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The geometry of planar p-harmonic mappings: convexity,
level curves and the isoperimetric inequality

TOMASZ ADAMOWICZ

Abstract. We discuss various representations of planar p-harmonic systems of
equations and their solutions. For coordinate functions of p-harmonic maps we
analyze signs of their Hessians, the Gauss curvature of p-harmonic surfaces, the
length of level curves as well as we discuss curves of steepest descent. The
isoperimetric inequality for the level curves of coordinate functions of planar p-
harmonic maps is proven. Our main techniques involve relations between qua-
siregular maps and planar PDEs. We generalize some results due to P. Lindqvist,
G. Alessandrini, G. Talenti and P. Laurence.
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1. Introduction

In this note we discuss the geometry of solutions to a p-harmonic system of equa-
tions in the plane. That is, for a map u = (u1, u2) : � ⇢ R2 ! R2 and 1 < p < 1

we will investigate the following nonlinear system of equations:

div(|Du|p�2Du) = 0,

where Du stands for the Jacobi matrix of u and |Du|2 = |ru1|2 + |ru2|2. If
a solution exists it is called a p-harmonic map. The system originates from the
Euler-Lagrange system for the energy

R
� |Du|p and therefore, the natural domain

of definition for solutions is the Sobolev space W 1,p
loc (�, Rn). However, in the dis-

cussion below we will deal mainly with C2-regular maps. Equivalently, this system
can be written as follows. 8<

:
div(|Du|p�2ru1) = 0

div(|Du|p�2ru2) = 0.
(1.1)

Furthermore, for p = 2 the system reduces to the harmonic one and so from that
point of view p-harmonic maps are the nonlinear counterparts of harmonic transfor-
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mations. On the other hand, if map u degenerates to a single function u = (u1, 0),
we retrieve from (1.1) the classical p-harmonic equation div(|ru1|p�2ru1) = 0.
In spite of similarity to the definition of the p-harmonic equation, the p-harmonic
system is far more complicated, as the component functions are tangled together by
the appearance of Du in both equations. This property, together with degeneracy
of the system at points where Du = 0 makes the analysis of p-harmonics difficult
and challenging.

The p-harmonic operators and systems arise naturally in a variety of applica-
tions e.g. in nonlinear elasticity theory [16,17], nonlinear fluid dynamics [1,12], as
well as in cosmology or climate sciences and several other areas (see e.g. [3] and
references therein). In pure mathematics the p-harmonic maps appear for instance
in differential geometry [14,29,30] or in relation to differential forms and quasireg-
ular maps [11]. In what follows we will confine our discussion to maps between
planar domains. The reason for this is twofold. First, already in the two dimen-
sional setting computations for nonlinear Laplace operators are complicated and in
higher dimensions the complexity increases even further. The second reason is re-
lated to the fact that we will often appeal to relations between the complex gradients
of coordinate functions of a p-harmonic map and quasiregular maps. Such relations
known for planar p-harmonic equation [10, 26] has been recently established also
in the setting of p-harmonic maps (see [3] or discussion in Section 2 and Appendix
A.1). The corresponding relations between nonlinear PDEs and quasiregular maps
beyond the plane remains an open problem.

We recall that in the planar case quasiregular map can be defined in terms of the
Beltrami coefficient µ. Namely, a map F is quasiregular if there exists a constant k
such that

|µ| =

|Fz|
|Fz|

 k < 1 a.e. in �. (1.2)

For the equivalent definitions of quasiregular maps and further information on this
topic we refer to e.g. [20], [15, Chapter 14], [9, Chapter 3]. Other properties of
quasiregular maps needed in our presentation will be recalled throughout the dis-
cussion.

The subject of our interest will be the geometry of p-harmonic surfaces, that
is the geometry of the graphs of coordinate functions of planar p-harmonic maps.
The main difficulty lies in the fact that functions u1 and u2 are coupled by Du, and
so many of our estimates involve both coordinates and depend on the Jacobi matrix
norm |Du|.

In Section 2 we recall and introduce various representations of the p-harmonic
operator and p-harmonic system needed in further sections, as depending on the
discussed problem we will adopt different points of view on p-harmonicity.

In Section 3 we show that for some range of parameter p the positivity of Hes-
sian determinant for one coordinate function of u implies that the second Hessian
determinant is negative. Such a phenomenon has not been noticed before for p-
harmonic maps. From this observation we infer number of conclusions regarding
convexity of coordinate functions and their level sets and the Gauss curvature of
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the corresponding surfaces. In the latter case, we generalize work of Lindqvist [23]
on p-harmonic surfaces. Using the class of radial maps we illustrate Section 3 by
example postponed to Appendix A.3 due to complexity and technical nature.

Section 4 is devoted to studying the curvature of level curves. Following the
ideas of Alessandrini [4] and Lindqvist [23] we prove Theorem 4.3 providing the
local estimates of lengths of a level curves of u1 and u2. To our best knowledge
such estimates in the nonlinear vectorial setting are not present in the literature so
far.

We continue investigation of level curves in Section 5, where basing on the
work of Talenti [27] we discuss level curves of steepest descent and provide some
estimates for the curvature functions involving both the level curves and their or-
thogonal trajectories. Results in Sections 3-5 are based on techniques developed
in earlier work by the author [3] and therefore, for the sake of completeness and
for the readers convenience we recall the necessary results from [3] in Appendix
A.1. There we also extend some of the estimates from [3] due to C2 assumption on
p-harmonic maps.

Section 6 contains discussion of an isoperimetric inequality for p-harmonic
maps and generalizes works of Laurence [19] and Alessandrini [5] to the setting
of vector transformations. Again, in the setting of systems of coupled differential
equations such a result is new.

We believe that our approach based on mixture of complex analysis, theory of
quasiregular maps and PDEs techniques can be extended to some other nonlinear
systems of equations in the plane.

ACKNOWLEDGEMENTS. The paper was written during the author employment at
the University of Cincinnati and then at Linköping University. Tomasz Adamowicz
would like to express his gratitude to these institutions for hospitality and support.

2. Representations of p-harmonic equations and systems

In this section we recall and develop various representation formulas for p-har-
monic operator and system in the plane. The presentation is of mainly technical
nature and the results here will serve as auxiliary tools for the discussion in the
following sections. Also, our goal is to compare p-harmonic transformations with
their scalar counterparts (p-harmonic functions) and, therefore, illustrate the differ-
ences between these cases. We would like to emphasize that despite formal similar-
ity to the scalar case one should expect new phenomena in the setting of p-harmonic
mappings.

Let u = (u1, u2) : � ⇢ R2 ! R2 be a planar p-harmonic mapping. Assume
that u 2 C2(�). Following notation in [3] we denote by f, g the complex gradients
of the first and the second coordinate function of u, respectively.

f =

1
2

(u1x � i u1y), g =

1
2

(u2x � i u2y). (2.1)
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In what follows we will frequently appeal to the following equations for | f |, |g|,
fz , gz , fz , gz .

| f | =
1
2 |ru

1
|, |g| =

1
2 |ru

2
|,

fz =
1
4

⇣
u1xx � u1yy � 2iu1xy

⌘
, fz = fz =

1
4

⇣
u1xx + u1yy

⌘
=

1
41u

1, (2.2)

gz =
1
4

⇣
u2xx � u2yy � 2iu2xy

⌘
, gz = gz =

1
4

⇣
u2xx + u2yy

⌘
=

1
41u

2.

Next, we define the p-harmonic operator and express it by using the complex nota-
tion. Let� ⇢ R2 and v 2 C2(�, R) be a Sobolev function for a given 1 < p < 1.
The following differential operator is called the scalar p-harmonic operator:

1pv = div(|rv|
p�2

rv)

= |rv|
p�4�

|rv|
21v + (p � 2)( (vx )

2vxx + 2vxvyvxy + (vy)
2vyy )

�
(2.3)

= |rv|
p�4�

|rv|
21v +

p�2
2 hrv,r|rv|

2
i

�
.

