
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XIV (2015), 441-480

Twists, Euler products and a converse theorem
for L-functions of degree 2

JERZY KACZOROWSKI AND ALBERTO PERELLI

Abstract. We prove a general result relating the shape of the Euler product
of an L-function to the analytic properties of the linear twists of the L-function
itself. Then, by a sharp form of the transformation formula for linear twists, we
check the required analytic properties in the case of L-functions of degree 2 and
conductor 1 in the Selberg class. Finally we prove a converse theorem, showing
that ⇣(s)2 is the only member of the Selberg class with degree 2, conductor 1 and
a pole at s = 1.

Mathematics Subject Classification (2010): 11M41 (primary); 11F66 (sec-
ondary).

1. Introduction

In this paper we deal mainly with the L-functions of degree 2 and conductor 1 from
the Selberg class S . We refer to Selberg [26], Conrey-Ghosh [5], to our survey
papers [7, 10, 23–25] and to our forthcoming book [19] for the basic information
and results on the class S and on the extended Selberg class S] of L-functions.
Moreover, we refer to the beginning of Section 3 for the definition of such classes,
in particular for the data !, Q, r , � j andµ j which appear in the functional equation;
see (3.1) below. Here we recall that degree and conductor of F 2 S] are defined
respectively by

dF = 2
rX
j=1

� j qF = (2⇡)dF Q2
rY
j=1

�
2� j
j ,
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that Sd and S]
d denote respectively the subclasses of S and S] of the functions of

degree d and that the Euler product of F 2 S has the general form

F(s) =

Y
p
Fp(s),

Fp(s) being the p-th local factor of F(s).
The structure of the classes S and S] has been fully described for degrees

0  d < 2 in Conrey-Ghosh [5] (Sd for 0  d < 1) and in our papers [9] and [17]
(S1 and S]

d for 0  d < 2). These results confirm the current conjectures on
the structure of S , i.e. the degree conjecture and the general converse problem. In
particular, it turns out that Sd = ; for 0 < d < 1 and 1 < d < 2, while S1 coincides
with the GL1(Q) automorphic L-functions. In this paper we start investigating
the next step, namely the description of S2. It is expected that S2 coincides with
the GL2(Q) automorphic L-functions. Here we prove a rather special converse
theorem, see Theorem 1.5 below, but the new ideas we employ appear to be suitable
for further developments.

Although the emphasis of the paper is mainly on degree 2 L-functions, we start
with a general result relating linear twists and Euler product of the functions in S .
We recall that given ↵ 2 R and a Dirichlet character � , the linear (or additive) twist
and the (multiplicative) twist of a function F 2 S] with Dirichlet coefficients a(n)
are defined respectively by (as usual e(x) = e2⇡ i x )

F(s,↵) =

1X
n=1

a(n)e(�n↵)

ns
F(s,�) =

1X
n=1

a(n)�(n)
ns

.

Moreover, let

NF (�, T ) =

���⇢ = � + i� : F(⇢) = 0,� > �, |� |  T
 ��

be the zero-density function of F(s). Further, for real numbers d, h > 0 we define
the class M(d, h) as follows: f 2 M(d, h) if
i) f (s) is meromorphic over C and holomorphic for � < 1,
ii) for every A < B there exists a constant C = C(A, B) such that

f (� + i t) ⌧

��� ��d|� |

✓
h

(2⇡e)d

◆
|� | ��� ��C

as � ! �1 uniformly for A  t  B; the implied constant may depend on
d, h, A, B and f (s).

Note that a function F 2 S]
d belongs to M(d, qF ), see Lemma 2.1 below.
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Theorem 1.1. Let d > 0 and F 2 Sd be such that NF (�, T ) = o(T ) for any fixed
� > 1/2. Moreover, let p be a prime number and h > 0. Then the following
statements are equivalent:
i) for every a (mod p), a 6⌘ 0 (mod p), F(s, a/p) belongs to M(d, h);
ii) for every � (mod p), � 6= �0, F(s,�) belongs to M(d, h) and

Fp(s) =

@pY
j=1

✓
1�

↵ j (p)
ps

◆
�1

with
��↵ j (p)

��
 1 and @p 


log(h/qF )

log p

�
.

Remarks. 1. Clearly, the interesting part of Theorem 1.1 is the implication i)
) ii), since it shows that suitable analytic properties of the linear twists provide
information on the shape of the Euler product. This phenomenon appears to be new
and has no counterpart in the theory of classical L-functions, where the shape of
the Euler product is given, in most cases, essentially by definition. Somehow, the
p-th Euler factor is a measure of the difference between the groups of the additive
and multiplicative characters (mod p). Indeed, the transition from multiplicative
to additive twists is possible only when the p-th local factor is taken into account.
Note, moreover, that the analytic properties required in Theorem 1.1 involve bounds
on horizontal strips, while usually bounds on vertical strips are required in analytic
number theory.

2. The form of the p-th local factor given by Theorem 1.1 is very close to the
expected one. Indeed, it is expected that every L-function in S has local factors of
the form

Fp(s) =

@FY
j=1

✓
1�

↵ j (p)
ps

◆
�1

with |↵ j (p)|  1 for all j and p, and |↵ j (p)| = 1 for j = 1, . . . , @F and all
but finitely many primes p. Moreover, it is expected that @F = dF ; see [15] for a
discussion of these topics. On the other hand, it is also expected that qF 2 N for
every F 2 S , and that for any primitive � (mod m) with (m, qF ) = 1 the twist
F(s,�) belongs to S and has conductor qF� = qFmdF ; see [11] for a discussion of
these topics. As a consequence, we expect that for every p the above linear twists
F(s, a/p) belong to the class M(dF , qF pdF ), in which case Theorem 1.1 implies
that @p  [dF ] for all p.

3. The hypothesis on NF (�, T ) is a weak zero-density bound, which is known to
hold for classical L-functions of degree 1 and 2; see the proof of Corollary 1.4
below for a general version in S2. It is a challenging problem to extend such a
bound to every degree, even for classical L-functions. Note that, although the bound
is just a little better than trivial, it is nevertheless quite interesting, since possibly
it characterizes the L-functions satisfying the Riemann Hypothesis inside a rather
large class of Dirichlet series with functional equation; see Kaczorowski-Kulas [8].
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From now on we shall deal with degree 2 L-functions. Our first aim is to show
that statement i) of Theorem 1.1 holds for L-functions of degree 2 and conductor
1; see Theorem 1.3 below. The main tool in such a proof is a precise form of the
transformation formula for linear twists obtained in Lemma A of [13], see also [16].
Writing

2
rX
j=1

(µ j � 1/2) = ⌘F + i✓F ⌘F , ✓F 2 R,

!⇤

F = !e�i
⇡
2 (⌘F+1)

✓
qF

(2⇡)2

◆i ✓F
2 rY

j=1
�

�2i=µ j
j , F̄(s,↵) =

1X
n=1

a(n)e(�n↵)

ns

respectively for the weight, the shift, the root number and the linear twist of the
conjugate of F 2 S]

2, we have:

Theorem 1.2. Let F 2 S]
2 and ↵ > 0. Then for every integer K > 0 there exist

polynomials Q0(s), ..., QK (s), with Q0(s) ⌘ 1, such that

F(s,↵) = �i!⇤

F
�p

qF↵
�2s�1+i✓F KX

⌫=0

✓
iqF↵

2⇡

◆⌫

Q⌫(s)F̄
✓
s + ⌫ + i✓F ,�

1
qF↵

◆

+ HK (s,↵).

Here HK (s,↵) is holomorphic for �K + 1/2 < � < 2 and |s| < 2K , and satisfies

HK (s,↵) ⌧ (AK )K

with a suitable constant A = A(F,↵) > 0. Moreover, deg Q⌫(s) = 2⌫ and

Q⌫(s) ⌧

(A(|s| + 1))2⌫

⌫!

1  ⌫  min(|s|, K )

Q⌫(s) ⌧ (AK )K |s|  2K , ⌫  K .

The proof of Theorem 1.2 is rather complicated and is given in Section 3. Theorem
1.2 is the key ingredient in the proof of:

Theorem 1.3. Let F 2 S]
2 with qF = 1. Then for every q � 1 and 1  a  q with

(a, q) = 1 the linear twist F(s, a/q) belongs to M(2, q2).

From Theorems 1.1 and 1.3 we get

Corollary 1.4. Let F 2 S2 with qF = 1. Then for every prime p and every � (mod
p), � 6= �0, the twist F(s,�) belongs to M(2, p2) and

Fp(s) =

@pY
j=1

✓
1�

↵ j (p)
ps

◆
�1

with |↵ j (p)|  1 and @p  2.
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Note that the same arguments used in Theorem 1.3 and Corollary 1.4 give that
(s � 1)mF F(s,�) is entire for every � (mod p), � 6= �0, where mF is the order of
pole of F(s) at s = 1.

Corollary 1.4 allows us to get a converse theorem for S2. In his famous paper
[21], Maass showed, among other, that the vector space of the functions F 2 S]

satisfying the functional equation of ⇣(s)2 is 1-dimensional, and hence generated
by ⇣(s)2. From Corollary 1.4 we deduce the following characterization of ⇣(s)2.
Theorem 1.5. Let F 2 S2 with qF = 1 and a pole at s = 1. Then F(s) = ⇣(s)2.

Comparing Maass’ converse theorem with Theorem 1.5, we see that the main
difference is that we deal with a general degree 2 functional equation but we assume
that F(s) has an Euler product, while Maass does not need the Euler product but
deals with a special degree 2 functional equation.
Remark. We finally note that our converse theorem is proved by showing that un-
der the hypotheses of Theorem 1.5, the Euler product of F(s) coincides with the
Euler product of ⇣(s)2. Twists are needed to prove the required properties of the
Euler product and, as we already outlined after Theorem 1.1, are used in a defi-
nitely different way with respect to the classical converse theorems of Weil’s type
(see Chapter 7 of Iwaniec’s book [20]). Therefore, in some sense our result realizes
another instance of the approach to converse theorems via Euler products proposed
in the paper by Conrey-Farmer [3] (see also Conrey-Farmer-Odgers-Snaith [4]).
Such an approach represents an interesting alternative to the classical converse the-
orems based on twists, and on Rankin-Selberg convolutions for higher degrees; see
Cogdell and Piatetski-Shapiro [2].

ACKNOWLEDGEMENTS. We thank Sandro Bettin and Brian Conrey for carefully
reading a previous version of this paper and suggesting several improvements in the
presentation.

