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Blow up for the critical gKdV equation III: exotic regimes

Y VAN MARTEL, FRANK MERLE AND PIERRE RAPHAEL

Abstract. We consider the blow-up problem in H 1 for the LZ critical generalized
Korteweg—de Vries (gKdV) equation, as a continuation of [38,39]. We know

from [38] that the unique and stable blow-up rate for H L solutions close to the
solitons with strong decay on the right is

1
llx N 2 ~ T—; ast 1t T < +oo.

In this paper we construct non-generic blow-up regimes in H 1 by considering
initial data with explicit slow decay on the right in space. We obtain finite time
blow-up solutions with speed

1 11
HMX(Z)”Lsz aSlTT<+OO, V>E

as well as global in time growing up solutions with exponential growth

)

lux @)l 2 ~ e ast — +oo,
or growth of any power
lux(@llz2 ~ 1" ast — 400, v>0.

These solutions can be taken with initial data arbitrarily close in H! to the ground
state solitary wave.

Mathematics Subject Classification (2010): 35Q53 (primary); 35Q51, 35B44,
35B35 (secondary).

1. Introduction

1.1. Setting of the problem
We consider the L?-critical generalized Korteweg—de Vries equation (gKdV)

U+ (yy +u)y =0, (@, x)e[0,T) xR,
(gkdV) { ut(O, x) = ugp(x), x eR. a.n
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The Cauchy problem is locally well-posed in the energy space H' from Kenig,
Ponce and Vega [20,21]. Given ug € H I, there exists a unique1 maximal solu-
tion u(¢) of (1.1) in C([0, T), H') with either T = +o00, or T < 400 and then
limy— 7 lux (1) 2 = +oo.

For H' solution, the mass and the energy are conserved by the flow: V¢ €
[0, 7),

2 L[> L[ s
M (u(1)) qu (1) = M(uo), E(u(t)) = Efux(t)— 5/” (1) = E(uo).

Equation (1.1) has the following invariances: if u(z, x) is solution of (1.1) then
—u(t,x),u(—t, —x) and

1
Au(g(t — 10), ho(x — x0)), (o, 70, x0) € R% x Rx R

are also solutions of (1.1).
The family of traveling wave solutions of (1.1), called solitons, plays a distin-
guished role in the analysis:

u(t,x) = Qzy(x — A5t —x0), (ho,x0) € R% x R,

with
1

3 4 " 5
>, 0 +0°=0. (12

o:m="0(Y). ow-= (7
A3 A cosh? (2x)

It is well-known that the function Q is related to the following sharp Gagliardo-
Nirenberg inequality [65]:

2 2
Voe H', /|v|65/u§ <f/;2> . (13)

Moreover, from (1.3), mass and energy conservations, for initial data in H! such
that ||ugl|;2 < [|Qll;2, the corresponding solution u(¢) of (1.1) is bounded in H!
and thus globally defined in time.

1.2. On the classification of the flow near Q

For
1012 < lluollp2 < 1Qll2 + a0, @0 K1 (1.4)

the blow-up problem has been first studied in a series of works by Martel and Merle
[31-34,44]. In particular, from a rigidity theorem around solitons [31], the first
proof of blow-up in finite or infinite time was obtained [44] for initial data

uo € H' such that (1.4) and E (ug) < 0. (1.5)

! In a certain sense.
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Recently, in [38,39], the authors of the present paper have revisited the blow-up
analysis for data near the ground state. First, in the so-called minimal mass case

lluoll;2 = |Qll;2, the following existence and uniqueness results complement re-
sults in [35].

Minimal mass blow-up solution [39, 35]. (i) Existence. There exists a solution
S(t) € C((0, +00), H') to (1.1) with minimal mass ||S(¢)|| 2 = | Q|l,2 such that

10112
182 ()l 2 ~ tL

ast 0. (1.6)

(ii) Uniqueness. Let u be an H' blow-up solution of (1.1) with minimal mass
()2 = 11Ol 2. Then u = S up to the invariances of the (gKdV) equation.