We will also need the complex formulation of a scalar p-harmonic operator in the
plane. Using (2.1) with (2.3) (with the abuse of notation that here f =

1
2 (vx� i vy))

we obtain that

div(|rv|
p�2

rv)= @
@x

⇣
|rv|

p�2vx
⌘

+
@
@y

⇣
|rv|

p�2vy
⌘

=
@
@x

⇣
2p�2| f |p�2( f + f )

⌘
+ i @

@y

⇣
2p�2| f |p�2( f � f )

⌘

=2pRe
⇣
| f |p�2 f

⌘
z
= 2p�1

⇣⇣
| f |p�2 f

⌘
z
+

�
| f |p�2 f

�
z

⌘

=2p�2| f |p�2
⇣
2p fz + (p � 2)

⇣
f
f fz +

f
f fz

⌘⌘
.

(2.4)

Let us now focus our attention on p-harmonic maps. Using the definition of the
p-harmonic operator (2.3) the following form of the p-harmonic system (1.1) in
the plane can be established at the points where ru1 6= 0 and ru2 6= 0:

8<
:

|ru2|p�41pu1 + |ru1|p�4div(|ru2|p�2ru1) = 0

|ru1|p�41pu2 + |ru2|p�4div(|ru1|p�2ru2) = 0.
(2.5)

Remark 2.1. The analogous representation can be stated in any dimension n � 2.
However, here we confine our discussion to the case n = 2 only.
Equivalently, system (2.5) can also be written as follows:

8<
:

|ru1|4�p1pu1 + |ru2|21u1 +
p�2
2 h ru1,r|ru2|2 i = 0

|ru2|4�p1pu2 + |ru1|21u2 +
p�2
2 h ru2,r|ru1|2 i = 0.

(2.6)
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We will sketch the proof only for the first equation of system (2.5) as the derivation
of the second equation goes along the same lines:

div(|Du|p�2ru1) =
@
@x

⇣
(|ru1|2 + |ru2|2)

p�2
2 u1x

⌘

+
@
@y

⇣
(|ru1|2 + |ru2|2)

p�2
2 u1y

⌘
= 0

|ru1|21u1 + |ru2|21u1 +
p�2
2

✓⇣
|ru1|2

⌘
x
u1x +

⇣
|ru2|2

⌘
x
u1x

+

⇣
|ru1|2

⌘
y
u1y+

⇣
|ru2|2

⌘
y
u1y
◆

= 0

|ru1|21u1+ p�2
2 hru1,r|ru1|2i+|ru2|21u1+ p�2

2 hru1,r|ru2|2i=0
|ru2|p�41pu1 + |ru1|p�4(|ru2|p�21u1 + (p � 2)|ru2|p�4) = 0

|ru2|p�41pu1 + |ru1|p�4
⇣

@
@x (|ru

2
|
p�2u1x ) +

@
@y (|ru

2
|
p�2u1y)

⌘
= 0. (2.7)

Using the definition of the divergence operator we arrive at the first equation of
(2.5). Multiplying (2.7) by |ru1|4�p

|ru2|4�p we produce the first equation of
(2.6). Similar computations allow us to obtain second equation of (2.5) and (2.6),
respectively.

The complex notation and the connection between PDEs in the plane and func-
tions of complex variable is nowadays classical and has become very fruitful and
brought lots of insight into both complex analysis and theory of differential equa-
tions, to mention for instance the theory of Beltrami equation or the theory of gen-
eralized analytic functions (see e.g. [9, 31]). It turns out that also in the setting of
p-harmonic systems such relations can be discovered. Indeed, in [3] we proved that
f and g satisfy the following system equivalent to (1.1). We will frequently appeal
to this result and its consequences in further sections.

Theorem 2.2 (Theorem 1, [3]). For 1 < p < 1 let u = (u1, u2) be a C2(�, R2)
p-harmonic mapping. Consider complex gradients f, g of coordinate functions
u1, u2, respectively (eqs. (2.1)). We have the following system of quasilinear equa-
tions 8>>>>>>>>>><

>>>>>>>>>>:

✓
2p +

4|g|2
| f |2

◆
fz = (2� p)

✓
f
f fz +

f
f fz

◆

+(2� p)

g
f gz +

g
f gz +

✓
g
f +

g
f

◆
gz
�

✓
2p +

4| f |2
|g|2

◆
gz = (2� p)

✓
g
g gz +

g
g gz

◆

+(2� p)

f
g fz +

f
g fz +

✓
f
g +

f
g

◆
fz
�

(2.8)

at the points where f 6= 0 and g 6= 0.
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Remark 2.3. In [3] the above result is proven for p � 2. Here, the C2 assumption
on u allows us to extend theorem to the whole range of 1 < p < 1 (see Appendix
A.1 for further discussion).

Let us compare the above system to its scalar counterpart. For that purpose,
note that if u2 ⌘ 0, then the mapping u reduces to one coordinate function u1. In
such a case system (2.8) reduces to well known equation, see e.g. [10, equation (5)]:

fz =

✓
1
p

�

1
2

◆✓
f
f
fz +

f
f
fz
◆

.

From this we immediately infer that f is a quasiregular mapping (more on this topic
can be found in [9]).

Let us also mention that system (2.8) can be solved for fz and gz . As a result
we arrive at the following representation for f and g. (We refer to Appendix A.1
and discussion in [3] for the definition of matrix A( f, g) and further estimates).

f
g

�
z
= A( f, g)


f
g

�
z

+ A( f, g)

f
g

�
z
. (2.9)

The ellipticity of such quasilinear system has been proven in [3, Theorem 2]. There,
we also showed that, perhaps surprisingly, the coefficients of A( f, g) can be esti-
mated in terms of parameter p only.

Using the above system one can investigate when f and g are quasiregular
maps, extending the results known for p-harmonic functions in the plane [3, Sec-
tion 3].

We would like to add that in the planar case the relation between quasiregu-
lar mappings and p-harmonic functions is known in much deeper details than we
just sketched it above. For instance one can prove that the coordinates of a planar
quasiregular map, as well as the logarithm of the modulus of such map satisfy cer-
tain elliptic equations and the same holds for the logarithm of the modulus of the
gradient of p-harmonic function (see [26]). The higher-dimensional counterparts of
such properties remain unknown neither for p-harmonic functions nor p-harmonic
mappings, due to lack of Stoı̈low factorization beyond the complex plane.

3. Convexity of coordinate functions, the Gaussian curvature
of p-harmonic surfaces

Below we use system (2.9) and the estimates for the entries of matrix A( f, g) (see
(A.4) in Appendix A.1) to determine mutual relations between convexity of coordi-
nate functions of p-harmonic map. We discover an interesting phenomenon that for
a certain range of p convexity of one coordinate function implies the concavity of
the other. Theorem 3.1 has not been noticed before in the literature, mainly due to
the lack of enough wide classes of examples of p-harmonic maps. Among equiv-
alent formulations of Theorem 3.1 and its corollaries we discuss the sign of Gauss
curvature for p-harmonic surfaces and convexity of their level sets.
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Since the convexity properties of a function are govern by the second deriva-
tives matrix of such function, the Hessian matrices for u1 and u2 and the analysis
of their signs will be of our main interest. Using equations (2.2) we express the
determinant of Hessian H(u1) as follows:

det H(u1) = u1xxu
1
yy � (u1xy)

2
= 4(| fz|2 � | fz|2),

where f is a complex gradient of u1 (see (2.1)). Related is the Gauss curvature of a
surface z = u1(x, y).

Ku1 =

u1xxu1yy � (u1xy)2

(1+ (u1x )2 + (u1y)2)2
=

det H(u1)
(1+ (u1x )2 + (u1y)2)2

. (3.1)

Similar formulas hold for H(u2) and Ku2 .

Theorem 3.1. Suppose u = (u1, u2) is a p-harmonic mapping and let p 2 [
4
3 , 2+

p

2]. If det H(u2) � 0, then det H(u1)  0.
Moreover, we have that if det H(u2) � 0 (det H(u1) � 0, respectively) holds

in the whole domain�, then the Gauss curvature Ku1  0 (Ku2  0, respectively)
in �.

Before presenting the proof we will compare this observation to the case of a
single p-harmonic equation and discuss some consequences of the above result.
Remark 3.2. If u2 ⌘ 0 (u1 ⌘ 0) then p-harmonic system (1.1) reduces to a single
p-harmonic equation for u := u1 (u := u2, respectively). In such a case from The-
orem 3.1 we retrieve first part of the assertion of [23, Theorem 5.3] which stays that
for p-harmonic surfaces Ku  0. Furthermore, the quasiregularity of the complex
gradient of u implies that Ku = 0 at most at isolated points or u is an affine function
(cf. [23]).