2. Proof of Theorem 1.1

Given F 2 S] satisfying the functional equation in (3.1) below we define

⌧F = max
1 jr

����=µ j

� j

���� .
It is easy to check by means of the criteria in [11] that ⌧F is an invariant. Recalling
the definition of the class M(d, h) in the Introduction, we have:
Lemma 2.1. Let F 2 S]

d with d > 0; then F 2 M(d, qF ). Moreover, if [A, B] \

[�⌧F , ⌧F ] = ; and � � 1 we also have

F(�� + i t) � � d�

✓
qF

(2⇡e)d

◆�

�C (2.1)

for some C = C(A, B), uniformly for A  t  B as � ! +1.
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Proof. In this proof we write s = �� + i t and assume that � � 1. The regularity
conditions required by the class M(d, qF ) are clearly satisfied. By the functional
equation and the reflection formula for the 0 function we obtain

F(s) = !Q1�2s S(s)G(s)F̄(1� s)

with

S(s) =⇡�r
rY
j=1
sin
�
⇡(� j s+µ j )

�
G(s) =

rY
j=1

0
�
� j (1�s)+µ̄ j

�
0(1�� j s�µ j ).

Uniformly for A  t  B we have S(s) ⌧ 1, and if [A, B] \ [�⌧F , ⌧F ] = ; we
also have |S(s)| ⇣ 1, where f ⇣ g means g ⌧ f ⌧ g. Moreover, the bound
|F̄(1� s)| ⇣ 1 holds since � � 1. Hence uniformly for A  t  B we have

��F(s)
��
⌧ Q2�

��G(s)
��, (2.2)

and if [A, B] \ [�⌧F , ⌧F ] = ; we also have
��F(s)

��
⇣ Q2�

��G(s)
��. (2.3)

Writing � =

Qr
j=1 �

2� j
j , from Stirling’s formula we get

log
��G(s)

��
=

rX
j=1

��
2� j� + O(1)

�
log(� j� ) � 2� j� + O(1)

 

= d� log � + (log� � d)� + O(log � ),

and hence ��G(s)
��
⇣ � d�

✓
qF

(2⇡e)d

◆�

Q�2� � O(1). (2.4)

The lemma follows then from (2.2)-(2.4).

Lemma 2.2. Let F 2 Sd with d > 0. Let p be a prime number, � > 1 and ⌧ (�)
denote the Gauss sum. For any � (mod p), � 6= �0, we have

F(s,�) =

1
⌧ (�̄)

pX
a=1

�̄(a)F (s,�a/p) , (2.5)

while for any (a, p) = 1 we have

F(s,�a/p) =

1
p � 1

X
� (mod p)

� 6=�0

�(a)⌧ (�̄)F(s,�)�

✓
p

p � 1
1

Fp(s)
� 1

◆
F(s). (2.6)



TWISTS, EULER PRODUCTS AND A CONVERSE THEOREM 447

Proof. Equation (2.5) is standard since � is primitive. From (2.5), writing �a,b = 1
if a ⌘ b (mod p) and �a,b = 0 otherwise, we get

1
p � 1

X
� (mod p)

� 6=�0

�(a)⌧ (�̄)F(s,�)

=

1
p � 1

X
� (mod p)

� 6=�0

pX
b=1

�(a)�̄(b)F(s,�b/p)

=

p�1X
b=1

 
1

p � 1
X

� (mod p)
�(a)�̄(b) �

1
p � 1

!
F(s,�b/p)

=

p�1X
b=1

✓
�a,b �

1
p � 1

◆
F(s,�b/p) = F(s,�a/p) �

1
p � 1

p�1X
b=1

F(s,�b/p)

= F(s,�a/p) �

1
p � 1

1X
n=1

a(n)
ns

p�1X
b=1

e
✓
bn
p

◆

= F(s,�a/p) �

X
p|n

a(n)
ns

�

1
p � 1

X
p-n

a(n)
ns

 p�1X
b=0

e
✓
bn
p

◆
� 1

!

= F(s,�a/p) � F(s) +

F(s)
Fp(s)

+

1
p � 1

F(s)
Fp(s)

,

and the lemma follows.

Now we are ready for the proof of Theorem 1.1. We first note that F(s, a/p)
belongs to M(d, h) for every a (mod p), a 6⌘ 0 (mod p), if and only if F(s,�a/p)
satisfies the same conditions, since F(s,�a/p) = F(s, (p � a)/p). We start with
the proof that ii) ) i). From (2.6) in Lemma 2.2 and our assumptions we have
that F(s, a/p) is meromorphic on C, holomorphic for � < 1 and satisfies

F(s,�a/p) ⌧ max
� 6=�0

|F(s,�)|+
�� F(s)
Fp(s)

��
+|F(s)| ⌧ max

� 6=�0
|F(s,�)|+|F(s)|p|� |@p .

Therefore by Lemma 2.1 we have, as � ! �1 uniformly for A  t  B,

F(s,�a/p) ⌧ |� |
d|� |

✓
h

(2⇡e)d

◆
|� |

|� |
C

+ |� |
d|� |

✓
qF

(2⇡e)d

◆
|� |
✓
h
qF

◆
|� |

|� |
C

⌧ |� |
d|� |

✓
h

(2⇡e)d

◆
|� |

|� |
C

with some constant C . Hence F(s, a/p) belongs to M(d, h), and the implication is
proved.
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To prove that i) ) ii) we first note that by (2.5) in Lemma 2.2 and our as-
sumptions we have, for � 6= �0, that F(s,�) is meromorphic on C, holomorphic
for � < 1 and satisfies

F(� + i t,�) ⌧ max
a (mod p)

|F(� + i t,�a/p)| ⌧ |� |
d|� |

✓
h

(2⇡e)d

◆
|� |

|� |
C

with some constant C , as � ! �1 uniformly for A  t  B. Hence F(s,�),
� 6= �0, belongs to M(d, h). Concerning the p-th Euler factor Fp(s), it is easy to
see that 1/Fp(s) is holomorphic for � > # (see our survey [10] and the beginning
of Section 3 below for the definition of #), and by (2.6) in Lemma 2.2 it is mero-
morphic on C. Moreover, since F(s) 6= 0 in the half-plane � < 0 apart from the
trivial zeros, thanks to the 2⇡ i

log p -periodicity we have that 1/Fp(s) is holomorphic in
the same half-plane. As a consequence, the singularities of 1/Fp(s)may come only
from the zeros of F(s) in the strip 0  �  # . But our hypothesis on NF (�, T ),
the functional equation and the fact that # < 1/2 imply that the number of such
singularities up to T is o(T ), hence in view of the 2⇡ i

log p -periodicity we deduce that
1/Fp(s) is entire. In addition, we may write

1
Fp(s)

= E(p�s)

with E(z) entire. Let now T0 > ⌧F and consider the strip S with �  �1 and
T0  t  T0+

2⇡
log p . From (2.6) of Lemma 2.2, (2.1) of Lemma 2.1 and the fact the

twists F(s,�) and F(s, a/p) belong to M(d, h) we have

E(p�s) =

1
Fp(s)

⌧

|� |
d|� |

⇣
h

(2⇡e)d

⌘
|� |

|� |
C

|� |
d|� |

⇣
qF

(2⇡e)d

⌘
|� |

|� |
C 0

⌧

✓
h
qF

◆
|� |

|� |
C 00

⌧ p|� |

� log(h/qF )
log p +"

�

for every " > 0. Therefore E(z) is a polynomial of degree  [
log(h/qF )
log p ], hence

Fp(s) =

@pY
j=1

✓
1�

↵ j (p)
ps

◆
�1

(2.7)

with @p  [
log(h/qF )
log p ]. The last assertion, namely |↵ j (p)|  1, is a consequence of

the Ramanujan condition a(n) ⌧ n" for every " > 0, where a(n) are the coeffi-
cients of F(s) (see the beginning of Section 3 below). Indeed, writing

Gp(z) =

1X
m=0

a(pm)zm



TWISTS, EULER PRODUCTS AND A CONVERSE THEOREM 449

the Ramanujan condition implies that Gp(z) is holomorphic for |z| < 1. On the
other hand, since Fp(s) = Gp(p�s) by (2.7) we also have

Gp(z) =

@pY
j=1

�
1� ↵ j (p)z

�
�1

,

with poles at the points z = ↵ j (p)�1. Thus |↵ j (p)|  1 and Theorem 1.1 is
proved.

Remark. We wish to thank Giuseppe Molteni for the above elegant proof that
|↵ j (p)|  1.

3. Proof of Theorem 1.2

3.1. Definitions and notation

We start with the definition of S and S]. We say that F 2 S if:

i) F(s) is an absolutely convergent Dirichlet series for � > 1;
ii) (s � 1)mF(s) is an entire function of finite order for some integer m � 0;
iii) F(s) satisfies a functional equation of type8(s) = !8̄(1� s), where |!| = 1

and

8(s) = Qs
rY
j=1

0(� j s + µ j )F(s) (3.1)

with r � 0, Q > 0, � j > 0, <µ j � 0 (here and in the sequel we write
f̄ (s) = f (s));

iv) the Dirichlet coefficients a(n) of F(s) satisfy a(n) ⌧ n" for every " > 0;
v) log F(s) is a Dirichlet series with coefficients b(n) satisfying b(n) = 0 unless

n = pm , m � 1, and b(n) ⌧ n# for some # < 1/2.

The extended Selberg class S] consists of the non-zero functions satisfying only
axioms i), ii) and iii).

Let F 2 S]
2 and consider the H -invariants

HF (n) = 2
rX
j=1

Bn(µ j )

�n�1j
n = 0, 1, ...

where Bn(x) is the n-th Bernoulli polynomial; see [12] for properties of such in-
variants. Note that HF (0) = dF is the degree and

HF (1) = 2
rX
j=1

✓
µ j �

1
2

◆
= ⇠F = ⌘F + i✓F
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is the ⇠ -invariant (in the Introduction we already defined its real and imaginary
parts). For ⌫, µ = 1, 2, ...we define the polynomials R⌫(s) = R⌫,F (s) and Vµ(s) =

Vµ,F (s) as

R⌫(s) = B⌫+1(1� 2s � i✓F ) + B⌫+1(1)

+

1
2

⌫+1X
k=0

✓
⌫ + 1
k

◆�
(�1)⌫HF (k)s⌫+1�k

� HF (k)(1� s)⌫+1�k� (3.2)

Vµ(s) = (�1)µ
µX

m=1

1
m!

X
⌫1�1,...,⌫m�1
⌫1+...+⌫m=µ

mY
j=1

R⌫ j (s)
⌫ j (⌫ j + 1)

. (3.3)

We also define Q0(s) ⌘ 1 and, for ⌫ = 1, 2, ..., the functions Q⌫(s) = Q⌫,F (s) by
means of the formula

exp

 
1X

⌫=1

(�1)⌫R⌫(s)
⌫(⌫ + 1)

1
(w + 2s � 1+ i✓F )⌫

!
⇡ 1+

1X
⌫=1

Q⌫(s)
(w � 1) · · · (w � ⌫)

.

