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Abstract. The aim of this work is to study how the asymptotic boundary of a
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⇥ R determines the behavior of the hypersurface at
finite points, in several geometric situations.
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1. Introduction

In this article we discuss how, in several geometric situations, the shape at infinity of
a minimal surface inH2

⇥ R determines the shape of the surface itself. A beautiful
theorem in minimal surfaces theory is the Schoen’s characterization of the catenoid
[13]. It can be stated as follows. Let M ⇢ R3 be a complete immersed minimal
surface with two annular ends. Assume that each end is a graph, then M is a
catenoid. On the other hand, there exists a complete minimal annulus immersed in
a slab of R3 [7]. A characterization of the catenoid in hyperbolic space, assuming
regularity at infinity, was established by G. Levitt and H. Rosenberg in [6]. In a joint
work with L. Hauswirth [4], the authors of the present article proved a Schoen-type
theorem in H2

⇥ R, in the class of finite total curvature surfaces.
In order to state our results we must recall the notion of asymptotic boundary

of a surface. We denote the ideal boundary of H2
⇥ R by @1(H2

⇥ R), (see [3]
for a definition). As we usually work in the disk model D1 for H2, @1(H2

⇥ R)
is naturally identified with the cylinder @D1 ⇥ R joined with the endpoints of all
the non horizontal geodesic of H2

⇥ R. The asymptotic boundary of a surface M
in H2

⇥ R is the set of the limit points of M in @1(H2
⇥ R) with respect to the

Euclidean topology of D1 ⇥ R. The asymptotic boundary of the surface M will
be denoted by @1M, while the usual (finite) boundary of M will be denoted by
@M. Analogous notions of boundaries hold in higher dimension. We would like to
mention the fact that, in view of our results, we mainly need assumptions about the
points of @1M lying on @1H2

⇥ R.
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Our first result is a new Schoen-type theorem in H2
⇥ R. Namely, we replace

Schoen’s assumption that each end is a graph by the assumption that each end is a
vertical graph whose asymptotic boundary is a copy of the asymptotic boundary of
H2 (Theorem 2.3).

Our second result is a maximum principle in a vertical (closed) halfspace. As-
sume that M is a minimal surface, possibly with finite boundary, properly immersed
in H2

⇥ R and that the boundary of M , if any, is contained in the closure of a ver-
tical halfspace P+. Assume further that the points at finite height of the asymptotic
boundary of M are contained in the asymptotic boundary of the halfspace P+. Then
M is entirely contained in the halfspace P+, unless M is contained in the vertical
halfplane @P+ (Theorem 3.2).

Then we generalize our results to higher dimensions. Theorem 2.3 and Theo-
rem 3.2 in higher dimension are analogous to the 2-dimensional case. In order to
generalize Theorem 2.3, we first need to give a characterization of the n-catenoid
analogous to that of the 2-dimensional case (Theorem 4.3, see also [2]). More-
over in the higher dimensional case, it is worthwhile to state some interesting
consequences of our results. Let S1 be a closed set contained in an open slab
of @1Hn

⇥ R with height equal to ⇡/(n � 1) such that the projection of S1 on
@1Hn

⇥ {0} omits an open subset. We prove that there is no properly immersed
minimal hypersurface M whose asymptotic boundary is S1 (Theorem 4.6-(2)).

Finally we prove an Asymptotic Theorem (Theorem 4.7), that implies the fol-
lowing non-existence result. There is no horizontal minimal graph over a bounded
strictly convex domain, see [10, Equation (3)], given by a positive function g con-
tinuous up to the boundary, taking zero boundary value data (Remark 4.9).
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tamento de Matemática da PUC-Rio for the kind hospitality. The first and the
second authors wish to thank the Laboratoire Géométrie et Dynamique de l’Institut
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2. A characterization of the catenoid in H2
⇥ R

We are going to prove the characterization of the catenoid presented in the Intro-
duction.

For any fixed t, the surface H2
⇥ {t} is a complete totally geodesic surface

called slice. For any s 2 R, we denote by 5s the slice H2
⇥ {s} and we set

5+

s = {(p, t) | p 2 H2, t > s} and 5�

s = {(p, t) | p 2 H2, t < s}. For
simplicity5 stands for50.

Lemma 2.1. Let 0+ and 0� be two Jordan curves in @1H2
⇥R which are vertical

graphs over @1H2
⇥ {0} and such that 0+

⇢ @15+ and 0�
⇢ @15�. Assume
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that 0� is the symmetry of 0+ with respect to5. Let M ⇢ H2
⇥R be an immersed,

connected, complete minimal surface with two ends E+ and E�. Assume that each
end is a vertical graph and that @1M = 0+

[ 0�, that is @1E+
= 0+ and

@1E�
= 0�. Then M is symmetric with respect to 5. Furthermore, each part

M \ 5± is a vertical graph and M is embedded.