Recall that the Jacobian of f satisfies 4J (z, f ) = � det H(u1) (similarly,
4J (z, g) = � det H(u2)). This, together with the characterization of quasiregu-
larity via the Beltrami coefficient (1.2) leads us to the equivalent formulation of
Theorem 3.1.

Corollary 3.3. Under the assumptions of Theorem 3.1 it holds that if J (z, g)  0,
then J (z, f ) � 0.

Remark 3.4. Taking into account that if J (z, g) < 0 in �, then g is quasiregular,
Theorem 3.1 can be equivalently rephrased as follows: if g is quasiregular, then so
is f .

Theorem 3.1 allows us also to explore the convexity properties of p-harmonic
surfaces. Recall, that if a function v is convex, then level sets {v  c} are convex as
well. Similarly, if v is concave, then level sets {v � c} are concave. The analysis of
convexity of level sets has been the subject of several interesting papers, for instance
due to Kawohl [18, Chapter 3], Lewis [22] or recently Ma et al. [25], to mention
only some.



270 TOMASZ ADAMOWICZ

Corollary 3.5. Suppose that the assumptions of Theorem 3.1 hold. If u2 is a convex
component function of u, then u1 is concave and so are level sets {u1 � c}, provided
that u1xx  0.

The assertion of Theorem 3.1 can also be related to work of Laurence [19] on
the derivatives of geometric functionals emerging in analysis, such as the length of
the level curves (Laurence’s work will be discussed in greater details in Section 6
below). The results of [19] specialized to our setting read as follows.
Corollary 3.6. Let u satisfies the assumptions in [19, Theorems 1, 2 and 5] and
Theorem 3.1 above. Denote by L(s) =

R
{u2=s} dH1 the length of level curve of u2

corresponding to s. It holds, that if u1 is convex, then L 00(s) > 0.
Proof of Theorem 3.1. From formula (2.9) we get the following important estimate
(see also Remark A.1 and inequality (15) in [3]):

| fz| |A11( f, g)|| fz| + |A12( f, g)||gz| + |A11( f, g)|| fz| + |A12( f, g)||gz|
 2Ap (| fz| + |gz|) .

Here Ap is the upper bound for the entries of matrix A( f, g) (see Appendix A.1 for
computations):

Ap =

8><
>:
2�p
2p for 1 < p < 2,
p�2
2p for 2  p  3,

(p�2)(p�1)
4p for 3 < p.

(3.2)

This, together with the analogous inequality for |gz| and arithmetic-geometric mean
inequality results in the estimate:

| fz|2 + |gz|2  4(2Ap)2(| fz|2 + |gz|2). (3.3)
With the above notation we infer from (3.3) the following chain of estimates.

1
4

⇣
det H(u1) � det H(u2)

⌘
= (| fz|2 � | fz|2) � (|gz|2 � |gz|2)

 16A2p(| fz|
2
+ |gz|2) � 2|gz|2 + |gz|2 � | fz|2

=

⇣
16A2p � 1

⌘
| fz|2 +

⇣
16A2p + 1

⌘
|gz|2 � 2|gz|2

(next, we use explicit formulas (2.2) for gz and gz)

=

⇣
16A2p � 1

⌘
| fz|2 +

1
16

⇣
16A2p + 1

⌘

⇥

⇣
(u2xx )

2
+ (u2yy)

2
� 2u2xxu

2
yy + 4(u2xy)

2
⌘

�

1
8
(1u2)2

=

⇣
16A2p � 1

⌘
| fz|2 +

1
16

⇣
16A2p � 1

⌘
(1u2)2

�

1
4

⇣
16A2p + 1

⌘
u2xxu

2
yy +

1
4

⇣
16A2p + 1

⌘
(u2xy)

2

=

⇣
16A2p � 1

⌘
| fz|2 +

1
16

⇣
16A2p � 1

⌘
(1u2)2 �

1
4

⇣
16A2p + 1

⌘
det H(u2).
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It follows that

det H(u1)  4(16A2p � 1)
✓

| fz|2 +

1
16

(1u2)2
◆

� 16A2p det H(u2). (3.4)

Computations involving the appropriate values of Ap (see (3.2) and (A.4) in Ap-
pendix A.1) give us that

16A2p  1 if

8><
>:

(4� 3p)(4� p)  0 for 1 < p < 2,
(p � 4)(3p � 4)  0 for 2  p  3,
(p2 � 4p + 2)(p2 � 2p + 2)  0 for 3 < p.

From these conditions we derive that 16A2p  1 holds provided p 2 [
4
3 , 2 +

p

2].
From this and (3.4) the first assertion of theorem follows immediately.

The second assertion of the theorem is the straightforward consequence of the
first part and equation (3.1).

Remark 3.7. The range of parameter p in the assertion of Theorem 3.1 is the con-
sequence of estimates for entries of the matrix A( f, g). In Appendix A.3 we discuss
the counterexample to Theorem 3.1 for some p outside the interval [43 , 2+

p

2]. The
problem of finding such examples is the general feature of p-harmonic world, as
we know only few classes of p-harmonic maps and few explicit solutions of the p-
harmonic system of equations, namely affine, radial and quasiradial (see [2, Chapter
2] for the definition of the latter one class of mappings).
Open problem 1. Let u = (u1, . . . , un) be a non-trivial p-harmonic map between
domains in Rn for n � 3 (that is u is not an affine or constant map). Suppose that
ui is convex for some i = 1, . . . , n (and so det H(ui ) > 0). Does it then hold that
det H(u j )  0 for j 6= i? Describe the conditions for concavity of u j for j 6= i .

4. The curvature of level curves

Below we discuss various curvature functions of level curves for the component
functions of a map u = (u1, u2) and employ such curvatures to estimate the length
of the level curves. It appears that such estimates require integrability of Hessians
or quasiregularity of complex gradients of u1 and u2. Therefore, the complex lin-
earization of p-harmonic system (2.9) comes in handy. The results below extend
the work of Lindqvist [23] for a p-harmonic equation.

Let {u1 = c} be a nonempty level curve with the property that none of the
critical points of u1 lies on this level curve. The curvature function ku1 of {u1 = c}
can be computed by the following formula:

ku1 = �

(u1y)2u1xx � 2u1xu1yu1xy + (u1x )2u1yy
|ru1|3

= �div

 
ru1

|ru1|

!
= �11(u1). (4.1)
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Consider the above formula for a harmonic function v. Theorem 3 in Talenti [27]
shows that if v has no critical points, then kv

|rv|
is harmonic and � ln |kv| is subhar-

monic. As far as we know the similar results for a single p-harmonic equation with
p 6= 2 are not known (see also presentation in Section 5 below). In the next observa-
tion we further illustrate differences between scalar and vector cases by computing
curvatures k for p-harmonic functions and coordinate functions of u. Moreover,
the second part of the observation can be considered as a starting point for obtain-
ing the counterparts of aforementioned Talenti’s results in the nonlinear setting (see
also Remark 1.5 and the discussion in [25] for some recent developments in this
topic).
Observation 1. Let p 6= 2 and suppose that the component function u1 of a p-
harmonic map u has no critical points on the level curve {u1 = c}. Then

ku1 = �

1u1

|ru1|
+

1
|ru1|

*
r|ru1|,

ru1

|ru1|

+
(4.2)

= �

p � 1
p � 2

1u1

|ru1|
+

1pu1

(p � 2)|ru1|p�1
. (4.3)

Equivalently, in the complex notation ku1 becomes

2| f |ku1 = �2 fz +

f
f
fz +

f
f
fz (4.4)

= �2
⇣
ln | f |2

⌘
z
+

f
f
fz + 3

f
f
fz, (4.5)

where f is a complex gradient of u1 as defined in (2.1). Similar formulas hold for
the second component function u2 as well.

