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Extension of holomorphic functions defined on singular complex
hypersurfaces with growth estimates

WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

Abstract. Let D be a strictly convex domain and X be a singular complex
hypersurface in C" such that X N D # @ and X NbD is transverse. We first give
necessary conditions for a function holomorphic on DN X to admit a holomorphic
extension belonging to LY (D), with ¢ € [1, +00]. Whenn = 2 and ¢ < +o00,
we then prove that this condition is also sufficient. When g = +o00 we prove that
this condition implies the existence of a BM O-holomorphic extension. In both
cases, the extensions are given by mean of integral representation formulas and
new residue currents.
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1. Introduction

In the last few years, many classical problems in complex analysis have been in-
vestigated in the framework of singular spaces; for example the 9-Neumann op-
erator has been studied in [34] by Ruppenthal, the Cauchy-Riemann equation in
[6,17,21,32,33] by Andersson, Samuelsson, Diederich, Fornass, Vassiliadou, Rup-
penthal, ideals of holomorphic functions on analytic spaces in [5] by Andersson,
Samuelsson and Sznajdman, problems of extensions and restrictions of holomor-
phic functions on analytic spaces in [18,20] by Diederich, Mazzilli and Duquenoy.

In this article we will be interested in problems of extension of holomorphic
functions defined on a singular complex hypersurface. Let D be a bounded pseu-
doconvex domain of C" with smooth boundary, let f be a holomorphic function in
a neighbourhood of D and let X = {z : f(z) = 0} be a singular complex hyper-
surface such that D N X # (. The first extension problem that one can consider is
the following one: Is it true that a function g which is holomorphic on D N X has a
holomorphic extension to D?
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It is known by Cartan’s theorem B that the answer to this question is affirmative
and that any function g holomorphic on X N D has a holomorphic extension G on
the whole domain D if and only if D is pseudoconvex. More difficulties arise when
we ask G to satisfy some growth conditions like being in L9 (D) or in BM O (D).
This question has been widely studied by many authors under different assumptions
on D or X. In [28], Ohsawa and Takegoshi proved when X is a hyperplane that any
g € L2(XND)NO(XND) admits an extension G € L?(D)NO(D). This result was
generalized to the case of manifolds of higher codimension in [29] by Ohsawa. In
[8], Berndtsson investigated the case of singular varieties and obtained a condition
on g which implies that it admits a holomorphic L? extension to D. However this
condition requires that g vanishes on the singularities of X and thus g = 1 does not
satisfy this condition while it can trivially be extended holomorphically.

Assuming that D is strictly pseudoconvex and that X is a manifold, Henkin
proved in [22] that any g € L>°(D N X)N O(D N X) has an extension in L (D) N
O(D), provided that bD, the boundary of D, and X are in general position. Cu-
menge in [12] generalized this result to the case of Hardy spaces and Amar in [3]
removed the hypothesis of general position of bD and X assumed in [22]. The case
of L™ extensions has also been investigated in the case of weak (pseudo)convexity.
In [19] Diederich and Mazzilli proved that when D is convex of finite type and
X is a hyperplane, any g € L®(D N X) N O(D N X) is the restriction of some
G € L*®(D)NO(D). In [1], again for D convex of finite type but for X a manifold,
a sufficient and nearly necessary condition on X was given under which any func-
tion g which is bounded and holomorphic on X N D is the restriction of a bounded
holomorphic function on D. This restriction problem was also studied in [24] by
Jasiczak for D a pseudoconvex domain of finite type in C> and X a manifold.

In this article we consider a strictly convex domain D in C”" and a singular
complex hypersurface X of C" such that X N D # @ and X N b D is transverse in
the sense of tangent cones. We give necessary and, for n = 2, sufficient conditions
under which a function g holomorphic on X N D admits a holomorphic extension
in the class BMO(D) or L9(D), q € [1, +00).

Letus write Das D = {z € C" : p(z) < 0} where p is a smooth strictly convex
function defined on C” such that the gradient of p does not vanish in a neighborhood
U of bD. We denote by D,, with r € R, the set D, = {z € C", p(z) < r}, by
n¢ the outer unit normal to bD ;) at a point { € U and by v; a smooth complex
tangent vector field at ¢ to b D, ;). Our first result is the following:

Theorem 1.1. For n = 2 there exist two integers k, | > 1 depending only on X such
that if g is a holomorphic function on X N D which has a C°° smooth extension g
on D which satisfies

(i) there exists N € N such that |p|™ g vanishes at order | on bD,

8a+ﬁg ‘ Ol+ﬁ q
TP |p|*"2 belongs to LY(D) for
all non-negative integers o and  witha + 8 < k,

(i) there exists q € [1, +o0] such that ‘

at+f s .. .
(iii) 3ni“ g vﬁ 5 =0o0n XN D for all non-negative integers o and g withO <a+p <k
¢ vy
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then g has a holomorphic extension G in L1(D) when q < +00 and in
BM O(D) when g = 400. Moreover, up to a uniform multiplicative constant
depending only on k, | and N, the norm of G is bounded by the supremum of

the LY-norm of £ +— ‘3;‘1;:;[3 ({)) |p({)|°‘+§f0r o, Bwitha + B < k.
¢ dvg

In Lemma 5.2, Corollary 5.3 and Theorem 5.5, we will give conditions under which
a function g holomorphic on X N D admits a smooth extension to D which satisfies
the assumptions of Theorem 1.1.

Let us mention that the integer k in Theorem 1.1 can be taken equal to the
maximum of the multiplicities of the singularities of X, and that the hypothesis
of Theorem 1.1 can be relaxed a little in the following way. The theorem is still
valid if for all the singularities zo € X N D of X of multiplicity ko we check the
hypotheses (ii) and (iii) with k replaced by ko and D replaced by Uy N D, where Uy
is a neighbourhood of zp.

The holomorphic extension of Theorem 1.1 is given by an integral operator
combining the Berndtsson-Andersson reproducing kernel and a residue current.

The classical residue current 9 [%] was defined in [23] by Herrera and Lieber-

man using Hironaka’s Theorem on resolution of singularities. Its importance in the
problem of extension was pointed out for the first time in [3] by Amar; and the
extension used in [20] is given by an operator constructed by Passare, which uses
this classical current (see [30]). However, as pointed out in [20], it is not so easy to
handle the case of singularities of multiplicity greater than 2 and this current does
not give a good extension in this case. This difficulty arises from the definition of

the 9 [%] itself which uses Hironaka’s Theorem. Hence the current 3 [%] is not

explicit enough and it does not yield an extension with sufficiently precise growth
estimates on the boundary.
To overcome this difficulty we have to adapt a construction due to the second

author of new residue currents which will play the role of F) [%] (see [25] and

[26]). The extension given by Theorem 1.1 will be obtained via a linear operator
which uses a Berndtsson-Andersson reproducing kernel and these new currents (see
Section 3). We observe that these currents can also be defined in the case of higher
codimension in C", but the situation is more complicated: the currents are more
difficult to define, less explicit and so more difficult to handle (see [26]).

Observe that in Theorem 1.1 we assume the existence of a smooth extension
g satisfying properties (i), (ii) and (iii), whereas no such assumption is made in the
previous articles we quoted and which deal with extension problems. It should be
pointed out that while boundedness is a sufficient hypothesis in order to obtain a
bounded holomorphic extension when X is a manifold (see [1,3,12,19]), it is not
possible to obtain L> or even L? extensions when X has singularities if we only
assume that g is bounded on X N D (see [18]): a stronger condition is needed.
Actually, even if in the manifold case no smooth extension is assumed to exist, a
smooth extension, which satisfies (ii) and (iii), is constructed for example in [1,
12,19]. This is done as follows. When X is a manifold, let us locally write X as
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X = {(z,a(?)), 7 € C" 1}, with o holomorphic. If for z = (z1,...,2,) We
set 7 = (z1,...,2n_1), then the function g defined by g(z) := gz, a(z")) is a
local holomorphic extension of g. Gluing all these local extensions together we
get a smooth extension which will satisfy (ii) and (iii). In some sense, the way
the local holomorphic extension is constructed in the manifold case is a kind of
interpolation: g(z’, -) is the polynomial of degree 0 which interpolates g(z’, @(z'))
at the point z,, = «(z’). Following this idea, we will construct in Section 5 a local
holomorphic extension by interpolation. Provided we have a good control of the
polynomials which interpolate g on the different sheets of X, gluing together these
local extensions, we will obtain an appropriate smooth extension. The control of the
interpolating polynomials will be achieved thanks to an assumption on the divided
differences we can build with g between the different sheets of X. This will give us
simple numerical conditions under which the function g has a smooth extension g
which satisfies (i), (ii) and (iii) from Theorem 1.1 (see Theorems 5.3 and 5.5). The
divided differences are defined as follows:

For z € D, aunit vector v in C", and a positive real number & we set A, ,,(¢) =
{z+Xv:|A| <&} and

7(z,v,8) =sup{t >0: p(z+Arv) — p(z) <eforallr eC, |A| <1}

Therefore t(z, v, ) is the maximal radius » > O such that the disc A, , (r) is in
Dy (z)4¢- It is also the distance from z to bD ;)4 in the direction v. For a small
positive real number k, to be chosen later on, we set

A,y ={AeC: A <3kt(z,v, |p()]) and z + v € X}.

The points z+Av, for A € A, ,, are the points of X which belong to A, ,(3x7(z, v,
|p(2)])), thus they all belong to D provided « < %
For A € A, let us define g; y[A] = g(z + Av) and if g; ,[A1, ..., Ag] is

defined, let us set for Ay, ..., Ax, Ax+1 belonging to A, , and pairwise distinct
8zwlAly - Akl — gz ulras oo Akt]
Gewlhls ooy 1] = =22 o .
Al — Ak+1

Let us notice that the divided differences can be defined in this way in the case of
codimension 1 only and not in the case of varieties of higher codimension. Our
approach therefore cannot be applied in this latter case. Now consider the quantity

Coo(g) = sup gz vlr1s ..., AllT(z, v, [p(2)DF !

where the supremum is taken over all z € D, all v € C" with [v] = 1 and all
Aty ..., A € A, pairwise distinct. In Section 5, we will prove that the finite-
ness of ¢ (g) implies the existence of a smooth extension g which satisfies the
hypothesis of Theorem 1.1. We will then obtain the following:

Theorem 1.2. In C?, any function g holomorphic on X N D such that cso(g) is
finite admits a holomorphic extension G which belongs to BM O(D) such that
|Gl Bmo(p) is bounded, up to a multiplicative uniform constant, by cso(g).
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Conversely, if we know that g admits a bounded holomorphic extension G on

D and if A1, Ap belong to A, ,, Montel in [27] proves that there exists a point ¢ in

the unit disc of C and u in the segment [A;, A3] such that W

written as a%(z + wuv). But since G is bounded, its derivative %(z + pv), and

therefore the divided difference W as well, is bounded by || G|/~ (p)

times the inverse of the distance from z 4 pv to the boundary of D in the direction
v, and this quantity is comparable to 7(z, v, |p(z)|). We will show in Section 5 that
this necessary condition holds in fact in C", n > 2, and for more than two points A
and X,, and so we will prove the following:

can be

Theorem 1.3. In C", with n > 2, if a function g holomorphic on X N D admits an
extension G which is bounded and holomorphic on D, then cx(g) is finite.