Proof. For any t > 0 we set M+

t = M \ 5+

t . We denote by M+⇤

t the symmetry
of M+

t with respect to the slice 5t . Furthermore, we denote by t+ the highest t-
coordinate of 0+. Since @1M = 0+

[ 0�, then M \ 5t+ = ;, by the maximum
principle.

We denote by E+ the end of M whose asymptotic boundary is 0+. As E+ is
a vertical graph, there exists " > 0 such that M+

t+�"
is a vertical graph, then we can

start Alexandrov reflection [1].
We keep doing Alexandrov reflection with 5t , doing t & 0. By applying

interior or the boundary maximum principle, we get that, for t > 0, the surface
M+⇤

t stays above M�

t . Therefore we get that M+

0 is a vertical graph and that M
+⇤

0
stays above M�

0 .
Doing Alexandrov reflection with slices coming from below, one has that M�

0
is a vertical graph and that M�⇤

0 stays below M+

0 , henceforth we get M
+⇤

0 = M�

0 .
Thus M is symmetric with respect to 5 and each component of M \ 5 is a graph.
Therefore we can show, as in the proof of [13, Theorem 2], that the whole surface
M is embedded. This completes the proof.

Definition 2.2. A vertical plane is a complete totally geodesic surface � ⇥R where
� is any complete geodesic of H2.

Theorem 2.3. Let M ⇢ H2
⇥ R be an immersed, connected, complete minimal

surface with two ends. Assume that each end is a vertical graph whose asymptotic
boundary is a copy of @1H2. Then M is rotational, hence M is a catenoid.

Proof. Up to a vertical translation, we can assume that the asymptotic boundary is
symmetric with respect to the slice5. We use the same notations as in the proof of
Lemma 2.1. We know from Lemma 2.1 that M is symmetric with respect to5 and
that M+

0 and M
�

0 are vertical graphs. Therefore, at any point of M \ 5 the tangent
plane of M is orthogonal to5.

We have @1M = @1H2
⇥ {t0,�t0} for some t0 > 0. Since M is embedded,

M separates H2
⇥ [�t0, t0] into two connected components. We denote by U1

the component whose asymptotic boundary is @1H2
⇥ [�t0, t0] and by U2 the

component such that @1U2 = @1H2
⇥ {t0,�t0}. Let q1 2 @1H2 and let � ⇢ H2

be an oriented geodesic issuing from q1, that is q1 2 @1� . Let q0 2 � be any
fixed point. For any s 2 R, we denote by Ps the vertical plane orthogonal to �
passing through the point of � whose oriented distance from q0 is s. We suppose
that s < 0 for any point in the half-geodesic (q0, q1). For any s 2 R, we call Ms(l)
the part of M \ Ps such that (q1, t0), (q1,�t0) 2 @1Ms(l) and let M⇤

s (l) be the
reflection of Ms(l) about Ps . We denote by Ms(r) the other part of M \ Ps and by
M⇤

s (r) its reflection about Ps .
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It will be clear from the following two Claims, why we can start Alexandrov
reflection with respect to the vertical planes Ps and obtain the result. By assumption,
there exists s1 < 0 such that, for any s < s1, the part Ms(l) has two connected
components and both of them are vertical graphs. We deduce that @Ms(l) has two
(symmetric) connected components, each one being a vertical graph. We recall that
5+

:= {t > 0} and5�
:= {t < 0}.

Claim 1. For any s < s1, we have that M⇤

s (l)\5+ stays above Ms(r) and M⇤

s (l)\

5� stays below Ms(r). Consequently M⇤

s (l) ⇢ U2 for any s < s1.

Observe that M⇤

s (l) \ 5+ and Ms(r) \ 5+ have the same asymptotic bound-
ary and that @ (M⇤

s (l) \ 5+) = @Ms(r) \ 5+. Therefore the asymptotic and finite
boundaries of M⇤

s (l) + (0, 0, t), t > 0, are above the asymptotic and finite bound-
aries of Ms(r). Hence M⇤

s (l) + (0, 0, t), t > 0, is above Ms(r) by the maximum
principle, which ensures that the whole M⇤

s (l) \ 5+ stays above Ms(r) for any
s < s1, as desired. The proof of the other assertion is analogous. Then, Claim 1 is
proved.

We now set

� = sup
�
s 2 R | M⇤

t (l) \ 5+ stays above Mt (r) \ 5+ for any t 2 (�1, s)
 
.

Claim 2. We have M⇤

� (l) = M� (r). Thus, given a geodesic � ⇢ H2, there exists a
vertical plane P� orthogonal to � such that M is symmetric with respect to P� .

Note that we also have

� = sup
�
s 2 R | M⇤

t (l) ⇢ U2 for any t 2 (�1, s)
 
.

In order to prove Claim 2, we first establish the following fact.

Assertion. For any s such that M⇤

s (l) \ 5 ⇢ U2, then M⇤

s (l) ⇢ U2.