Here ⇡ means asymptotic expansion as w ! 1, and the Q⌫(s)’s turn out to be
polynomials; see Lemma 3.15 below for more details.

We write w = u + iv and, for a given s, define the contour L(s) as

L(s) = L�1(s) [ L1(s)

where

L�1(s) =

�
� � + c0 � i1,�� + c0 + i t0

⇤
[

⇥
� � + c0 + i t0,�� � c0 + i t0

⇤

L1(s) =

⇥
� � � c0 + i t0,�� � c0 + i1

�
.

Here t0 = t0(s) = c1|s| + c2, c0, c1, c2 > 0 being sufficiently large constants
depending on F(s) to be chosen later on. Moreover, we denote by L⇤

�1
(s) the

half-line 1� 2s � i✓F � L1(s) taken with the positive orientation, hence

L⇤

�1
(s) =

�
1� � + c0 � i1, 1� � + c0 � i t⇤0

⇤
with t⇤0 = t⇤0 (s) = t0 + 2t + ✓F . Further, we let

L⇤

1
(s) =

⇥
1� � + c0 � i t⇤0 , N + 1

⇤
[

⇥
N + 1, N + 1+ i1

�
,

where the positive integer N will be chosen later on (see (3.34) below), and write

L⇤(s) = L⇤

�1
(s) [ L⇤

1
(s).
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We let

G(s, w) =

(2⇡)1�r

0(1� w)

rY
j=1

0(� j (1� s � w) + µ̄ j )0(1� � j (s + w) � µ j ),

S(s, w) =

2r�1

sin⇡w

rY
j=1
sin
�
⇡(� j (s + w) + µ j

�
.

Moreover, we define the coefficients Cµ,`, ` � µ � 1, and Aµ,⌫(s), ⌫ � µ � 1, by
the asymptotic expansions

1
wµ

⇡

1X
`=µ

Cµ,`

(w � 1) · · · (w � `)
(3.4)

1
(w + 2s � 1+ i✓F )µ

⇡

1X
⌫=µ

Aµ,⌫(s)
(w � 1) · · · (w � ⌫)

. (3.5)

We refer to Lemmas 3.13 and 3.14 below for the precise meaning of (3.4) and (3.5).
Finally, A, c, c0, c̃, c⇤, ... will denote positive constants, possibly depending on

F(s) (also via a dependence on c0, c1, c2 above), not necessarily the same at each
occurrence. The constants in the ⌧- and O-symbols may also depend on F(s)
(again, also via c0, c1, c2).

3.2. Lemmas

In the following lemmas we always assume that the parameters � j , µ j , ✓F ,... come
from a function F 2 S]

2, unless otherwise specified.

Lemma 3.1. For w 2 L1(s) and s 2 C we have

G(s, w) ⌧ e�
⇡
2 vA|s|(v + |� |)|� |+c v ! +1

with suitable constants A, c > 0.

Proof. For w 2 L1(s) we have

<

�
� j (1� s � w) + µ̄ j

�
= � j (1+ c0) + <µ j > 0

=

�
� j (1� s � w) + µ̄ j

�
= �� j (t + v) � =µ j ,

hence by Stirling’s formula

0
�
� j (1� s � w) + µ̄ j

�
⌧ e�� j

⇡
2 |t+v|

|t + v|
c

⌧ e�� j
⇡
2 vA|s|vc. (3.6)

Similarly we have

0
�
1� � j (s + w) � µ j

�
⌧ e�� j

⇡
2 vA|s|vc. (3.7)
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In order to treat 1/0(1� w) we first note that 1� w belongs to a region where the
Stirling formula is applicable, and we have

log
��0(1� w)

��
=

✓
1
2

� u
◆
log |1� w| + v arg(1� w) + u + O(1).

Moreover

arg(1� w) = �

⇡

2
+ O

✓
arctan

|1+ � + c0|
v

◆
= �

⇡

2
+ O

✓
|� |

v

◆
,

hence
1

0(1� w)
⌧ |1� w|

u� 1
2 e�v(� ⇡

2 +O( |� |

v ))A|� |

⌧ e
⇡
2 v(v + |� |)|� |+c A|� |. (3.8)

The result follows from (3.6)-(3.8) since dF = 2.

Lemma 3.2. For w 2 L1(s) and s 2 C we have

S(s, w) = �ie(�⇠F/4)e�⇡ is�1+ O(A|s|e�cv)
�

v ! +1

with suitable constants A, c > 0.

Proof. Since dF = 2 we have

S(s, w) = 2r�1(2i)1�r
Qr

j=1
�
ei⇡(� j (s+w)+µ j )

� e�i⇡(� j (s+w)+µ j )
�

ei⇡w
� e�i⇡w

= (�i)1�r ei⇡w
rY
j=1

e�i⇡(� j (s+w)+µ j )
�
1+ O(A|s|e�cv)

�

= �ie�i⇡s�i⇡
Pr

j=1(µ j�
1
2 )
�
1+ O(A|s|e�cv)

�
and the result follows.

Lemma 3.3. For s 2 C we have

R⌫(s) = B⌫+1(1� 2s � i✓F ) + B⌫+1(1)

�

rX
j=1

B⌫+1(� j (1� s) + µ̄ j ) + B⌫+1(1� � j s � µ j )

�⌫
j

.

Proof. We use the following properties of the Bernoulli polynomials (see Section
1.13 of Bateman’s Project [6]):

Bn(1� x) = (�1)n Bn(x) (3.9)

Bn(x + y) =

nX
k=0

✓
n
k

◆
Bk(x)yn�k . (3.10)
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By (3.9) and (3.10) we have

B⌫+1(1� � j s � µ j ) = (�1)⌫+1B⌫+1(� j s + µ j )

= (�1)⌫+1
⌫+1X
k=0

✓
⌫ + 1
k

◆
Bk(µ j )�

⌫+1�k
j s⌫+1�k .

Similarly

B⌫+1
�
µ̄ j + � j (1� s)

�
=

⌫+1X
k=0

✓
⌫ + 1
k

◆
Bk(µ̄ j )�

⌫+1�k
j (1� s)⌫+1�k .

Therefore
rX
j=1

B⌫+1(� j (1� s) + µ̄ j ) + B⌫+1(1� � j s � µ j )

�⌫
j

=

rX
j=1

⌫+1X
k=0

✓
⌫ + 1
k

◆ 
Bk(µ̄ j )

�k�1j
(1� s)⌫+1�k

+ (�1)⌫+1 Bk(µ j )

�k�1j
s⌫+1�k

!

= �

1
2

⌫+1X
k=0

✓
⌫ + 1
k

◆⇣
(�1)⌫HF (k)s⌫+1�k

� HF (k)(1� s)⌫+1�k
⌘

and the result follows from the definition of the R⌫(s)’s.

Lemma 3.4. For w 2 L1(s) and s 2 C we have

0(1� 2s � w � i✓F ) ⌧ e�
⇡
2 vA|s|v��+2c0 v ! +1

with a suitable constant A > 0.

Proof. Since

arg(1� 2s � w � i✓F ) = �

⇡

2
+ O

✓
|s|
v

◆

we have

log
��0(1� 2s � w � i✓F )

��
=

✓
1
2

� � + c0
◆
log

��1� 2s � w � i✓F
��
+ (v + 2t + ✓F ) arg(1� 2s � w � i✓F )

=

✓
1
2

� � + c0
◆✓

log v + O
✓

|s|
v

◆◆
�

⇡

2
v + O(|s|),

and the result follows since |s| ⌧ v.
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Lemma 3.5. For ⌫ � 1, 0 < D < 2⇡ and s 2 C we have B⌫(s) ⌧ ⌫!
eD|s|

(2⇡�D)D⌫ ;
in particular

B⌫(s) ⌧ e|s|⌫!.

Proof. By definition we have for |z| < 2⇡

zezs

ez � 1
=

1X
⌫=0

B⌫(s)
⌫!

z⌫ .

Hence, since the function z
ez�1 is holomorphic on |z|  3⇡ (say) apart from two

simple poles at z = ±2⇡ i , we have
���� B⌫(s)

⌫!

����=
���� 12⇡ i

Z
|z|=D

zezs

ez � 1
dz
z⌫+1

���� ⌧

eD|s|

D⌫+1

Z
|z|=D

���� z
ez � 1

���� dz ⌧

eD|s|

(2⇡ � D)D⌫

and the result follows.

Lemma 3.6. For 1  N 
3
2 x and x > 0 we have

8N (x) :=

NX
m=1

xm

m!



(2x)N

N !

.

Proof. This is Lemma 7 of [18], after deleting the unneeded �1 in its statement.

Lemma 3.7. For F 2 S] and ⌫ � 1 we have

HF (⌫) ⌧ c⌫⌫!

with a suitable c > 0.

Proof. By definition we have

HF (⌫) = 2
rX
j=1

B⌫(µ j )

�⌫�1
j

⌧ c⌫ max
j

��B⌫(µ j )
��,

and the result follows thanks to Lemma 3.5.

Lemma 3.8. Let c � 1. For s 2 C and 1  ⌫  c(|s| + 1) we have

R⌫(s) ⌧

�
c0(|s| + 1)

�⌫+1

with a suitable c0 > 0 (depending also on c).
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Proof. Suppose first that |s|  1; then ⌫ is bounded and hence R⌫(s) is also
bounded, and the result follows in this case. Let now |s| > 1. Since B⌫+1(1) =

B⌫+1 (see Section 1.13 of [6]) and
�⌫+1
k
�

 2⌫+1 we have

R⌫(s) ⌧ |B⌫+1(1�2s� i✓F )|+|B⌫+1|+
�
c(|s|+1)

�⌫+1
⌫+1X
k=0

|HF (k)|s|�k . (3.11)

Since Bk = Bk(0), from Lemma 3.5 we have for every k 2 N

Bk ⌧ k!.

Moreover, from (3.10) we have

B⌫(x) =

⌫X
k=0

✓
⌫

k

◆
Bkx⌫�k

and hence by Lemma 3.6 for ⌫  c(|s| + 1) we get

B⌫+1(1� 2s + i✓F ) ⌧

⌫+1X
k=0

✓
⌫ + 1
k

◆
k!
�
c0(|s| + 1)

�⌫+1�k

⌧ (⌫ + 1)!
�
8⌫+1(c0(|s| + 1)) + 1

�
⌧

�
c0(|s| + 1)

�⌫+1
.