In Section 5 we will also study the case of L7 extensions and, still using divided
differences, we will give in C", with n > 2, a necessary condition for a function
g holomorphic on X N D to admit a holomorphic extension to D which belong to
L9(D). Then we will also prove that this condition is sufficient when n = 2 (see
Theorems 5.4, 5.5 and 5.6 for precise statements). We will also see in Section 5,
Theorems 5.10 and 5.11, that all these results can be generalized in a natural way
to weakly holomorphic functions in the sense of Remmert.

A condition using divided differences was already used in [20] but only vari-
eties with singularities of multiplicity 2 were considered there. Here we have no
restriction on the multiplicity of the singularities, and our condition uses all the
divided differences of degree at most the multiplicities of the singularities.

In Section 6, we illustrate these conditions by examples. Among other things,
when D is the ball of center (1, 0) and radius 1 and X = {(z = (21, z2) € C?: z‘f =
z%}, with ¢ a positive odd integer, we will prove that any function g holomorphic
and bounded on X N D has a L2-holomorphic extension to D if and only if ¢ = 1
org = 3.

The article is organized as follows. In Section 2 we fix our notation and re-
call some results concerning the Berndtsson-Andersson kernel. In Section 3 we
construct the new residue current adapted to our extension problem, and we prove
Theorem 1.1 in Section 4. In Section 5 we prove Theorems 1.2 and 1.3 and we treat
the case of L9 holomorphic extensions. We give examples of applications of our
results in Section 6.

2. Notation and tools

As usually, when BM O questions or estimates of integral kernels arise in this con-
text, the Koranyi balls or McNeal polydiscs, their generalization for convex domains
of finite type, naturally appear (see [2,4,13] for example). This will be of course
the case in this article, but here (and it seems to be the first time this happens) the
Koranyi balls will appear directly in the construction of the residue current, and so
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in the construction of a good extension. These balls enable us to establish a con-
nection between the geometric properties of the boundary of the domain and the
geometric properties of the variety (see Section 3). The second classical tool we
use is the Berndtsson-Andersson reproducing kernel which we also recall in this
section.

2.1. Notation

Let us first fix our notation and adopt the following convention. We will often have
estimates up to multiplicative constants. For readability convenience we introduce
the following notation: We write A < B if there exists some constant ¢ > 0 such
that A < c¢B. Each time we will mention on which parameters ¢ depends. We will
write A~ B if A< Band B < A both hold.

We write X as X = {z : f(z) = 0} where f is a holomorphic function defined
in a neighbourhood of D. Without restriction we assume that f is minimal (see [10],
Theorem 3, paragraph 50). We denote by 7, the outer unit normal to bD, ) at a
point ¢ € U and by v; a smooth complex tangent vector field at ¢ to bD(¢).

2.2. Koranyi balls in C?

We call the coordinate system centred at ¢ of basis 5, v, the Koranyi coordinate
system at {. We denote by (z}, z3) the coordinates of a point z in the Koranyi
coordinates system centred at ¢ . The Koranyi ball centred at ¢ of radius r is the set
Pr@) :=1{¢+Ine +pve: A <71, |pu| < r%}. These balls have the following
properties:

Proposition 2.1. There exists a neighbourhood U of b D and positive real numbers
k and ¢y such that:

(i) forall ¢ € U N D, Paxip(e)|(¢) is included in D;
(i) foralle > 0,all ¢,z € U, Pe(§) N'Pe(z) # @ implies Pe(z) C Peie($);
(iii) for all ¢ > O sufficiently small, all 7 € U, all ¢ € P.(z) we have |p(z) —
p(O)] < cie;
(iv) For all ¢ > 0, all unit vector v € C", all z € U and all ¢ € P.(2),
t(z,v, &) = t(¢, v, &) uniformly with respect to €, v , z and ¢ .

For U given by Proposition 2.1 and z and ¢ belonging to U/, we set §(z, ¢) =inf{e >
0, ¢ € P:(z)}. Proposition 2.1 implies that § is a pseudo-distance in the following
sense:

Proposition 2.2. For U and c| given by Proposition 2.1 and for all z, ¢ and &
belonging to U we have

1
ar?(é“, 2) <8(z,8) = c18(8,2)

and

8(z,¢) = c1(8(z, ) + (8, 0)).
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2.3. Berndtsson-Andersson reproducing kernel in C?
We now recall the definition of the Berndtsson-Andersson kernel of D when D is
a strictly convex domain of C2. We set h;(¢,z) = —g—g(;), h = Zi:m h;d¢;

and h = h. Fora (1,0)-form B(¢,2) = Y,y , Bidsi we set (B(£,2),§ —z2) =
Z,‘:l,z Bi (¢, 2)(& — zi). Then we define the Berndtsson-Andersson reproducing
kernel by setting for an arbitrary positive integer N,n = 1,2 and all ¢,z € D

N 1 N+n \n
PY" (¢, 2) =Cnan — oh) ,
©o=Cn <1+(h(;“,z),§—z)) (9%)

where Cy , € C is a constant. We also set PN (¢, 7) = 0forall z € D and all
¢ ¢D.

In order to keep in mind an explicit example of a Berndtsson-Andersson’s ker-
nel during the computations, we give the expression of this kernel when D is the
unit ball of C2. In this case p(¢) = [¢|*> — 1,

(1= lgHN!

PN2(.5)=C — -
€2 N2(1 —C121 — §pz)N T2

B

dgy NdTy AdE AdE,

and

(1—1[gHN

(I~ 2z — L)

PVl ) =Cn

5

(dzl AN +di AdE,

§jgkdzj /\de)
jk=1,2 1- |§|2 .

The following representation formula holds (see [7]):

Theorem 2.3. For all g € O(D) N C*®(D) we have

g(x) = fD g()PN2(L, 2).

In the estimations of this kernel, we will need to write / in the Koranyi coordinates

at some point ¢y belonging to D. We set fori = 1,2 h} = —aagf; (¢). Then h is

equal to ) ;_; 5 hid¢;* and satisfies the following:

Proposition 2.4. There exists a neighbourhood U of b D such that for all L € DNU,
all ¢ > 0 sufficiently small and all z € P.(¢) we have

() |p@)+ (h(g,2),. ¢ =2 Z e+ o]+ 1p@),
(i) [R7(5, I S 1,

(i) |h5(.2) S &2,
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and there exists ¢ > 0 depending neither on ¢ nor on & such that for all 7 €

P:(2) \ ¢P:(¢) we have

(h(5,2), ¢ —2)| Z e+ lp@I+ 1p©)],

uniformly with respect to ¢, 7 and €.

3. Construction of the extension operator

The holomorphic extension provided by Theorem 1.1 will be given by a linear
integral operator. Its definition is based on the construction of Mazzilli in [25]
which uses the Berndtsson-Andersson reproducing kernel and a current 7 such that
fT = 1. The current T relies on a family of currents 7y, where V is an open
subset of D, such that 7, = 1 on V. Then using a locally finite covering (V) jeN

of D and a partition of unity (x;) _ associated with this covering, Mazzilli glues

jeN
together all the currents 7y, and gets a current 7' = > jen XjTv; such that f7 =1
on D. In [25], the only assumption on the covering (V j)j is to be locally finite.

In order to get very fine estimates of the operator, instead of an ordinary locally
finite covering, we will use a covering of D by Koranyi balls (P PBILe: j))j N
which will be more suited to the geometry of bD (see Subsection 3.1).

In [25], the local current Ty, is constructed using the Weierstrass polynomial
Py of f in the open set V. This means that every root of Py, or equivalently every
sheet of X intersecting V), are used. We will modify the construction of 73, in order
to use only the sheets of X which are meaningful for our purpose. In order to be
able to choose the good sheets of X, we construct in Subsection 3.2 for zg near bD
a parametrization of X in the Koranyi ball Py, () (20)-

At last, we will have all the tools to define in Subsection 3.3 the current 7' such
that f7 = 1 and the extension operator.

3.1. Koranyi covering

In this subsection, for &g > 0, we cover D \ D_, with a family of Koranyi balls
(P pl /))jeN where « is a positive small real number. This construction uses
classical ideas of the theory of homogeneous spaces and is analogous to the con-
struction of the covering of [9].

Let g9, ¥ and c¢ be sufficiently small positive real numbers. We construct a se-

quence of point of D \ D_g as follows. Let k be a non-negative integer and choose

(k) (k) (k)
Zl 1 20 Zj

sibilities. Either for all z € bD_ (| _ .y, there exists i < j such that §(z, zl.(k)) <
ck (1 — ci)*eg and the process ends here, or there exists z € bD_(|_¢iyke, Such that

in bD_(|_cyke, arbitrarily. When z are chosen, there are two pos-

for all i < j we have §(z, z;k)) > ck (1 — ck)¥ey and we chose zyil among these
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points. Since D_j_ kg, is bounded, this process stops at some rank nx. We thus

have constructed a sequence (zEk))keN,je{lw, ng) such that:

(i) Forallk e N,and all j € {1,..., ng}, z&k) belongs t0 bD_ (| _¢ykg,s
(ii) Forall k € N,alli, j € {1.....n¢}.i # j, we have §(z{", 2%) > ex(1 —
c)reo;
(iii) For all k € N, all z € bD_(j_,
8(z.21) < ex(1 = cr)eep.

gy there exists j € {1, ..., ng} such that

For such sequences, we prove the following:

Proposition 3.1. For k > 0 and ¢ > 0 small enough, let (z(.k )) be a
T JkeN, je(l,...ni}
sequence which satisfies (i), (i1) and (iii). Then:
.. . “+00 | Mk (k) .
(@) D\ D_y is included in Ui 25 U L, lep(zﬁk))l (Zj ),
(b) there exists M € N such that for z € D \ D_g, Pax|p(2)|(2) intersect at most
; ()
M Koranyi balls 774K|p(z.</_k))| (Zj )

Proof. We first prove that (a) holds. For z € D \ Dy, let k € N be such that
(1 — ) ey < 1p(2)] < (1 — co)*eg

and let 1. € C be such that { = z + An; belong to bD_(j_ ke, - On the one hand

the assumption (iii) implies that there exists j € {1, ..., ng} such that § ({ , zﬁk) ) <
ck (1 — ck)*eg. On the other one hand we have |A| = 8(z, ¢) < Ccek (1 — ck)¥eg
where C depends neither on z nor on ¢ nor on c. These two inequalities yield

8 (z, zﬁk))

c18(z.8) + 182,21

IA

keer (1 — c;c)keo(C/c +1)
el (7))

provided c is small enough. Therefore z belongs to PK

IA

IA

(k)
|p(z(/.k))| (z;7) and (a) holds.