As M is symmetric with respect to 5 the intersection M \ 5 is constituted of a
finite number of pairwise disjoint Jordan curves C1, . . . ,Ck . Since M \ 5+ is a
vertical graph we deduce

(C j ⇥ R) \ M = C j for any j = 1, . . . , k.

Moreover, since M is connected and symmetric about 5, we get that M \ 5+ is
connected. Let Dj ⇢ 5 be the Jordan domain bounded by C j , j = 1, . . . , k.
Noticing that:

• (M \ 5+) \ (D j ⇥ R) 6= ;;
• M \ 5+ is connected;
• M \ (C j ⇥ R) = C j ;
• @1M \ 5+

= @1H2
⇥ {t0};
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we get that (M \5+)\ (Dj ⇥R) = ;, j = 1, . . . , k. Hence, Di \ Dj = ; for any
i 6= j . Therefore, M \ 5+ is a vertical graph over5 \ [Di . By the previous facts,
we deduce that M⇤

s (l) \ 5 ⇢ [Di . This implies that @
�
M⇤

s (l) \ 5+

�
\ 5 ⇢ [Di .

Consequently we get that @(M⇤

s (l) \ 5+) + (0, 0, ") stays above M for any " >
0. Observe that the asymptotic boundary of @(M⇤

s (l) \ 5+) + (0, 0, ") also stays
above @1M . We conclude by the maximum principle that the vertical translation
(M⇤

s (l) \ 5+) + (0, 0, ") stays above M for any " > 0. This proves the Assertion.
Let us continue the proof of Claim 2. The definition of � implies that M⇤

�+"(l)\
U1 6= ;, for " small enough. We deduce from the Assertion that M⇤

�+"(l) \ 5 is
not contained in U2 for any small enough " > 0. Hence we infer that M⇤

� (l) \ 5
and M� (r) \ 5 are tangent at an interior or boundary point lying in some Jordan
curve C j contained in M \ 5. Since M⇤

� (l) ⇢ U2, M� (r) ⇢ @U2 and the tangent
plane of M is vertical along M \ 5, we are able to apply the maximum principle
(possibly with boundary) to conclude that M⇤

� (l) = M� (r), that is P� is a plane of
symmetry of M . This proves Claim 2.

For any ↵ 2 (0,⇡/2] consider a continuous family of vertical planes making an
angle ↵ with P� , generated by hyperbolic translations along the horizontal geodesic
P� \5. Observe that the vertical planes of this family are not anymore orthogonal to
a fixed horizontal geodesic. Nevertheless, the reflections with respect to any to those
vertical planes keep globally unchanged the asymptotic boundary of M . Therefore
we can perform Alexandrov reflection with this family of planes and, as before,
we find a vertical plane of symmetry of M , say P↵. Hence M is invariant by the
rotation of angle 2↵ around the vertical geodesic P↵

\ P� . Choosing an angle ↵
such that ⇡/↵ is not rational, we find that M is invariant by rotation around the axis
P↵

\ P� . This concludes the proof of Theorem 2.3.

Remark 2.4. For any integer n, there exists a minimal surface in H2
⇥ R which is

a vertical graph, whose asymptotic boundary is a copy of @1H2 and whose finite
boundary is constituted of n smooth Jordan curves in the slice5, see [11, Theorem
5.1]. In the same article the second and the third author asked about the existence
of such graphs with two boundary curves in 5 cutting orthogonally the slice 5.
Theorem 2.3 implies that the answer to this question is negative.

3. Maximum principle in a vertical halfspace of H2
⇥ R

In this section we prove a maximum principle in a vertical halfspace. More pre-
cisely, we prove that, under some geometric assumptions, the behavior of the asymp-
totic boundary of M at finite height, determines the behaviour of M .
Definition 3.1. We call a vertical halfspace any of the two components of (H2

⇥

R) \ P , where P is a vertical plane.

Theorem 3.2. Let M be a minimal surface, possibly with finite boundary, properly
immersed in H2

⇥ R. Let P be a vertical plane and let P+ be one of the two
halfspaces determined by P. If @M ⇢ P+ and @1M \ (@1H2

⇥R) ⇢ @1P+, then
M \ @M ⇢ P+, unless M ⇢ P.
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For the proof of Theorem 3.2 we need to consider the one-parameter family
of surfaces Md , d > 0, that have origin in [8, Section 4] and whose geometry is
described in [11, Proposition 2.1]. This family of surfaces was already used, for
example, in [9, Example 2.1]. We first describe the asymptotic boundary of Md , for
d > 1. Consider a horizontal geodesic � in H2, with asymptotic boundary {p, q}

and let ↵ be the closure of a connected component of (@1H2
⇥ {0})\ ({p, q}⇥ {0}).

Let
H(d) =

Z
+1

cosh�1(d)

dp
cosh2 u � d2

du, d > 1

be the positive number defined in [11, (1)]. Notice that lim
d�!1

H(d) = +1 and
lim

d�!+1

H(d) = ⇡/2.