(3.12)

Further
B⌫+1 ⌧ (⌫ + 1)! ⌧

�
c0(|s| + 1)

�⌫+1
, (3.13)

and finally thanks to Lemma 3.7 we obtain

⌫+1X
k=0

|HF (k)|s|�k ⌧ c̃⌫+1
⌫+1X
k=0

k!
|s|k

⌧ c̃⌫+1
⌫+1X
k=0

✓
k
|s|

◆k
⌧ c̃⌫+1

⌫+1X
k=0

✓
⌫ + 1
|s|

◆k

⌧ c̃⌫+1,

(3.14)

and the result follows from (3.11)-(3.14).

Lemma 3.9. Let c � 1. For w 2 L1(s), s 2 C and 1  N  c(|s| + 1) we have

NX
⌫=1

R⌫(s)
⌫(⌫ + 1)

1
w⌫

 c0(|s| + 1)

with a suitable c0 > 0 (depending also on c).
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Proof. By Lemma 3.8 and choosing c1 and c2 in the definition ofL1(s) sufficiently
large we have

NX
⌫=1

R⌫(s)
⌫(⌫ + 1)

1
w⌫

⌧

NX
⌫=1

�
c0(|s| + 1)

�⌫+1

⌫(⌫ + 1)
1

|w|
⌫

⌧ c0(|s| + 1)
NX

⌫=1

1
⌫2

,

and the result follows.

Lemma 3.10. For w 2 C and integers m,M with 1  m + 1  M < |w| we have

1
w

=

(�1)m+1

m!

MX
`=m+1

(�1)`(` � 1)!
(w � (m + 1)) · · · (w � `)

+ rm,M(w)

with ��rm,M(w)
��


M!

m!

��w(w � (m + 1)) · · · (w � M)
�� .

Proof. We proceed by induction on m. For m = 0 one easily verifies the identity

1
w

= �

MX
`=1

(�1)`(` � 1)!
(w � 1) · · · (w � `)

+

(�1)MM!

w(w � 1) · · · (w � M)

by induction on M , and the lemma follows in this case. Assume now that the result
holds true for a certain m � 0 and let M � m + 2. We have

�(m + 1)
w(w � (m + 1))

=

1
w

�

1
w � (m + 1)

=

(�1)m+1

m!

MX
`=m+2

(�1)`(` � 1)!
(w � (m + 1)) · · · (w � `)

+ rm,M(w),

hence multiplying by �
w�(m+1)
m+1 we obtain

1
w

=

(�1)m+2

(m + 1)!

MX
`=m+2

(�1)`(` � 1)!
(w � (m + 2)) · · · (w � `)

+ rm+1,M(w)

with
rm+1,M(w) = �

w � (m + 1)
m + 1

rm,M(w).

Therefore
��rm+1,M(w)

��


��w � (m + 1)
��

m + 1
M!

m!

��w(w � (m + 1)) · · · (w � M)
��

=

M!

(m + 1)!
��w(w � (m + 2)) · · · (w � M)

�� ,
and the result follows by induction.
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Now we obtain a recursive relation with respect to µ for the coefficients Cµ,`

in (3.4). Since we did not yet establish (3.4), the relations in Lemma 3.11 below
are in a first instance to be considered as relations between coefficients of formal
expansions. However, (3.4) is then established (in a precise form) in Lemma 3.13
below.

Lemma 3.11. Formally, for ` � µ + 1 � 2 we have

Cµ+1,` = (�1)`�1(` � 1)!
`�1X
m=µ

(�1)mCµ,m
m!

.

Proof. As remarked above, we proceed using formal expansions. Using Lemma
3.10 with each m � µ we have

1
wµ+1 =

1
wµ

1
w

=

1X
m=µ

Cµ,m
(w � 1) · · · (w � m)

 
(�1)m+1

m!

1X
`=m+1

(�1)`(` � 1)!
(w � (m + 1)) · · · (w � `)

!

=

1X
`=µ+1

 
(�1)`�1(` � 1)!

`�1X
m=µ

(�1)mCµ,m
m!

!
1

(w � 1) · · · (w � `)

and the result follows.

Lemma 3.12. For ` � 1 we have

C1,` = (�1)`�1(` � 1)!.

Moreover, if the Cµ,`’s satisfy the recurrence in Lemma 3.11, then for ` � µ � 2

Cµ,` = (�1)`�µ(` � 1)!
X

1k1<k2<···<kµ�1`�1

1
k1k2 · · · kµ�1

and for ` � µ � 1 ��Cµ,`

��


(` � 1)!
(µ � 1)!

✓
` � 1
µ � 1

◆
.

Proof. The first assertion, for ` � µ = 1, follows from Lemma 3.10 with m = 0.
To prove the second assertion we argue by induction on µ � 2. For ` � µ = 2 we
have from Lemma 3.11 that

C2,` = (�1)`�1(` � 1)!
`�1X
m=1

(�1)mC1,m
m!

= (�1)`�2(` � 1)!
`�1X
m=1

1
m

,
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and the result follows in this case. For ` � µ+1, inserting the inductive hypothesis
in the expression given by Lemma 3.11 we obtain

Cµ+1,`

=(�1)`�1(`�1)!
`�1X
m=µ

(�1)m

m!

(�1)m�µ(m�1)!
X

1k1<k2<···<kµ�1m�1

1
k1k2 · · · kµ�1

= (�1)`�(µ+1)(` � 1)!
`�1X
m=µ

X
1k1<k2<···<kµ�1m�1

1
mk1k2 · · · kµ�1

= (�1)`�(µ+1)(` � 1)!
X

1k1<k2<···<kµ`�1

1
k1k2 · · · kµ

and the second assertion follows by induction. The third assertion follows easily
from the previous ones since k1k2 · · · kµ�1 � (µ � 1)!.

Lemma 3.13. For w 2 C and integers µ,M with 1  µ  M  |w|/2 we have

1
wµ

=

MX
`=µ

Cµ,`

(w � 1) · · · (w � `)
+ Rµ,M(w)

with

Rµ,M(w) ⌧

2MM!

(µ � 1)!
1��w(w � 1) · · · (w � M)

�� .
Proof. By induction on µ. For µ = 1 the assertion follows at once from Lemma
3.10 with m = 0 and Lemma 3.12. From Lemma 3.10, arguing similarly as in
Lemma 3.11, we obtain

1
wµ+1 =

1
wµ

1
w

=

MX
m=µ

Cµ,m
(w � 1) · · · (w � m)

 
(�1)m+1

m!

MX
`=m+1

(�1)`(` � 1)!
(w � (m + 1)) · · · (w � `)

!

+ Rµ+1,M(w)

with

Rµ+1,M(w) =

MX
m=µ

Cµ,m
(w � 1) · · · (w � m)

rm,M(w) +

1
w
Rµ,M(w).

Similarly as in Lemma 3.11, from the inductive hypothesis we obtain

1
wµ+1 =

MX
`=µ+1

Cµ+1,`
(w � 1) · · · (w � `)

+ Rµ+1,M(w).
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Moreover, from the inductive hypothesis coupled with Lemmas 3.10 and 3.12 we
get

Rµ+1,M(w) ⌧

MX
m=µ

(m � 1)!
(µ � 1)!

✓
m � 1
µ � 1

◆
M!

m!

��w(w � 1) · · · (w � M)
��

+

1
|w|

2MM!

(µ � 1)!
1��w(w � 1) · · · (w � M)

��



M!

(µ � 1)!
��w(w � 1) · · · (w � M)

��
 

MX
m=µ

�m�1
µ�1

�
m

+

2M

|w|

!



2MM!

µ!

��w(w � 1) · · · (w � M)
��
 
2�M

MX
m=µ

✓
m � 1
µ � 1

◆
+

µ

|w|

!



2MM!

µ!

��w(w � 1) · · · (w � M)
�� ,

since µ/|w|  1/2 and

2�M
MX

m=µ

✓
m � 1
µ � 1

◆
=2�M

MX
m=µ

✓
m � 1
m � µ

◆
2�M

MX
m=µ

✓
M � 1
m � µ

◆
2�M2M�1

=

1
2
.

This ends the proof of the lemma.

Now we turn to the asymptotic expansion in (3.5). The next lemma holds for
any ✓F 2 C.

Lemma 3.14. Let s 2 C and 1  µ  ⌫  N be integers. Then

Aµ,⌫(s) =

⌫�µX
k=0

✓
�µ

k

◆
Cµ+k,⌫

�
2s � 1+ i✓F

�k
.

Moreover, if 1  c  c2/3, w 2 L⇤

�1
(s) and 1  N  |� | + c we have

1
(w + 2s � 1+ i✓F )µ

=

NX
⌫=µ

Aµ,⌫(s)
(w � 1) · · · (w � ⌫)

+ O
✓
A|s|(|s||� |

+ 1)
(µ � 1)!

1
|w(w � 1) · · · (w � N )|

◆

with a suitable A > 0. The constant in the O-symbol may depend also on c.



460 JERZY KACZOROWSKI AND ALBERTO PERELLI

Proof. We first observe that for |✓ | < 1/2 and integer P � 0

1
(1+ ✓)µ

=

PX
k=0

✓
�µ

k

◆
✓k + O

 
2P+µ

|✓ |
P+1

1� 2|✓ |

!
. (3.15)

Indeed we have, since
����µ

k
���

=

�µ+k�1
k

�
, that

1X
k=P+1

����
✓

�µ

k

◆���� ��✓ ��k =

1X
k=P+1

✓
µ + k � 1

k

◆
|✓ |

k

 2µ�1
1X

k=P+1

��2✓ ��k =

2P+µ
|✓ |

P+1

1� 2|✓ |

,

and (3.15) follows. For brevity we write ⌘ = 2s � 1 + i✓F and ✓ = ⌘/w. Since
1� 2|✓ | � 1/2 for w 2 L⇤

�1
(s) provided c1 and c2 are sufficiently large, given an

integer P � 0 from (3.15) we obtain

1
(w + ⌘)µ

=

1
wµ(1+ ✓)µ

=

1
wµ

 
PX
k=0

✓
�µ

k

◆
✓k + O

 
AP+µ(|s| + 1)P+1

|w|
P+1

!!

=

PX
k=0

✓
�µ

k

◆
⌘k

wµ+k + O

 
AP+µ(|s| + 1)P+µ+1

(|s| + 1)µ|w|
P+µ+1

!
,

(3.16)

where the last O-term is written in a suitable way for the estimate below. Choose
P = N � µ. Since |w| � 2N for w 2 L⇤

�1
we have

��w��N+1
� 2�N ��w(w � 1) · · · (w � N )

��.
Moreover, since µ  N  |� | + c we have (|s| + 1)µ � (µ � 1)!, and the error
term in (3.16) is

⌧

A|s|(|s||� |
+ 1)

(µ � 1)!
1��w(w � 1) · · · (w � N )

�� . (3.17)
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Now we apply Lemma 3.13 with M = N , thus getting that the main term in (3.16)
is

N�µX
k=0

✓
�µ

k

◆
⌘k

NX
⌫=µ+k

Cµ+k,⌫
(w � 1) · · · (w � ⌫)

+ O

 N�µX
k=0

��✓�µ

k

◆��
|⌘|

k 2N N !

