the flux of the boundary value a to vanish separately through each
component 0 j of the boundary @�, while the compatibility condition (1.2) means
only that the total flux vanishes. Thus, (1.3) is stronger than (1.2) (condition (1.3)
excludes the presence of sinks and sources).

A detailed survey of available results appeared in the recent papers [15] and
[28]– [29]. In particular, in the latter papers Pukhnachev established the existence
of a solution to (1.1) in the three-dimensional case when the domain � and the
boundary value a have a symmetry axis and a symmetry plane perpendicular to this
axis, moreover, this plane intersects each boundary component (for a more precise
formulation, see below).

In this paper we study the problem in the axially symmetric case. Take coordi-
nate axes Ox1, Ox2,Ox3 inR3 and consider cylindrical coordinates ✓=arctg(x2/x1),
r = (x21 + x22)

1/2, z = x3. Denote by v✓ , vr , vz the projections of a vector v on the
axis ✓, r, z.

A function f is said to be axially symmetric if it is independent of ✓ . A vector-
valued function h = (h✓ , hr , hz) is called axially symmetric if h✓ , hr and hz are
independent of ✓ . A vector-valued function h = (h✓ , hr , hz) is called axially sym-
metric without rotation if h✓ = 0 while hr and hz are independent of ✓ .

We will use the following symmetry assumptions.
(SO)� ⇢ R3 is a bounded domain with Lipschitz boundary and Ox3 is a symmetry
axis of �.
(AS) The assumptions (SO) are fulfilled and the boundary value a 2 W 1/2,2(@�) is
axially symmetric.
(ASwR) The assumptions (SO) are fulfilled and the boundary value a2W 1/2,2(@�)
is axially symmetric without rotation.

Denote by � j the bounded simply connected domain with @� j = 0 j , j =

0, . . . , N . Let �0 be the largest domain, i.e.,

� = �0 \

�
[
N
j=1�̄ j

�
.

Here and henceforth we denote by Ā the closure of a set A.
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Let
0 j \ Ox3 6= ;, j = 0, . . . ,M,

0 j \ Ox3 = ;, j = M + 1, . . . , N .

We shall prove the existence theorem provided that one of the following two addi-
tional conditions is fulfilled:

M = N � 1, FN � 0, (1.4)

or
|F j | < �, j = M + 1, . . . , N , (1.5)

where � = �(⌫,�) is sufficiently small (we specify �(⌫,�) in Section 4). In partic-
ular, (1.5) includes the case N = M when each component of the boundary inter-
sects the axis of symmetry. Notice that in (1.4), (1.5) the fluxes F j , j = 1, . . . ,M ,
could be arbitrarily large.

(a) M = N = 2
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Figure 1.1. Domain �.

Figure 1.1 depicts several possible domains �. In case (a) all fluxes F0,F1 and
F2 are arbitrary; in case (b) the fluxes F0,F1,F2 are arbitrary, while F3 has to be
nonnegative, but there is no restriction on its size; in the case (c) the fluxes F0,F1
are arbitrary, while F2 and F3 have to be ”sufficiently small”.

The main result of this paper reads as follows.
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Theorem 1.1. Let conditions (AS) and (1.2) be fulfilled. Suppose that either (1.4)
or (1.5) holds. Then problem (1.1) admits at least one weak axially symmetric
solution u 2 W 1,2(�).

If, in addition, conditions (ASwR) are fulfilled, then problem (1.1) admits at
least one weak axially symmetric solution without rotation.

For the definition of a weak solution, see Section 2.1. Analogous results in the
plane case were established in [15].

Note that in [29] the existence theorem was obtained under the following as-
sumptions on the axially symmetric boundary data a = (a✓ , ar , az): a✓ ⌘ 0 (i.e.,
the axially symmetric case without rotation), {z = 0} is a symmetry plane of�, and
each boundary component 0 j intersects this plane; furthermore, ar is an even func-
tion of z, while az is an odd function of z (no restrictions on the size of the fluxes).
Under these assumptions, the number N of boundary components can be arbitrarily
large, but only at most two of them can intersect the symmetry axis, in our notation
that means M  1. Therefore, neither our Theorem 1.1 implies Pukhnachev’s re-
sult, nor the latter implies the former, and so these results are in a sense independent.
Moreover, the proof in [29] is based on different ideas; in particular, in [29] a priori
estimates for the velocity field were obtained without using Leray’s contradiction
argument.

Let us also remark that Alekseev and Pukhnachev recently obtained [30] an
existence theorem for the steady Navier–Stokes equations in the axially symmetric
case with boundary conditions formulated in terms of stream function and vorticity.
Of course, this result is even farther from our Theorem 1.1 than the previous one.

Our proof of Theorem 1.1 uses Bernoulli’s law for a weak solution of the Euler
equations and the weak one-sided maximum principle for the total head pressure
corresponding to this solution (see Section 3). These results were obtained in [14]
for the plane case (see [15] for more detailed proofs). The proof of Bernoulli’s
law for solutions in Sobolev spaces is based on the recent results of [3] (see also
Section 2.2).

A short version of this paper appeared as [16].

ACKNOWLEDGEMENTS. The authors are much indebted to V.V. Pukhnachev for
valuable discussions.

2. Notation and preliminary results

By a domain we mean a connected open set. Let � ⇢ R3 be a bounded do-
main with Lipschitz boundary @�. We use standard notation for function spaces:
Ck(�̄), Ck(@�), Wk,q(�), W̊ k,q(�), W↵,q(@�), where ↵ 2 (0, 1), k 2 N0, and
q 2 [1,+1]. In our notation we do not distinguish function spaces of scalar- and
vector-valued functions; it is clear from the context whether we use scalar, vector, or
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tensor-valued function spaces. Denote by H(�) the subspace of all solenoidal vec-
tor fields (divu= 0) from W̊ 1,2(�) equipped with the norm kukH(�) = krukL2(�).
Observe that for functions u 2 H(�) the norm k ·kH(�) is equivalent to k ·kW 1,2(�).

Working with Sobolev functions, we always assume that the “best representa-
tives” are chosen. For w 2 L1loc(�) the best representative w⇤ is defined as

w⇤(x) =

8<
:
lim
r!0

Z
Br (x)

w(z)dz, if the finite limit exists;

0 otherwise,

where Z
Br (x)

w(z)dz =

1
meas(Br (x))

Z
Br (x)

w(z) dz,

and Br (x) = {y : |y � x | < r} is the ball of radius r centered at x .
Below (see Theorem 3.7) we discuss some properties of the best representa-

tives for Sobolev functions.

2.1. Some facts about solenoidal functions

The following lemmas concern the existence of solenoidal extensions of boundary
values and an integral representation for bounded linear functionals vanishing on
the solenoidal functions.

Lemma 2.1 (see Corollary 2.3 in [22]). Let � ⇢ R3 be a bounded domain with
Lipschitz boundary. If a2W 1/2,2(@�) and (1.2) holds, then there exists a solenoidal
extension A2W 1,2(�) of a with

kAkW 1,2(�)  ckakW 1/2,2(@�). (2.1)

From this lemma we can deduce some assertions for the symmetric case.

Lemma 2.2. If conditions (AS) and (1.2) are fulfilled, then there exists an axially
symmetric solenoidal extension A 2 W 1,2(�) of a such that estimate (2.1) holds.
Proof. Take a solenoidal extension A0 2 W 1,2(�) of a from Lemma 2.1. Put

Ai (✓, r, z) =

1
i !

i !X
j=0
A0

✓
✓ +

2⇡ j
i !

, r, z
◆

.