Second, [38,39] yield a classification of the flow for initial data close to Q with
decay on the right in space. More precisely, let

A= {uo = QO + go with ||eg|| ;1 < @ and / yloeg < l},
y>0

’Z;*:{ueHl with inf ||u—QxO(-—X0)||Lz<O‘*}'

20>0, xpeR
Then the following classification result holds:
Classification in A [38,39]. Let 0 < ag < a* < 1. Letuy € Aandu €

C(0,T), H') be the corresponding solution of (1.1). Then, one of the following
three scenarios occurs:

(Blow up) For all ¢ € [0, T), one has u(t) € 7.+ and the solution blows up in finite
time T < 400 with

10'll,2
Lo(T — 1)

(Soliton) The solution is global and

luex ()72 ~ ast 4 T for some £¢ > 0. (1.7

u(t, +x(t))— Oy, in Hll)c as 1 — +00 for oo — 1| + ¥/ () — 1] < 8(xp), (1.8)

where §(cg) — 0 as ag — 0.

(Exit and S dynamics) The solution u exits the tube 7+ at some time 7, € (0, T),
and there exist A, > 0 and x, € R, such that

1
”)‘liu(tu, Aux 4+ xy) — S(t*, x)”L2 < é(ap),

where §(ag) — 0 as g — 0 and where t* > 0 depends only on ™.
Moreover, if S scatters at o0 then u is global and scatters at 4-c0.

In particular, this indicates that for initial data in .4, only one type of blow-
up is possible. In this paper, we prove that for initial data in H', but with slow
decay, different blow-up behaviors are possible close to solitons. This means that
the decay assumption in the definition of .4 is not a technical one.
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1.3. Exotic blow-up regimes

We now consider initial data ug ¢ A in the sense that they display an explicit slow
decay on the right. Our main result in this paper says that the blow-up rate (Tl—_[),
which is universal in A, is not valid anymore for such initial data. Indeed, we

produce a wide range of different blow-up rates, including grow up in infinite time.

Theorem 1.1 (Exotic blow-up regimes).
(i) Blow up in finite time: for any v > %, there exists u € C((0, To], H") solution

of (1.1) blowing up at t = 0 with
lux @)l 2 ~t" as t | 0T, (1.9)

(i1) Grow up in infinite time: there exists u € C([Tp, +00), H Y solution of (1.1)
growing up at +00 with

lux ()2 ~ € as t — +oo. (1.10)

For any v > 0, there exists u € C([0, +00), HY) solution of (1.1) growing up at
400 with
lux @2 ~ 1" as t - +oo. (1.11)

Moreover, such solutions can be taken arbitrarily close in H' to the family of soli-
tons.

Comments on Theorem 1.1.

1. Sharpness of the results in [38,39]. Theorem 1.1 above shows the optimality of
the results in [38,39] since it proves that some decay assumption (such as ug € A) is
required to obtain a unique stable blow-up rate 1/(7T —t). This is in contrast with the
nonlinear Schrodinger equation, for which the stable blow-up rate is obtained in A,
without additional decay assumption (see [49] and references therein). Note from
the proof that the solutions obtained in Theorem 1.1 are expected to be unstable
(except maybe for v < 1 in (1.9)). Indeed, they are constructed using a topogical
argument involving two possible directions of instability.

2. It is proved in [33,44] that initial data ug such that (1.5) generate solutions
that blow-up in finite or infinite time. The proof is by obstruction and Liouville
classification and does not provide any estimate on the blow-up speed. This H'
result is also sharp in the sense that from Theorem 1.1, both finite or infinite time
blow-up may occur in H'. All these results thus complement each other.

3. On the role of tails. As one can see from the proof of Theorem 1.1, the blow-up
rate is directly related to the precise behavior of the initial data on the right. In
particular, other type of blow-up speeds can be produced by similar arguments by
adjusting the tail of the initial data. A similar phenomenon was observed for global
in time growing up solutions of the parabolic energy critical harmonic heat flow
by Gustafson, Nakanishi and Tsai [16]. In such a paper an explicit formula on the
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growth of the solution at infinity is given directly in terms of the initial data which
is conceptually very similar to what we observe for (gKdV).