We now prove (b). Let z be a point of D \ D_g,. For all ¢ € Puayp)(2), if &
is small enough, Proposition 2.1 yields

1
Elp(z)l < e =2[pR)I.

The same inequalities hold for all zg.k) andall ¢ € 734K|p (Z(-k))|(Z§.k))'
J
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Thus lf'P4 oGz k))l(Z )ﬂ'PK\p(Z)\(Z) # () we have

1
@l = — i)k < 4p2)|.

4In2

m values.

Therefore k can take at most

Forsuchak,weset I = {jef{l,..., ng}, 4K|p(z(k))|(Z )0774K|p(z)|(z)7é@}

Assertion (b) will be proved provided we show that #1, the cardinality of I, is
bounded uniformly with respect to k and z.
We denote by o the area measure on bD_(j_ ks, - Since for all distinct 7, j €

I we have § ( (k) (l.k)> > ck (1 — ck)Xeg, provided ¢ is small enough, we have

(k)
o (Ujelkp4,(‘p<z(/<>) (Zj ) N bD—(l—c;c)kso)
"
o (Ujer, P ®)nbD
JEIk ﬁk(l—cx)kso Zj —(1—cx)keg

2
#I (iK(l — CK)kS()) .
1

%

v

Now we look for an upper bound of o (Uje1k774 oGz (k))I(Z(,k)) n bD(lc,()ka()).
We fix jo € Ix. Forall j € I, since P, ((k))l(z )mP4K|p(Z)|(Z) # ) and
P <k>)‘(z )N Paeip()] (2) # B, we have

dic|p(z
) $5(19) 13

e (Jo (=) + e (7))

k(1 — CK)kSO

S
S
uniformly with respect to k, j and jy. Thus there exists K depending neither 0n

Z, hor on j, nor on jy nor on k such that ’P4 oG (k))I(Z ) c P Klp(z(k))l(zjo ).
Jo

Therefore

(k)
G(UjelkP4K|p(Z(/k))|(Zj ) N bD(lCK)kE()) (P4KK)O(Z(k))|(Z]O ) NbD —(1—cx)ke )
< (Kk(1 — cx)ep)?
which yields #I; < ¢72. O

The covering property (a) allows us to settle the following definition
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Definition 3.2. Let U/ be any subset of C2. If the sequence (z;) jeN can be renum-
bered such that (i) and (ii) are satisfied and such that (iii) holds true for all z €
UN(D\ D_g,), the family (Px|p(zj)|(zj))jeN will be called a x-covering of U N
(D \ D—g).

3.2. A family of parametrizations

In order to construct the current we use to define our extension operator, we will
need some kind of parametrization for X over Py |y(zy)(z0) When zg is near the
boundary of the domain and when Py (zy)(z0) N X # ¥. Moreover, we will need
some uniform estimates for this parametrization, which are achievable only in the
case where the intersection of X and bD is transverse. Of course if we are near a
regular point of X, such parametrizations do exist but the situation is more delicate
when we are near a singularity of X.

Given a point zo near a singularity ¢o of X which belongs to D, we denote by
(;&1, {& ,) the coordinates of ¢y in the Koranyi coordinates at zo. We denote by A
the unit disc of C and by A, (r) the disc of C centred at z of radius . Our goal in
this subsection is to prove the following results:

Proposition 3.3. If the intersection of bD and X is transverse at g, then there
exist a neighbourhood U of ¢y and k > 0 sufficiently small such that the following
property holds: for all zo € DU, if XN P p(z0)(20) 7# 9, then |§6k,1| > 2k |p(z0)].

Proposition 3.4. If the intersection of bD and X is transverse at {y, there exist k
and r positive real numbers sufficiently small, a positive integer py and a neigh-
bourhood U of ¢y such that for all zo € U, if |55, = «|p(z0)| then there exist

* holomorphic functions in Ag(2k|p(z0)|) which satisfy the following:

*
o5 ey O

da’

1) a;f and azi are bounded on Ay(2k|p(z0)|) uniformly with respect to zg,
1

(i) if there exists j and 7} such that (z}, a;‘ (z1)) belong to Pa|p(zy)(20) then for
1
all £f € Ao(2k|p(z0)]) we have | (E)] < Brlp(z0)))2;
(iii) There exists ug holomorphic in A4, (r)? such that \ug| ~ 1 uniformly with
respect to zo and f(£) = uo(¢) ]_[l.pil(gz* —af (&) for all & € Paip(zy)(20)-

The proof relies on two preliminary results:

Lemma 3.5. Let (A,d) be a metric space, let ag be an element of A and let
(fu)aca be a family of holomorphic function on A* such that

- (fa)aeca converges uniformly to fu, when o tends to oy,

- Jap(0,-) # 0 and fuy(0) = 0.

Then there exist positive real numbers ri,ry, 1 > 0, a positive integer p such that,
foralla € Awithd(a, ag) < n, there exist p functions a%a), ceey agx) holomorphic
on Aog(r1) and a function u, holomorphic in Ag(r1) x Ag(rp) which satisfy the

following:
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() fou(2) = ue(2) (zf + af“)(zl)z?l +...+ a,(,“)(m));
(1) |ug(2)| = 1 forall z € Ag(r1) x Ag(r2) uniformly with respect to z and .

Proof. We first want to apply Rouché’s theorem to fi, (21, -) — foy (0, -), z1 fixed in

Ao(r1) where ri > 0 is to be chosen in a moment. Since fy, (0, -) is not identi-

cally zero, there exists 7o > 0 such that f,,(0, z2) # O for all z; € Ag(r2) \ {0}.

We denote by a the positive real number a = inf|;, =, | f, (0, 22)| and by p the

multiplicity of the root 0 of f,,(0, -). Since (fy) converges uniformly to fy, on

Ap(1), there exists n > 0 such that for all « € A, with d(ag, ®) < 7, and all
a

z € Ag(1)? the following inequality holds: SUP,en, (12 [ fa(2) — foo ()| < 3. By

Cauchy’s inequalities, there exists 1 > 0 such that for all z € Ag(r1) x Ag(r2) we
have | fuy (21. 22) — fun (0. 22)| < &. Thus | fu(21,22) = fa (0. 22)| < | e 0. 22)]
and by Rouché’s theorem, f,(z1, -) has exactly p zeros in Ag(r;) for all z; fixed
in Ag(r1). Therefore by the Weierstrass preparation theorem there exist p func-
tions afa), ol a;,a) holomorphic on Ag(r;) and a function u, holomorphic on
Ao(r1) x Ag(rp) zero free such that

Fu(@) = 11 (2) (z§ +a9d T+ a},”(zl)) .

We set Py (z1,22) = zé’ +a§°‘) (zl)zg_l +... +a§,a)(zl). In order to finish the proof
of the lemma we have to prove that 1 < |uy| S 1. We prove the lower uniform
boundedness.

Forall z1 € Ao(ry), is holomorphic and

_ 1
ug(z1,)
1

Py(z1, £2)
|uOl(Z19 Z2)|

fOé(Zl’ §2)

On the one hand, for all @ € A such that d(«, ag) < 1, all (z1,22) € Ag(r) X
bAy(rp), we have

< m
[62l=r2

| fa (@] = [fap 0, 22)| = [ fay (2) = fag (0, 22)| = | fa (2) — forp (2]
a a a
>q—— — — = —.
- 4 4 2

On the other hand, since (fy)xca converges uniformly to f,, when « tends to ag
and since f,(z) is uniformly bounded away from O for (21, z2) € Ag(r1) X bAo(r2),
(aﬁ.“))ae A converges uniformly to aj.a(’) for all j when « tends to aig. This implies
that (Py)aeca converges uniformly to Py, and therefore SUp (- yx aq(ry) | Per| 1S uni-
formly bounded for « near «g. This yields |uy(z)| 2 1 uniformly with respect to
7 € Ao(r1) X Ag(r2) and @ € A such that d(«, og) < 1. The upper boundedness
can be proved in the same way. O

The following result does not hold true if the intersection X N » D is not trans-
verse.
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Lemma 3.6. Let {y € bD be a singularity of X, let zo € D be a point near enough
Lo. There exist r > 0 not depending on zo and a parametric representation of X in
the Koranyi coordinates system centred at 7 of the form (t*P + é‘(i o) + é‘(i 2
such that |¢*(t*)| < |t*|7, t* € Ao(r), uniformly with respect to 7.

Proof. Without restriction we assume that ¢y is the origin of C?. Maybe after a
unitary linear change of coordinates if needed, there exists ro > 0, p,qg € N,
q > p > 1, and u holomorphic and bounded on Ag(rg), u(0) # 0O such that
¢t — (P, 11u(t)) is a parametric representation of X over Ag(rp).

We consider zg such that |¢o—zo| < r¢ and we denote by («, ) the coordinates
of 7, and by (—p, @) the coordinates of v;,. In the Koranyi coordinates centred
at zo, X is parametrized by ¢ — (at? + Btlu(t) + {&1, —BtP + atfu(t) + ;&2).
Let (ao, Bo) denote the coordinates of 1. The transversality hypothesis implies
that g # O so there exists r{ > 0 and a p-th determination of the root ¢; in
Agy(r1). If ro > 0 is sufficiently small, o belongs to Ay, (1) and at? + Btiu(t) =

(1 (@)t)? (1 + gtq_l’u(z‘)> . Since ¢ > p, there exists rp €]0, r{[ such that for all

t € Ag(rp), all B € Agy(rp) and all o € Agy,(2), we have ‘1 + gtquu(t) > %
and so there exists ¢ holomorphic for r € Ag(r2), C*°-smooth for & € Ay, (12)
and B € Ag,(r2) such that ¢x(t, &, B)? = 1 + Lr0=Pu(r).