Clearly, each Ai is also a solenoidal extension of a and the estimate (2.1) holds for
Ai with the same c (independent of i). By construction

Ai (✓ +

2⇡ j
m

, r, z) = Ai (✓, r, z) for all m = 1, . . . , i. (2.2)

Take a weakly convergent sequence Aik * A in W 1,2(�). Then by construction
divA = 0, A|@� = a, and (2.1) holds. Now (2.2) implies that A(✓ +

2⇡ j
m , r, z) =

A(✓, r, z) for all m, j . Hence A is axially symmetric.
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Lemma 2.3. Let conditions (ASwR) and (1.2) be fulfilled. Then there exists a
solenoidal extension A 2 W 1,2(�) of a such that A is axially symmetric without
rotation and estimate (2.1) holds.

Proof. Take a solenoidal extension ˜A= ( Ã✓ , Ãr , Ãz) 2W 1,2(�) of a from Lemma
2.2. Then a classical formula yields

div ˜A(✓, r, z) =

1
r
@

@✓
( Ã✓ ) +

1
r
@

@r
( Ãrr) +

@

@z
( Ãz)

=

1
r
@

@r
( Ãrr) +

@

@z
( Ãz) = 0.

(2.3)

Here @ Ã✓@✓ = 0 because of axial symmetry. Define the vector field A = (A✓ , Ar , Az)
by putting

A✓ = 0, Ar = Ãr , Az = Ãz .

Then by construction A is axially symmetric without rotation, A|@� = a, and esti-
mate (2.1) holds. Now (2.3) implies that divA = 0.

Lemma 2.4 (see [33]). Let � ⇢ R3 be a bounded domain with Lipschitz boundary
and R(⌘) a continuous linear functional defined on W̊ 1,2(�). If

R(⌘) = 0 8 ⌘ 2 H(�),

then there exists a unique function p 2 L2(�) with
R
�

p(x) dx = 0 such that

R(⌘) =

Z
�

p div ⌘ dx 8 ⌘ 2 W̊ 1,2(�).

Moreover, kpkL2(�) is equivalent to kRk(W̊ 1,2(�))⇤ .

Lemma 2.5. If, in addition to the hypotheses of Lemma 2.4, the domain � satisfies
assumption (SO) and R(⌘) ⌘ R(⌘✓0) for all ⌘ 2 H(�) and ✓0 2 [0, 2⇡], where
⌘✓0(✓, r, z) := ⌘(✓ + ✓0, r, z), then the function p is axially symmetric.

Proof. Take the function p of Lemma 2.4. For ✓0 2 [0, 2⇡] define a function p✓0
by p✓0(✓, r, z) = p(✓ � ✓0, r, z). By construction,Z

�

p div ⌘ dx = R(⌘) = R(⌘✓0) =

Z
�

p div ⌘✓0 dx

=

Z
�

p✓0div ⌘ dx 8 ⌘ 2 W̊ 1,2(�).

Since p is unique, the identity p(x) ⌘ p✓0(x) follows.
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Lemma 2.6 (see [21]). Let � ⇢ R3 be a bounded domain with Lipschitz boundary
and let A 2 W 1,2(�) be divergence-free. Then there exists a unique weak solution
U 2 W 1,2(�) to the Stokes problem satisfying the boundary condition U|@� =

A|@�, i.e., U� A 2 H(�) and
Z
�

rU · r⌘ dx = 0 8 ⌘ 2 H(�). (2.4)

Moreover,
kUkW 1,2(�)  ckAkW 1,2(�). (2.5)

Lemma 2.7. If, in addition to the hypotheses of Lemma 2.6, the domain � satisfies
assumptions (SO) and also A is axially symmetric, then U is axially symmetric too.

Proof. Take a solution U to the Stokes problem of Lemma 2.6. For ✓0 2 [0, 2⇡] de-
fine the functionU✓0 by the formulaU✓0(✓, r, z) := U(✓�✓0, r, z). By construction,
U✓0 � A 2 H(�). Moreover,

Z
�

rU✓0 · r⌘ dx =

Z
�

rU · r⌘✓0 dx = 0 8 ⌘ 2 H(�),

where ⌘✓0(✓, r, z) := ⌘(✓ + ✓0, r, z). By uniqueness, the identity U(x) ⌘ U✓0(x)
follows.

Lemma 2.8. If, in addition to the hypotheses of Lemma 2.6, the vector field A is
axially symmetric without rotation, then U is also axially symmetric without rota-
tion.

Proof. Take the axially symmetric function U = (U✓ ,Ur ,Uz) of Lemmas 2.6–2.7
and define ⌘ = (⌘✓ , ⌘r , ⌘z) by putting

⌘✓ ⌘ U✓ , ⌘r = ⌘z ⌘ 0.

Then Lemma 2.7 implies that ⌘ 2 H(�) (see also (2.3)). Consequently, (2.4) yields
Z
�

rU · r⌘ dx = 0. (2.6)

However,

rU · r⌘ ⌘

✓
U✓
r

◆2
+

✓
@U✓
@r

◆2
+

✓
@U✓
@z

◆2
(2.7)

by a straightforward calculation, and the required equality U✓ ⌘ 0 follows from
(2.6), (2.7).
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Given a function f 2 Lq(�) with 1  q  6/5 consider the continuous linear
functional H(�) 3 ⌘ 7!

R
�

f · ⌘ dx . By the Riesz representation theorem, there

exists a unique function g 2 H(�) withZ
�

f · ⌘ dx =

Z
�

r⌘ · rg dx = hg, ⌘iH(�) 8⌘ 2 H(�).

Put g = T0f. Evidently, T0 is a continuous linear operator from Lq(�) to H(�).
Denote by LqAS(�) the space of all axially symmetric vector-valued functions

in Lq(�). Similarly define the spaces LqASwR(�), HAS(�), HASwR(�), W 1,2
AS (�),

W 1,2
ASwR(�), etc.

Lemma 2.9. The operator T0 : L3/2(�) ! H(�) has the following symmetry
properties:

8f 2 L3/2AS (�) T0f 2 HAS(�), (2.8)

8f 2 L3/2ASwR(�) T0f 2 HASwR(�). (2.9)
Proof. We can prove (2.8) in the same way as Lemma 2.7 and (2.9) as Lemma 2.8.

Lemma 2.10. The following inclusions are valid:

8u, v 2 HAS(�) (u · r)v 2 L3/2AS (�), (2.10)

8u, v 2 HASwR(�) (u · r)v 2 L3/2ASwR(�). (2.11)
Proof. Direct calculation.

Take a 2 W 1/2,2(@�) and assume that conditions (1.2) and (AS) (or (ASwR) )
are fulfilled. Take the corresponding axially symmetric functions A and U of Lem-
mas 2.2–2.3, 2.7–2.8. Put w = u� U. Then problem (1.1) is equivalent to8>>>>><

>>>>>:

�⌫1w+

�
U · r

�
w+

�
w · r

�
w+

�
w · r

�
U

= �r p �

�
U · r

�
U in �,

div w = 0 in �,

w = 0 on @�.

(2.12)

By a weak solution to problem (1.1) we understand a function u such that w =

u� U 2 H(�) and

⌫hw, ⌘iH(�) = �

Z
�

�
U · r

�
U · ⌘ dx �

Z
�

�
U · r

�
w · ⌘ dx

�

Z
�

�
w · r

�
w · ⌘ dx �

Z
�

�
w · r

�
U · ⌘ dx 8⌘ 2 H(�).

(2.13)
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By the Riesz representation theorem, for any w 2 H(�) there exists a unique func-
tion Tw2H(�) such that the right-hand side of (2.13) is equivalent to hTw, ⌘iH(�)

for all ⌘ 2 H(�). Obviously, T is a nonlinear operator from H(�) to H(�).