Let ↵d in @1H2
⇥ {H(d)} and ↵�d in @1H2

⇥ {�H(d)} be the two curves
that project vertically onto ↵. Let Ld , Rd be two vertical segments in @1H2

⇥ R
of height 2H(d) such that the curve Ld [ ↵d [ Rd [ ↵�d is a closed simple curve.
Then @1Md = Ld [ ↵d [ Rd [ ↵�d . Now we describe the position of Md in the
ambient space, for d > 1. First notice that Md is symmetric aboutH2

⇥ {0} and it is
invariant by any isometry of H2

⇥ R that induces a hyperbolic translation along � .
Denote by Q� the halfspace determined by � ⇥R,whose asymptotic boundary

contains the curve ↵. Let �d be the curve in Q� \ (H2
⇥ {0}) at constant distance

cosh�1(d) from � . Md contains the curve �d . Denote by Zd the closure of the non
mean convex side of the cylinder over the curve �d . Then, Md is contained in Zd
which is contained in Q� . Notice that any vertical translation of the surface Md is
contained in Zd .Moreover, any vertical translation of Md is arbitrarily close to Q�

if d is sufficiently close to 1.
We observe that in the description above, � can be any geodesic of H2.

Proof of Theorem 3.2. The proof is an application of the maximum principle be-
tween the surface M and the one-parameter family of surfaces Md , d > 1. We
choose the geodesic � , in order to construct the Md ’s, as follows. Let � ⇢ H2 be
any geodesic such that

• P1: The halfspace Q� is strictly contained in (H2
⇥ R) \ P+;

• P2: @1� \ @1P = ;.

Now, notice that:

(1) The intersection of @1M with @1(H2
⇥ R) \ @1P+ contains no points at finite

height;
(2) The asymptotic boundary of any vertical translation of Md is contained in the

asymptotic boundary of Q� ⇢ H2
⇥ R \ P+.

We claim that Md and M are disjoint for any d > 1. Indeed, letting p �! q
(with respect to the Euclidean topology of the arc of circle in @1H2 between p
and q in @1(H2

⇥ R \ P+) - recall that p, q are the endpoints of the geodesic
� ), one has that Md collapses to a vertical segment in @1H2

⇥ R. Suppose that,
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when p �! q, the surfaces Md always have a nonempty intersection with M .
Then, there would exists a point of the asymptotic boundary of M at finite height
in @1(H2

⇥ R) \ @1P+, giving a contradiction with (1). Then, if M \ Md 6=

;, we would obtain a last intersection point between M and some modified Md
letting p �! q, contradicting the maximum principle. Therefore, by the maximum
principle, any vertical translation of Md and M are disjoint. Let d �! 1. By the
maximum principle, there is no first point of contact between Md and M. As we
can apply the maximum principle between any vertical translation of Md and M,
one has that M is contained in the closed halfspace H2

⇥ R \ Q� for any geodesic
� satisfying the properties P1 and P2. Therefore, M is included in the closure of
P+. Now we have one of the following possibilities:

• Some points of the interior of M touch @P+ = P, then, by the maximum prin-
ciple, M ⇢ P;

• M \ @M is contained in the halfspace P+.

The result is thus proved.

Let us give a definition, before stating some consequences of Theorem 3.2.
Definition 3.3. We say that L ⇢ @1(H2

⇥ R) is a vertical line if L = {p} ⇥ R
for some p 2 @1H2. Given vertical consecutive lines L1, . . . , Lk in @1H2

⇥ R,
we define the set P(L1, . . . , Lk) as follows. Let Pi be the vertical plane such that
@1Pi \ (@1H2

⇥ R) = Li [ Li+1 (with the convention that Lk+1 = L1). Denote
by P̃i the halfspace determined by the vertical plane Pi such that

S
j L j ⇢ @1 P̃i .

Then, we set P(L1, . . . , Lk) := \i P̃i .

Corollary 3.4. Let M be a minimal surface, possibly with finite boundary, properly
immersed in H2

⇥ R and let 0 = @1M \ (@1H2
⇥ R). Let L1, . . . , Lk be vertical

lines in @1H2
⇥ R. If 0 ⇢ L1 [ · · · [ Lk and @M ⇢ P(L1, . . . , Lk), then M \ @M

is contained in P(L1, . . . , Lk), unless M is contained in one of the Pi .

Proof. By Theorem 3.2, M is contained in every halfspace P̃i determined by the
vertical plane Pi such that

S
j L j ⇢ @1 P̃i , unless it is contained in one of the Pi .

Hence it is contained in P(L1, . . . , Lk), by definition, unless it is contained in one
of the Pi .

Corollary 3.5. Let M be a complete minimal surface properly immersed inH2
⇥R.

Let P be a vertical plane. If @1M \ (@1H2
⇥ R) ⇢ @1P, then M = P.

Proof. By Theorem 3.2, M is contained in the closure of both halfspaces deter-
mined by P, hence it is contained in P. Then M = P because it is complete.