We apply the implicit functions theorem to ¥ : (¢, t*, «, 8) +— t*—
o1(@) (¢, o, B)t. Since W (0, 0, g, By) = 0 and aa—\;'(O, 0, o, Bo) # 0, there exist
r > 0and 1/} D Ag(r) X Agy(r) x Ag,(r) — V(0), V(0) neighbourhood of 0 € C
such that 1} is holomorphic in 7, and C°°-smooth in « and B and which satisfies
t*P = @tP + Briu(r) if and only if 1 = ¥ (+*, o, B). We now finish the proof of the
lemma by setting

B ") = —BI o B+ al (e B)Tu (V0 ). 0

Proof of Proposition 3.3. We first choose ¥ > 0 such that 2k|p(z0)| < r, with r
given by Lemma 3.6 and we write € X NP |p(z)|(z0) as {= *04- ¢, ¢* %)+
o1

1
we get [{ — {&ll < 4k |p(z0)| and therefore |t*| < (4k|p(z0)|) 70 . This yields

;& ,) for some ¢* belonging to Ag(r). Now, if we assume that < 2K p(z0)]

5001 = 1802 — &1+ 1551

6% ()] + 1¢5

< klp o)l + (ko (o))
< klp(zo)?

IA

uniformly with respect to zg. Thus there exists K > 0 depending neither on zo nor
on k such that ¢y belongs to Pik|p(zy)|(z0). Moreover, if « is chosen sufficiently
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small, for all § € Pk /(2 (z0) Proposition 2.1 gives |p(§)]| > %|,0(Z0)|- This gives
a contradiction because |p(£o)| = 0 < |p(z0)| whereas &y belongs to Pk |p(z0)((20)-
Therefore we can choose « >0 not depending on zg such that [, | > 2« |p(z0)|. O

Proof of Proposition 3.4. Let pg be the multiplicity of the singularity {y of X and

let ¢ be a po-th determination of the root holomorphic in A{51(2K|p(z())|). We
2im -

set oe;f(z’f) = ¢ |\ Y] — g5 e )+ 50> J = 1,....po. Forall j, a}? is

holomorphic on Ag(2k|p(z0)|) and is uniformly bounded on Ag(2«|p(z0)]). We

have

da; dg* 2iz \  2ir
J (ZT) — W(ZT _ ;(;k,l)i (w(ZT _ ;6‘(,1)6 70 J)ePOJ.

0z} or*
dat
Since |¢* (+*)| < [¢*|70, this yields ‘ 3(;% (z’f)‘ < 1 which proves (i).

We now prove that (ii) holds. We denote by K a uniform bound of the deriva-
tive of a}?. If z7 € Ao(2k|p(20)]) is such that |a7 @Dl < (2K|p(ZO)|)% , we have for
all £ € A2« |p(20)D):

e (¢ < laf @D+ |ef(@]) — o (5]

< @klpGo))? + K¢ — 2]
< @xlpGo))? + 4Kk |p(z0)l-

Therefore choosing again « small enough, uniformly with respect to zg, we get

1
|l (C1)] = Brlp(z0)])2.

Only (iii) is left to be shown. For z near ¢y we set f; (A, w) = f(So+An;+uv;)
and we apply Lemma 3.5 to the family (f;); which gives uo and Py such that
fzo = uoPo where |ug| ~ 1 uniformly with respect to zg and where Py(An,,+pnvy,)
is a polynomial of the variable u with coefficients holomorphic with respect to A.
We have f;,(z0 — ¢o + &1z + @ (£])vz,) = 0 for all i. Hence, for all ¢ such that
1271 < 2kp(20)], we get

Po
Poct = 51,60 — &) = [ [ — e @), 0
i=1
3.3. Definition of the operator
We now come to the definition of the current 7 such that fT = 1 and of the

extension operator. Our construction is a refinement of [25]. We choose a positive
real number « so that Propositions 3.1 and 3.4 hold true for such a « and such that
Proposition 2.1 implies that 2p(z) < p(¢) < %p(z) forall z € D near bD.

For g9 > 0 and zg € D_g,, that is when zg is far from the boundary, we do not
modify the construction except that we require that Uy is included in DJ‘TO . We get
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a covering U_,, ..., U_1 of T% and the corresponding currents 7_,, ..., T
suchthat fT; =1onl; forall j = —m, ..., —1.

Near the boundary, we have to be more precise and we use a k-covering
(PK|p(Zj)|(Zj))jEN of D\ D_g, constructed in Section 3.1. In the Koranyi co-
ordinates centred at z;, the fiber of X above (zT, 0) € Py p(zj)|(z j) is given by
{z],af(z])), i =1,..., pj} where p; and af, ..., a;;j are given by Proposition
3.4. In [25], Mazzilli actually considered the Weierstrass polynomial in a neigh-
bourhood of z; but this neighbourhood may be smaller than Py y(;;)(z;) or the
Weierstrass polynomial may include all the . However, in order to make a good
link between the geometry of the boundary of D and X, we need to have a poly-
nomial in all Pyjp(;)(z;) and we have to take into account only the sheets of
X which intersect Py|p(z;)|(z;) or equivalently the o such that for some z} €
Ao(klp(z;)]), the point z; + z*l‘nszra;k(z*l‘)vzj belongs to Py |p(z;)(z;). So we

put [; = {i :3z] € Ao(k|p(z;)]) such that |e} (z])| < (2K|,0(Zj)|)%}, q; = #1j,

the cardinal of /;, and for any C*°-smooth (2, 2)-form ¢ compactly supported in
Prlp(zji(z;) we set

~ 1_[161 & - *(41) 0% ¢
T' p—
@] -/7’Kp<zj>|<1./> f@) a3 o

As in [25], integrating by parts g ; times gives f fj = c;j where |cj| = g;!
Now let ( Xj )j>_m be a partition of unity subordinated to the covering
U ... U, (P’(V’(Zj”(zf))jeN of D. We assume that x; has been chosen so

gata+B+By .

that forall j € N, ¢ € Pyjp;)(z)s

—©)| 5

T X 1
Acracy 3; Pocy b48

oI 2
o, B, a, /3 € N, uniformly with respect to zjand . We setasin [25]: T; = Cijfj
forjeNand T =332, x;T;.

Therefore we have fT = 1 on D. Moreover, since T is supported in D which
is compact, T is of finite order (see [35]) and we can apply T to smooth forms
vanishing to a sufficient order / on bD. Therefore if the function g is such that

|p|V g belongs to C!(D), we can apply T to §P™-2. This gives us the integer / of
Theorem 1.1.

Let b(¢,2) = 3_ ;2 b;(&, 2)d¢; be the holomorphic (1, 0)-form defined by

bj(¢.2) = fy #E(& +1(z = ©))dr so that for all z and ¢ we have f(2) = f(¢) =

Zi:l 2 bi(¢, 2) (z, ¢ ). Let g be a holomorphic function admitting a smooth exten-
sion g which satisfies the assumptions of Theorem 1.1. Following the construction
of [25], we define the extension Ex(g) of g by setting

En(g)(z) = C1dT[gb(-,2) A PN1(,2)]  VzeD,



308 WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

where C is a suitable constant (see [25]). We have to check that Ex(g) is indeed
an extension of g.
We have the two following facts:

Fact 1: Mazzilli proved in [25] that if g is holomorphic on D and of class C! on D
then Eyg = gon X N D.

Fact 2: We have Eng; = Eygy when g and g, are any smooth functions such

9ethPg 9etPg, . .
that ——=7 = ——=25 on X N D for all integers «, B with @ + B < k, where k
gy agy g 9Ly
is the supremum of the multiplicities of the singularities of X. Indeed, since f is
assumed to be minimal, using [36, Theorem I, Paragraph 11.2 and the theorem of

Paragraph 14.2], for any function g vge carll write Eyg as a sum of integrals over
a+B 5 pN,
formulato g = g; and g = g» we gelt E1\2;§1 = Eng>. We notice that this gives us

the integer k of Theorem 1.1.

Now let g be a holomorphic function on X N D which admits a smooth exten-
sion g which satisfies the assumptions of Theorem 1.1. We prove that Ey (g)(z0) =
g(zo) for all zp € X N D. For ¢ > 0 small enough we construct PSN . the
Berndtsson-Andersson kernel of the domain D_,; which has the defining function
pe = p+e. Weset PN"(¢,z) =0 for ¢ ¢ D_,. For a fixed z¢ in D, the kernel
PEN’"(-, z0) converges to PYV-"(., z9) when & tends to 0 in Ck(D) for all k € N,
C*(D) being endowed with its usual topology.

Now let g, be an holomorphic extension of g to D_% given by Cartan’s Theo-

rem B. Fact 1 yields

X N D where only the derivatives with o + B8 < k appear. Applying this

8(20) = g¢(20)
=/gs<§)AP;V’2(c,zO>
D

T | fee AP 20) |

— €T [ggb(-, z0) A PN zo)] .