Lemma 2.11. The operator T : H(�) ! H(�) is compact. Moreover, T has the
following symmetry properties:

8w 2 HAS(�) Tw 2 HAS(�), (2.14)

8w 2 HASwR(�) Tw 2 HASwR(�). (2.15)

Proof. The first claim is well-known (see [21]). The symmetry claims follow from
Lemmas 2.9–2.10.

Obviously, (2.13) is equivalent to the operator equation

⌫w = Tw (2.16)

in the space H(�). Thus, we can apply the Leray–Schauder fixed point theorem to
the compact operators T |HAS(�) and T |HASwR(�). The following statements hold.

Lemma 2.12. Let conditions (AS), (1.2) be fulfilled. Suppose that all possible so-
lutions to the equation ⌫w = �Tw with � 2 [0, 1] and w 2 HAS(�) are uniformly
bounded in HAS(�). Then problem (1.1) admits at least one weak axially symmet-
ric solution.

Lemma 2.13. Let conditions (ASwR), (1.2) be fulfilled. Suppose that all possible
solutions to the equation ⌫w = �Tw with � 2 [0, 1] and w 2 HASwR(�) are
uniformly bounded in HASwR(�). Then problem (1.1) admits at least one weak
axially symmetric solution without rotation.

2.2. On the Morse–Sard and Luzin N-properties of Sobolev functions in W 2,1

First we recall some classical differentiability properties of Sobolev functions.

Lemma 2.14 (see Proposition 1 in [6]). If  2 W 2,1(R2), then  is continuous
and there exists a set A such that H1(A ) = 0 and  is differentiable (in the
classical sense) at each x 2 R2 \ A . Furthermore, the classical derivative at these
points x coincides withr (x) = lim

r!0

R
Br (x) r (z)dz, where lim

r!0

R
Br (x) |r (z)�

r (x)|2dz = 0.

Here and henceforth we denote byH1 the one-dimensional Hausdorff measure,
i.e., H1(F) = lim

t!0+
H1t (F), where

H1t (F) = inf

(
1X
i=1

diamFi : diamFi  t, F ⇢

1[
i=1

Fi

)
.

The following theorems have been proved recently by J. Bourgain, M. Korobkov
and J. Kristensen [3].
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Theorem 2.15. Let D ⇢ R2 be a bounded domain with Lipschitz boundary and
 2 W 2,1(D). Then:

(i) H1({ (x) : x 2
¯D \ A & r (x) = 0}) = 0;

(ii) for every " > 0 there exists � > 0 such that for every set U ⇢
¯D with

H1
1

(U) < � the inequality H1( (U)) < " holds;

(iii) for H1-almost all y 2  ( ¯D) ⇢ R the preimage  �1(y) is a finite disjoint
family of C1-curves S j , j = 1, 2, . . . , N (y). Each S j is either a cycle in D
(i.e., S j ⇢ D is homeomorphic to the unit circle S1) or a simple arc with
endpoints on @D (in this case S j is transversal to @D ).

Theorem 2.16. Let D ⇢ R2 be a bounded domain with Lipschitz boundary and
 2 W 2,1(D). Then for every " > 0 there exist an open set V ⇢ R and a function
g 2 C1(R2) such that  (A ) ⇢ V , H1(V ) < ", and the identities  (x) ⌘ g(x),
r (x) = rg(x) 6= 0 hold for all x 2

¯D provided that  (x) /2 V .

We say that a value y 2  ( ¯D) is regular if it satisfies condition (iii) of The-
orem 2.15 and  (x) /2 V for some g and V of Theorem 2.16. Observe that by
Theorems 2.15 and 2.16 almost all values y 2  ( ¯D) are regular.

3. Euler equation

We study the Euler equation under the following assumptions.
(E) Let conditions (SO) be fulfilled. Suppose that some axially symmetric

functions v 2 W 1,2(�) and p 2 W 1,3/2(�) satisfy the Euler system

(
�0

�
v · r

�
v+ r p = 0,

div v = 0
(3.1)

for almost all x 2 �. Moreover, suppose that

v|@� = 0. (3.2)

Put P+ = {(0, x2, x3) : x2 > 0, x3 2 R}, D = � \ P+, D j = � j \ P+. Of
course, on P+ the coordinates x2 and x3 coincides with r and z. From (SO) we can
easily infer that

(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, C j :=

P+ \ 0 j is a connected set for each j = 0, . . . , N . In other words, {C j : j =

0, . . . , N } coincides with the set of all connected components of P+ \ @D.
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Then v and p satisfy the following system of equations in the plane domainD:
8>>>>>><
>>>>>>:

@p
@z + �0vr

@vz
@r + �0vz

@vz
@z = 0,

@p
@r � �0

(v✓ )
2

r + �0vr
@vr
@r + �0vz

@vr
@z = 0,

v✓vr
r + vr

@v✓
@r + vz

@v✓
@z = 0,

@(rvr )
@r +

@(rvz)
@z = 0

(3.3)

(the equations are satisfied for almost all x 2 D ).
The next statement was proved in [13, Lemma 4] and [1, Theorem 2.2].

Theorem 3.1. If conditions (E) are fulfilled, then

8 j 2 {0, . . . , N } 9 p j 2 R : p(x) ⌘ p j for H2-almost all x 2 0 j . (3.4)

In particular, by axial symmetry,

p(x) ⌘ p j for H1-almost all x 2 C j . (3.5)

Lemma 3.2 (e.g., [18], [27]). Under the assumptions of Theorem 3.1, the estimate

max
i, j=0,...N

|pi � p j |  �1�0kvk2H(�) (3.6)

holds, where the constant �1 depends only on �.

One of the main purposes of this section is to prove the following fact.

Theorem 3.3. Under the assumptions of Theorem 3.1, the equalities

p0 = p1 = · · · = pM (3.7)

are fulfilled.

To prove the last theorem, we need some preparation, in particular, a version
of Bernoulli’s Law in the Sobolev case (see Theorem 3.4 below).

The last equality in (3.3) and (3.2) imply that there exists a stream function
 2 W 2,2

loc (D) with
@ 

@r
= �rvz,

@ 

@z
= rvr . (3.8)

We have the following integral estimates: v 2 W 1,2
loc (D),

Z
D

r |v(r, z)|2 drdz < 1. (3.9)
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Using (3.8), we can rewrite this as
Z
D

|r (r, z)|2

r
drdz < 1. (3.10)

Fix a point x⇤ 2 D. For " > 0 denote by D" the connected component of D \

{(r, z) : r > "} containing x⇤. Since

 2 W 2,2(D") 8" > 0, (3.11)

the Sobolev Embedding Theorem yields  2 C( ¯D"). Hence,  is continuous at the
points of ¯D \ Oz =

¯D \ {(0, z) : z 2 R}.

Denote by8 = p+�0
|v|2

2
the total head pressure corresponding to the solution

(v, p). Obviously,
8 2 W 1,3/2(D") 8" > 0. (3.12)

Straightforward calculations yield the identity

vr
@8

@r
+ vz

@8

@z
= 0 (3.13)

for almost all x 2 D.
Theorem 3.4. Assume that conditions (E) are fulfilled (see the beginning of this
section). Then there exists a set Av ⇢ P+ with H1(Av) = 0 such that if for a
compact connected1 set K ⇢

¯D \ Oz

 
��
K = const, (3.14)

then
8(x1) = 8(x2) for all x1, x2 2 K \ Av. (3.15)

Theorem 3.4 was obtained in the plane case in [14, Theorem 1] (see also [15] for
a detailed proof).

To prove Theorem 3.4, we need some preliminaries.