(µ + k � 1)!
1

|w(w � 1) · · · (w � N )|

!

=

NX
⌫=µ

P⌫�µ
k=0

�
�µ
k
�
Cµ+k,⌫⌘

k

(w � 1) · · · (w � ⌫)

+ O

 
A|s|(|s||� |

+ 1)
(µ � 1)!

NX
k=0

|⌘|
k

k!
1

|w(w � 1) · · · (w � N )|

!
,

(3.18)

since
2N N !  2N N N

⌧ A|s|(|s||� |

+ 1).
Moreover

NX
k=0

|⌘|
k

k!
⌧ e|⌘|

⌧ A|s|,

therefore the error terms in (3.17) and (3.18) are of the required size. Hence both
the expression for the Aµ,⌫(s) and the asymptotic expansion of 1/(w + ⌘)µ follow
from (3.16) and (3.18), and the lemma is proved.

Lemma 3.15. Let s 2 C and 1  c  min(c1, c2)/10. For w 2 L⇤

�1
(s) and

integer 1  N  |� | + c we have

exp

 
NX

⌫=1

(�1)⌫R⌫(s)
⌫(⌫ + 1)

1
(w + 2s � 1+ i✓F )⌫

!
=

NX
⌫=0

Q⌫(s)
(w � 1) · · · (w � ⌫)

+ O

 
A|s|(|s||� |

+ 1)��w(w � 1) · · · (w � N )
��
!

where the Q⌫(s)’s are polynomials with Q0(s) = 1 identically, A > 0 is suitable
and the constant in the O-symbol may depend also on c. Moreover, for every ⌫ � 1
we have

Q⌫(s) =

⌫X
µ=1

Vµ(s)Aµ,⌫(s). (3.19)

Proof. Writing again ⌘ = 2s � 1 + i✓F , from the power series expansion of the
exponential function we have

exp

 
NX

⌫=1

(�1)⌫R⌫(s)
⌫(⌫ + 1)

1
(w + ⌘)⌫

!
= 1+

1X
µ=1

Vµ,N (s)
(w + ⌘)µ

, (3.20)
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where

Vµ,N (s) = (�1)µ
µX

m=1

1
m!

X
1⌫1N ,...,1⌫mN

⌫1+...+⌫m=µ

mY
j=1

R⌫ j (s)
⌫ j (⌫ j + 1)

.

Recalling definition (3.3) we see that Vµ,N (s) = Vµ(s) for µ  N , while for every
µ � 1 thanks to Lemma 3.8 we obtain

��Vµ,N (s)
��


µX
m=1

1
m!

X
⌫1+...+⌫m=µ

mY
j=1

�
c(|s| + 1)

�⌫ j+1
⌫ j (⌫ j + 1)

⌧

�
c(|s| + 1)

�µ µX
m=1

�
c(|s| + 1)

�m
m!

⌧ A|s|�c(|s| + 1)
�µ

.

(3.21)

Hence, from (3.21), for w 2 L⇤

�1
and N  |� | + c we have

1X
µ=N+1

��Vµ,N (s)
����w + ⌘
��µ ⌧ A|s|

1X
µ=N+1

�
c0(|s| + 1)

�µ
|w + ⌘|

µ
⌧ A|s|

✓
c0(|s| + 1)
|w + ⌘|

◆N+1

⌧ A|s| |s||� |
+ 1

|w|
N+1 ⌧

A|s|(|s||� |
+ 1)��w(w � 1) · · · (w � N )

�� .
(3.22)

Finally, using Lemma 3.14 and again (3.21) we get

NX
µ=1

Vµ(s)
(w+⌘)µ

=

NX
µ=1

Vµ(s)
NX

⌫=µ

Aµ,⌫(s)
(w � 1) · · · (w � ⌫)

+ O

 
A|s|(|s||� |

+ 1)��w(w � 1) · · · (w � N )
��

NX
µ=1

�
c0(|s| + 1)

�µ
(µ � 1)!

!

=

NX
⌫=1

Q⌫(s)
(w�1) · · · (w�⌫)

+ O

 
A|s|(|s||� |

+ 1)��w(w�1) · · · (w�N )
��
!

,

(3.23)

and the result follows from (3.20), (3.22), (3.23) and the fact that the Vµ(s)’s and
the Aµ,⌫(s)’s are polynomials.

Lemma 3.16. Let s 2 C and c � 1. For 1  µ  c(|s| + 1) we have

|Vµ(s)| 

�
c0(|s| + 1)

�2µ
µ!

with suitable c0 = c0(c) > 0.
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Proof. As in the proof of Lemma 3.15 (see (3.21) and recall that Vµ(s)=Vµ,µ(s))
we have, with the notation of Lemma 3.6, that

|Vµ(s)| ⌧

�
c⇤(|s| + 1)

�µ µX
m=1

�
c⇤(|s| + 1)

�m
m!

=

�
c⇤(|s| + 1)

�µ
8µ

�
c⇤(|s| + 1)

�
.

Here c⇤ is chosen so large that Lemma 3.6 is applicable, hence the result follows
from Lemma 3.6.

Lemma 3.17. Let x > 0, M be a positive integer and

9M(x) =

MX
µ=1

x2µ

(µ!)2
.

Then for 1  M 

p

2x we have

9M(x) 

(2x)2M

(M!)2
.

Proof. By induction on M . It is trivial for M = 1, and assume it holds for an integer
M . Then since 1  M + 1 

p

2x we have

9M+1(x) = 9M(x) +

x2(M+1)�
(M + 1)!

�2 

(2x)2M

(M!)2
+

x2(M+1)�
(M + 1)!

�2
=

(2x)2(M+1)�
(M + 1)!

�2
(

(M + 1)2

(2x)2
+

1
4M+1

)


9
16

(2x)2(M+1)�
(M + 1)!

�2 ,

and the result follows.

Lemma 3.18. Let s 2 C and c � 1. For 1  ⌫  |s| + c we have

Q⌫(s) ⌧

�
c0(|s| + 1)

�2⌫
⌫!

with suitable c0 = c0(c) > 0.
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Proof. From Lemmas 3.15, 3.14, 3.16 and 3.12 and the fact that
����µ

k
���

=

�µ+k�1
k

�
we have

Q⌫(s) ⌧

⌫X
µ=1

��Vµ(s)
�� ��Aµ,⌫(s)

��

⌧

⌫X
µ=1

⌫�µX
k=0

✓
µ + k � 1

k

◆��Cµ+k,⌫
���c⇤(|s| + 1)

�k �c⇤(|s| + 1)
�2µ

µ!

⌧

⌫X
µ=1

⌫�µX
k=0

✓
µ+k�1

k

◆✓
⌫�1

µ+k�1

◆
(⌫ � 1)!

(µ+k�1)!
�
c⇤(|s|+1)

�k �c⇤(|s|+1)�2µ
µ!

⌧ 4⌫⌫!

⌫�1X
k=0

(c⇤(|s| + 1))k
⌫�kX
µ=1

�
c⇤(|s| + 1)

�2µ
µ!(µ + k)!

since✓
µ+k�1

k

◆
 2µ+k�1

 2⌫,

✓
⌫ � 1

µ+k�1

◆
 2⌫,

(⌫ � 1)!
(µ+k�1)!



⌫!

(µ+k)!
.

Moreover, using (µ + k)! � µ!k! we see that the last expression is (see Lemma
3.17)

⌧ 4⌫⌫!

⌫�1X
k=0

�
c⇤(|s| + 1)

�k
k!

9⌫�k
�
c⇤(|s| + 1)

�
.

Hence by Lemmas 3.17 and 3.6 we get, provided c⇤ is large enough with respect
to c,

Q⌫(s) ⌧ 4⌫⌫!

⌫�1X
k=0

�
c⇤(|s| + 1)

�k
k!

�
c⇤(|s| + 1)

�2(⌫�k)

�
(⌫ � k)!

�2
⌧

�
c⇤(|s| + 1)

�⌫ ⌫�1X
k=0

✓
⌫

k

◆�c⇤(|s| + 1)
�⌫�k

(⌫ � k)!

=

�
c⇤(|s| + 1)

�⌫
8⌫

�
c⇤(|s| + 1)

�
⌧

�
c0(|s| + 1)

�2⌫
⌫!

,

and the result follows.

Lemma 3.19. Let K > 0 be an integer and c � 1. Then for |s|  2K and
1  ⌫  K + c we have

R⌫(s) ⌧ AK K ⌫, (3.24)
V⌫(s) ⌧ AK K ⌫ (3.25)
Q⌫(s) ⌧ (AK )K (3.26)

with a suitable constant A = A(c) > 0. Moreover, deg Q⌫(s) = 2⌫.



TWISTS, EULER PRODUCTS AND A CONVERSE THEOREM 465

Proof. We start with (3.24). If ⌫  |s| and |s|  2K then Lemma 3.8 gives

R⌫(s) ⌧

�
c(|s| + 1)

�⌫+1
⌧ AK K ⌫ .

Suppose now that |s|  ⌫  K + c. Then by Lemmas 3.5 and 3.7 we get

R⌫(s) ⌧

��B⌫+1(1� 2s � i✓F )
��
+

��B⌫+1
��
+ 2⌫

⌫+1X
k=0

��HF (k)
��(|s| + 1)⌫+1�k

⌧ e2|s|(⌫ + 1)! + A⌫
⌫+1X
k=0

k!(|s| + 1)⌫+1�k

⌧ e2|s|(⌫ + 1)! + A⌫(|s| + 1)⌫+1
⌫+1X
k=0

✓
k

|s| + 1

◆k

⌧ AK K ⌫
+ A⌫(⌫ + 1)⌫ ⌧ AK K ⌫

and (3.24) follows. To prove (3.25) we observe that from the definition of the
V⌫(s)’s and (3.24) we have

V⌫(s) ⌧

⌫X
m=1

1
m!

X
⌫1+···+⌫m=⌫

mY
j=1

AK K ⌫ j+1

⌫ j (⌫ j + 1)

⌧ AK K ⌫
⌫X

m=1

Km

m!

 
1X

`=1

1
`(` + 1)

!m
⌧ AK K ⌫,

thus proving (3.25). Finally, starting as in Lemma 3.18 and using (3.25) instead of
Lemma 3.16 we get

Q⌫(s) ⌧ AK
⌫X

µ=1

⌫�µX
k=0

✓
µ + k � 1

k

◆��Cµ+k,⌫
��(AK )µ+k

⌧ AK4⌫⌫!

⌫X
µ=1

⌫�µX
k=0

(AK )µ+k

(µ + k)!
⌧ AK4⌫⌫!