Recall that continua of blow-up rates were observed in pioneering works by
Krieger, Schlag and Tataru [27, 28] for energy critical wave problems (see also
Donninger and Krieger [6]). We also refer to Fila et al. [13] for a formal approach
in the case of the energy critical heat equation. All these results point out that the
sole critical topology is not enough to classify the flow near the ground state.

4. On the decay assumption. In [38] (see the definition of A), the assumption

f y1%2 < 1 is not sharp. In Theorem 1.1, the solution contains a tail of the form

x~? for x > 1, where 6 € (1, %). By now, it is not clear what is the sharp decay

assumption on the initial data required to get the stable blow-up rate in [38].

Notation. For f, g € L?, we denote their scalar product by (f, g) = f f(x)gx)dx.

We introduce the generator of the L? scaling symmetry Af = % f+yf. Welet the
linearized operator close to the ground state be

Lf =—f"+f—50%f. (1.12)

For a given small constant 0 < a* « 1, §(e*) denotes a small constant with
d(a*) = 0 as o™ — 0. We denote by 1; the characteristic function of the inter-
val I.

1.4. Strategy of the proof

(i) Definition and role of the slow decaying tail. Given cg € R, x9 > 1,0 > 1, we
fix a smooth function fy which corresponds to a slowly decaying tail

fo(x) = cox~? for x > 3, fox) =0forx <, (1.13)

and go the solution of
3iqo + 3+ (33q0 +43) =0, o0, %) = fo(x). (1.14)

We then consider the solution of (1.1) with initial data Q + fp and claim that it
admits a decomposition of the form

x —x(t)
At)

1 1
u(t, x)=— (Qb(z)+)~7(t)q0(t,x(t))yo+8> (r,

>+6]0(t,x)
A2(1)
(1.15)

for some
le@®ll g <1,

where Y) is a fixed function (see Lemma 2.1 for the definition of Yy and Proposition
24 for the justification of this correction term). An essential feature of the nonlinear
(gKdV) flow is that go(z, x) conserves for x = t the slow decay of fy(x) (see
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Lemma 2.3). This tail then acts like an external force on the coupled system of
modulation equations driving (b(¢), A(¢), x(¢)) and modifies its behavior.

(i1) Dynamical system perturbed by a tail on the right. Let us consider the global

renormalized time
ds 1

— = . 1.16

dt A3 (1.16)
Then, explicit computations similar to the ones in [38] yield to leading order (ne-
glecting ¢ and higher order terms in (b, A, x)) the set of coupled modulation equa-
tions in the setting of the decomposition (1.15):

A d (b
Ts+b:0, Xs = A, ( ——cor” ix— ):0. (1.17)

fQ

This system is to be compared to the unperturbed one obtained in [38], for ug € A
(without tail)

ds _ 1 ’\S +b=0, PR 0 (1.18)
— =Tz xs=4 —|—=])=0, .
dt ~ 23 y ds \ 22

which leads to the universal blow-up regime

b
3 ={y, A(t) =4Lo(T —1t) for some £y > 0.

We now integrate explicitly (1.17) and fit the parameters of the tail (cg, €) to obtain
the blow-up regimes described in Theorem 1.1. Integrating in s, we find

b
—coA~ 2x :Ko,

fQ

where £ is a constant. We focus on the threshold regime £y = 0 leading to

d b=0 =A )\,2 6—0 (11)
— 4+ y X , — ——=C X s .19

which can now be integrated as

4 -0
cokx = —CoXsX

fQ o

or equivalently, after integration

A3 (s) + —— cox—9+1(s) =1.

fQ
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We focus again on the threshold regime £; = 0, leading to
2 1
Joo—1

We see that cp < 0 is necessary at this point and

A2(s) = — —0+1 gy,

cox

2
xs(s)zx(s)z(i ] co) x 7202 (s).