Lemma 3.5. If conditions (E) are fulfilled, then

p 2 W 2,1
loc (D). (3.16)

Proof. Clearly, p is the (unique) weak solution to the Poisson equation
(
1p + �0rv · rv> = 0 in �

p = p̃, in @�,
(3.17)

1 We understand connectedness in the sense of general topology.
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with p̃ = tr |@� p 2 W 1/3,3/2(@�). Put

G(x) =

�0
4⇡

Z
�

(rv · rv>)(y)
|x � y|

dvy .

By the results of [5], rv · rv> belongs to the Hardy spaceH1(R3). Therefore, the
Calderón–Zygmund theorem for Hardy spaces [34] yields G 2 W 2,1(�). Take the
trace Ḡ 2 W 1/3,3/2(@�) of G on @� and the solution p⇤ 2 C1(�) to the problem(

1p⇤ = 0 in �,

p⇤ = p̃ � Ḡ in @�.
(3.18)

The uniqueness theorem yields

p = p⇤ + G(x) 2 W 2,1
loc (�).

From (3.16) we infer that prz ⌘ pzr for almost all x 2 D. Denote Z = {x 2 D :

vr (x) = vz(x) = 0}. By (3.3), we have

@p
@z

(x) = 0,
@p
@r

(x) = �0
(v✓ )

2

r
for almost all x 2 Z ,

and it is easy to deduce that

@8

@z
(x) = 0 for almost all x 2 D such that vr (x) = vz(x) = 0. (3.19)

Consider the stream function  . By (3.2) and (3.8) we have r (x) = 0 for H1-
almost all x 2 @D \Oz . Then the Morse–Sard property (see Theorem 2.15) implies
that

for every connected set C ⇢ @D \ Oz 9↵ = ↵(C) 2 R :  (x) ⌘ ↵ 8x 2 C.

Then by (S1) (see the beginning of Section 3)

8 j 2 {0, . . . , N } 9 ⇠ j 2 R :  (x) ⌘ ⇠ j 8x 2 C j . (3.20)

Remark 3.6. Since r = 0 on @D \ Oz (in the sense of traces), the function  
extends to the whole half-plane P+:

 (x) := ⇠0, x 2 P+ \D0,  (x) := ⇠ j , x 2 P+ \
¯D j , j = 1, . . . , N . (3.21)

The functions v, p and 8 extend to P+ as

v(x) = 0, x 2 P+ \D, (3.22)

p(x) = 8(x) =

(
p0, x 2 P+ \D0,
p j , x 2 P+ \

¯D j , j = 1, . . . , N .
(3.23)
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The extended functions inherit the properties of the original ones. Namely, (3.3),
(3.8)–(3.13), (3.19) hold with D and D" replaced by P+ and

P" :=

⇢
(r, z) : r 2


",
1
"

�
, z 2


�

1
"
,
1
"

��
, (3.24)

respectively.
For r0 > 0 denote by Lr0 the straight line parallel to the z-axis: Lr0 = {(r0, z) :

z 2 R}.
Working with Sobolev functions, we always assume that the “best representa-

tives” are chosen. We collect the basic properties of these “best representatives” in
the next theorem.

Theorem 3.7. There exists a set Av ⇢ P+ with the following properties.

(i) H1(Av) = 0.
(ii) For all x 2 P+ \ Av

lim
r!0

Z
Br (x)

|v(y) � v(x)|2dy = lim
r!0

Z
Br (x)

|8(y) �8(x)|3/2dy = 0,

lim
r!0

1
r

Z
Br (x)

|r8(y)|3/2dy = 0, (3.25)

and moreover, the function  is differentiable at x and r (x) = (�rvz(x),
rvr (x)).

(iii) For all " > 0 there exists an open setU ⇢ R2 with H1
1

(U) < " and Av ⇢ U
such that the functions v and 8 are continuous on P+ \U .

(iv) For each x0 = (r0, z0) 2 P+ \ Av and for every " > 0 we have the conver-
gence

lim
⇢!0+

1
2⇢

H1(E(x0, ", ⇢)) ! 1, (3.26)

where

E(x0, ", ⇢) :=

⇢
t 2(�⇢, ⇢) :

r0+⇢Z
r0�⇢

����@8@r (r, z0 + t)
����dr+

z0+⇢Z
z0�⇢

����@8@z (r0 + t, z)
����dz

+ sup
r2[r0�⇢,r0+⇢]

|8(r, z0 + t) �8(x0)|

+ sup
z2[z0�⇢,z0+⇢]

|8(r0 + t, z) �8(x0)| < "

�
.

(v) Take a function g 2 C1(R2) and a closed set F ⇢ P+ such that rg 6= 0 on
F . Then for almost all y 2 g(F) and for all connected components K of the
set F \ g�1(y) we have K \ Av = ;, the restriction 8|K is an absolutely
continuous function, while (3.3) and (3.13) holdH1-almost everywhere on K .
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Most of these properties are from [7]. For a detailed proof of Theorem 3.7
see, for example, [15]. The property (iv) follows directly from (3.25). The last
property (v) follows (by coordinate transformation, cf. [24, Section 1.1.7]) from
the well-known fact that every function f 2 W 1,1 is absolutely continuous along
almost all coordinate lines. The same fact together with (3.19) and (3.13) implies

Lemma 3.8. For almost all r0 > 0 we have Lr0 \ Av = ;; moreover, p(r0, ·) and
v(r0, ·) are absolutely continuous functions (locally) and

@8

@z
(r0, z) = 0 for almost all z 2 R with vr (r0, z) = 0. (3.27)

Below we prove that Bernoulli’s Law (Theorem 3.4) holds with the set Av from
Theorem 3.7. This requires several lemmas.

Lemma 3.9. For almost all y 2  (P+) we have

 �1(y) \ Av = ;, (3.28)

and for each continuum2 K ⇢  �1(y) the identities

8(x1) = 8(x2) for all x1, x2 2 K (3.29)

hold.

Proof. Fix some " > 0 and consider a function g 2 C1(R2) and an open set V with
H1(V ) < " from Theorem 2.16 applied to the function  |P" , where the rectangle
P" is defined by (3.24). Put F = P" \  �1(V ). Then  (x) = g(x) and r (x) =

rg(x) 6= 0 for all x 2 F . Thus, by Theorem 3.7 (v) for almost all y 2  (P")\V =

g(F) and for every connected component K of the set {x 2 P" :  (x) = y}
the equality K \ Av = ; holds and the restriction 8|K is absolutely continuous;
moreover, for every C1-smooth parametrization � : [0, 1] ! K the identity (3.13)
gives

[8(� (t))]0 = r8(� (t)) · � 0(t) = 0 for H1-almost all t 2 [0, 1]

(the last equality is valid because (x) = const on K , and hencer (� (t))·� 0(t) =

r(�vz(� (t)), vr (� (t))) · � 0(t) = 0). Thus, 8(x) = const on K . Since " > 0 is
arbitrary, the assertion of the lemma follows.

We also need certain technical facts about the continuity properties of 8 at
“good” points x 2 P+ \ Av.

Lemma 3.10. Take x0 2 P+ \ Av. Suppose that there exist a constant � > 0 and
a sequence of continua K j ⇢ P+ \ Av with 8|K j ⌘ � j and K j ⇢ Bx0(⇢ j ), where
⇢ j ! 0 as j ! 1, and diam(K j ) � �⇢ j . Then � j ! 8(x0) as j ! 1.

2 By a continuum we mean a compact connected set.
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Proof. Without loss of generality we may assume that the projection of each K j on
the Or -axis is a segment I j ⇢ [r0 � ⇢ j , r0 + ⇢ j ] of length �

1
2�⇢ j (otherwise the

same fact holds for the projection of K j on the Oz-axis). By Theorem 3.7 (iv), for
every " > 0 we have I j � {r0} \ E(x0, ", ⇢ j ) 6= ; for sufficiently large j . Thus,
|� j �8(x0)| < " for sufficiently large j .