1X
µ=0

(AK )µ

µ!

1X
k=0

(AK )k

k!

⌧ (AK )K ,

and (3.26) follows.
In order to compute the degree of Q⌫(s) we first recall that HF (0) = dF = 2.

From the definition of R⌫(s), see (3.2), and recalling that the leading term of Bn(x)
is xn , see [6, (3) of Section 1.13 of Bateman’s Project], we have that the leading
term of R⌫(s) is

s⌫+1
n
(�2)⌫+1

+ (�1)⌫ � (�1)⌫+1
o

= s⌫+1
n
(�2)⌫+1

+ 2(�1)⌫
o

,
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hence deg R⌫(s) = ⌫ + 1 for ⌫ � 1. From the definition of V⌫(s), see (3.3), and
the previous assertion we easily see that the degree of V⌫(s) is given by the single
term on the right hand side of (3.3) arising for m = µ, thus deg V⌫(s) = 2⌫. To
prove that deg Q⌫(s) = 2⌫ we first note that deg Aµ,⌫(s) = ⌫ � µ and C⌫,⌫ 6= 0,
thanks to Lemmas 3.14 and 3.12. Hence the degree of Q⌫(s) is given by the term
with µ = ⌫ in (3.19), and the lemma follows.

3.3. Proof of Theorem 1.2

We follow the notation in Section 3.1. Moreover, let zX =
1
X + 2⇡ i↵ with a large

X > 0. At the beginning we keep open the value of the sufficiently large constants
c0, c1, c2, N , and we add conditions on them when required. Writing

FX (s,↵) =

1X
n=1

a(n)
ns

exp(�nzX ),

for � < 2 we have

FX (s,↵) =

1
2⇡ i

Z
(2�� )

F(s + w)0(w)z�w
X dw

=

1
2⇡ i

Z
L(s)

F(s + w)0(w)z�w
X dw,

(3.27)

since the poles of F(s + w)0(s) lie to the left of the path L(s). If w 2 L�1(s)
then <(s + w) � �c0, hence F(s + w) ⌧ |s + w|

c for some c > 0 since F(s) has
polynomial growth on vertical strips. If in addition v < t0, then <(s+w) = c0 > 1
and hence F(s + w) ⌧ 1. Moreover, still for w 2 L�1(s), we have

��z�w
X
��
=

��zX ���u exp �v�⇡/2+ O(1/X)
��

��0(w)
��
 0(|� | + c0) ⌧ (|� | + c0)|� |+c0

⌧ A|� |

|� |
|� |

+ 1.

Therefore the contribution of L�1(s) to (3.27) is

1
2⇡ i

Z
L�1(s)

F(s + w)0(w)z�w
X dw ⌧ A|s|

|� |
|� |

+ 1

for some A > 0. As a consequence, for � < 2 and any fixed ↵ > 0

FX (s,↵) =

1
2⇡ i

Z
L1(s)

F(s + w)0(w)z�w
X dw + O

�
A|s|

|� |
|� |

+ 1
�

= IX (s,↵) + O
�
A|s|

|� |
|� |

+ 1
�
,

(3.28)
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say, uniformly as X ! 1. Note in passing that IX (s,↵) is not holomorphic in s,
since the path L1(s) starts at �� � c0 + i t0, which is not holomorphic in s.

In order to study the integral IX (s,↵)we apply the functional equation of F(s)
and the reflection formula of 0(s), thus getting

IX (s,↵) = !Q1�2s
1
2⇡ i

Z
L1(s)

F̄(1� s � w)G(s, w)S(s, w)(Q2zX )�wdw.

Replacing S(s, w) by �ie(�⇠F/4)e�⇡ is and estimating the error by Lemma 3.2
and then by Lemma 3.1 we obtain

IX (s,↵)

=�i!e(�⇠F/4)Q1�2se�⇡ is 1
2⇡ i

Z
L1(s)

F̄(1�s�w)G(s,w)(Q2zX )�wdw

+ O(A|s|
Z

1

t0

��G(s,�� � c0 + iv)
�� ��(Q2zX )�+c0�iv

��e�cvdv)

= JX (s,↵) + O(A|s|
|� |

|� |

+ 1),

(3.29)

say, uniformly as X ! 1.
Now, roughly speaking, we reduce G(s, w) in (3.29) to a single 0-factor by

means of the uniform version of the Stirling formula in [18]. Clearly

logG(s,w)=(1� r) log 2⇡ � log0(�w + 1)

+

rX
j=1

�
log0

�
�� jw+� j (1�s)+µ̄ j

�
+log0

�
� � jw+1�� j s�µ j

� 
,

and we apply the Theorem in [18] with the choices

(z,s) =

�
� w,1

�
,

(z,s) =

�
� � jw,� j (1�s)+ µ̄ j

�
,

(z,s) =

�
� � jw,1�� j s� µ j

�

to the above three log0-terms, respectively. Since w 2 L1(s), it is easy to verify
that the hypotheses of the above quoted Theorem are satisfied provided the con-
stants in the definition of L1(s) are large enough. Hence for N  |s| + c we
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get

logG(s, w) = (1� r) log 2⇡ +

rX
j=1

⇢✓
� j (1� s � w) + µ̄ j �

1
2

◆
log(�w)

+

✓
� j (1� s � w) + µ̄ j �

1
2

◆
log � j

+

✓
1
2

� � j (s + w) � µ j

◆
log(�w)

+

✓
1
2

� � j (s + w) � µ j

◆
log � j + 2� jw + log 2⇡

�

+

rX
j=1

NX
⌫=1

(�1)⌫+1

⌫(⌫ + 1)

⇣
B⌫+1(� j (1� s) + µ̄ j )

+ B⌫+1(1� � j s � µ j )
⌘✓

�

1
� jw

◆⌫

�

✓
1
2

� w

◆
log(�w) � w �

1
2
log 2⇡

�

NX
⌫=1

(�1)⌫+1

⌫(⌫ + 1)
B⌫+1(1)

✓
�

1
w

◆⌫

+ O

 �
c(|s| + 1)

�N+2

|w|
N+1

!

=

✓
1
2

� 2s � w � i✓F
◆
log(�w) + w +

1
2
log 2⇡

+ (1� 2s � 2w) log
rY
j=1

�
� j
j

+ log
rY
j=1

�
�2i=µ j
j +

NX
⌫=1

P⌫(s)
⌫(⌫ + 1)

1
w⌫

+ O

 �
c(|s| + 1)

�N+2

|w|
N+1

!
,

say, where by Lemma 3.3

P⌫(s) = B⌫+1(1) �

rX
j=1

B⌫+1(� j (1� s) + µ̄ j ) + B⌫+1(1� � j s � µ j )

�⌫
j

= R⌫(s) � B⌫+1(1� 2s � i✓F ).

On the other hand, again from the Theorem in [18] but with the choice (z, s) =

(�w, 1� 2s � i✓F ), we obtain

log0(1�2s�w�i✓F )=

✓
1
2

� 2s � w � i✓F
◆
log(�w) + w +

1
2
log 2⇡

�

NX
⌫=1

B⌫+1(1� 2s � i✓F )

⌫(⌫ + 1)
1

w⌫
+ O

 �
c(|s| + 1)

�N+2

|w|
N+1

!
.
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Therefore, writing � =

Qr
j=1 �

2� j
j we have

logG(s,w) = log0(1� 2s � w � i✓F ) +

✓
1
2

� s � w

◆
log�

+ log
rY
j=1

�
�2i=µ j
j +

NX
⌫=1

R⌫(s)
⌫(⌫+1)

1
w⌫

+O

 �
c(|s|+1)

�N+2

|w|
N+1

!
.

(3.30)

Since O
� (c(|s|+1))N+1

|w|
N+1

�
< 1 for w 2 L1(s) provided the constants in the definition

of L1(s) are sufficiently large, we have

e
O
�

(c(|s|+1))N+2

|w|
N+1

�
= 1+

1X
k=1

�
c(|s| + 1)

�k
k!

 
O

 �
c(|s| + 1)

�N+1

|w|
N+1

!!k

= 1+ O

 
A|s|

�
c(|s| + 1)

�N+1

|w|
N+1

!
,

hence from (3.30) we get

G(s, w)=0(1�2s�w � i✓F )�
1
2�s�w

rY
j=1

�
�2i=µ j
j exp

 
NX

⌫=1

R⌫(s)
⌫(⌫+1)

1
w⌫

!

⇥

 
1+ O

 
A|s|

�
c(|s| + 1)

�N+1

|w|
N+1

!!
.

(3.31)

Replacing in JX (s,↵) (see (3.29)) G(s, w) by its main term obtained in (3.31)
causes an error of size

⌧A|s|
Z
L1(s)

��0(1� 2s � w � i✓F )
�� exp

 
<

 
NX

⌫=1

R⌫(s)
⌫(⌫ + 1)

1
w⌫

!!

⇥

��(Q2zX )�w
��
�
c(|s| + 1)

�N+3

|w|
N+1 |dw|,

and by Lemmas 3.4 and 3.9 this is

⌧ A|s|�c(|s| + 1)
�N+3

Z
1

t0
e�⇡v/2e⇡v/2v��+2c0�Ndv

uniformly in X . Hence if N � �� + 3c0 the integral converges and is⌧ 1. More-
over, if N  �� +c (with any fixed c > 3c0) then (2|s|)N+3

+1 ⌧ A|s|(|s||� |
+1).
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Therefore, from (3.29), (3.31) and recalling the definition of conductor qF and root
number !⇤

F , for such N ’s we have

JX (s,↵) = !⇤

F

⇣ qF
4⇡2

⌘1/2�s�i✓F/2
e
✓

�

1
2

✓
s + i

✓F
2

◆
1
2⇡ i

◆Z
L1(s)

F̄(1� s � w)

⇥ 0(1� 2s � w � i✓F ) exp

 
NX

⌫=1

R⌫(s)
⌫(⌫ + 1)

1
w⌫

!⇣qF zX
4⇡2

⌘
�w
dw

+ O
�
A|s|(|s||� |

+ 1)
�
.

Hence, by the substitution 1� 2s � w � i✓F ! w in the above integral, for

�� + 3c0  N  �� + c (3.32)

we obtain

JX (s,↵) = �i!⇤

F

✓
p

qF↵ � i
pqF
2⇡X

◆2s�1+i✓F 1
2⇡ i

Z
L⇤

�1
(s)
F̄(s+w+i✓F )0(w)

⇥ exp

 
NX

⌫=1

(�1)⌫R⌫(s)
⌫(⌫ + 1)

1
(w + 2s � 1+ i✓F )⌫

!⇣qF zX
4⇡2

⌘w
dw

+ O
�
A|s|(|s||� |

+ 1)
�
,

(3.33)

uniformly as X ! 1.
Now we use Lemma 3.15 to replace the term exp

�PN
⌫=1 ...