Corollary 3.6. Let M be a complete minimal surface properly immersed inH2
⇥R.

Suppose that the asymptotic boundary of M is contained in the asymptotic boundary
of a totally geodesic plane S of H2

⇥ R. Then M = S.
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Proof. The proof is a simple consequence of the maximum principle and of the pre-
vious results. We do it for completeness. First assume that the asymptotic boundary
of M is contained in the asymptotic boundary of a slice, say {t = 0}. Then, for n
sufficiently large, the slice {t = n} is disjoint from M. Now, we translate the slice
{t = n} down. The first contact point, cannot be interior because of the maximum
principle, hence M must stay below the slice {t = 0}. One can do the same reason-
ing with slices coming from the bottom, and M must stay above the slice {t = 0}.
Hence M coincides with the slice {t = 0}.

If the asymptotic boundary of M is contained is the asymptotic boundary of a
vertical plane, the result follows from Corollary 3.5.

Corollary 3.7. Let M be a minimal surface properly immersed inH2
⇥R. Assume

that the projection of the asymptotic boundary of M into @1H2
⇥{0} omits a closed

interval ↵ joining two points p and q. Let � be the horizontal geodesic in H2
⇥ {0}

whose the asymptotic boundary is {p, q} and let Q� be the halfspace determined by
� ⇥R whose asymptotic boundary contains ↵. Then M is contained inH2

⇥R\Q� .

Proof. By hypothesis @1M \ (@1H2
⇥R) is contained in the asymptotic boundary

of (H2
⇥R)\Q� . The result follows by Theorem 3.2 with P+ = (H2

⇥R)\Q� .

Remark 3.8. There exist examples of minimal surfaces with asymptotic boundary
equal to two vertical halflines, lines and a curve at finite height, see [8, Equation
(32)] and [11, Proposition 2.1 (2)].

4. Some generalizations to Hn
⇥ R

Let us recall the construction and the properties of the n-catenoids inHn
⇥R, n > 3,

established, by P. Bérard and the second author in [2, Proposition 3.2]. Given any
a > 0 we denote by

�
Ia, f (a, ·)

�
, where Ia ⇢ R is an interval, the maximal solution

of the following Cauchy problem:8><
>:
ftt = (n � 1)(1+ f 2t ) coth( f ),
f (0) = a > 0,
ft (0) = 0.

Theorem 4.1 ([2]). For a > 0, the maximal solution
�
Ia, f (a, ·)

�
gives rise to

the generating curve Ca , parametrized by t 7!

�
tanh( f (a, t)), t

�
, of a complete

minimal rotational hypersurface Ca (n-catenoid) in Hn
⇥ R, with the following

properties:

(1) The interval Ia is of the form Ia =] � T (a), T (a)[, where

T (a) = sinhn�1(a)
Z

1

a

⇣
sinh2n�2(u) � sinh2n�2(a)

⌘
�1/2

du;

(2) f (a, ·) is an even function of the second variable;
(3) For all t 2 Ia , f (a, t) � a;
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(4) The derivative ft (a, ·) is positive on ]0, T (a)[, negative on ] � T (a), 0[;
(5) The function f (a, ·) is a bijection from [0, T (a)[ onto [a,1[, with inverse

function �(a, ·) given by

�(a, ⇢) = sinhn�1(a)
Z ⇢

a

�
sinh2n�2(u) � sinh2n�2(a)

�
�1/2 du;

(6) The catenoid Ca has finite vertical height hR(a) := 2T (a);
(7) The function a 7! hR(a) increases from 0 to ⇡

(n�1) when a increases from 0
to infinity. Furthermore, given a 6= b, the generating catenaries Ca and Cb
intersect at exactly two symmetric points.

We observe that the n-catenoids are properly embedded hypersurfaces. For later
use, we need the following result. Although we believe that the result is classical,
we give a proof for the sake of completeness. The reader is referred to [5, Chapter
VII] or [14, Chapter 9, addendum 3] for the proof of the analogous statement in
Euclidean space.
Proposition 4.2. Let S ⇢ Hn be a finite union of connected, closed and embedded
(n � 1)-submanifolds C j , j = 1, . . . , k, such that the bounded domains whose
boundary are the C j are pairwise disjoint. Assume that for any geodesic � ⇢ Hn ,
there exists a (n�1)-geodesic plane ⇡� ⇢ Hn of symmetry of S which is orthogonal
to � . Then S is a (n � 1)-geodesic sphere of Hn .
Proof. We will do the proof by induction on n > 2. First assume that n = 2.
We may infer from the hypothesis that there exist two geodesics c1, c2 ⇢ H2 of
symmetry of the closed curve S intersecting at some point p 2 H2 and making an
angle ↵ 6= 0 such that ⇡/↵ is not rational. For any q 2 S, denote by Cq the circle
centered at p passing through q. The orbit of q under the rotation centered at p,
of angle 2↵, is contained in S. Then, being ⇡/↵ not rational, Cq is contained in
S. Let eq 6= q be points of S and let Ceq defined as above. If Cq 6= Ceq then the
geodesic disks bounded by Cq and Ceq are not disjoint, since they have the same
center, which contradicts the hypothesis. Consequently, we get Cq = Ceq and we
conclude that S is a circle.