Lemma 3.11. Suppose that for r0 > 0 the assertion of Lemma 3.8 is fulfilled, i.e.,
Lr0 \ Av = ;, p(r0, ·) and v(r0, ·) are absolutely continuous functions, and for-
mula (3.27) is valid. Assume that F ⇢ R is a compact set such that

 (r0, z) ⌘ const for all z 2 F (3.30)

and

8(r0,↵) = 8(r0,�) for every interval (↵,�) adjoining F (3.31)

(recall that (↵,�) is called an interval adjoining F if ↵,� 2 F and (↵,�)\F = ; ).
Then

8(r0, z) ⌘ const for all z 2 F. (3.32)

Proof. Take a pair z0, z00 2 F with z0 < z00. Define a function g(z) on the in-
terval [z0, z00] by the rule g(z) = 8(r0, z). By construction, g(·) is an abso-
lutely continuous function, and (3.31) implies that g(↵) = g(�) for every inter-
val (↵,�) ⇢ [z0, z00] adjoining F . Since by definition the absolutely continuous
function g(z) is differentiable almost everywhere and coincides with the Lebesgue
integral of its derivative, we obtain

�Z
↵

g0(z) dz = 0.

Hence,
⌫Z

µ

g0(z) dz = 0 (3.33)

if µ, ⌫ 2 F\[z0, z00] and the interval (µ, ⌫) contains only finitely many points of F .
Consider now the closed set

F1 ={z2 [z0, z00] : every neighborhood of z contains infinitely many points of F}.

By (3.33), Z
[z0, z00]\F1

g0(z) dz = 0. (3.34)
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According to properties (ii) of Theorem 3.7, the function is differentiable at every
point (r0, z) with z 2 (z0, z00). Hence, (3.30) yields  z(r0, z) = 0 for all z 2 F1.
Using (3.8), we can rewrite the last fact as vr (r0, z) = 0 for all z 2 F1. Then (3.27)
immediately implies that Z

F1

g0(z) dz = 0. (3.35)

Adding up (3.34) and (3.35), we obtain

g(z0) � g(z00) =

z00Z
z0

g0(z) dz = 0.

This is equivalent to the required equality 8(r0, z0) = 8(r0, z00). The proof of the
lemma is complete.

Proof of Theorem 3.4.

STEP 1. By Remark 3.6, we may assume without loss of generality that the contin-
uum K is a connected component of the set {x 2 P :  (x) = y0}, where y0 2 R
and P ⇢ P+ is a rectangle P := {(r, z) : r 2 [r1, r2], z 2 [z1, z2]} with r1 > 0,
while  (x) ⌘ ⇠0 and 8(x) ⌘ p0 for each x 2 @⇤P , where we denote

@⇤P = @P \ {(r1, z) : z 2 (z1, z2)}.

Put P�
= Int P = (r1, r2) ⇥ (z1, z2). Given " > 0, denote by K" the connected

component of the compact set {x 2 P :  (x) 2 [y0�", y0+"]} which includes K .
Clearly, K" ! K as " ! 0 in the Hausdorff metric3. By Theorem 2.15 and
Lemma 3.9 for almost all " > 0 the set P�

\ @K" is a finite disjoint union of
C1-curves on which the functions  and 8 are constant. This implies that for
each component Ui of the open set P�

\ K there exists a sequence of continua
Ki
j ⇢ Ūi \ Av such that each Ki

j is a C
1-curve homeomorphic to the segment

[0, 1] or to the circle S1, furthermore, Ki
j is a connected component of the set

{x 2 P :  (x) = ↵ij 6= y0}, 8|Ki
j

⌘ �ij , K
i
j ! K \ @Ui as j ! 1 in

the Hausdorff metric, and for every x 2 Ui there exists an index jx such that x
and K lie in the different connected components of the set P \ Ki

j for j � jx .
Using Lemma 3.10, it is easy to deduce from these facts that for every Ui the limit
�i = lim j!1 �ij exists and

8(x) = �i for all x 2 K \ @Ui \ Av. (3.36)

3 Recall that the Hausdorff metric dH between two compact sets A, B ⇢ Rn is defined as follows:
dH (A, B) = max

�
sup
a2A

dist(a, B), sup
b2B

dist(b, A)
�
(e.g., §7.3.1 in [4]).
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STEP 2. We claim that for almost all r0 2 (r1, r2) the identities

8(r0, z0) = 8(r0, z00) 8 (r0, z0), (r0, z00) 2 K (3.37)

hold. Indeed, take r0 2 (r1, r2) satisfying the assertion of Lemma 3.8 and points
(r0, z0), (r0, z00) 2 K . Put F = {z 2 [z0, z00] : (r0, z) 2 K }. By (3.36), we infer
that8(r0,↵) = 8(r0,�) for every interval (↵,�) ⇢ [z0, z00] adjoining F . Thus, the
required identity (3.37) follows directly from Lemma 3.11.

STEP 3. We claim that there exists �0 2 R with

�i ⌘ �0 (3.38)

for each component Ui (see formula (3.36)). We split the proof of this claim into
two cases.

(3a) Suppose that K \ @⇤P 6= ;. Then by construction (see the beginning of
Step 1) y0 = ⇠0, K � @⇤P , 8|@⇤P ⌘ p0, and we easily deduce from (3.36)–
(3.37) that �i ⌘ p0.

(3b) Suppose now that K \ @⇤P = ;. Let U1 be the component with @⇤P ⇢ @U1.
Then for each horizontal line Lr0 if Lr0 \ K 6= ;, then Lr0 \ K \ @U1 6= ;.
Hence, (3.36)–(3.37) imply that �i ⌘ �1. This justifies (3.38).

Now we can rewrite (3.36)–(3.37) as

8(x) = �0 for all x 2 K \ @Ui \ Av and each i, (3.39)

8(r, z) = �0 for almost all r 2 (r1, r2) and for every (r, z) 2 K (3.40)

(here �0 equals either p0 or �1).

STEP 4. We claim that
8(x0) = �0 (3.41)

for every x0 2 K \ Av. Indeed, fix x0 = (r0, z0) 2 K \ Av (for simplicity we
suppose that x0 2 P�). We divide the proof of the claim into two cases.

(4a) Suppose that there exists � > 0 such that K \ {(r0+ t, z) : |z� z0|  |t |} 6= ;

for every t 2 (��, �). Then (3.41) follows from (3.40) and assertion (iv) of
Theorem 3.7. Namely, fix " > 0 and take t 2 (��, �) \ E(x0, ", ⇢) (this
intersection is nonempty for sufficiently small ⇢) such that Lr0+t \ Av = ;

and (3.40) holds for r = r0 + t , i.e.,

8(r0 + t, z) = �0 for every z with (r0 + t, z) 2 K . (3.42)

By construction, |t | < ⇢. By our assumption (4a) there exists a point (r0 +

t, zt ) 2 K with |zt � z0|  |t | < ⇢. Theorem 3.7 (iv) implies that |8(r0 +

t, zt ) �8(x0)| < ". Using (3.42), we finally obtain |�0 �8(x0)| < ".
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(4b) Suppose now that assumption (4a) is false. Then there exists a sequence
0 6= tk ! 0 with

K \ {(r0 + tk, z) : |z � z0|  |tk |} = ;. (3.43)

This implies that each segment {(r0 + tk, z) : |z � z0|  |tk |} is included
into some Uik . Denote by Qk the open squares Qk = (r0 � |tk |, r0 + |tk |) ⇥

(z0 � |tk |, z0 + |tk |). It is easy to deduce that for sufficiently large k each
set Qk \ K \ @Uik includes a continuum Kk with diam(Kk) � |tk |. In-
deed, by construction there exists rk 2 [r0, r0 + tk) with (rk, z0) 2 @Uik
(the existence of rk follows from the inclusions (r0, z0) 2 K ⇢ R2 \ Uik
and (r0 + tk, z0) 2 Uik ). Take as Kk the closure of the connected compo-
nent of Qk \ @Uik containing the point (rk, z0). Then Kk \ @Qk 6= ;, as
otherwise there would be a contradiction with the connectedness of K . How-
ever, Kk does not intersect the segment {(r0 + tk, z) : |z � z0|  |tk |} by
assumption (3.43). Hence, Kk intersects at least one of the other three sides
of @Qk . In each case diam(Kk) � |tk |. Therefore, (3.41) follows from (3.39)
and Lemma 3.10.