Then, since PSN ‘1" is supported in D_, since § = g, on X N D_%, and since
qatB 5 .
ia iﬁ =0on D_: N X, fact 2 gives
) gy :

8(z0) = C\0T [ gbC,20) A P 20)] 3.1)

Finally, since PEN 1, 20) converges to PN-1(., z9) in C*¥(D) for all k € N when ¢
tends to 0 and since 97 is a current of finite order supported in D, letting & goes to
01in (3.1) yields g(z0) = En(g)(z0) and thus Ey(g) is an extension of g.
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4. Estimate of the extension operator

We prove in this section that E y (g) satisfies the conclusion of Theorem 1.1. For this
purpose we write b in the Koranyi coordinates at z ;, as b(¢,2) =Yy » b} (¢, 2)d /"

where b/ (¢, 2) = fol aagf* (¢+1t(z—¢))dt. We recall that for any non-negative integer

J» pj is the integer given by Proposition 3.4 and

Ij:{i :3z] € Ao(k|p(z;)]) such that |e] (z])| < (2K|P(Zj)|)%}-

We prove the following estimates:

Proposition 4.1. For all positive integers j, all z in D and all & in Py|p(z;)(z)),
we have uniformly in z, ¢ and j

‘Hie,j & — i ()

#1—B
b S Y s @

f@) 0<a+B=<p;
]_[ I; §2 - *(gl) 8 1 #1:—p
< b S Y 8@ @) T
f@) 0<a+B=<p;
‘ 1€l l dzbl(é_’ Z) 5 Z 8(;’Z)a+7|p(§)|—2—0{+ 72 ’
f@ O0<a+B=p;
]_[ I; fz *(Cl) B 3 #1;—B
< G e s Y s E
I¢ 0<a+B=p;
Proof. We prove the first inequality, the others are analogous. For A C {1, ..., p;}
we denote by A the complementary of Ain {1, ..., p;}. Proposition 3.4 yields:
[ier, &5 — o@D |
f(©) ~ Tliere 165 —af (@I
J

uniformly with respect to ¢ and j. We estimate b}. We have

aa+ﬂ+1f

0)) = ————— ()@ = NP +o(g* — *|P)
351 050{-‘,-2/3517]- 8{1*0[+13§2*'B
and
gatp+l1
vt 1 Cﬂ@)‘ = Z l_[ oy (51) H(Q i (¢1)
8( 8§ n1+..,+np]-:a+l ieF é‘ ieF3

FlURUF3={1,...p;}

where U means that the union is disjoint, F; = {i, n; # 0} and #F, = 8.
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Since o 1s uniformly bounded and holomorphic on Ag(2«|p(z;)|), we have

3§
‘% < p(z)I™+ on Ag(k|p(z)]). Moreover Proposition 2.1 gives |p(z)| =

lp(©)] forall ¢ € Pejp(z;)(z)) 80

8a+ﬁ+1f I
W(() Z 1 (O™ ! l_F[ 125 — o (P
ny+..tnp . =a+ IASY sk}
F10F20F3:']{1 ..... i)
#Fy=p
and so
11— B
bIC IS Y Yo lp@IT T s T [T 16— e @)l
O0<a+B<p; FIURUF=(1....p;} ieF3
#Fy=p

[Tier; & -0 &) .
Therefore ’fTb’f({, z) is bounded by a sum for 0 < o + 8 <

F10F20F3 = {1, ey pj},#F2 = ﬂOf

g . [licr, 185 — o (I

B
= @)1 =55, )" 2.
F.Fy.F3 nl.e,; 155 — e (£

On the one hand for i € I{ and { € Prjpz))(zj) we have [¢7 — o (5])] P

|p(zj)|% ~ |p(§)|%. On the other hand fori € I; and ¢ € 73,(|p(zj)|(zj) we have
l_[,epg(iz a*@] )) HzeF3ﬂ] (§2 a*@] ))

1
X ok (rF)] < 5 e
1¢y—af (&) S 1p()]2. Therefore, writing 1-[[618@2 e 5 @ I-LE[%FC(;Z T

HieF3ﬂI; ()= (5D
Hiel;'ﬁF:; (63— (1))

we get

c
#F3N0I; w3 nig

B +£ 1—a+#F+
SEl e m S8 D T p() e
#F3NT—#FSNIS

The equality #F3 N 1; — #F5 N IJ‘.' = #I;—#F3 implies that #F + 5 >

#;—p
—=.

< atd gt
This gives SF B S 08, )2 p(0)] 2

which finally yields

Hielj §2* - al*({l)
f©)

#1:—p
@S Y @@ L

0<a+pB=<p;

As usual in the estimates of the Berndtsson-Andersson kernel, the main difficulty
appears when we integrate for ¢ near z and z near b D. Therefore we choose g9 > 0
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arbitrarily small and we divide the domain of integration in two parts : P o (z) and
€1
D\P o (z) where ¢ is given by Proposition 2.1. In order to estimate the integral
‘1

over P ‘o (z), we prove the following:
L']

Lemma 4.2. For all z such that 0 > p(z) > —%0, let jo be an integer such that

(1 —ck) gy < |p(z)| < (1 —ck) 0~ leq and let za’j, R zi,;{,i,i eN,jeZ,be
the points of the covering such that ‘

- Py = —(1 — k) ogy,
- 8(zp’ 2) € li(1 — c)/~oeg, (i + (1 — ck)/ g,
- 8z’ 2) < €0.

For j > jo let io(j) be the non-negative integer such that io(j)x (1 — ck)/ Tl <
1 < 4+ig(j))x(1l —ck)/ 0,
Then
: . +00 lo(]) i, j
(l) P%(Z) ND C Uj=jo U U Pk‘p(zlj)‘(zm ),
(i) m; ; Si 2 uniformly with respect to zo, z, i and j.

Proof. We first prove (i). Let ¢ be a point in P ‘o (z) N D. Proposition 2.1 implies
1

that ¢ belongs to D \ D_g, so there exists a point o of the covering such that ¢
belongs to P () (o). The point &y belongs to D \ D_g thus there exists j > jo
such that | p(20)| = (1 — ck)/~0gy. Moreover if « is small enough

8(%0, z) = c1(8(¢, o) +8(¢, 2))
c1 (K(l —ck) Thgy + 8—0>

IA

2cy
< &.

So there exists i € N such that §(¢o, z) belongs to [ix (1 — ck) =gy, (i + Di(1 —
ck)I gyl and (i + Dr(1 — CK)J Jogq < gy which means that i < io(j). Thus o

is one the points z 1 . Zm, i and (1) holds.
In order to prove that mi ;S 2 we introduce the set

Eij={teD:p@)=—(I—ck) Pgoand §(¢,2) < cix(i+2)(1—ck)!|p()]}.
On the one hand we have
o(Eij)=0 (bD_<1_CK)J‘<f080 N Peyiti+2)(1—cx)i |p<z)|(1)>
. 2
< (cuc(i +2)(1 —cx)flp(z)l) “4.1)

.. 2
< (ClK(i +2)(1 — CK)]_]0_180>
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On the other one hand for all m,all ¢ € P (zf;,j ) we have

k1ol

A

8(¢,2) < 18, z)) +8(zi . 2))
< 1k (1 — k) ey + k(i + 1)(1 — ex)/ " Hogg)

< c1ki +2)(1 — ck)/ g,

This implies that P el (m/)l(z’" )ﬂbD (1—cx)i—iogy C E; ; for all m and so

o(Ei)) >0 (u U P, @) Dy - ,080).

Now, the construction of a k-covering and Pr0p0s1t10n 2.1 imply that the intersec-

tion of Pﬁlp(zl./)l(zm ) and P”Ip( ")I(Zl ) is empty for [ # m. Therefore we
< m
have
mi, j .
i,
o(Eij) > E o <P?I|P(Zihj)|(zm )ﬂbD—(l—c;()ijsO) ,
m=1

4.2)

cK .
- 2
= mi,j(c—(l —ck)! T ep)”.
1

Inequalities (4.1) and (4.2) together imply that m; ; < i2, uniformly with respect to
z,iand j. O

In order to prove the BM O-estimates of Theorem 1.1 we apply the following
classical lemma:

Lemma 4.3. Let h be a function of class C' on D. If there exists C > 0 such that
dh(z) < Clp(&)|~" then h belongs to BM O (D) and lallBmompy < C.

Proof of Theorem 1.1 for ¢ = +00. Let g be a holomorphic function on X N D
which have a smooth extension g which satisﬁes the assumptions (i), (ii) and (iii)

of Theorem 1.1. We put yoo = SUp ¢ep |s—p (;)‘ lp(¢) |"‘+ 2. In order to prove

ot
a+p<k a’7_0‘3”_
Theorem 1.1 when ¢ = 400, we have to prove that Ey(g) is in BM O(D) and
IEn(@BMOMD) S Voo
Since the Berndtsson-Andersson kernel is regular when ¢ and z are far from
each other or when z is far from bD, we only have to estimate the integral over
eo (z) N D for z near bD and gy > 0 not depending on z. We keep the notation

‘1
(2] of 7’;70 (2)
€1

+oo Ulo(]) Uml j 7)

of Lemma 4.2 and use the covering U] jo o))

given by Lemma 4.2. We denote by p,,; the number of sheets given by Proposi-
t10n34forzm Ly isthe set I = [k : 3zF € Ao(ic|p(zh)]) such that [af (z1)] <

k| ,o(zm] )] > } and qm] denotes its cardinal.
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From Proposition 2.4 and 4.1 we get for all ¢ € 73K|p )| (zf,;j )

1_[1'6 i é‘* - a,*(é‘ ) _ ‘Zrir'lj

T 0 AT (30 P )
f©) 8?‘/}7’1/
2
e Y <6<z,z>>°‘+§ p@)Y
~ o i \p (@) (P + 1p@)] + 8(z, £)N+4
O<a+B=<pm

<y @I

P+ p@)] +8(z, OOV +

where N' = N — max; ; p; ;. We have for all { € P, i,j)l(zfﬁj), o0 =

. [z
Zlp(zs)] and thus:

\%

LIPORINEN. i.j i.j
() +68(¢,2) = Elp(zm )|+ Z(S(Z»Zm ) —8@zm  §)

\

- 1 1 -
> [z (5 - K> + —8(z, zn)
C1
> |pGi)| + 8z, z).
Therefore

[cii & —af (D) _ gan’
m b , a
¢ 7@ SR

(0P 2)

b
< o)1V
~ VOO l,] l,] N/+4.
(0@ + @)l + 8z, 25))

Now, integrating over me (Zi,_,-)l(zi,’ﬂ ) and summing over m, i and j we have to
prove that the sum

io(j) M. j

2

' DI
3= =0 =1 (G + DIo D1+ 10 (1)

lo(z

!
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is uniformly bounded by m. We have:

l])|N

R Io(
2. - W

3= =0 m=1 (G + Do+ 1p (1)

oo ig(j) mi N
SZO ]<. (I—CK)J. ) . 1
i N+ DA =) 41 (@ + DA =cx) + Dp(2)
1 X, (1 —ck)!
|0 (2)] (]X:(:)Z (i + N3 JXJ:O; i+ DV 2(1 — CK)J)
_ 1
e
So Ex(g) belongs to BMO(D) and | Ex (8) I smom) < sup cep |52 T ()] %
@I, O

The L9-estimates of Theorem 1.1 are left to be shown. For ¢ € (1, +00) we will
apply the following (see [31]):

Lemma 4.4. Suppose the kernel k(¢, z) is defined on D x D and the operator K
is defined by K f (z) = f{eD k(¢,2) f(&)dA(L). If for every € €]0, 1] there exists a
constant cg such that

/ ” oI 1k(C, D)IdA() < celp(@)|™°, Yz e D,
ce

/ @I KE D) = @I, ¥ €D
ze

then for all g €]1, +o0[, there exists c; > 0 such that ||K f||rapy < | flLa(p)-

Proof of Theorem 1.1 for g € (1, +00). Applying Lemma 4.4 and Propositions 2.4
and 4.1, it suffices to prove that for all ¢ € (0, 1) there exists ¢, > 0 such that

@IV ¢ ) < v e s

cep (1o +1p @) + 8¢, 2N (&) = celp@™", Vze D, (4.3)
@I @)~ .