Let n 2 N, n > 3. Assume that the statement holds for k = 2, . . . , n � 1. Let
⇡0 ⇢ Hn be a (n � 1)-geodesic plane of symmetry of S.
Claim 1. S \ ⇡0 is a (n � 2)-geodesic sphere of ⇡0.

Indeed, let � ⇢ ⇡0 be a geodesic. By hypothesis there exists a (n�1)-geodesic
plane ⇡� ⇢ Hn orthogonal to � which is a plane of symmetry of S. Since ⇡� is
orthogonal to ⇡0, then S\⇡0 is symmetric about ⇡� \⇡0 (which is a (n�2)-geodesic
plane of ⇡0), see [12, Lemme 3.3.15]. As ⇡0 is a (n � 1) hyperbolic space, S \ ⇡0
satisfies the assumptions of the statement inHn�1. By the induction hypothesis, we
deduce that S \ ⇡0 is a (n � 2)-geodesic sphere of ⇡0. This proves Claim 1.

Let p0 2 ⇡0 and ⇢0 > 0 be respectively the center and the radius of the (n�2)-
geodesic sphere S \ ⇡0.
Claim 2. Let ⇡1 ⇢ Hn be a (n � 1)-geodesic plane of symmetry of S orthogonal to
⇡0. Then S \ ⇡1 is a (n � 2)-geodesic sphere of ⇡1 with center p0 and radius ⇢0.
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Claim 1 yields that S \ ⇡1 is a (n� 2)-geodesic sphere of ⇡1. Since ⇡0 and ⇡1
are orthogonal, then the geodesic sphere S \ ⇡0 is symmetric about ⇡1. Therefore
p0 2 ⇡1.

If n > 3, then (S \ ⇡0) \ ⇡1 is the (n � 3)-geodesic sphere with center p0
and radius ⇢0 of ⇡0 \ ⇡1 (which is a (n � 2) hyperbolic space). If n = 3, then
(S \ ⇡0) \ ⇡1 is constituted of two points whose the distance is 2⇢0. In both cases
we infer that diamHn (S \ ⇡1) > 2⇢0 and then the radius of the geodesic sphere
S \ ⇡1 is ⇢1 > ⇢0. Analogously we can show that ⇢0 > ⇢1. We deduce that
⇢1 = ⇢0, that is S\⇡0 and S\⇡1 have both center at p0 and radius ⇢0. This proves
Claim 2.
Claim 3. Let ⇡2 ⇢ Hn be any (n�1)-geodesic plane of symmetry of S. Then S\⇡2
is a (n � 2)-geodesic sphere of ⇡2 with center p0 and radius ⇢0.

Since S is symmetric with respect to ⇡0 and ⇡2, ⇡0 and ⇡2 are distinct and S is
compact, then the (n � 1)-geodesic planes ⇡0 and ⇡2 cannot be disjoint.

Then, we find a third (n � 1)-geodesic plane ⇡3 of symmetry of S, orthogonal
to both ⇡0 and ⇡2. Claim 2 implies that S \ ⇡2 is a (n � 2)-geodesic sphere of ⇡2
with center p0 and radius ⇢0. This proves Claim 3.

Now we finish the proof of the proposition as follows. Let p 2 S and let
⇡ ⇢ Hn be any (n � 1)-geodesic plane passing through p and p0. Let � ⇢ Hn

be the geodesic through p0 orthogonal to ⇡ . By Claim 2, there exists a (n � 1)-
geodesic plane ⇡� of symmetry of S and orthogonal to � . Claim 3 ensures that
p0 2 ⇡� , then ⇡� = ⇡ . Claim 3 yields also that S \ ⇡ is the (n � 2)-geodesic
sphere of ⇡ with center p0 and radius ⇢0, thus dHn (p, p0) = ⇢0. This shows that S
is the (n � 1)-geodesic sphere of Hn of radius ⇢0 and center p0.

Now we establish a characterization of the n-catenoid, that is a generalization
to higher dimension of Theorem 2.3.
Theorem 4.3. Let M ⇢ Hn

⇥R be an immersed, connected, complete minimal hy-
persurface with two ends. Assume that each end is a vertical graph whose asymp-
totic boundary is a copy of @1Hn . Then M is a n-catenoid.

Proof. Up to a vertical translation, we can assume that the asymptotic boundary of
M is symmetric with respect to5 := Hn

⇥ {0}. We set 0+
:= @1M \ {t > 0} and

recall that 0+ is a copy of @1Hn . As usual we set M+
:= M \ {t > 0}.