This justifies (3.41) for all x0 2 K \Av. Thus, the proof of Theorem 3.4 is complete.

Proof of Theorem 3.3. To prove (3.7), we use Bernoulli’s law and the fact that the
axis Oz is “almost” a stream line. More precisely, Oz is a singularity line for v,
 and p, but it can be accurately approximated by regular stream lines (on which
8 = const).

First of all, let us simplify the geometrical setting. Put

˜D = D [
¯DM+1 [ · · · [

¯DN (3.44)

and consider extensions of  and 8 to ˜D by the formulas of Remark 3.6. Then
the extended functions  and8 inherit the properties of the original ones. Namely,
Bernoulli’s Law (see the assertion of Theorem 3.4) and (3.10)–(3.12) hold with D
and D" replaced by ˜D and ˜D". Below these facts suffice. Thus, we may assume
without loss of generality that N = M , i.e., that ˜D = D is a simply connected plane
domain.

By (3.10), there exists a sequence ri ! 0+ such that
Z
Li

|r | dz ! 0 as i ! +1 (3.45)

for the lines Li = {(r, z) 2
¯D : r = ri }. Fix a point x0 2 D and denote by Di the

connected component of the open set {(r, z) 2 D : r > ri } containing x0. Obvi-
ously, for sufficiently large i the open set Di is a simply connected plane domain
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with a Lipschitz boundary,  2 W 2,1(Di ) ⇢ C( ¯Di ). In addition,

@Di
\ Li = Ci

0 [ · · · [ Ci
M , (3.46)

Ci
j \ Li 6= ;, j = 0, . . . ,M, (3.47)

where Ci
j = C j \ {(r, z) 2 D : r � ri }, j = 0, . . . ,M . Using (3.20) and (3.45),

we conclude that

diam( (@Di )) = sup
x,y2@Di

| (x) �  (y)| ! 0. (3.48)

In particular, ⇠0 = · · · = ⇠M , i.e.,

 |P+\@D ⌘ ⇠0 ⌘  |@Di
\Li , sup

x2@Di
| (x) � ⇠0| ! 0. (3.49)

Our plan for the remainder of the proof is as follows. First, we prove that for every
x 2 P+ \

¯D there exists a set U(x) such that

x 2 U(x) ⇢ P+ \
¯D, Oz \ @U(x) 6= ;,

 |P+\@U(x) ⌘ ⇠0, (3.50)

9�(x) 2 R : 8(y) = �(x) 8y 2 P+ \ (@U(x)) \ Av. (3.51)

Observe that  |P+\@U(x) = ⇠0 is independent of x , while 8|P+\@U(x) = �(x)
can a priori depend on x . However, we prove eventually that �(x) ⌘ p0 for all
x 2 P+ \

¯D. This fact will easily imply the required equalities (3.7).
Define an equivalence relation on ¯Di by the rule x ⇠i y , 9 a continuum

K ⇢
¯Di such that  |K ⌘ const and both x, y lie outside the unbounded connected

component of the open set R2 \ K . Denote byUi (x) the corresponding equivalence
class. Let us illustrate this definition by some examples.

(I⇠) If K ⇢
¯Di is a continuum and  |K = const, then x ⇠i y for all x, y 2 K .

(II⇠) If K ⇢
¯Di is homeomorphic to the circle and  |K ⌘ const, then x ⇠i y

for all x, y 2 U , where U is a bounded domain with @U = K .

The following properties of the relation ⇠i hold for every x 2
¯Di (for a proof see

Appendix).

(III⇠) Ui (x) ⇢ Ui+1(x) and every Ui (x) is a compact set.
(IV⇠) The set Ui (x) is connected.
(V⇠)  |@Ui (x) ⌘ const.
(VI⇠) The set R2 \Ui (x) is connected.
(VII⇠) The set @Ui (x) is connected.
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(VIII⇠) We have
Li \ @Ui (x) 6= ;. (3.52)

For x 2
¯D \ Oz put U(x) =

S
i
Ui (x). It is topologically obvious that

8y 2 P+ \ @U(x) 9 a sequence @Ui (x) 3 yi ! y. (3.53)

Then (V⇠), (3.48)–(3.49), and (3.52) imply (3.50).
Bernoulli’s Law (see Theorem 3.4) implies that

8x 2 P+ \
¯D 9�i (x) : 8(y) = �i (x) for all y 2 @Ui (x) \ Av. (3.54)

Fix a point y⇤ 2 P+ \ @U(x) \ Av and j such that y⇤ 2
¯D j

\ L j . By construction
(see properties (VII⇠)–(VIII⇠) and (3.53) ) there exist sequences of continua Ki ⇢

¯D j
\ @Ui (x) and points yi 2 Ki such that Ki \ L j 6= ; for all sufficiently large i ,

yi ! y⇤, and Ki converges as i ! 1 to some set K with respect to the Hausdorff
metric. Hence, y⇤ 2 K , K is a compact connected set,  |K ⌘ ⇠0 = const, and
K \ L j 6= ;. Consequently,

diam K > 0. (3.55)

Again Bernoulli’s Law implies that

9� 2 R : 8(y) = � for all y 2 K \ Av. (3.56)

Using (3.54)–(3.55), the connectedness of K and Ki , and the continuity properties
of 8 (see Theorem 3.7 (iii) ), we obtain

lim
i!1

�i (x) = �.

In particular,
8(y⇤) = lim

i!1

�i (x).

Because the right-hand side here is independent of the choice of y⇤ 2 P+ \@U(x)\
Av, we have justified (3.51) with �(x) = lim

i!1

�i (x).
Now take r0 > 0 satisfying the assertion of Lemma 3.8 and the points (r0, z0),

(r0, z00) 2 P+ \ @D such that {(r0, z) : z 2 (z0, z00)} ⇢ D. To complete the proof of
the theorem, we must show that

8(r0, z0) = 8(r0, z00). (3.57)

Put
F = {z 2 [z0, z00] : (r0, z) 2 @U((r0, z))}.

Then by construction z0, z00 2 F and the set F is compact. Indeed, put x 0
= (r0, z0)

and x 00
= (r0, z00). Since U(x 0) ⇢ P+ \

¯D, we have @D 3 x 0 /2 IntU(x 0), and
consequently, x 0

2 @U(x 0). Similarly, x 00
2 @U(x 00), i.e., z0, z00 2 F . Furthermore,
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take zk ! z0, zk 2 F . Put xk = (r0, zk). Then xk 2 @U(xk) and xk ! x0 =

(r0, z0). Of course, x0 /2 IntU(x0), for otherwise xk 2 IntU(x0) = IntU(xk) for
large k. Therefore, x0 2 @U(x0), i.e., z0 2 F . Hence, z0, z00 2 F and F is a compact
set.