�
in the above inte-

gral by the sum involving the polynomials Q⌫(s)with ⌫ = 0, ..., N . Hence we need
that c in (3.32) satisfies c  c2/3. Since |F(s + w + i✓F )| ⌧ 1 for w 2 L⇤

�1
(s),

this causes a further error of size

⌧ A|s|�
|s||� |

+ 1
� Z
L⇤

�1
(s)

|0(w)|��w(w � 1) · · · (w � N )
�� e⇡ |v|/2

|dw|

⌧ A|s|�
|s||� |

+ 1
� Z
L⇤

�1
(s)

��0(w � N )
��e⇡ |v|/2

|w|

|dw|.

Moreover, we also want N such that <(w � N )  0 for w 2 L⇤

�1
(s), i.e. we

choose
N = [�� ] + k (3.34)

with a sufficiently large positive integer k satisfying (3.32) with c  c2/3; this
can be done by suitably choosing c0 and c2. With such a choice of N we have
|0(w�N )| ⌧ e�⇡ |v|/2/|v|

1/2, hence the integral is⌧ 1. Therefore (3.33) becomes,
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uniformly as X ! 1,

JX (s,↵)=�i!⇤

F

✓
p

qF↵�i
pqF
2⇡X

◆2s�1+i✓F NX
⌫=0

Q⌫(s)
1
2⇡ i

Z
L⇤

�1
(s)
F̄(s+w+i✓F )

⇥ 0(w � ⌫)
⇣qF zX
4⇡2

⌘w
dw + O

�
A|s|(|s||� |

+ 1)
�
.

(3.35)

Replacing the path of integration in (3.35) by the whole path L⇤(s) causes an error
which, since ⌫  N , by Lemma 3.18 is of size

⌧ A|s|
NX

⌫=0

(|s| + 1)2⌫

⌫!

Z
L⇤

1
(s)

���F(s + w + i✓F )0(w � ⌫)
⇣qF zX
4⇡2

⌘w��� |dw|.

For w 2 L1(s) we have <(s + w) = O(1) and hence F(s + w + i✓F ) ⌧ (|s| +

|w| + 1)A. Moreover, for 0  ⌫  N we have �c  <(w � ⌫)  |� | � ⌫ + c0 and
hence

0(w � ⌫) ⌧ (c(|� | + 1))|� |�⌫+c00 .

Further, |zwX | ⌧ A|� |e�v arg zX , thus the above mentioned error is

⌧ A|s|
NX

⌫=0

(|s| + 1)|� |+⌫

⌫!

Z
1

�t⇤0 (s)
(|v| + 1)Ae�v arg zX dv ⌧ A|s|(|s| + 1)|� |.

We also have by Cauchy’s theorem that for 0  ⌫  N

1
2⇡ i

Z
L⇤(s)

F̄(s + w + i✓F )0(w � ⌫)
⇣qF zX
4⇡2

⌘w
dw

=

1
2⇡ i

Z
|� |+⌫+2+i1

|� |+⌫+2�i1
F̄(s + w + i✓F )0(w � ⌫)

⇣qF zX
4⇡2

⌘w
dw

=

1X
n=1

a(n)
ns+i✓F

⇣qF zX
4⇡2n

⌘⌫ 1
2⇡ i

Z
|� |+⌫+2+i1

|� |+⌫+2�i1
0(w � ⌫)

⇣qF zX
4⇡2n

⌘w�⌫
dw

=

⇣ qF
4⇡2X

+ i
qF↵

2⇡

⌘⌫ 1X
n=1

a(n)
ns+⌫+i✓F

exp

 
�

4⇡2

qF zX
n

!
.

Consequently, (3.35) becomes

JX (s,↵)=�i!⇤

F

✓
p

qF↵ � i
pqF
2⇡X

◆2s�1+i✓F NX
⌫=0

⇣ qF
4⇡2X

+ i
qF↵

2⇡

⌘⌫
Q⌫(s)

⇥

1X
n=1

a(n)
ns+⌫+i✓F

exp

 
�

4⇡2

qF zX
n

!
+ O

�
A|s|(|s| + 1)|� |

� (3.36)



472 JERZY KACZOROWSKI AND ALBERTO PERELLI

uniformly as X ! 1. Since

�

4⇡2

qF zX
=

2⇡ i
qF↵

�

1
qF↵2

1
X + O(1)

,

the series in (3.36) is absolutely convergent for all s, for every ⌫.
The next step is to make the range of summation of ⌫ in (3.36) independent

of � (recall that N depends on � , see (3.34)). Let K > 0 be a large integer and
|s| < 2K , � > �K + 1/2. Depending on the relative sizes of N and K , we add to
or withdrow from (3.36) the terms with ⌫ between N + 1 and K or between K + 1
and N , respectively. In both cases we have that � + ⌫ > 3/2 for such ⌫’s (call them
⌫ 2 X ), hence from Lemma 3.19 we deduce that

�i!⇤

F

✓
p

qF↵ � i
pqF
2⇡X

◆2s�1+i✓F X
⌫2X

⇣ qF
4⇡2X

+ i
qF↵

2⇡

⌘⌫
Q⌫(s)

⇥

1X
n=1

a(n)
ns+⌫+i✓F

exp

 
�

4⇡2

qF zX
n

!
⌧ AK

X
⌫2X

A⌫(AK )K ⌧ (A0K )K
(3.37)

uniformly in X . From (3.28), (3.29), (3.36) and (3.37) we therefore obtain that for
�K + 1/2 < � < 2 and |s| < 2K

FX (s,↵) = � i!⇤

F

✓
p

qF↵ � i
pqF
2⇡X

◆2s�1+i✓F KX
⌫=0

⇣ qF
4⇡2X

+ i
qF↵

2⇡

⌘⌫

⇥ Q⌫(s)F⇤

X (s + ⌫ + i✓F ,↵) + HX (s,↵),

(3.38)

where

F⇤

X (s,↵) =

1X
n=1

a(n)
ns+⌫+i✓F

exp

 
�

4⇡2

qF zX
n

!

and
HX (s,↵) ⌧ (AK )K

uniformly as X ! 1. Moreover, since FX (s,↵), F⇤

X (s,↵) and Q⌫(s) are entire
functions, HX (s,↵) is also entire. Further, from (3.38) we have that for 1 < � < 2

lim
X!1

HX (s,↵) = H(s,↵)

exists and is holomorphic since this is clearly true for FX (s,↵) and F⇤

X (s,↵). For
1 < � < 2 we also have that

H(s,↵)= F(s,↵)

+ i!⇤

F
�p

qF↵
�2s�1+i✓F KX

⌫=0

⇣
i
qF↵

2⇡

⌘⌫
Q⌫(s)F̄

✓
s+⌫+i✓F ,�

1
qF↵

◆
.
(3.39)
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Hence by Vitali’s convergence theorem, see Section 5.21 of Titchmarsh [27], the
limit function H(s,↵) exists and is holomorphic for �K + 1/2 < � < 2 and
|s| < 2K , and satisfies

H(s,↵) ⌧ (AK )K .

This provides analytic continuation and bounds for the right hand side of (3.39).
Therefore Theorem 1.2 follows, recalling Lemmas 3.18 and 3.19.

4. Proof of Theorem 1.3 and Corollary 1.4

Let mF denote the order of pole of F(s) at s = 1 and let Q⌫(s) be the polynomials
in Theorem 1.2. We have:
Lemma 4.1. Let F 2 S]

2 with qF = 1. For ⌫ � 1 we have that (s + ⌫ � 1)mF

divides Q⌫(s). Moreover, ✓F = 0 if mF > 0.
Proof. We may clearly assume that mF > 0. From Theorem 1.2 with ↵ = 1 we get

F(s) = �i!⇤

F F̄(s + i✓F ) + H(s), (4.1)

where H(s) is holomorphic for � > 1/2. Hence ✓F = 0 since mF > 0. Again
from Theorem 1.2 with ↵ = 1 we deduce that

F(s) = �i!⇤

F

KX
⌫=0

✓
i
2⇡

◆⌫

Q⌫(s)F̄(s + ⌫) + HK (s), (4.2)

where K > 0 is an arbitrarily large integer and HK (s) = HK (s, 1) is as in The-
orem 1.3. Given 1  ⌫0  K , it is clear that all terms in (4.2) are holomorphic
at s = 1 � ⌫0, except possibly for Q⌫0(s)F̄(s + ⌫0). Therefore this term must be
holomorphic as well, hence Q⌫0(s) has a zero of order at least mF at s = 1 � ⌫0,
and the result follows.

Lemma 4.2. Let F 2 S]
2 with qF = 1. For q � 1 and 1  a  q with (a, q) = 1

the function (s � 1)mF F(s, a/q) is entire.
Proof. In view of Lemma 4.1, for ⌫ � 1 we define the polynomials P⌫(s) by

Q⌫(s) = (s + ⌫ � 1)mF P⌫(s).

For q = 1 the result is obvious, and we proceed by induction on q. Assume the
result true up to q � 1 and apply Theorem 1.2 with ↵ = a/q, 1  a < q and
(a, q) = 1, thus getting

(s�1)mF F(s, a/q)= �i!⇤

F

✓
a
q

◆2s�1+i✓F�
(s�1)mF F̄(s+i✓F ,�q/a)+(s�1)mF

⇥

KX
⌫=1

✓
ia
2⇡q

◆⌫
P⌫(s)(s + ⌫ � 1)mF F̄(s + ⌫ + i✓F ,�q/a)

 

+ (s � 1)mF HK (s, a/q).
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Since a  q � 1, by the inductive hypothesis all terms on the right hand side
are holomorphic in the domain where HK (s, a/q) is holomorphic (remember that
✓F = 0 if mF > 0 by Lemma 4.1). The result follows since K is arbitrarily
large.

In order to prove Theorem 1.3 we note that thanks to Lemma 4.2 we only
need to show that F(s, a/q) is of the proper size as � ! �1. We proceed by
induction on q and observe that for q = 1 the result follows from Lemma 2.1 since
F 2 M(2, 1). Assume now the result true up to q � 1 and apply Theorem 1.2 with
↵ = a/q, thus getting for arbitrarily fixed K > 0, A, B 2 R and a suitable C > 0
(whose value will not necessary be the same at each occurrence) that

F(s,a/q)=�i!⇤

F

✓
a
q

◆2s�1+i✓F KX
⌫=0

✓
ia
2⇡q

◆⌫
Q⌫(s)F̄(s + ⌫ + i✓F ,�q/a)

+ O
�
CK K K �

for � > �K + 1/2 and |s| < 2K , uniformly for A  t  B. Choosing K =

[|� |] + 2 and letting � ! �1 we obtain

F(s, a/q) ⌧

✓
a
q

◆2|� | KX
⌫=0

✓
a
2⇡q

◆⌫ ��Q⌫(s)
�� ��F(s + ⌫ + i✓F ,�q/a)

��
+ C |� |

|� |
|� |.