fo6—-1

By integration on [sp, s], choosing x2=1(s) = 26—1) (fi GL ) S0, We obtain

20—1
X (s) = (26’—1)(er_1 >

and thus 5
As) = (20 — 1) T 2 1 =
§s) = f Q o _ lc() s .
Set 5
200 — 1) 1-4 [o o
_ YT e . co=—-120-1@0 -1,
B 20— 1 =5 €o 5 ( )( )
so that
AMs)=sP, x(s) = s 7P b(s) = b (1.20)
1-8 K

Of course, one can check directly that (1.20) are solutions of the system (1.17) but
the above computation reveals the two instability directions

to =10, =0, 1.21)

and justifies the use of a topological argument to construct the solution.

(iii) Control of the remainder term. We now aim at constructing an exact solution
which corresponds to control the remainder term e(¢, x). Note that we may now
choose go(x) to be well localized on the right, and we therefore adapt the machinery
developed in [38] to construct a mixed energy/Virial functional

1
F [0 ot = S0 [@s+ o) - 0F - 607

for well chosen cut off functions (v, ¢) which are exponentially decaying to the
left, and polynomially growing to the right. Roughly speaking, in the above regime
(1.20), this functional enjoys two fundamental properties:
— Coercivity:
2
F 2 lely .



582 Y VAN MARTEL, FRANK MERLE AND PIERRE RAPHAEL

— Lyapounov monotonicity:
d ; . ;
S sTFY sl S5 =0, (122)
ds Hloc

Time integration of the monotonicity formula (1.22) in the regime dictated by (1.20)
yields sufficient uniform estimates on ¢. Therefore, it only remains to adjust the
initial parameters (b(sp), A(so)) in order to asymptotically satisfy the unstable con-
ditions (1.21). This is achieved using a simple topological argument, as in [4] but
in a blow-up setting (see also [5,17,51,62]).

(iv) Conclusion of the proof returning to the original time variable. The above
strategy is implemented for all 0 < § < %. Now we show how the behavior of the
parameters (1.20) (see the precise estimates in (3.10)) in renormalized time leads to
the scenarios of Theorem 1.1 in the original time ¢ (after possible scaling and time

translation to adjust constants).

— Blow up in finite time: for % < B < %. From (1.16) and (1.20) we have

+00
/ )»3(s)ds =T < +00
S

0

and the solution u () blows up in finite time 7. Moreover,

oo (—GB-1) e
T —t= / A(sds' ~ ———,  A@) ~ [3B — (T —n]#T,
s() 36—1

which implies [|u, (#)[|;2 ~ ||Q/||L2A_1(t) ~C(T —t)"Vforany v € (%, +00).

— Grow up in infinite time: for 8 = % the solution u(¢) is global in time since

f;roo 23 (s)ds = +o0. Moreover, for some ¢y and some ¢ > 0,

s(t) 1
t=/ A3(s’)ds’=logs+c0+0<s_%>, s~cie', A1)~ 375,
S

)

This means grow up in infinite time for u#(¢) with exponential growth. Scaling and
time translation lead to any exponential rate ¢=¢’, ¢ > 0. Finally, for0 < 8 < %
we also obtain a global solution u(#) since

+00 +o0
/ A (s)ds > 273 / s3Bds = +o0,
S(

0 S0

and
1) 1 B B
' =/ A3(shds' ~ 173 A@) ~ (1 = 3B) T T3F,
50 1-38
which means grow up rates " at 400, for any v = —b_~o.

1—3B
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2. Decomposition of the solution

This section is devoted to the study of the geometric decomposition (1.15), and in
particular to the derivation of the modulation equations.