Now (3.50)–(3.51) yield (3.30)–(3.31). Thus, Lemma 3.11 implies the required
equality (3.57).

In the course of the last proof we established in particular the following assertion.

Lemma 3.12. Assume that conditions (E) are fulfilled. Let Ki be a sequence of
compact sets such that Ki ⇢

¯D \ P+,  |Ki = const, and there exist xi , yi 2 Ki
with dist(xi , Oz) ! 0 and dist(yi , Oz) 9 0. Then there exist �i 2 R such that
8(x) ⌘ �i for all x 2 Ki \ Av and �i ! p0 as i ! 1.

Let U ⇢ R2 be a domain with Lipschitz boundary. We say that a function
f 2 W 1,s(U) satisfies the weak one-sided maximum principle locally in U if

ess sup
x2U 0

f (x)  ess sup
x2@U 0

f (x) (3.58)

for every strictly interior subdomainU 0 (i.e., Ū 0
⇢ U) whose boundary @U 0 avoids

the singleton connected components. (In (3.58) the negligible sets are those of the
two-dimensional Lebesgue measure zero in the left esssup, and those of the one-
dimensional Hausdorff measure zero in the right esssup.)

If (3.58) holds for every U 0
⇢ U (not necessarily strictly interior) whose

boundary @U 0 avoids the singleton connected components, then we say that f 2

W 1,s(U) satisfies the weak one-sided maximum principle globally in U (in particu-
lar, we can take U 0

= U in (3.58)).

Theorem 3.13. Let conditions (E) be fulfilled. Assume that there exists a sequence
of functions {8µ} such that 8µ 2 W 1,s

loc (D) and 8µ * 8 weakly in W 1,s
loc (D) for

some s 2 [4/3, 2). If all 8µ satisfy the weak one–side maximum principle locally
in D, then

ess sup
x2D

8(x)  max
j=0,...,N

p j . (3.59)

Proof. If the hypotheses of Theorem 3.13 hold, then Theorem 2 of [14] (see also
[15] for a more detailed proof) implies

(⇤) for every subdomain U ⇢ D with Ū \ Oz = ; the function
8|Ū satisfies the weak one-sided maximum principle globally.

In order to prove the estimate (3.59) on the whole domain D, we use the same
methods as in the proof of Theorem 3.3. First of all, we simplify the situation: as
above, define the domain ˜D by (3.44) and extend the functions  and 8 into ˜D
using (3.21)–(3.23). The extended functions  and 8 inherit the properties of the
original ones. Namely, (3.10)–(3.12) and Bernoulli’s Law (see Theorem 3.4) hold
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with D and D" replaced by ˜D and ˜D". Moreover, the maximum property (⇤) holds
withD replaced by ˜D. Since these facts suffice for the proof below, we may assume
without loss of generality that N = M , i.e., ˜D = D is a simply connected plane
domain.

Suppose that the assertion of the theorem is false. Then there exists a point
x⇤ 2 D \ Av with

8(x⇤) = p⇤ > max
j=0,...,N

p j . (3.60)

Take a sequence of numbers ri ! +0, the corresponding lines Li and domains
Di as in the proof of Theorem 3.3 (in particular, (3.45) holds). Denote by K ⇤

i the
connected component of the level set {x 2

¯Di
:  (x) =  (x⇤)} containing x⇤. By

Bernoulli’s Law,

8(x) = p⇤ for all i and for all x 2 K ⇤

i \ Av. (3.61)

There are two possibilities:

(I) K ⇤

i \ Li 6= ; for all i . Then Lemma 3.12 yields p⇤ = p0 and we arrive at
a contradiction with assumption (3.60).

(II) There exists i0 with K ⇤

i0 \ Li0 = ;. Then the sequence K ⇤

i stabilizes after
i = i0:

K ⇤

i = K ⇤

i0, K ⇤

i \ Li = ; for all i � i0. (3.62)

Put K ⇤
= K ⇤

i0 . Then by construction

K ⇤

\ @Di
= ; for all i � i0. (3.63)

Now consider the family of sets Ui (x⇤) introduced in the proof of Theorem 3.3.
By (3.54),

8(y) = �i (x⇤) 8y 2 @Ui (x⇤) \ Av, (3.64)

where
lim
i!1

�i (x⇤) = p0 (3.65)

(the last convergence follows from Lemma 3.12). Take sufficiently large i1 � i0
with

�i (x⇤) < p⇤ for all i � i1. (3.66)

Put U = IntUi1(x⇤). By construction,

ess sup
x2U

8(x) � p⇤ > �i1(x⇤) = ess sup
x2@U

8(x). (3.67)

However, this contradicts (⇤). The proof of Theorem 3.13 is complete.
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4. Proof of the existence theorem

Consider firstly the axially symmetric case with possible rotation. According to
Lemma 2.12, in order to prove the existence of a solution to problem (1.1), it suffices
to show that all possible solutions to the operator equation

⌫w = �Tw, � 2 [0, 1], w 2 HAS(�) (4.1)

are uniformly bounded in HAS(�). We prove this estimate by contradiction, fol-
lowing the famous argument of J. Leray [23] (many other authors used it, e.g., [20],
[21], [13], [1], see also [15]).

Suppose that the solutions to (4.1) are not uniformly bounded in HAS(�). Then
there exists a sequence of functions wk 2 HAS(�) such that ⌫wk = �kTwk with
�k 2 [0, 1] and Jk = kwkkH(�) ! 1. Observe that wk and the corresponding
axially symmetric pressures pk 2 L2AS(�) satisfy the integral identity

⌫

Z
�

rwk · r⌘ dx = ��k

Z
�

�
U · r

�
U · ⌘ dx � �k

Z
�

�
U · r

�
wk · ⌘ dx

� �k

Z
�

�
wk · r

�
wk · ⌘ dx � �k

Z
�

�
wk · r

�
U · ⌘ dx

+

Z
�

pkdiv ⌘ dx

(4.2)

for every ⌘ 2 W̊ 1,2(�). Here U is an axially symmetric solution to the Stokes
problem (see Lemmas 2.6–2.7).

Put uk =wk +U,buk =
1
Jk uk , bwk =

1
Jkwk , and bpk =

1
J2k
pk . Then kbwkkH(�) = 1

and we have
kbpkkL2(�)  const, kbpkkW 1,3/2(�0)  const

for every �̄ 0
⇢ � (for a detailed proof of the above estimates see [15] for instance).

Extracting subsequences, we may assume without loss of generality that

�k ! �0 2 [0, 1], (4.3)

buk * v 2 H(�) weakly in W 1,2(�), (4.4)

bpk * p 2 W 1,3/2
loc (�) \ L2(�) weakly in L2(�) and in W 1,3/2

loc (�). (4.5)

Multiplying (4.2) for an arbitrary fixed ⌘ 2 W̊ 1,2(�) by J�2
k and passing to the limit

as k ! 1, we find that the limit functions v and p satisfy the Euler equations8>><
>>:
�0

�
v · r

�
v+ r p = 0,

div v = 0

v|@� = 0

(4.6)
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(for details of the proof see [15] for example). By (4.4) and (4.5), this implies that
p 2 W 1,3/2(�). Thus, assumptions (E) in the beginning of Section 3 are fulfilled.
Moreover, kvkH(�)  1.