The next claim can be shown in the same fashion as in H2
⇥ R (see Lemma

2.1 and the proof of Claim 2 of Theorem 2.3). For this reason we just state it.
Claim. M is symmetric about 5, and each connected component of M \ 5 is a
vertical graph. Moreover, for any geodesic � ⇢ 5 there exists a vertical hyperplane
P� ⇢ Hn

⇥ R orthogonal to � which is a n-plane of symmetry of M . Therefore,
⇡� := P� \ 5 is a (n � 1)-plane of symmetry of 6 := M \ 5.

Using the result of the Claim we get that 6 satisfies the assumptions of Propo-
sition 4.2. Then6 is a (n�1)-geodesic sphere of5, since5 = Hn

⇥ {0}. Let C ⇢

Hn
⇥R be the catenoid through6 and orthogonal to5. We set C+

:= C\ {t > 0}.
Both C+ and M+ are vertical along their common finite boundary 6, hence they
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are tangent along 6. Let tC (respectively tM ) the height of the asymptotic boundary
of C+ (respectively M+). Suppose for example that tC 6 tM . Then, lifting upward
and downward M+, we obtain that M+ is above C+. Therefore we deduce that
M+

= C+ by applying the boundary maximum principle. The case tM 6 tC is
analogous. We conclude that M = C and the proof is completed.

In order to establish the generalization in higher dimension of Theorem 3.2,
we need to state some existence results, established for n > 3, in [2, Theorem
3.8], inspired by [11, Proposition 2.1]. Before stating the theorem, we recall that
an equidistant hypersurface is the set of points of Hn

⇥ {0} equidistant to a totally
geodesic (n � 1)-hyperbolic submanifold of Hn

⇥ {0}.

Theorem 4.4 ([2]). There exists a one-parameter family {Md , d > 1} of complete
embedded minimal hypersurfaces in Hn

⇥ R invariant under hyperbolic transla-
tions. MoreoverMd consists of the union of two symmetric vertical graphs over
the exterior of an equidistant hypersurface in the slice Hn

⇥ {0}. The asymptotic
boundary ofMd is topologically an (n � 1)-sphere which is homologically trivial
in @1Hn

⇥ R. More precisely, we set:

S(d)=cosh(a)
Z

1

1
(t2n�2�1)�1/2(cosh2(a)t2�1)�1/2 dt, where d=:coshn�1(a).

Then, the asymptotic boundary ofMd consists of the union of two copies of an
hemisphere Sn�1

+
⇥ {0} of @1Hn

⇥ {0} in parallel slices t = ±S(d), glued with the
finite cylinder @Sn�1

+
⇥ [�S(d), S(d)]. The vertical height ofMd is 2S(d). The

height of the familyMd is a decreasing function of d and varies from infinity (when
d ! 1) to ⇡/(n � 1) (when d ! 1).

Actually the family of hypersurfacesMd is contained in a wider family of
hypersurfaces {Md , d > 0} [2]. We observe that all the hypersurfacesMd are
properly embedded. The hypersurfacesMd are the analogue in higher dimension
of the surfaces Md inH2

⇥R. Also, as inH2
⇥R, by (vertical ) hyperplanewemean

a complete totally geodesic hypersurface 5 ⇥ R, where 5 is any totally geodesic
hyperplane of Hn

⇥ {0}. Moreover, we call a vertical halfspace any component of
(Hn

⇥R)\P where P is a vertical hyperplane. Thus, working with the hypersurfaces
Md exactly in the same way as in Theorem 3.2, we obtain the following result:

Theorem 4.5. Let M be a minimal hypersurface properly immersed in Hn
⇥ R,

possibly with finite boundary. Let P be a vertical geodesic hyperplane and P+ one
of the two halfspaces determined by P. If @M ⇢ P+ and @1M \ (@1Hn

⇥ R) ⇢

@1P+, then M \ @M ⇢ P+, unless M ⇢ P.

Obviously, the analogues in higher dimension of Corollaries 3.4, 3.5, 3.6 hold
as well.

Part (1) of the next theorem is a generalization in higher dimension of Corol-
lary 3.7, while part (2) was proved, for n = 2, by the second and the third au-
thor [11, Corollary 2.2].
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Theorem 4.6. Let S1 ⇢ @1Hn
⇥ R be a closed set whose the vertical projection

on @1Hn
⇥ {0} omits an open subset U .

(1) Let M be a minimal hypersurface properly immersed in Hn
⇥ R such that

@1M = S1. Let Q ⇢ Hn
⇥ R be a vertical halfspace whose asymptotic

boundary is contained in U ⇥ R. Then M is contained in Hn
⇥ R \ Q;

(2) Assume that S1 is contained in an open slab whose height is equal to ⇡
n�1 .

Then, there is no connected properly immersed minimal hypersurface M in
Hn

⇥ R with asymptotic boundary S1.

Proof. The first statement is a consequence of Theorem 4.5 and the proof is analo-
gous to that of Corollary 3.7.