2.1. Inversion of L and Qj profiles
Let the functional space ) be the set of functions f € C*°(R, R) such that
Vk €N, 3Ck, e >0, Vy e R, [fP0) =G+ [yp e ™, @)

and L be the linearized operator close to Q given by (1.12). We establish the fol-
lowing:

Lemma 2.1 (Invertibility of L). (i) There exists a unique Yoy € ), even, such that
4 3
LYy =50% (0,Y) = ~1 0. (2.2)

(ii) There exists a unique function P such that P' € ) and
q

(LP)Y =AQ, lim P(y)= l/ 0O, Ilim P(y)=0, (2.3)
y——00 2 y—+o0o
1 2
(P,Q):E</Q> >0, (P,Q)=0. 24

Proof. Note that the existence and uniqueness of Y follows readily from standard
properties of the operator L (see e.g. [38]). Moreover,

(0.1 = —5 A0 1) = 34050 =3 [0 == [ 0
’ 0 - 2 ) 0 - 2 ) - 4 - 4 .
Part (ii) is taken from [38], Proposition 2.2. O

A simple consequence of Lemma 2.1 (ii) is the existence of a one-parameter
family of approximate self-similar profiles b +— Qj, |b| < 1, which provide the
leading order deformation of the ground-state profile Q0 = Qp—¢ in the blow-up
regimes. More precisely, let x € C*°(R) be such that0 < x < 1, x’ > 0 on R,
x =1on[—1,400), x =0on (—o0, —2], and define

3
X =x (IbI"y), v =7 2.5)
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The following lemma is proved in [38]:

Lemma 2.2 (Approximate self-similar profiles O, [38]). Let

Op(y) = Q) +bxp(y)P(y).

Then:
(i) Estimates on Qp: for all y € R,

1061 S e+ 1ol (1200161 ) + 7).
0PI S e 4+ 1ble™ + b1 1o 1 (BIYy), fork = 1.
(ii) Equation of Qp: let
v, = (0 - 01+ 0}) +bA0y.
then, forall y € R,

il
W1 S 1B i, (BI7 ) + 67 (€73 + 1a,0)(1B1" )
jhill

WO S IR (b1 y) + bR T, fork > 1,

(iii) Mass and energy properties of Qp:

'/ Qz‘(/ Q2+2b/PQ)'§|b|2—V,

'E(Qb) +b/ PQ' < b

2.2. Definition of the tail on the right

(2.6)

Q2.7)

(2.8)

2.9)

(2.10)

@2.11)

(2.12)

(2.13)

We now introduce the slowly decaying tail on the right. Let cp < 0,x0 > 1,6 > 1

and let fy be a smooth function such that

o0 cox—? forx > 3,
x) =
0 0 for x < %0,
and .
d
ool < v e Rx N,
dxk ~

Let go be the solution of

g0 + 0 (0290 +43) =0, 40(0.%) = fox).

(2.14)

(2.15)

(2.16)
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A simple consequence of local energy estimates for (gKdV) is the propagation of
the tail on the right:

Lemma 2.3 (Asymptotic behavior of qg). The solution qo of (2.16) is global,

smooth and bounded in H'. Moreover, Vt > 0, Vx > % + %,

k>0, [okqo(t.x) — [P 0] S xR a0k @)

|9:qo(t, x)| S x7073. (2.18)

See the proof of Lemma 2.3 in Appendix A.

2.3. Decomposition of the solution
Letco € R, A9 <« 1 and xo > 1. Consider a solution u(¢, x) of (1.1) and set
w(tvx) :u(t7~x) _QO(t’x) (219)

We assume that w is close to Q in the following sense: there exist (A1(z), x1(¢)) €
R% x R and &;(¢) such that

vVt € [0,10], M(?) < gko, x1(t) > %xo, (2.20)

1 _
w(t,x) = ——(Q +&1) <t, xki)(ctl)(t)) 221)

AL (1) :

with 1
Vi e[0,50], et + (/(aygl)ze—'ﬁ'dy> 2 <o (2.22)

for some small enough universal constant ¢* > 0. We collect in the following
proposition the standard preliminary estimates on this decomposition, and derive in
particular the set of modulation equations as a consequence of a suitable choice of
orthogonality conditions for the remainder term.

Proposition 2.4 (Preliminary estimates and modulation equations). Assume
(2.20)-(2.22) for a* small enough, and assume xo large enough and ko small
enough.