Now, taking ⌘ = J�2
k wk in (4.2), we obtain

⌫

Z
�

|rbwk |2 dx = �k

Z
�

�bwk · r

�bwk · U dx + J�1
k �k

Z
�

�
U · r

�bwk · U dx (4.7)

Using the compact embedding H(�) ,! Lr (�)with r < 6, we can pass to the limit
as k ! 1 in equality (4.7). This yields

⌫ = �0

Z
�

�bv · r

�bv · U dx . (4.8)

From the last formula and the Euler equation (4.6), we derive

⌫ = �

Z
�

r p · U dx = �

Z
�

div(pU) dx = �

Z
@�

p a · n dS. (4.9)

Because of (3.4), we can rearrange this as

NX
j=0

p jF j = �⌫. (4.10)

Now, using (1.2) and (3.7), we deduce from (4.10) that

p0
MX
j=0
F j +

NX
j=M+1

p jF j =

NX
j=M+1

F j (p j � p0) = �⌫. (4.11)

To begin with, consider case (1.5). If condition (1.5) is fulfilled with � =
1

�1(N�M)⌫,
where �1 is a constant of Lemma 3.2, then (4.11) and (3.6) lead to a contradiction
(recall that kvkH(�)  1 and �0 2 [0, 1]). Thus, the proof of case (1.5) is complete.

Consider now the case that condition (1.4) is fulfilled. Then (4.11) becomes

FN (p0 � pN ) = ⌫. (4.12)

By (1.4) and (4.12),
p0 > pN . (4.13)

Consider the identity

div
�
xp + �0(v · x)v

�
=

�
x · r p + x · �0(v · r)v

�
+ 3p + �0|v|2

= 3
✓
p +

�0
2

|v|2
◆

�

�0
2

|v|2 = 38�

�0
2

|v|2.
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Integrating by parts in �, we obtain

3
Z
�

8dx �

�0
2

Z
�

|v|2dx=

Z
@�

p (x · n)dS

= p0
Z
00

(x · n)dS + p0
N�1X
j=1

Z
0 j

(x · n)dS + pN
Z
0N

(x · n)dS

= p0
Z
�0

div xdx � p0
N�1X
j=1

Z
� j

div xdx � pN
Z
�N

div xdx

= 3p0
�
|�0| �

N�1X
j=1

|� j |
�
� 3pN |�N |

= 3p0|�| + 3(p0 � pN )|�N |.

Hence,
Z
�

8dx �

Z
�

8dx �

�0
6

Z
�

|v|2dx = p0|�| + (p0 � pN )|�N |. (4.14)

The total head pressures 8k = pk +
�k
2 |uk |2 for the Navier–Stokes system (1.1)

satisfy the equations

⌫18k � �kuk · r8k = ⌫| curluk |
2

� 0.

Hence (e.g., [25]), 8k satisfy the one-sided maximum principle locally in �. Putb8k =
1
J2k
8k . By (4.4)–(4.5) and the symmetry assumptions, the sequence {

b8k}

weakly converges to 8 = p +

�0
2

|v|2 in the space W 1,3/2
loc (D). Therefore, by

Theorem 3.13,

ess sup
x2�

8(x) = ess sup
x2D

8(x)  max
j=0,...,N

p j = p0 (4.15)

(the last equality follows from the conditions N = M + 1 and (4.13) ). Then (4.14)
yields

p0|�| + (p0 � pN )|�N |  p0|�| , p0  pN ,

and we arrived at a contradiction with (4.13), which proves the theorem in case (1.4).
If the boundary value a is axially symmetric without rotation, then the proof

of Theorem 1.1 is the same as in the first part; we only have to use Lemma 2.13
instead of Lemma 2.12.
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5. Appendix

Let us establish the topological properties (III⇠)–(VIII⇠) of the equivalence class
Ui (x) for x 2

¯Di used in the proof of Theorem 3.3.

(III⇠) Indeed, if Ui (x) 3 y j ! y, then by definition there exists a sequence
of continua K j with  |K j = const such that x and y j lie outside the unbounded
connected component of the setR2\K j . Without loss of generality we may assume
that K j converge in the Hausdorff metric to a set K . Then K is a continuum,
 |K = const, and it is easy to see that neither x nor y belongs to the unbounded
connected component of the open set R2 \ K .

(IV⇠) Fix some y 2 Ui (x). Take the corresponding set K in the definition of x ⇠i
y. Then K ⇢

¯Di is a compact connected set with  |K ⌘ const such that both
x and y lie outside the unbounded connected component of the open set R2 \ K .
Denote the family of connected components ofR2\K by Vj and take an unbounded
component V0. Since Di is a simply connected domain, we have V̄ j ⇢

¯Di for
all j 6= 0. Hence, the definition of ⇠i yields V̄ j ⇢ Ui (x) for all j 6= 0. By
construction, the sets K and V̄ j are connected and K \ V̄ j 6= ;. Therefore, the set

Sy = K [

✓ S
j 6=0

V̄ j
◆
is connected and {x, y} ⇢ Sy ⇢ Ui (x). Since y 2 Ui (x) is

arbitrary, the connectedness of Ui (x) follows.

(V⇠) To prove that  |@Ui (x) = const, we may assume without loss of generality
that x 2 @Ui (x). Fix some y 2 @Ui (x). Take the corresponding set K in the
definition of x ⇠i y and the sets Vj in the proof of property (IV⇠). Then it is easy
to see that

x, y 2 K . (5.1)

Indeed, if y /2 K for example, then y 2 Vj for some j 6= 0. But by construction
Vj is an open set and Vj ⇢ Ui (x), in contradiction with the assumption that y 2

@Ui (x). This proves (5.1), using which and the assumption  |K ⌘ const, we obtain
the required equality  (y) =  (x).

Using similar elementary arguments, we can easily prove the next two proper-
ties (VI⇠)–(VII⇠). Therefore, we prove in detail only the last property (VIII⇠).

(VIII⇠) Suppose that (3.52) fails, i.e.,

Li \ @Ui (x) = ;. (5.2)

Hence,
Li \Ui (x) = ;. (5.3)

By (V⇠),  |@Ui (x) equals some constant, denote it by c0. Fix y0 2 @Ui (x). Proper-
ties (I⇠), (V⇠) and (VII⇠) yield

@Ui (x) ⇢ K0 ⇢ Ui (x), (5.4)
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where we denote by K0 the connected component of the level set {y 2
¯Di

:  (y) =

c0} containing the point y0.
By construction, the closure of each connected component C̃ of (@Di ) \ Li

intersects the line Li and  |C̃ ⌘ const (see (3.46)–(3.47), (3.49) ). Hence, condi-
tions (5.3)–(5.4) imply that

K0 \ @Di
= Ui (x) \ @Di

= ;. (5.5)

Take a sequence 0 < � j ! 0 such that all values c0 + � j and c0 � � j are regular
from the viewpoint of the Morse–Sard theorem (see Theorem 2.15 (iii)). Denote by
Bj the connected component of the level set {y 2

¯Di
:  (y) 2 [c0 � � j , c0 + � j ]}

containing K0. Then for sufficiently large j the boundary @Bj amounts to a finite
disjoint family of C1–cycles in Di (this follows from (5.5) and from the evident
convergence sup

y2Bj
dist(y, K0) ! 0 ).

Denote by K j ⇢ @Bj the cycle separating Bj from infinity, and by Uj the
bounded domain with @Uj = K j . Then by construction  |K j ⌘ const, K0 \ K j =

;, and K0 ⇢ Uj . Consequently,

Ui (x) $ Uj . (5.6)

On the other hand, by property (II⇠) all points of Uj are ⇠i equivalent, which
contradicts (5.6) and the definition of Ui (x). This justifies (3.52).

ADDED IN PROOF. After the paper was submitted, these results and techniques
allowed us to prove the existence theorem for plane and 3D axially symmetric spa-
tial stationary flows in the general situation: under the necessary and sufficient
condition of the zero total flux (see [17]).
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