/zeD (P + o) +5(;,Z))Nf+3dk(z) < celp(9)I7F, V¢ € D. (44

Inequality (4.3) can be shown as in the proof of Theorem 1.1 for ¢ = co. In order to
prove that inequality (4.4) holds true we cover D with the Koranyi balls Py, ()
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and (Pyig (0 \ Paicipe ©))s j € N. For z € Pepoien (0, 1p(D)] = ()]

and thus

/ OV p(2)| ¢

@) 3 (45
Pepen@ (@] +1p@)| + 8¢, )N (@) S 1p)] 4.5)

When we integrate on 732,-+1K|p(§)|(§) \ 732j,{|p({)‘ (¢) we get

@O p)]*

—d\(z)
Pyt et E\Paipien @) (L + 10 (@) + 8 (L, N3
N’ ,.—¢
S izt PO % —dA(2)
~ X1l y1l= klp)l i N’+3
ol vl =a/ 20 el o ()l (1001 +27k1p(0)]) (4.6)

@)

S @M elp@ T :
(10O + 27k p(0)]

)N’+3
<p(g)| 2 V),

Summing (4.5) and (4.6) for all non-negative integer j we prove inequality (4.4).
Theorem 1.1 is therefore proved for g € (1, +00). O

Proof of Theorem 1.1 for ¢ = 1. We prove directly that Ex(g) belongs to L'(D).
Propositions 2.4 and 4.1 yield

o0 g| 9%Pg
f [Eng@Idr@) S Y ) / loEHIT? | ——=5©)
D j=00<a+B=q;+1" Pelo 1)) CIS TS

@
- () | di(o).
</D (P @] + 1p@I + 8@, VT )

As for the proof of (4.4), we cover D using Koranyi corona and get

= g | 9otPg
/ |Eg(2)dA(z) SZ Z / lp(z |2 — —5 ()| dr (&)
D j=00<a+B=<q;+1" PeloiI () GIuTes
8a+ﬂg 8
< ath
SED I [ e (OO 0
O<e+p=k e OV LY(D)
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5. Smooth extension and divided differences

In this section we give necessary conditions in C” that a function g holomorphic
on X N D has to satisfy in order to have an L?-holomorphic extension to D, g €
[1, +00]. We also prove that these conditions are sufficient in C? for g to have a L9-
holomorphic extension to D when g belongs to [1, 4-00) or a BM O-holomorphic
extension when g = +o00.

5.1. L°°-BM O extension

We first prove the following lemma for functions defined on X N D which have
holomorphic extension to D. We use the notation defined in the introduction.

Lemma 5.1. If g defined on X N D has a holomorphic extension G on D then
uniformly with respect to g, G, z € D, v unit vector of C" and positive integer k
such that k < #A(z, v):

sup  [gzolhr. - AdlT (@ v [P @D S sup Gl.
Ao kg €AZY bA; v (4T (z,v,10(2)])
hi#hj for i
Proof. For Ay, ..., Ak € Ag, pairwise distinct, we have by Cauchy’s formula
1 G(iz+ kv)
Zzwlrr, . Akl =

2im Jpjarato@b [1o; O — A )
since for all A; we have |A;] < 3t(z, v, |p(2)]), we get
1

k—1
—) sup
T (z, v, o@D bAL v @cT (0, p())
Proof of Theorem 1.3. Lemma 5.1 implies directly that coo(g) S [|GllLoopy. O

|gZ,U[)"19"")‘*k]S ( |G| D

Now we prove that an even weaker assumption than c,,(g) < oo is actually
sufficient in C? for g to have a smooth extension which satisfies the hypothesis of
Theorem 1.1 for ¢ = oo and thus for g to have a holomorphic BM O extension to
D. We define for « and g positive real number

% (8) = Supggyztne v M- MdlT(E, v, [0 (D!

where the supremum is taken over { € D \ D_, 2z} € Csuch that |z]] < k|p(¢)],
MAMy.ooys A € A§+Z*,,{ pairwise distinct. Of course, c,((ofg (g) < cxo(g) and it may
be simpler to check that ¢, 83 (g) is finite than to check that c(g) is finite. More-

over, as told by the following lemma, when cK -0 (g) is finite, g admits a smooth
extension which satisfies the assumptions of Theorem 1.1.
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Lemma 5.2. In C?, let g € O(X N D) be such that CKOSO (g) < 00. Then there exist
a neighbourhood U of bD and g € C*°(D NU) such that:

|N+l

(i) for all non-negative integer N, |p g vamshes to order N onbDy;

(i) for all a and B non-negative integer, ‘ | p|°‘+2 is bounded up to a

9ot
ange aw“
uniform multiplicative constant on D NU by c£°§) (2);

P Bs
(iii) for all a and B non-negative integer such that o + > 0, an_,ja Uﬁ 5 = 0on
¢ 0
XNDNU.
Proof. For g9 > 0, we cover D \ D_, with a k-covering (P"V’(Zj)'(zj))jeN con

structed in Subsection 3.1. For a fixed non-negative integer j, we set w} = Nz,
and wy = v;;. Letay, ..., ap; be the parametrization given by Proposition 3.4,
Ij=1{i: Hzl € C with Izll < Klp(z,)l and |o; (z])| < 2¢|p(z))|}, q; = #1;.

If I; = ¥ weput g; = 0on Py p(z)|(zj). Otherwise, without restriction we
assume that Ij ={1,...,q;} and for z = 2j + Zfw] + wi € Pacipi(z)), we
put

qj k—1
3@ =) &zl @, e @I [ @ — ).
k=1 I=1

Proposition 3.4 implies for all zj€ Ag(2k|p(z;)]) that oj (z}) belongs to Az,~+z’;wj‘,w;
thus g; is well-defined on Pay|p(z;)(z). The function ¢ +— g;(z; + zjw] + {w5)
is the polynomial which intellpolates ¢ +— g(z; + zjw] + ¢w3) at the points
o (z]), ..., o, (z}) and thus g; is a holomorphic extension of g to Prippi(z))-
Forall z = z;j + zjw} + Z3w; € Pap(z;)((z;), we have

125 — (2P| < 1(zj, w3, 2k |p(z)) S (2, w3, 26| p(2))).

3a+
W( )‘<

B
Hence it follows that |g; ()] Sy, 8) (@ on 732,(|p(z])| (zj) and |p(z) |*+32 .

Cx, g)(g) on Py |p(z;)(z)). Now we glue together all the g; using a suitable partition
of unity and get our extension to D \ D_,,. Let (x;) jen be a partition of unity

subordinated to (P"|P(Zf)|(zf))jeN such that for all j and all ¢ € Py|p(z;)(z)), We

gata+B+B ., .
have X

1
P g ©)| =< ——— = uniformly with respect to zj and ¢.
dwi¥owif ow} w3 et 2

We set 8¢, = Zj xj&j- By construction forall N € N, p

N+1g,, is of class CV on

D\ D_¢, and vanishes to order N on bD. Moreover, since for all j the function

getB s
gj is holomorphic, ad ad&o = 0on X N (D \ D_;) and, by our choice of x;,

3‘;%?5 @)‘ <o) ) fora s € D\ DL, O
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As a direct consequence of Lemma 5.2, we have:

Corollary 5.3. In C?, let g € O(X N D) be such that ¢ (g) < 0. Then there exist
a neighbourhood U of bD and g € C*°(D NU) such that:

|N+1g vanishes to order N on bD;
aa+/3g

onc* 9g?

uniform multiplicative constant on D NU by cxo(g);

(i) for all non-negative integer N, |p

.. .. B .
(ii) for all a and B non-negative integer, ‘ |p|*T2 is bounded up to a

aa-HSg,

=0on
omg* ovg”

(iii) for all o and B non-negative integer such that o + g > 0,
XNDNU.

Theorem 1.2 now follows from Theorem 1.1 and Corollary 5.3:

Proof of Theorem 1.2. We use Corollary 5.3 to get an extension g of g which sat-
isfies the hypothesis of Theorem 1.1 on &/ N D. Cartan’s Theorem B gives us a
bounded holomorphic extension to D \ U/. Gluing these two extensions together,
we get a smooth extension of g which satisfies the hypothesis of Theorem 1.1 in the
whole domain D and thus, Theorem 1.1 ensure the existence of a BM O holomor-
phic extension of g. O

5.2. L9(D)-extension

The case of L9-extensions is a bit harder to handle because it is not a punctual
estimate but an average estimate. Therefore the assumption under which a function
g holomorphic on XN D admits a L?-holomorphic extension to D uses a x-covering
(Pelop)i(z j))jeN in addition to the divided differences.

By transversality of X and bD, for all j there exists w; in the complex tan-
gent plane to bD, ;) such that 7, the orthogonal projection on the hyperplane
orthogonal to w; passing through z;,is a p; sheeted covering of X. We denote by

wY, ..., w, an orthonormal basis of C" such that wi = n; and w;; = w; and we
) 1
set Po(zj) = {2 =zj +zZfwi + ...+ 25wl :|zf| <eand|zf| < &2, k =
2,...,n—1}. We put
(@)
cK,(Zj)jeN(g)

o0

k=144 ,
/ , Y 1@ T g g lh - M| AV (2)
j=0 Z/EIPZK“O(ZJ.)‘(Zj) Alsees AkeAZ/JU:

Aj#Mhy for il
where dV,,_ is the Lebesgue measure in C" 1.
Theorem 5.4. In C", withn > 2, let (73,(|p(zj)|(zj))jeN be a k-covering of DN X.
If ¢ € O(X N D) has a holomorphic extension G € L1(D) then C/(fq()Zj)jeN (&) <

||G||(£q(D) uniformly with respect to g, G and the covering (73,(“,(1],)\ (Zj))jeN’
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Proof. Forall j € Nall 7/ € 77,(|p(zj)|(zj~), all » € R such that %K|,O(Zj)|% <r<
4iclp(z;)] 5 yall Ay, ..., A € Ay pairwise distinct we have by Cauchy’s formula

1 G +2wj)
8 w;ilr, oo Al = 5= 7]
2w Jp rl—[l (= A)

After integration for r € [7/2«|p(z;)| % dic|p(z )l %], Jensen’s inequality yields

1=k, _
gt It M| S oG e 1/ G+ rw))|?d Vi)

1
[A|=(4xlp(zj)D2

and thus

k;l

/ |gZ/,wj'[}\'la"-’)"k]|q |,0(Z])| 2 q+1an_1
Pt 1 @)

“]

5/ IG@IdV, ().
2€Parlp)1(2))

Since (73,(|p(Z PILs ,-))j y 18 @ k-covering, we deduce from this inequality that

e ® SIG L p)- O

K,(Zj)jeN

(9)

Now we come back to C? and prove that the condition Co(z)) jen

(g) < oo is indeed
sufficient for g to have an L9 extension.