Let us prove the second statement. Assume, by contradiction, that there is such
a minimal hypersurface M with asymptotic boundary S1. Then, up to a vertical
translation, we can assume that M is contained in the slab S := {" < t < ⇡

n�1 � "}
for some " > 0, and thus S1 ⇢ @1S . Using (1) of the present Theorem and our
assumptions, we find an (n�1)-geodesic plane ⇡ ⇢ Hn

⇥{0} such that a component
⇡+ of Hn

⇥ {0} \ ⇡ satisfies:

(1) @1⇡+
⇢ U ;

(2) M \ (⇡+
⇥ R) = ;.

Let C ⇢ Hn
⇥ (0, ⇡

n�1 ) be any n-catenoid such that a component of its asymptotic
boundary stays strictly above @1S and the other component stays strictly below
@1S .

We take a connected and compact piece K of C such that its boundary lies
in the boundary of the slab S . Let q 2 M be a point and let q0 2 Hn

⇥ {0} be
the vertical projection of q. Let p1 2 @1⇡+ be an asymptotic point. Denote bye� ⇢ @1Hn

⇥ {0} the complete geodesic passing through q0 such that p1 2 @1e� .
We can translate K along e� such that the translated K is contained in the halfspace
⇡+

⇥ R. Now we come back translating K towards M along e� . Observe that the
boundary of the translated copies of K does not touch M . Therefore, doing the
translations of K along e� we find a first interior point of contact between M and a
translated copy of K . Hence, M = C by the maximum principle, which leads to a
contradiction. This completes the proof.

Now we state a generalization of the Asymptotic Theorem proved in [11, The-
orem 2.1].

Our result establishes some obstruction for the asymptotic boundary of a prop-
erly immersed minimal hypersurface in Hn

⇥ R.

Theorem 4.7 (Asymptotic Theorem). Let 0 ⇢ @1Hn
⇥R be a connected (n�1)-

submanifold with boundary. Let Pr : @1Hn
⇥R ! @1Hn be the projection on the

first factor. Assume that:

(1) There is some point q1 2 @ Pr(0) such that q1 62 Pr(@0);
(2) 0 ⇢ @1Hn

⇥ (t0, t0 +
⇡
n�1 ) for some real number t0.
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Then there is no properly immersed minimal hypersurface (possibly with finite
boundary) M ⇢ Hn

⇥ R such that @1M = 0.

Proof. Assume, by contradiction, that there is such a minimal hypersurface M .
Since q1 2 @Pr(0) and q1 62 Pr(@0), there exists a (n � 1)-geodesic plane ! ⇢

Hn
⇥ {0} such that a component !+ of Hn

⇥ {0} \ ! satisfies:
(1) q1 2 @1!+, q1 62 @1! and @1!+

\ Pr(@0) = ;;
(2) If M0 denotes a component of M \ (!+

⇥ R) containing q1 in its asymptotic
boundary, then
(a) M0 ⇢ Hn

⇥

�
t0, t0 +

⇡
n�1

�
for some real number t0;

(b) @M0 ⇢ ! ⇥

�
t0+2", t0�2" +

⇡
n�1

�
for some " > 0.

Again, since q1 2 @Pr(0) and q1 62 Pr(@0), there exists a (n� 1)-geodesic plane
⇡ ⇢ Hn

⇥ {0} such that a component ⇡+ of Hn
⇥ {0} \ ⇡ satisfies:

(1) ⇡+
⇢ !+;

(2) @1⇡+
\ Pr(0) = ;;

(3) M0 \ (⇡+
⇥ R) = ;.

Therefore we can find a compact part K of a n-catenoid satisfying:
(1) K is connected;
(2) K ⇢ ⇡+

⇥

�
t0 + ", t0 � " +

⇡
n�1

�
;

(3) @K ⇢ Hn
⇥

�
t0+", t0�" +

⇡
n�1

 
.

We deduce consequently that M0 \ K = ;. Then, considering the horizontal trans-
lated copies of K and arguing as in the proof of Theorem 4.6, we get a contradiction
by the maximum principle, which concludes the proof.

The following result is an immediate consequence of Theorem 4.7:
Corollary 4.8. Let S1 ⇢ @1Hn

⇥R be an (n�1)-closed continuous submanifold.
Considering the halfspace model for Hn , we can assume that S1 ⇢ Rn�1

⇥ R.
If S1 is strictly convex in Euclidean sense, then there is no connected properly
immersed minimal hypersurface M in Hn

⇥ R, possibly with finite boundary, with
asymptotic boundary S1.

Remark 4.9. It follows from Corollary 4.8 that there is no horizontal minimal
graph in Hn

⇥ R, [10, Equation (3)], given by a positive function g 2 C2(�) \

C0(�), where � ⇢ Rn�1
⇥ R ⇢ @1Hn

⇥ R is a bounded strictly convex domain
in Euclidean sense, assuming zero value on @�.
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