Hence by Lemma 3.18 and the inductive hypothesis we have

F(s, a/q)

⌧

⇣q
a

⌘2|� |
[|� |]+2X

⌫=0

✓
a
2⇡q

◆⌫ (C|� |)2⌫

⌫!

�
|� | + 2� ⌫

�2(|� |�⌫)
⇣ a
2⇡e

⌘2(|� |�⌫)
|� |

C

+ C |� |

|� |
|� |

⌧ |� |
2|� |

⇣ q
2⇡e

⌘2|� |

|� |
C

[|� |]+2X
⌫=0

C⌫

⌫!

+ C |� |

|� |
|� |

⌧ |� |
2|� |

⇣ q
2⇡e

⌘2|� |

|� |
C .

Therefore F(s, a/q) belongs to M(2, q2), and Theorem 1.3 follows.

In view of Theorems 1.1 and 1.3, to prove Corollary 1.4 we need to show that
every F 2 S2 satisfies NF (�, T ) = o(T ) for any fixed � > 1/2. Actually, standard
techniques (see Montgomery [22, Chapter 12]) allow to show the following sharper
result: if F 2 S2 then for every " > 0 and every fixed � > 1/2

NF (�, T ) ⌧ T 3/2��+".
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We only outline the main points in the proof. Let a(n) be the Dirichlet coefficients
of F(s) and letµF (n) denote its inverse. By Lemma 1 of [14] we have that for every
" > 0 there exists an integer M = M(") such that µF (n) ⌧ n" for (n,M) = 1.
Moreover, for � > 1/2 the functions F(s) and

FM(s) = F(s)
Y
p|M

Fp(s)�1 =

X
(n,M)=1

a(n)
ns

have the same zeros. Writing L = log T and

G(s) = FM(s)
X

nT L2
(n,M)=1

µF (n)
ns

= FM(s)M(s),

say, we have

G(s) = 1+

X
n>T L2

(n,M)=1

c(n)
ns

, c(n) =

X
d|n

dT L2

µF (d)a(n/d) ⌧ n".

Now we apply Montgomery’s zero detecting method. First, for every zero ⇢ =

� + i� of F(s) with � > � > 1/2 we obtain

I⇢ =

1
2⇡ i

Z 2+i1

2�i1
G(⇢ + w)0(w)Twdw = 1+ O

✓
1
T

◆
. (4.3)

On the other hand, shifting the line of integration to <w = 1/2� � we get

I⇢ ⌧ T 1/2��

Z �+cL

��cL

����F
✓
1
2

+ +i t
◆
M
✓
1
2

+ +i t
◆���� dt + O

✓
1
T

◆
(4.4)

with a suitable c > 0. Summing over representatives of zeros in small rectangles,
from (4.3), (4.4), the Cauchy-Schwarz inequality and the mean-value theorem for
Dirichlet polynomials we obtain

NF (�, T ) ⌧ T 1/2�� L3
 Z 2T

T/2

����F
✓
1
2

+ +i t
◆����
2
dt

!1/20BB@T
X

nT L2
(n,M)=1

|µF (n)|2

n

1
CCA
1/2

⌧ T 3/2��+".

Here we used the boundZ 2T

T/2

����F
✓
1
2

+ +i t
◆����
2
dt ⌧ T 1+",

which follows by standard arguments from the approximate functional equation in
Chandrasekharan-Narasimhan [1] for L-functions of degree d = 2 (A = 1 in the
notation of [1]). Corollary 1.4 is therefore proved.
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5. Proof of Theorem 1.5

We need further notation. For F 2 S]
2 we write

↵F (a/q) = lim
s!1

(s � 1)mF F(s, a/q).

Moreover, let ↵F = ↵F (1) and �F = �i!⇤

F . Note that ↵F 6= 0 if mF > 0.

Lemma 5.1. Let F 2 S]
2 with qF = 1 and mF > 0. Then

i) ↵F̄ = ↵F , ii) mF  2, iii) ↵F = �F↵F , iv) �F̄ = �F .

Proof. i) is trivial. By Lemmas 3.18 and 4.1 we have mF  deg Q1(s)  2, hence
ii) follows. Multiplying both sides of (4.1) by (s � 1)mF and letting s ! 1 we
obtain

↵F = �F↵F̄ = �F↵F ,

and iii) follows. Finally, applying iii) to F̄(s), thanks to i) we get

↵F = ↵F̄ = �F̄↵F ,

and iv) follows comparing with iii).

Lemma 5.2. Let F 2 S]
2 with qF = 1 and mF > 0. Then for q � 1 and 1  a  q

with (a, q) = 1 we have
↵F (a/q) =

↵F
q

.

Proof. We proceed by induction, the case q = 1 being trivial. Recalling that ✓F = 0
in this case, from Theorem 1.2 with ↵ = a/q we get

F(s, a/q) = �F

✓
a
q

◆2s�1
F(s̄, q/a) + H(s)

with H(s) holomorphic for � > 1/2. Multiplying both sides by (s � 1)mF and
letting s ! 1 we obtain, thanks to the inductive hypothesis, that

↵F (a/q) = �F
a
q

↵F (q/a) = �F
a
q

↵F
a

=

�F↵F
q

.

The result follows now by iii) of Lemma 5.1.

When mF = 2 we write

F(s) =

↵F
(s � 1)2

+

↵F�F
s � 1

+ . . .

F(s, a/q) =

↵F (a/q)

(s � 1)2
+

↵F (a/q)�F (a/q)

s � 1
+ . . .
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Lemma 5.3. Let F 2 S]
2 with qF = 1 and mF = 2. Then �F 2 R, and for q � 1

and 1  a  q with (a, q) = 1 we have

�F (a/q) = �F � 2 log q.

Proof. In order to prove that �F 2 R we start again with Theorem 1.2 with ↵ = 1
(see (4.1)), hence

F(s) = �F F̄(s) + H(s)

with H(s) holomorphic for � > 1/2. This gives

↵F
(s � 1)2

+

↵F�F
s � 1

+ · · · =

�F↵F̄
(s � 1)2

+

�F↵F̄�F̄
s � 1

+ . . . ,

hence thanks to Lemma 5.1 we deduce that �F = �F̄ . But for s 2 R we have

�F̄ = lim
s!1

✓
(s � 1)F̄(s)

↵F̄
�

1
s � 1

◆
= lim

s!1

✓
(s � 1)F(s)

↵F
�

1
s � 1

◆
= �F ,

and the first assertion follows. Now we prove the second assertion by induction
on q, the case q = 1 being trivial. Once again from Theorem 1.2 with ↵ = a/q,
writing the first terms of the Laurent expansion at s = 1 of the right hand side, we
get

F(s, a/q) = �F

✓
a
q

+ 2
a
q
log

a
q

(s � 1) + . . .

◆ 
↵F

a(s � 1)2
+

↵F�F (q/a)
a(s � 1)

+ . . .

!

+ H(s)

with H(s) holomorphic for �>1/2. By the inductive assumption we have �F(q/a)=
�F � 2 log a. Hence from the previous equation, thanks to Lemmas 5.1 and 5.2 we
obtain

F(s, a/q) =

�F↵F
q(s � 1)2

+

�F↵F (�F (q/a) + 2 log a
q )

q(s � 1)
+ . . .

=

↵F (a/q)

(s � 1)2
+

↵F (a/q)(�F � 2 log q)

s � 1
+ . . . ,

and the result follows.

Lemma 5.4. Let F 2 S]
2 with qF = 1. Then for p prime and �(mod p) with

� 6= �0, F(s,�) is holomorphic at s = 1.
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Proof. From Lemmas 5.2 and 5.3 we see that the Laurent coefficients of order �1
and�2 of F(s, a/q) do not depend on a. Hence, with obvious notation, for � (mod
p), � 6= �0, we have

F(s,�) =

1
⌧ (�̄)

pX
a=1

�(a)F(s,�a/p)

=

1
⌧ (�̄)

pX
a=1

�(a)
⇢

A(p)
(s � 1)2

+

B(p)
s � 1

+ . . .

�
,

and the result follows by the orthogonality of Dirichlet characters.

To prove Theorem 1.5 we choose a = p � 1 in (2.6) of Lemma 2.2 and use
Lemma 5.4 to obtain

F(s, 1/p) = F(s)
✓
1�

p
p � 1

1
Fp(s)

◆
+ G(s)

with G(s) holomorphic at s = 1. Multiplying both sides of the last expression by
(s � 1)mF and letting s ! 1 we get

↵F (1/p) =

✓
1�

p
p � 1

1
Fp(1)

◆
↵F . (5.1)

On the other hand, by Lemma 5.2 we have ↵F (1/p) = ↵F/p, hence comparing
with (5.1) and recalling that ↵F 6= 0 we obtain

Fp(1) =

✓
1�

1
p

◆
�2

. (5.2)

Moreover, by Corollary 1.4 in the Introduction we have

Fp(s) =

@pY
j=1

✓
1�

↵ j (p)
ps

◆
�1

with @p  2 and |↵ j (p)|  1. Therefore

|Fp(1)| =

@pY
j=1

�����
1X
m=0

↵ j (p)m

pm

�����


@pY
j=1

1X
m=0

|↵ j (p)|m

pm


✓
1�

1
p

◆
�@p



✓
1�

1
p

◆
�2

.

(5.3)

Comparing (5.2) and (5.3) we see that (5.2) holds if and only if @p=2 and ↵ j (p)=1
for j = 1, 2, and Theorem 1.5 follows.



TWISTS, EULER PRODUCTS AND A CONVERSE THEOREM 479

References

[1] K. CHANDRASEKHARAN and R. NARASIMHAN, The approximate functional equation
for a class of zeta-functions, Math. Ann. 152 (1963), 30–64.

[2] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn and their
application to liftings, In: “Cohomology of Arithmetic Groups, L-functions and Automor-
phic Forms”, T. N. Venkataramana (ed.), Narosa Publ. House and A. M. S. Publications,
2001, 1–34.

[3] J. B. CONREY and D. W. FARMER, An extension of Hecke’s converse theorem, Int. Math.
Res. Not. IMRN 9 (1995), 445–463.

[4] J. B. CONREY, D. W. FARMER, B. E. ODGERS and N. C. SNAITH, A converse theorem
for 00(13), J. Number Theory 122 (2007), 314–323.

[5] J. B. CONREY and A. GHOSH, On the Selberg class of Dirichlet series: small degrees,
Duke Math. J. 72 (1993), 673–693.
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