Theorem 5.5. In C?, let (Px|p(zj)| (zj))jEN be a k-covering of D N X. If the func-

tion g is holomorphic on X N D and satisfies c,((q()Z ) N(g) < 00, then there exist a

neighbourhood U of bD and a smooth extension g € C*°(D NU) of g such that:

() forall N € N, |p|N**g vanishes to order N on bD;
(i1) for all non-negative integers o and B the function {r—)‘ 7%1)7[3 (;)) lp(2) |°‘Jr 2

has a L9 norm on D NU bounded by c,((q()zf)jeN (g) up to a uniform multiplica-

tive constant;
9ethg g

e =0on

(iii) for all non-negative integer @ and B such that o + g > 0,
XNDNU.

Proof. We proceed as in the proof of Lemma 5.2. Let &g be a positive real number.
On D\ D_;, we define, for any non-negative integer j, x; and g; and g, as in
the proof of Lemma 5.2 and we prove that it satisfies the wanted estimates. As in
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gy

the proof of Lemma 5.2, pv J““g vanishes at order N on bD and P a*ﬁ =0 on
X N D. Moreover we have for z 73,(|p(zj)|(z])
B 3Py < ot
gj(Z)W(Z) lo(z;)I ‘g](z)‘
- . . k=1
S 1oGHIE Y gy, 1@, @Dl 1)
k=1
- . . ket
S 1@ Y ey lr @) @] I
k=1 ‘
and thus z — |p(z)|°‘+ﬂ " kg (z) isin L9(D) for all « and 8. Ll

a2 ovP
As a corollary of Theorem 1.1 and Theorem 5.5 we get:

Theorem 5.6. In C?, if the function g holomorphic in X N D is such that
(@)

(2)) jen (g) < o0, then g has a holomorphic extension G which belongs to L9(D).

Proof. Theorem 5.5 and Cartan’s Theorem B give a smooth extension to which we
can apply Theorem 1.1 and get a holomorphic extension in L7 (D). O

5.3. Extension and weakly holomorphic functions

One may notice that each time the smooth extension near the boundary is controlled
only by the values of g on XN D. Moreover we have never used the strong holomor-
phy of g excepted when we involved Cartan’s Theorem B in order to get a bounded
extension far from the boundary. Actually, we can use only weak holomorphy and
get a smooth extension and then apply theorem 1.1 in order to get a holomorphic
extension with BM O or L4 norm controlled only by the values of g on X N D. Let
us first recall the definition of weak holomorphy we shall use

Definition 5.7. Let{ be an open set of C". A function g defined on X is said to be
weakly holomorphic on X N if it is locally bounded on X N ¢/ and holomorphic
on the regular set of X N .

The following theorem is a direct corollary of Lemma 5.1:

Theorem 5.8. In C", for g € [1, +00), if the function g, defined on X N D, has a
holomorphic extension G € L9(D) then

1
sup | gz,olh1, - M| T2 v, 1o @DF (Vol Peto (@) < G Lo (my,01 )

where the supremum is taken over all z € D, all unit vector v in C", all positive
integer k such thatk < #A;, and all My, ..., Ay € Ay pairwise distinct.
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When z is far from bD, Theorem 5.8 essentially says that the divided differ-
ences have to be bounded even in the case of LY extensions, ¢ < oo. This is
sufficient when n = 2 to construct a smooth bounded extension in D_, for ¢ > 0.

Lemma 5.9. For X and D in C?, let & be a positive real number. Let g be a weakly
holomorphic function on X N D such that c.(g) = sup |gZ,U[)\1, e, Ak]| < o0
where the supremum is taken over 7 € D_%, all unit vector v in C", all positive
integer k such that k < #A; y, all A1, ..., Ax € Az pairwise distinct. Then g has
a smooth extension to D_, bounded by c; up to a multiplicative constant uniform
with respect to g.

Proof. We proceed locally and glue all the extension. Since the only problems
occur when we are near a singularity, we consider a singularity zo of X and we
choose an orthonormal basis w1, w, such that g, the orthogonal projection on the
hyperplane orthogonal to w, passing through zo, is a ko sheeted covering of X in a
neighbourhood Uy C D of zp.

For z1 # 0, we denote by A1(z1), ..., Ak (z1) the pairwise distinct complex
number such that for k = 1, ..., kg, 20 + z1w1 + Ar(z1) w2 belongs to X. We set
forz = z0 + ziw1 + z2w2, 21 #O:

ko ko

- - — Ai(z1)

80(z) = go(zo+z1w1 +22w2) = —————g(zo+ w1 + Ak (z1)w2).
2;1_1[ Ak(z1) — M(z1)

Ik

By construction, go(z) = g(z) forall z € X NUy, z # zo. We denote by Ag
the complex line passing through zp and supported by w,. Since zg is an isolated
singularity of X, away from 0, the A ;’s depend locally holomorphicaly on z; and
thus go is holomorphic on Uy \ Ag. Since the divided differences are bounded on
D_¢ by c¢, go is bounded on Uy \ Ag by ¢, up to a uniform multiplicative constant
and thus g is holomorphic and bounded on U. O

Combining Theorems 1.1, 5.5, Lemma 5.9 and Corollary 5.3 we get the two
following results:

Theorem 5.10. For X and D in C?, let g be a weakly holomorphic function on
X N D such that coo(g) < 00. Then g has a holomorphic extension G which belong
to BMO(D) such that |G|l smo ) S €oo(g)-

Theorem 5.11. For X and D in C?, let g be a weakly holomorphic function in
X N D such that ¢9)

Kk,(zj) jeN
extension G which belongs to LY(D) and such that |G| rspy S c,(c () jen
ce(8)-

(g) < oo and c.(g) < oo. Then g has a holomorphic

(&) +
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6. Examples

Example 6.1 (BM O extension). Let D be the ball of radius 1 and center (1, 0) in
C2%. We choose p(z) = |z1 — 12+ |z2)> — 1 as a defining function for D. For
ay,ay, ..., o € C pairwise distinct we set v; = (—a;, 1). We denote by P; the
plane orthogonal to v; passing through the origin and we set A; = P; N D and
X = Uf.‘zl P;. Let also g1, ..., gk be k bounded holomorphic functions on A, the
unit disc in C. Since A; = {(z1,22) € C?: zp = ez and |21 — (1 + |a; )7V <
(1 + |a;|») ™1}, the function

‘ { XnD — C
£ @i z) — g+l — 1)

is well-defined, bounded and holomorphic on X N D. Question: Under which
conditions does g have a BM O holomorphic extension to the domain D?

In order to answer this question, we will try to find an upper bound for c,(fgg (g).
Let { = (¢1,¢2) be a pointin D \ D_g, let z7 € C be such that |z]] < «[p(Z)]
and let Ay, ..., A; be complex numbers pairwise distinct belonging to A“ang’v;.
Perhaps after renumbering, we assume that ¢ + z{n; + A;v; belongs to A; for all
i. Moreover, if ¢ is sufficiently near the origin, we can also assume that v, does not
belong to any of the plane P;. We have

8e+zine v [Ms s Al
-y =
ST G —2))

J#

g (@ + 2ne + 2D + o) = 1).

Form =i, j, A, satisfies the following equalities
&+ 2iMe2 + Amve2 = am (1 + 2101 +Mve),  m=i,

which yield (A; —)»j)Ug’z = (o —O(j)({l +Z>1k77{,1 —{—)\iv{,]) —I—Otj()»,' —)»j)U;J and
SO
|Ai = Ajl-lvea —ajveal = leg —a;l - 161+ 2ine1 + Aive il

We show that |¢1 + z7n¢,1 + Aive,1] = [¢1]. First, we have |z]] < «[0(¢)] and since
¢ belongs to D, [o()] 5 181150 []] S «lail. Secondly, |ve.1| = [#£(¢)| = Iz

and since ¢ belongs to D, |¢2] < |¢1]2. Since [Ai] < 3k|p(0)|Z < |¢1]2, we get
IMiveal S «lgi] and &1 + 2§ne1 + Ajve1| ~ [¢1]. Hence provided « is small
enough, [A; — A;| 2 |¢1] and

!
1
8ctzine.ve Mo k,]’ S ot E 8i ((§1+ZTU;,1+)»1'U§,1)(1 + IOliIZ)—1>’.
i=1
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Since t(¢, v, [0 (0D < |§1|%, if we assume that there exists c € C and C > 0
such that for all i, |gi(z + 1) — c| < CIZIFT1 for all z near the origin of C, we get

(&, ve, 10O ger o M, - M| S C

(00)

So ck.¢(g) is finite and Lemma 5.2 and Theorem 1.1 implies that g admits a BM O-
holomorphic extension to D.

This is in general the best result we can get. For example, let o be a real
number and let g; be the function defined on the unit disc of C by g;(z) = (1 +2)%,
i =1,...,k. Let x be a small positive real number and let ¢ in D be the point
(x,0). We have n; = (1,0),v; = (0, 1), 7(¢, v, [p(0)]) ~ x%, (x, ajx) belongs
to A; if x is sufficiently small, and

1

(o —aj)
1

k o
gewelonx, . oopx] =Y e (vt +10P))"
i=1 " n-;;

Therefore if @ < %,r({, v, |,0({)|)k_1 I8¢, le1x, .., opx]| is unbounded when
x goes to 0. So ¢ (g) is not finite and Theorem 1.3 implies that g does not admit a
holomorphic extension bounded on D.

Example 6.2 (L2-extension in C?). Again let D be the ball of radius 1 and center
(1, 0) in C? and for any positive odd integer ¢, let X be the singular complex hyper-
surface X = {z € C?, z‘f = z%}. Then all g holomorphic and bounded on X N D

has a L? holomorphic extension to D if and only if g = 1 or g = 3.

When g = 1, X is a manifold and there is nothing to do.

When g = 3, X has a singularity at the origin. We will prove that the assump-
tions of Theorem 5.5 are satisfied for any x-covering provided « is small enough.
To check these hypothesis, we set p(z) = |71 — 1 2+ |z212—1,we fixa holomorphic
square root & in C \ (—00, 0] and we prove the two following facts. The first one
gives a relation between the distance fromz € X N D to z + Av € X N D and the
coordinates of z.