Furthermore, if u2 ⌘ 0, then (4.3) reduces to the following:

ku1 = �

p � 1
p � 2

1u1
|ru1|

. (4.6)

Before proving the observation, we would like to make some remarks in order to
motivate above computations and present our discussion in the wider perspective.
Remark 4.1. The formula (4.5) is convenient, for instance, if one knows addition-
ally that f is a quasiregular map. In such a case function � ln | f | solves the A-
harmonic type equation at points where f 6= 0, see e.g. [13]. The integral estimates
which follow from this fact will be of use for us when discussing the integrability
of ku1 .
Remark 4.2. For p = 2 the nonlinear p-harmonic system reduces to the uncoupled
system of two harmonic equations, for which the curvature functions are already
present in the literature, see e.g. [23, 27].



THE GEOMETRY OF PLANAR p-HARMONIC MAPPINGS 273

Proof of Observation 1. Equation (4.2) follows immediately from the divergence
formulation of curvature (4.1). The same formulation used again leads us to the
following identity:

1u1 = div

 
ru1

|ru1|
|ru1|

!

= �|ru1|ku1 +

u1x
|ru1|2

(u1xu
1
xx + u1yu

1
xy) +

u1y
|ru1|2

(u1xu
1
xy + u1yu

1
yy) (4.7)

= �|ru1|ku1 +

(u1x )2u1xx + 2u1xu1yu1xy + (u1y)2u1yy
|ru1|2

.

Applying the definition of p-harmonic operator (2.3) to the last term, we express
(4.7) in the following form:

|ru1|21u1 = �|ru1|3ku1 +
1
p�2 |ru

1
|
4�p1pu1 �

1
p�2 |ru

1
|
21u1.

From this, formula (4.3) follows immediately. In order to show the complex repre-
sentation of ku1 we use (2.2) and (2.4) together with (4.2) to obtain equation from
which (4.4) follows straightforwardly:

ku1 = �

2(p � 1)
p � 2

fz
| f |

+

2p�2| f |p�2
⇣
2p fz + (p � 2)

⇣
f
f fz +

f
f fz

⌘⌘
2p�1(p � 2)| f |p�1

.

We show (4.5) by first observing that
�
ln( f f )

�
z =

fz
f +

fz
f since ( f )z = fz . Then,

by (4.4) we obtain that

2| f |ku1 = �2
✓
fz
f

+

fz
f

◆
f +

f
f
fz + 3

f
f
fz = �2

⇣
ln | f |2

⌘
z
+

f
f
fz + 3

f
f
fz .

Finally, (4.6) follows from the observation that if u1 is a p-harmonic function, then
1pu1 = 0 and so (4.6) is a special case of (4.3).

We would like now to show one of the main results of the paper, namely the length
estimates for the level curves. We follow the approach of Talenti [27] for planar
linear elliptic equations and of Lindqvist [23] for planar p-harmonic functions.

Theorem 4.3. Let u = (u1, u2) be a C2 p-harmonic map in the planar domain �
for p 6= 2. Let also C > 0 be a constant. Denote by B = B(z0, R) a ball in � and
consider a nonempty level curve {u1 = c} \ B 6= ;. Suppose that, either

(1) Euclidean norms of Hessians kH(u1)k, kH(u2)k are in L2(B) and | f | > C in
B or

(2) fz, gz 2 L2(B) and | f | > C in B or
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(3) f and g are quasiregular in B and | f | > C in B or
(4) f and g are quasiregular in B and | f (z)| > C|z � z0|↵ in B with ↵ < 1.

Then ku1 2 L1(B) and the same result holds for u2 with f replaced by g in the
above assumptions.

Moreover, suppose that the singular set of u1 consists of isolated critical points
only and that there are no such points in {u1 = c} \ B. Then

L(s) 

Z
�\B

|ku1 | + 2⇡R. (4.8)

The analogous estimate holds for u2.

Remark 4.4. Note that the second parts of Assumptions (1), (2) and (3) above can
be weaken, as we need | f | > C to hold only on the level curve. Then, by the
continuity of u there exists an open neighborhood, where the lower bound for | f |
holds as well. Therefore, in Theorem 4.3 it is enough to assume that | f | > C on
some open neighborhood of {u1 = c}, only.

Proof of Theorem 4.3. Formula (4.4) implies that

| f ||ku1 |  | fz| + | fz|.

From the linearization of p-harmonic system in (2.9) we infer that fz= A11( f,g) fz+
A12( f, g)gz + A11( f, g) fz + A12( f, g)gz . Therefore,

| f ||ku1 |  (2|A11( f, g)| + 1)| fz| + 2|A12( f, g)||gz|.

Recall from (A.4) in Appendix A.1 that entries of matrix A( f, g) can be estimated
in terms of p only and hence the following inequalities hold:

| f ||ku1 | 
2
p | fz| +

2�p
p |gz| 

2
p (| fz| + |gz|) if 1 < p < 2,

| f ||ku1 | 
2(p�1)

p | fz| +
p�2
p |gz| 

2(p�1)
p (| fz| + |gz|) if 2  p  3,

| f ||ku1 | 
p2�p+2
2p | fz| +

(p�2)(p�1)
p |gz| 

p2�p+2
2p (| fz| + |gz|) if 3 < p.

(4.9)

Denote, by A(p) the maximum of constants on the right hand sides of inequali-
ties (4.9). Then, by the Hölder inequality we have that

Z
B

|ku1 |  2A(p)
✓Z

B
| fz|2 + |gz|2

◆ 1
2
✓Z

B

1
| f |2

◆ 1
2
. (4.10)

It is then clear that Assumption (1) or Assumption (2) imply the assertion. So is
Assumption (3), as if f and g are quasiregular in B, then fz, gz 2 L2(B) (see
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e.g. [26]). If Assumption (4) holds, then integration in polar coordinates gives us
the following estimate:

Z
B(z0,R)

1
| f (z)|2

dz 
2⇡
C

Z R

0
r1�2↵dr =

2⇡
C

1
2(1�↵) R

2(1�↵) < 1.

Inequality (4.10) then implies that kku1kL1(B) < 1.
By the discussion in [4] (see also in [23, Theorem 4.11]) we know, that if

function u1 defined on � has isolated critical points and none of them lies on the
level curve {x 2 � : u1(x) = c} \ G for G ⇢ �, then the following ”integration
by parts” can be performed in a set G (here the definition of ku1 in (4.1) is used as
well):

�

Z
{x2G:u1(x)<c}

ku1dz =

Z
{x2G:u1(x)<c}

div

 
ru1

|ru1|

!
dz

=

Z
{x2G:u1(x)=c}

ds +

Z
{x2@G:u1(x)<c}

*
ru1

|ru1|
, n

+
ds,

where n denotes the outer normal vector to @G. Using the notation of Corollary 3.6
we get (cf. in [4, Formula (v)]) that

L(c) := length({x 2 G : u1(x) = c}) 

Z
G

|ku1 | + perimeter of G. (4.11)

Combining this inequality for G = �\ B(z0, R) with the above integrability result
of ku1 we obtain (4.8).

Remark 4.5. In Section 3 in [3] (see also Appendix A.1 below) we discuss an
inequality relating fz and gz which implies that f is quasiregular: |gz|  C(p)| fz|.
This condition allows us to weaken Assumptions (3) and (4) and require only f to
be quasiregular. Indeed, in the proof of Theorem 4.3 quasiregularity of g is used
only to obtain L2-integrability of gz .

A similar simplification occurs when using the logarithmic representation (4.5)
of ku1 . Namely, if f is quasiregular, then components of f and � ln | f | satisfy cer-
tain elliptic equation, from which the integrability of |r ln | f || can be inferred, see
discussion in [23, Section 2]. The L1-integrability of ku1 then follows immediately
from L1-integrability of fz (cf. Remark 4.1).

Remark 4.6. Observe that under the quasiregularity assumptions (3) or (4) of The-
orem 4.3 the requirement for u1 to have only isolated critical points is satisfied
automatically, since quasiregular maps are discrete and open (see e.g. discussion
in [23]).
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5. Level curves and curves of steepest descent

In the previous section we defined kv , the curvature of the level curves of func-
tion v. Similarly, one may introduce function hv , the curvature of the orthogonal
trajectories of the level curves (also called lines of steepest descent):

hv =

(vxx � vyy)vxvy � vxy((vx )
2
� (vy)

2)

|rv|
3 .