Fact 6.3. Let « be a sufficiently small positive real number, let K be a large positive
real number, let 7 = (21, z2) be a point in D N X near the origin, let v = (v, v2)
be a unit vector of C2 such that |v| < K|z; |% and let A be a complex number such
that z + Av belongs to X N D and |A| < 4k|t(z, v, [p(2)]).
1
Then, if « is small enough, we have || > |z1|%, |z1] < |p(2)]¢ and |z2] <
lp(2) I% each time uniformly with respect to z, ¥ and v.

. l : b4 M
Remark 6.4. The assumption |v;| < K|z1]|2 means that v is “nearly” tangential to
bD, ).
p(2)
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q . . .
Proof. We first prove that |A| 2 |p(z)|2. Since |v1] is small, v is transverse to X
and without restriction we can assume that z = (21, «(z1)?) and that z + Av =
(z1 + vy, —a(z1 + Av1)9). Therefore we have

Al > [ad(z1) 4+ (21 + Av)| > 2|z1]2 — |a? (z1) — ad (21 + Av)).

The mean value theorem gives

la?(z1) —a?(z1 + 2vD)| S IAlJvi] sup
¢€lz1,z1+Av1]

af ‘
—4'@) .

For all ¢ € [z1, z1 + Avi], we have || < |z1], and so, provided « is small enough,
1
we get [ = |z1|*. Now, since |A| < 4x]p(2)|7, we get |z1] < [p(2)|7 and
1

|22l S lp@)]2. O
As previously, we denote by 5, the outer unit normal to D) at ¢ and by v,

a tangent vector to bD, ) at ¢. The second fact gives some kind of uniformity of

Fact 6.3 on a Koranyi ball.

Fact 6.5. Let « be a sufﬁciently small positive real number, let ¢ be a point in D,
let z = ¢ + zin; + z;v; be a point in Py jp(¢)(¢) N D N X and let A be a complex
number such that z 4 Av, belongs toXNDN 734,(|p(;)‘ ().

Then |3 2 [¢112, 122] S 1p(£)]? and 1511 < Ip(ﬁ)l‘f uniformly with respect to z, {
and A.

Proof. We want to apply Fact 6.3, so we first have to check that |v. 1| < |z I%
uniformly with respect to z and ¢. On the one hand we have |v; 1| = ‘ 0 )=

122 < 1¢112. On the other hand z; = &1 + 2n¢.1 + 231 thus

1511 < |z} + |23 ] ve 1| + Nzl
S klp@| +«lgi] + |z1]
< lzil +«lgl.

. . 1
Therefore, if « is small enough, [£1]| < [z1| and |vg,1] < |z1]|2. Therefore we can

apply Fact 6.3 which gives |A| 2 |zl|% and since |z1| 2 |¢;1| the first inequality
is proved. The third inequality follows from the first one and from the fact that

1
Al S e ]
Fact 6.3 also gives |z2] < |p(z)|2 and since |p(¢)| = |p(z)|, we have

161 S 122 — 22l + 1221 S 1P (@12 + 1p(@)12 < 1p(0)]2. m
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Now we check the assumptions of Theorem 5.5 and for any x-covering, k > 0 suf-
ficiently small, and any function g bounded on X N D we prove that c’((zz ) jen @ <
llgll Lo (pnx), uniformly with respect to g.

Let Uy be a neighbourhood of the origin, let ¢, &9 and « be small positive real

numbers and let Pmp(g("))\@;k))’ keN,je{l,..., n}bear-covering of DN
J

such that for all £ and all j, the point {}k) belongs t0 bD_ (| _yke, - We assume that

K is so small that Fact 6.5 holds true and we set k = 1 — ck.
For all ¢ € D, the following inequality holds and is optimal in general:

2 < 2 3
() > e M V@D S 18y PO
lz7 <4kl ren

tHefng v

This means that the corresponding estimate for ;;k) does not depend on j and since
we will add these bound for all k and j = 1, ..., ng, we will also need an upper
bound for ny . For any non-negative integer k, we denote by oy the area measure on

bD_gkg,. Since P

Proposition 3.1

1o ®)] (é';k)) is a k-covering, for all k£ we have as in the proof of
J

K

n (k)
ok (bDiiey) = ok (kakso UL Py (€ ”)
X (k)
> Zlcrk (bD,;kgo N Pﬁxlp(c;"))l((gf )))
]:
2
2 Nk (IZkSO) .
Therefore n; < (;2" 80)_2 and we have uniformly with respect to g

2
dv(z])

o0 ng

Y3 e
1

k=0 j=

[A]

8,0 »
N 13} &N ()Y (k)
| <dic ( J ; \
2} [<4klp(g; )] MEAL o g G %
G

o0
3
< ||g||%oo(xnp) Z”lk (KkSO)
k=0

2
S gz xnp)-

Now we handle the case of divided differences of order 2. We set

2
1€ =10@F [ ecsctnpelin il VD

*
<610y sge o,
A #EA
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and we aim to prove that Z,‘:ﬁg r]”‘:l I(gj(.k)) S lgllze(xnpy- Let ¢ be a point
in bD_gi,, . If for all complex number Z} such that [z]| < k|p(¢)] we have

#AHZTn;,v: < 2,then I(¢) = 0. Otherwise Fact 6.5 implies that [¢7] < K(/Zkao)%

for some K > 0 and that |A; — A3| = |§1|% for all A, A, distinct in A“ZT”;’%,
7} € Csuch that |z]| < k|p(¢)]. Therefore, for all such ¢, we have

lo@)1*

7“.1'3 . (6.1)

lgllLoe(pnx
1€ S1o©F [ IS1L00% 4y (1) < g1y
2jl<aelp@) 181l

Thus, when we denote by Z®) the set

k) —_ ¢ . g% * (k) _
Zz"W ={jeN:37 €C, |z]] < klp(¢;")| and #Acfk)ﬂi‘n ot T 2},
J J

@ e)*

we have to estimate the sum Y ;% > jez® IC(k)I’ .

We use the inclusion Z®) ¢ u;?ilzi(") where

z0 =(j ez :ikkeo <10 < (i + Di*eg and |19 < K (& £0)7)
and we look for an upper bound of #Zl.(k). We have

L. . . - - 1 -
ok (bD_grgy Nz, EiKkEO < |z1] < 2(+Di*eo and |z2] < 2K (F*e0)2}) = (i e9)?
and, if « is small enough,

k

L. . - k1
0k (bD_gisy N (2, ik 80 < |21] < 20 + DR e and |za] < 2K (R'e0)?})

2 ok (U P <k))|(§ YynbD

jEZ(k) K\p({ —K 80)

>4z - (@Feo)?.

These last two inequalities imply that #Z l.(k) is bounded by a constant which depends
neither on i nor on k.
For j € Z(k), since |§;ﬁ)| z |p(§;k))|, Inequality (6.1) yields I(;}k)) <

i*eollgll Lo (xnp)y thus

+00

k
3> 1) Sliglexnb).

k=0 je 70
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For i > 0, we use directly (6.1) which gives

+00 +00 ( 80)4

+00 +
ZZ > I(C( IS ||g||L°°(XﬂD)ZZ( 0P ~ < llgllexnpy)-

i=1 k=0 jc7® =0 i=1
()
Kﬂ(s“ Vken el ng)
that g admits a L2—h010morph1c extension to D.

Now, for ¢ > 5, we consider g defined for z in X by g(z) = £2. The function

2]

This finishes to prove that ¢ is finite and Theorem 5.5 now implies

[

g is holomorphic and bounded on X because |z3| = |z] I% for all (z1, zp) € X but
we will see that g does not admits a L2-holomorphic extension to D.

For &g, k, ¢ > 0 small enough we set k = 1 — ck and we denote by g“(k)
(xk, 0) the point of C? such p({ék)) = —ikkeg. We have x; ~ ikeg uniformly with
respect to k, K and 9. We complete the sequence (;ék)) keN SO as to get a k-covering
Pk|p({(k))\(§ ) k e Nand j € {0, ..., ng}, of a neighbourhood of the origin. We

set w; = (1,0) and wy = (0, 1). For all %, M0 = Wi, V.6 = w2 and, for all z1,

0 0
- q - g e
we have Aé,(;k)+zlwl’w2 = {(z1 + k*e0)2, —(z1 + &*e9) 2}. So, if k is small enough,

for all k¥ we have

2
(k)2 ~k g ~k_ %
&) g0 (@1 + 7 et~ + 250 f]| @V
O Jnrcactpqny 158 v
1
b (*e0)? —————dV (z21)
21 1<l |21 + &Reol?
> (icheg)*1.
Since for ¢ > 5 the series ZkZO(Ekso)“_q diverges @ (g) is not

IC,(C;b)keN,je{(),...,nk)
finite and so Theorem 5.4 implies that g does not have a L2 holomorphic extension
to D.

Example 6.6 (The example of Diederich-Mazzilli). Let B3 be the unit ball of C3,
X ={z=(z,22,23) € C? : z% + zg = 0} where ¢ > 10 is an uneven integer,
and define the holomorphic function f on C> by

21

(1 —2z3)*%

Then f is bounded on X N B3 and has no L? holomorphic extension to Bj3.
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This was shown in [18] by Diederich and the second author. We will prove this
result here with Theorem 5 4.

We set p(¢) = |62 + |22]? + |53]% — 1, and we denote by wi, wy, w3 the
canonical basis of C3. For all non-negative integer j and &g, ¢ and x small suitable
constants for X and B3, we define k = (1 — c«). For any integer j, we denote by
¢j = (0,0, ¢, 3) the point of C3 such that ¢j,3 is real and satisfies p(¢;) = —ikJegy.
The point ¢; can be chosen at the first step of the construction of a «-covering of
X N D in a neighbourhood of (0, 0, 1) and so the Koranyi balls 77,(\,)(;]” ¢j),jeN,
are extract from a «-covering. For all j we have

2
dV(z.73) 2 &6~

q q

2 i3
|,0(§')|/ Jeitzawn+ 2y, =2

/ al<tarlppp? |7 ST 220 T

lz3—¢; 31<4klp(C ;)

and thus when ¢ > 5,

+00

2
> 1p) / o
=0 lzp]<(elp(g)I)

lz3=¢; 3l<4klp ()l

2
dV(z1,z3) = +00.

q q
2 2
f§j+zzw2+Z3w3 wi |:Z2 , _Z2:|

Theorem 5.4 then implies that f does not have an L? holomorphic extension to Bj.
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