By considering a function

�v = kv + ihv = �2
@

@z

 
f

| f |

!
for f = vx � ivy (5.1)

we obtain yet another tool to analyze the geometry of solutions of partial differen-
tial equations, see e.g. [23, 27]. Theorem 3 in [27] shows, that if v is a harmonic
function without critical points, then �v satisfies certain nonlinear PDE. Moreover,
properties of �v can be used to show that kv

|rv|
and hv

|rv|
are conjugate harmonic and

that � ln |kv| and � ln |hv| are subharmonic. Theorem 3 in [27] has been partially
extended by Lindqvist to the nonlinear setting of p-harmonic functions. Namely,
Theorem 4.3 in [23] asserts that for a planar p-harmonic function u it holds that

�u | f | = | f |2
@

@z

✓
�

1
f

◆
+

p � 2
p

| f |2Re
@

@z

✓
�

1
f

◆
(5.2)

=
f
f fz +

p�2
2p

⇣
f
f fz +

f
f fz

⌘
, when f 6= 0.

Since |kv|  |�v|, Lindqvist employed properties of �v together with the theory of
quasiregular mappings and stream functions to prove the estimates for the length of
level curves, similar to (4.8) above, in terms of integral of �v , see [23, (4.12)].

Theorem 5.1. If u = (u1, u2) is p-harmonic, then at the points where f, g 6= 0 it
holds that

|�u1 || f |  C(p)(| fz| + |gz|), |�u2 ||g|  C(p)(| fz| + |gz|). (5.3)

Proof. Computing the right-hand side of (5.1) we get that

�u1 | f | = | f |2
✓
fz
f 2

�

fz
| f |2

◆
= � fz +

f
f
fz . (5.4)

From (2.9) we know that fz = A11( f, g) fz + A12( f, g)gz + A11( f, g) fz +

A12( f, g)gz . Substituting this in (5.4) we obtain

�u1 | f | =

⇣
f
f � A11( f, g)

⌘
fz � A12( f, g)gz � A11( f, g) fz � A12( f, g)gz, (5.5)

�u2 |g| = A21( f, g) fz +

⇣
g
g � A22( f, g)

⌘
gz � A21( f, g) fz � A22( f, g)gz .
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Computing �u2 and then gz from (2.9) results in the analogous formula for �u2 |g|.
The estimates for the entries of matrix A( f, g) in (A.4) applied to equations (5.5)
immediately give us the estimates (5.3).

The case of p-harmonic functions can now be identified as a special case of Theo-
rem 5.1. By using matrix (A.1) and (A.2) in Appendix A.1 we may easily check that
if u2 ⌘ 0, and hence also g ⌘ 0, then A11( f, 0) =

2�p
2p

f
f , whereas A12( f, 0) ⌘ 0.

Thus, equation (5.5) reduces to (5.2).
In Theorem 5.1 we use equation (5.1) to extend the aforementioned [23, The-

orem 4.5] to vectorial setting. Furthermore, under Assumptions (2) or (3) or (4) of
Theorem 4.3 we may prove the similar integrability result for �u1 (�u2) as obtained
for ku1 (ku2) and, in a consequence, obtain a counterpart of level curves length es-
timate (4.8) expressed in terms of functions �u1 (�u2), respectively. This result
generalizes [23, Theorem 4.11] on the integrability of �v for a p-harmonic function
v in the plane.

We would like to emphasize that in the setting of p-harmonic maps the concept
of stream functions (cf. [7]), used by Lindqvist [23] to extend the harmonic result to
the nonlinear setting, is not available and it is only due to estimates for A( f, g) in
(A.4) for the operator form of p-harmonic map (2.9) that we are able to prove the
above result and the mentioned counterpart of [23, Theorem 4.11].

6. The isoperimetric inequality for the level curves

Below we derive a variant of an isoperimetric inequality for p-harmonic mappings
in the plane. In the setting of p-harmonic functions on annuli this type results are
due to Alessandrini [5] and Longinetti [24] (cf. Remark 6.2). Our approach is
based on the work by Laurence [19] and extends [5, 24]. To our best knowledge
our isoperimetric inequality is new in the setting of coupled nonlinear systems. We
hope, the techniques used here can be applied in the framework of more general
systems of PDEs. In some parts of the proof we use the complex notation, but
we do not appeal to the complex representation of p-harmonic system (2.8). This
section is, therefore, selfcontained and independent of earlier results of the paper.
Nevertheless, similarly to previous sections, the properties of quasiregular maps
will appear to be vital in discussion.
Let v be a function from � ⇢ R2 to R and define

�a,b = {x 2 � : a < v(x) < b}, �1  a < b  1.

Recall the function of length of a level curve:

L(s) =

Z
{x2� : v(x)=s}

dH1, (6.1)

where dH1 stands for the 1-Hausdorff measure. However, in what follows for the
sake of simplicity we will often omit the measure in notation. Theorem 1 in [19]
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asserts, that for a function v 2 C3(�) such that v is constant on the boundary of �,
it holds that if |rv| � c in �a,b for some c > 0 and given a, b, then

L 0(s) =

Z
{x2� : v(x)=s}

div
✓

rv

|rv|

◆
dH1
|rv|

, (6.2)

L 00(s) =

Z
{x2� : v(x)=s}


div

✓
rv1v

|rv|
3

◆
+ 1

✓
1

|rv|

◆�
dH1
|rv|

. (6.3)

We would like to point out that the lower bound assumption on |rv| can be weaken
(see part 2 of Remark 6.3 below). However, in what follows we will not explore
this observation any further. In addition to (6.2) and (6.3) we will use two other
interesting formulas, holding for C3 functions (cf. in [4, (1.4) and (2.6)]):

1 ln |rv| = div
✓

1v

|rv|
2rv

◆
,

div
✓

1v

|rv|
3rv

◆
+ 1

✓
1

|rv|

◆
=

⌧
r

✓
1

|rv|

◆
,

1v

|rv|
2rv �

1
|rv|

r|rv|

�
. (6.4)

To this end, we will focus our discussion on the case v = u1, but the similar results
hold for u2 as well. Recall that, by f and g we denote the complex gradient of u1
and u2, respectively.

Theorem 6.1. Let �0
⇢ B(z0, R) ⇢ B(z0, 4R) b � and let u = (u1, u2) be a

C3(�)-regular p-harmonic map. Suppose that the coordinate function u1 is con-
stant on @�0 and that there exists a positive constant c such that |ru1| > c in �0.
Furthermore, let us assume that f and g are quasiregular in �0 and consider L(s)
in (6.1) for v = u1. Then the following formulas hold at the points, where ru1 6= 0
and ru2 6= 0.
If p = 2, then

( ln L(s) )00 � 0. (6.5)

Otherwise, if p 6= 2, then

L
1
p (s)

✓
p

p�1 L
p�1
p (s)

◆
00

� �

C

R
4
p

, (6.6)

where C = C(c, p, kDukL p(B2R), dist(�0, @�)) is positive.
Moreover if u2 ⌘ 0 or u1 ⌘ u2, and�0 is a circular annulus, then the inequal-

ities in (6.5) and (6.6) become equalities, with C = 0, is the latter; and, in this case,
u1 is a radial p-harmonic function on �0.

This theorem generalizes the linear case of harmonic functions, as well as the
case of p-harmonic functions for p 6= 2.



THE GEOMETRY OF PLANAR p-HARMONIC MAPPINGS 279

Remark 6.2.

1. If p = 2 and � is a planar annulus, then we retrieve the well known harmonic
case discussed for instance by Laurence [19, Theorem 6] and Alessandrini [5,
formula (1.3a), Theorem 1.1].

2. If p 6= 2 and u2 ⌘ 0 or u1 ⌘ u2, then u degenerates to a p-harmonic function
u1. In such a case, the analysis of steps of the proof below allows us to retrieve
the nonlinear part of assertion in [5, formula (1.3b), Theorem 1.1] with 3 =

p � 1. In [5], it is assumed that � is an annuli. This is because for such �
it can be showed that the gradient norm is strictly positive (the argument goes
back to Lewis [22]), and therefore (6.2) and (6.3) can be applied. Instead, in
Theorem 6.1 we localize the discussion on the subset �0 b � and assume that
|ru1| > c > 0 (see also the discussion of equality in the proof of Theorem 6.1).

3. In Theorem 6.1 we may assume that s  max
@�0
u1 due to the maximum princi-

ple for coordinates of p-harmonic maps (see Observation 2 in Appendix A.2).

Let us comment the assumptions and hypothesis of the theorem.

Remark 6.3.

1. The C3-regularity of u is assumed in order to be able to apply formulas (6.2)
and (6.3) for L 0 and L 00, respectively.

2. According to [19, Remark on page 266], the assumption that |ru1| > c can
be weaken due to the Sard theorem. Namely, one can require formulas (6.2)
and (6.3) to hold only for the regular values of u1. Since, let t be a regular
value of u1. Then there exist ✏ > 0 and c > 0 such that |ru1| > c on the set
{x 2 � : t � ✏ < u1(x) < t + ✏}. Furthermore, by [19, Remark 2 on page 267],
the assumption on lower bounds for |ru1| can be replaced by the integrability
condition of a suitable power of the gradient of u1.

3. We require�0 to be enough far away from the boundary of�, since in the proof
we use the following important estimate for p-harmonic maps due to Uhlenbeck
[28, Theorem 3.2]:

sup
BR

|Du| 

C

R
2
p
kDukL p(B2R), (6.7)

where C(p) is a constant in the Sobolev imbedding theorem.
4. One of the assumptions of Theorem 6.1 is that f and g are quasiregular maps.
Using computations similar to [3, formula (17), Section 3] we may determine
conditions under which complex gradients f and g of coordinate functions of a
p-harmonic map are quasiregular (cf. Remark 4.5).

Proof of Theorem 6.1. The definition of the p-harmonic operator (2.3) and the rep-
resentation of the p-harmonic system (2.6) allow us to write the first equation of
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such system as follows:

0 = |ru1|2
 

1u1 + (p � 2)

*
r|ru1|,

ru1

|ru1|

+!

+ |ru2|2
 

1u1 + (p � 2)

*
ru1,

r|ru2|
|ru2|

+!
.

(6.8)

From this equation we compute the Laplacian of u1 and use (4.1), (4.2) and (6.2) to
obtain the formula for L 0(s):

L 0(s) =

Z
{ u1=s}

div

 
ru1

|ru1|

!
ds

|ru1|

=

Z
{ u1=s}

1
|ru1|

 
1u1

|ru1|
�

1
|ru1|

*
r|ru1|,

ru1

|ru1|

+!

= �

Z
{ u1=s}

1
|ru1|2


(p � 2)

|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+

+ (p � 2)
|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+
+

*
r|ru1|,

ru1

|ru1|

+�
.

(6.9)

Next we compute L 00(s). Combining (6.3) with (6.4) and (6.8), together with the
fact that r(|ru1|�1) = �

r|ru1|
|ru1|2 we obtain equation:

L 00(s) =

Z
{u1=s}

*
r

✓
1

|ru1|

◆
,

1u1

|ru1|2
ru1 �

r|ru1|
|ru1|

+
ds

|ru1|

=

Z
{u1=s}

1
|ru1|

⌧
r

✓
1

|ru1|

◆
,�(p � 2)

|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+
ru1

|ru1|2

� (p � 2)
|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+
ru1

|ru1|2
�

r|ru1|
|ru1|

�
.

=

Z
{u1=s}

1
|ru1|4


(p � 2)

|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+2

+ (p � 2)
|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+*
r|ru1|,

ru1

|ru1|

+

+

��
r|ru1|

��2�.
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In order to simplify the discussion, we introduce the following notation for the terms
of L 00(s):

Au := (p � 2)
|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+2
,

Bu := (p � 2)
|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+*
r|ru1|,

ru1

|ru1|

+
, (6.10)

Cu :=

��
r|ru1|

��2.
With this notation L 00(s) reads:

L 00(s) =

Z
{u1=s}

1
|ru1|4

(Au + Bu + Cu) . (6.11)

Using the Hölder inequality at (6.9) we obtain the following estimate:

(L 0(s))2

L(s)


Z
{u1=s}

1
|ru1|4


(p � 2)2

|ru1|4

|Du|4

*
r|ru1|,

ru1

|ru1|

+2

+ (p � 2)2
|ru2|4

|Du|4

*
ru1,

r|ru2|
|ru2|

+2
+

*
r|ru1|,

ru1

|ru1|

+2

+ 2(p � 2)2
|ru1|2|ru2|2

|Du|4

*
r|ru1|,

ru1

|ru1|

+*
ru1,

r|ru2|
|ru2|

+
(6.12)

+ 2(p � 2)
|ru2|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+*
ru1,

r|ru2|
|ru2|

+

+ 2(p � 2)
|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+2 �
.

Using notation (6.10) we express the above inequality in a more suitable and com-
pact form:

(L 0(s))2

L(s)


Z
{u1=s}

1
|ru1|4

✓
(p � 2)

|ru1|2

|Du|2
Au + Cu + 2Bu + 2Au + Eu

◆
, (6.13)
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where Eu stands for the sum of the remaining terms in formula (6.12):

Eu = 2(p � 2)2
|ru1|2|ru2|2

|Du|4

*
r|ru1|,

ru1

|ru1|

+*
ru1,

r|ru2|
|ru2|

+

+ (p � 2)2
|ru2|4

|Du|4

*
ru1,

r|ru2|
|ru2|

+2

= (p � 2)2
 

|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+
+

|ru1|2

|Du|2

*
r|ru1|,

ru1

|ru1|

+!2

� (p � 2)2
|ru1|4

|Du|4

*
r|ru1|,

ru1

|ru1|

+2
.

By the Schwarz inequality we have that�����
|ru2|2

|Du|2

*
ru1,

r|ru2|
|ru2|

+����� 

|ru1|
|Du|

|r|ru2|2|
2|Du|



|r|ru2|2|
2|Du|

.

Therefore, Eu can be estimated as follows:

Eu(p � 2)2
 ��

r|ru2|2
��

2|Du|
+

��
r|ru1|

��
!2

 2(p � 2)2
��
r|ru2|2

��2
|ru1|2

+ 2(p� 2)2Cu .

As a consequence, inequality (6.13) becomes:

(L 0(s))2

L(s)


Z
{u1=s}

1
|ru1|4

✓
(p � 2)

|ru1|2

|Du|2
Au + Cu + 2Bu + 2Au

+ 2(p � 2)2Cu + 2(p � 2)2
��
r|ru2|2

��2
|ru1|2

◆
.

(6.14)

We may now proceed to the crucial inequality combining (6.11) and (6.14):

(L 0(s))2

L(s)



Z
{u1=s}

1
|ru1|4

✓
pAu + 2Bu + (1+ 2(p � 2)2)Cu + 2(p � 2)2

��
r|ru2|2

��2
|ru1|2

◆

=

Z
{u1=s}

1
|ru1|4

p(Au + Bu + Cu)

+

Z
{u1=s}

1
|ru1|4

✓
(2� p)Bu+ (1� p+2(p�2)2)Cu + 2(p�2)2

��
r|ru2|2

��2
|ru1|2

◆
.

(6.15)
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In order to complete the above estimate we need the following upper bound on Bu :

|Bu |  |p � 2|
|ru1||ru2|

|Du|2
��
r|ru1|

�� ��
r|ru2|

��
 |p � 2|

��
r|ru1|

�� |r|ru2|2|
2|ru1|



|p � 2|
4

��
r|ru1|

��2
+ |p � 2|

��
r|ru2|2

��2
4|ru1|2

.

Using this inequality in (6.15) we obtain:

(L 0(s))2

L(s)


Z
{u1=s}

1
|ru1|4

p(Au + Bu + Cu)

+

⇣
9
4 (p � 2)2 + 1� p

⌘ Z
{u1=s}

Cu
|ru1|4

(6.16)

+
9
4 (p � 2)2

Z
{u1=s}

��
r|ru2|2

��2
|ru1|6

.

Upon defining

↵(p) :=
9
4 (p � 2)2 + 1� p and �(p) :=

9
4 (p � 2)2,

we arrive at the inequality

(L 0(s))2

L(s)
 pL 00(s) + ↵(p)

Z
{u1=s}

��
r|ru1|

��2
|ru1|4

+ �(p)
Z

{u1=s}

��
r|ru2|2

��2
|ru1|6

.

With such ↵(p) and �(p), if p = 2 (i.e. ↵(p) = �1,�(p) = 0) we retrieve (6.5),
the harmonic case of the hypothesis (see also Remark 6.2 above). Indeed, for p = 2
inequality (6.16) reads (cf. equation (6.11))

(L 0(s))2

L(s)


Z
{u1=s}

��
r|ru1|

��2
|ru1|4

= L 00(s),

and thus

(L 0(s))2 � L(s)L 00(s)  0 , ( ln L(s) )00 � 0.
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Whereas, if p 6= 2, we have:

 
p

p�1 L
p�1
p (s)

!00
= �

1
p L

�1� 1
p (s)

⇣
(L 0(s))2 � pL(s)L 00(s)

⌘

� �L�
1
p (s)

 
↵(p)
p

Z
{u1=s}

��
r|ru1|

��2
|ru1|4

(6.17)

+

�(p)
p

Z
{u1=s}

��
r|ru2|2

��2
|ru1|6

!
.

Let us now turn to estimates for the right-hand side of (6.17) and first analyze the
last term of this inequality. Using the complex notation and the assumption that g,
the complex gradient of u2, is quasiregular we have that

|r|ru2|2| = 8|(|g|2)z|  8|g|(|gz| + |gz|) = 8|g||gz|
⇣
1+

|gz |
|gz |

⌘
< 16|g||gz|.

Then Z
{u1=s}

|r|ru2|2|2

|ru1|6


Z
{u1=s}

4|g|2|gz|2

| f |6
.

By the assumptions, it holds that 2| f | = |ru1| > c. From this and from the Hölder
inequality we immediately obtain the following estimate:

Z
{u1=s}

4|g|2|gz|2

| f |6


256
c6

( sup
{u1=s}

|g|2)
Z

{u1=s}
|gz|2. (6.18)

The first factor on the right-hand side can be estimated by the Uhlenbeck inequality
(6.7). Moreover, the same inequality allows us to estimate also the second integral
in (6.18), as if a quasiregular transformation g is bounded (and here |g| < 2|Du|
in �), then kgkW 1,2(�0) < C(kgkL1(�0), dist(�0, @�)) < 1 (see e.g. [20, 26]).
Hence,
Z

{u1=s}

|r|ru2|2|2

|ru1|6


256
c6

( sup
{u1=s}

|g|2)
Z

{u1=s}
|gz|2 

C

R
4
p
kDuk2L p(B2R), (6.19)

where C = C(c, kDukL p(B2R), dist(�0, @�)).
In order to estimate the first term on the right-hand side of (6.17), we again use

the complex notation. Then, quasiregularity of f and the assumption that 2| f | =

|ru1| > c imply that
��
r|ru1|

��2
|ru1|4

=

| fz|2

4| f |4

✓
1+

| fz|
| fz|

◆2


1
c4

| fz|2.
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Discussion similar to that in the paragraph following (6.18) leads us to inequality
Z

{u1=s}

��
r|ru1|

��2
|ru1|4



C

R
4
p
kDuk2L p(B2R), (6.20)

with C=C(c, kDukL p(B2R), dist(�0, @�)). Applying inequalities (6.20) and (6.19)
in (6.17), we obtain the first part of assertion:✓

p
p�1 L

p�1
p (s)

◆
00

� �

C

R
4
p
L�

1
p (s).

Here the constant C = C(c, p, |↵(p)| + |�(p)|, kDukL p(B2R), dist(�0, @�)) . Let
us now discuss the case of equality in (6.6). Let u2 ⌘ 0 or u1 ⌘ u2. Then the
assertion of theorem reduces to the case of p-harmonic functions previously dis-
cussed in [5] and L 0(s) and L 00(s) take the following form (cf. formulas in the proof
of [5, Theorem 1.1]):

L 0(s) = �

Z
{ u1=s}

p � 1
|ru1|2

*
r|ru1|,

ru1

|ru1|

+
,

L 00(s) =

Z
{u1=s}

1
|ru1|4

2
4(p � 2)

*
r|ru1|,

ru1

|ru1|

+2
+

��
r|ru1|

��2
3
5 .

By discussion in the proof of [19, Theorem 6] and [5, Theorem 1.1], we know that
equalities in [5, formulas (1.3a) and (1.3b)] hold provided that the level curves are
circles (see also Remark 6.2). This observation leads us to two cases: either �0 is a
ball or an annulus. In the first case, the assumption that u1 = k on @�0 together with
the maximum principle for p-harmonic functions (see e.g. [15, Chapter 6]) imply
that u1 ⌘ k in �0. If �0 is an annulus, then since u1 is constant on two components
of the boundary of �0, the boundary data is rotationally invariant. This, together
with the uniqueness of Dirichlet problem for the strictly convex p-harmonic energyR
�0 |ru1|p implies that the solution inside �0 is a radial p-harmonic function

u1(r) = c1H(r) + c2, where H(r) = r
1
1�p and r =

q
x2 + y2,

whereas constants c1 and c2 depend on the values of u1 on @�0. Easy computations
reveal that for such radial u1 it holds that L 0(s) = �4⇡(p � 1)s ln H 0(s), L 00(s) =

8⇡(p � 1)s
�
ln H 0(s)

�2 and so
(L 0(s))2

L(s)
= (p � 1)L 00(s). (6.21)

Now, if p = 2, then the last equation reads: (L 0(s))2
L(s) �L 00(s) = 0 , ( ln L(s) )00 = 0,

resulting in the equality in (6.5). If p 6= 2, then (6.21) can be equivalently written
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as

 
p�1
p�2 L(s)

p�2
p�1

!
00

= 0. We, therefore, retrieve [5, formula (1.3b)] and the claim

follows.

A. Appendix

A.1. The matrix A( f, g)

One of the main observations used throughout the paper is that one can associate
with the p-harmonic system in the plane a quasilinear system (2.8) and a matrix
A( f, g) (see for instance the work of Vekua [31] for more applications of such an
approach as well as Section 2 in Alessandrini-Magnanini [6]). For the readers con-
venience we now recall the estimates for the entries of matrix A( f, g) in formula
(2.9) and necessary definitions and notation (cf. [3] for the complete discussion).
Additionally, we improve the norm estimates for A( f, g) comparing to [3, Theo-
rem 2], as now we allow 1 < p < 1. This extension is due to C2 assumption on
mapping u. Indeed, in [3] we need Lemma 1 in order to infer the higher regularity of
auxiliary expression depending on Du, available only for p � 2, due to techniques
we use. However, if u is C2, then [3, Lemma 1] is no longer needed to formulate
system (2.8). Let us also comment, that in the setting of planar p-harmonic func-
tions the similar analysis for a Sobolev solutions in the full range of parameter p
is possible, if one uses the stream functions [8] or a variational approach [26], both
unknown in the vectorial setting.

The following matrix A is introduced for the purpose of solving system (2.8)
in the operator form (2.9):

A( f, g)

=

2� p
8

2
64
B f

f + (2� p)D g
f

�
B f

f + (2� p)D
�

f
Bg
�
8+(2� p)2C

�
+(2� p) fg D

g
Bg
�
8+(2� p)2C

�
+ (2� p)D

3
75 (A.1)

for

8 := 8( f, g) =

✓
2p +

4|g|2

| f |2

◆✓
2p +

4| f |2

|g|2

◆
� (2� p)2

✓
2+

g
g
f
f

+

g
g
f
f

◆
,

B := B( f, g) = 2p + 4
| f |2

|g|2
, (A.2)

C := C( f, g) = 2+

g
g
f
f

+

g
g
f
f
,

D := D( f, g) =

g
g

+

f
f
.



THE GEOMETRY OF PLANAR p-HARMONIC MAPPINGS 287

As in [3] we show that

|8| � 16p + 8p
✓

| f |2

|g|2
+

|g|2

| f |2

◆
.

Then

|A11( f, g)| =

����
(2� p)

⇥�
2p +

4| f |2
|g|2

� f
f + (2� p)

� g
g +

f
f
�⇤

�
2p +

4|g|2
| f |2

��
2p +

4| f |2
|g|2

�
� (2� p)2

�
2+

g
g
f
f +

g
g
f
f
�
����



|2� p|
⇥
2p +

4| f |2
|g|2 + 2|2� p|

⇤
16p + 8p

�
| f |2
|g|2 +

|g|2
| f |2

�



2|2� p|(p + |2� p|)|g|2| f |2 + 4|2� p|| f |4

8p(| f |2 + |g|2)2

 (| f |2 + |g|2)2
max{4|2� p|, (p + |2� p|)|2� p|}

8p(| f |2 + |g|2)2
.

(A.3)

Now, we find that

Ap := |A11( f, g)| 

8><
>:
2�p
2p for 1 < p < 2,
p�2
2p for 2  p  3,

(p�2)(p�1)
4p for 3 < p.

(A.4)

Similarly we find that the remaining entries A12( f, g), A21( f, g), A22( f, g) satisfy
the same estimates in the corresponding ranges of p.
Remark A.1. Formulas (10) and (11) in [3] are slightly different then the above
estimates for A( f, g), but one can show that in fact we have now improved estimates
used in the proof in [3, Theorem 2].

The definition of quasiregular maps in terms of the Beltrami coefficient (1.2)
together with the above estimates allow us to describe when the complex gradients
f and g are quasiregular (see [3, Section 3] for more details). Indeed, as mentioned
in Section 2, system of equations (2.8) can be solved with the help of matrix A( f, g)
resulting in equation (2.9):


f
g

�
z
= A( f, g)


f
g

�
z

+ A( f, g)

f
g

�
z
.

From this, we have that

| fz|  |A11( f, g)|| fz| + |A12( f, g)||gz| + |A11( f, g)|| fz| + |A12( f, g)||gz|
 2Ap (| fz| + |gz|) , (A.5)
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where Ap is as in (A.4). From inequality (A.5) we immediately obtain that | fz |
| fz | 

2Ap
⇣
1+

|gz |
| fz |

⌘
< 1 provided that |gz |

| fz | <
1�2Ap
Ap . The similar condition can be

derived for g.

A.2. Maximum principle for coordinate functions of p-harmonic maps

The purpose of this short section is to show the maximum principle for the coor-
dinate functions of the p-harmonic mapping. We use this principle in part (3) of
Remark 6.2. To our best knowledge this result has not appeared in the literature so
far.1 In the proof below we will use the approach by Leonetti and Siepe, see the
proofs of [21, Theorems 2.1 and 2.2].
Observation 2. Let u 2 W 1,p(�, R2) be a p-harmonic mapping in the domain
� ⇢ R2. If for some ui , i = 1, 2 there exists k 2 R such that ui  k on @�, then
ui  k in �.
Before giving the proof, let us state the following remark.
Remark A.2. Let v 2 W 1,p(�, R). Then the assumption v  l on @� means that
there exists a sequence {vk} of a Lipschitz functions on the closure of � such that
vk(x)  l for every x 2 @�, for each k 2 N and kv�vkkW1,p(�,R)

! 0, as k ! 1.

Proof of Observation 2. Without loss of generality, let us assume that i = 1. Con-
sider the following perturbation of mapping u:

ũ = (u1 + �, u2),

where � = �max{u1 � k, 0}. As max{u1 � k, 0} 2 W 1,p
0 (�, R) we have that u

and ũ have the same trace. Define sets

�1 = {u1  k} [ {u1 > k, ru1 = 0}, �2 = � \ �1.

Then

|Dũ|p = |Du|p on �1 a.e. and |Dũ|p < |Du|p on �2 a.e.

Uniqueness of the p-harmonic minimizer implies that |�2| = 0. From this we
obtain that r� = 0 a.e. in �. Since � 2 W 1,p

0 (�, R) we have by the Poincaré
inequality

k�kL p(�)  c(p)|�|

1
2 kr�kL p(�) = 0.

Thus � =0 a.e. in � and the definition of � immediately implies that |{x 2�| u1>
k}|=0, completing the proof.

1This section is adapted from [2, Section 4.4]. The result holds for all dimensions n � 2.
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A.3. Radial p-harmonic surfaces and Theorem 3.1

In Remark 3.7 we mention the difficulty with finding wide classes of nontrivial
examples when dealing with the p-harmonic world. The class of p-harmonic solu-
tions that comes most in handy is the one of radial transformations. In Observation 3
we use radial p-harmonic surfaces to show that Theorem 3.1 may fail beyond the
range of parameter p 2

D
4
3 , 2+

p

2
E
. Let

u(x, y) = (u1, u2) = (H(r)x, H(r)y), for r =

q
x2 + y2

be a radial map in a planar domain. For such u the p-harmonic system (1.1) reduces
to a single ODE:

(p � 1)H 00(H 0)2r3 + (2p � 1)(H 0)3r2 + 2(p � 1)HH 0H 00r2

+ (5p � 4)H(H 0)2r + pH2H 00r + 3pH2H 0

= 0.
(A.6)

The following formulas hold for u1:

ru1 =

�
H 0(r)

x2

r
+ H(r), H 0(r)

xy
r
�
,

u1xx = H 00(r)
x3

r2
+ H 0(r)

2y3 + 3x2y
r3

,

u1xy = H 00(r)
x2y
r2

+ H 0(r)
y3

r3
,

u1yy = H 00(r)
xy2

r2
+ H 0(r)

x3

r3
.

Similarly we find ru2 and u2xx , u2xy, u2yy . After lengthy computations, we arrive at
equations for Hessian determinants of u1 and u2:

det H(u1) = H 0(r)H 00(r)
x2

r
+ (H 0(r))2

2x2 � y2

r2
,

det H(u2) = H 0(r)H 00(r)
y2

r
+ (H 0(r))2

2y2 � x2

r2
.

Observation 3. If p > 6 + 4
p

2, then there exist a constant c > 1 and a radial
p-harmonic map u = (u1, u2) = H(r)(x, y) with H 0

 0 defined in the domain
� ⇢ {(x, y) 2 R2 : cy2 > x2 > y2} such that det H(u2) � 0 and det H(u1) � 0.
Thus, Theorem 3.1 does not hold in general.
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Proof. Using the above computations for Hessians of u1 and u2, the proof reduces
to finding u with the following properties:

det H(u2) � 0 ,

 
H 0

� 0 and H 00r + H 0

 
2�

x2

y2

!
� 0

!
or

 
H 0

 0 and H 00r + H 0

 
2�

x2

y2

!
 0

!
,

det H(u1) � 0 ,

 
H 0

 0 and H 00r + H 0

 
2�

y2

x2

!
 0

!
or

 
H 0

� 0 and H 00r + H 0

 
2�

y2

x2

!
� 0

!
.

(A.7)

For the simplicity of discussion, from now on we will assume that H > 0. Such
an assumption is justified by the fact that if u is p-harmonic, then so is ũ = u +

(Cx,Cy) for a constant C . Thus, by shifting H by a constant we may ensure the
positivity of H . Therefore, condition (A.7) together with requirement that H 0

 0
reduce the hypothesis of observation to showing the following inequalities:

(
�2�

H 00r
H 0

 �
x2
y2

�2�
H 00r
H 0

 �
y2
x2 .

(A.8)

Furthermore, assumption that c > 1 and definition of � allow us to check only that

�2�

H 00r
H 0

 �c < �

x2

y2

 
< �1  �

y2

x2

!
.

From (A.6) we find that

�2�

H 00r
H 0

=

(H 0r + H)2 + (p � 2)H(H 0r + H) + H2

(p � 1)(H 0r + H)2 + H2
.

Upon defining t =
H 0r+H
H , condition �2�

H 00r
H 0

 �c reads:

(1+ c(p � 1))t2 + (p � 2)t + 1+ c  0. (A.9)

Solutions exist provided that 4(1� p)c2�4pc+ p(p�4) � 0. In such a case cmust
satisfy �

p
2(p�1) �

|p�2|
2(p�1)

pp  c  �
p

2(p�1) +
|p�2|
2(p�1)

pp. Requiring that c > 0
gives us condition p > 4, while c > 1 holds if p > 6+4

p

2. By solving inequality
(A.9) for t we may determine conditions for H and H 0 under which mapping u
satisfies (A.8). Thus, the proof of the observation is complete.
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