(i) Decomposition: There exist C 1 functions (A, x,b) : [0,15] — (0, 4+00) x R2
such that

vt € [0, 1], )»%(f)w(t, @)y +x(@) = Qpry(y) + p(O)Yo(y) + (1, y), (2.23)

where Y is given by (2.2),

Pt =q(t,0), q(t,y) =r2(D)qo(t, Ay +x(1)), (2.24)
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and £(t, y) satisfies

(e(), yAQ) = (e(1), AQ) = ((r), Q) =0, (2.25)

5 4
A < Zko, x(t) > gxo. (2.26)

(i1) Estimates induced by the conservation laws:

1

+,
IIS(S)IILz S ‘f”o / + 16|+ 1p©)+x, 2, (2.27)
1 4 3 _
eyl S 1Ewo)l + Az+cof—QA i’
(2.28)
Ipl | Ipl —6—3
+/\2+_+A_+xl+ 0
(iii) Modulation equations: Assume
2 2
vVt € [0,50], x(t) > gt + gxo- (2.29)
Let so > 1 and consider the rescaled time
rdr d 1
s =s(t) =50 +/0 m or equivalently d—j = 3 s(0) =s9. (2.30)
Then, on [so, s(to)],
1
A v\ 2 A
Ts+b’+ x—s—l‘g(/s%—%) +02 4 p 4+ 2 pl, 231)
X
: Py
Iyl Iyl
Ibs| < /sze‘f—o +pl (/ 8ze—m) + 1BI” + 1B11pl + p* + ~1pI, (2.32)
R (2.33)
— | —= —C X .
ds \»2 " (o)

1
1 3 3 2 bl 2 o bl )\’2 A
Sz |16+ PP+ bl +IpD( [ e%e7T0 )+ [ %™ + S ipl+ 5lpl ).
X X

Remark 2.5. The bounds (2.31)-(2.33) will justify the dynamical system (1.17).

Proof. Step 1. Proof of (i). This is a standard modulation claim. As usual, the
decomposition is first performed for a fixed time ¢. For ¢ € [0, o] fixed, define the

map
O: (b, A ¥, w,z0) > (/ Qé,/AQE,/Q/Z;),
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where xo = 1/z0,
E(Y) = €47 5wy.20) )

-1 _ _ 1
=A2wy (1, Ay + X) —iz AL (Dqo(r, x1(1) +X)Yo(y) — Q).
1
wi(t,y) = @) 2w(t, M@y +x1(0)) = Q) + 11, y).
We have £|(9,1,0,0,00 =0, so that ®(0, 1,0, Q,0) = 0 and
95810,1,0,000 = P, 9;810,1,0,00 = AQ, 0:l0,1,0,0,00 = Q.

so that differentiating the map ® with respect to the variables (b, A, ¥) at the point
(0, 1,0, Q, 0) we find the Jacobian matrix

(P,Q) (P,AQ) (P,0Q) (P, Q) (P,AQ) 0
(AQ,0) (AQ,AQ) (AQ,0Q) | = 0 (AQ,AQ) O :
(0,0 (0,20 (0,0) 0 0 (0, 0)

which is not degenerate since (P, Q) > 0. It follows from these observations
that we can apply the implicit function theorem to ®: for w; small and x¢ large,
there exists a umque (b, %) = (b, A, X) (w1, xo) close to (0, 1,0) such that
O b, 1, X w1,—) 0. Then, we define b(t) =b(w(¢),x0), A7) =A(w(2),x0) A1 (7),
x(t) = x(wl(t) x0) + x1(¢) and €(t) = &(t). The regularity of (b(z), A(?), x(1))
now follow from standard arguments. It follows that we have the following decom-
position of u(¢, x):

W(t,x) = —— (Qpy + p(OYo +e) (z, i x(’)) bt (234
A2(t) A(2)
1 x —x(1)
= )\%(t) (Qb(t) + p®Yy +¢ +q) (t, ) ) . (2.35)

Step 2. Equation of ¢ and a priori bounds. To write the equation of ¢, we first derive
the equation of w from the equations of u(¢) and go(t), getting

wy + Wiy + )y = —(Wo)y, (2.36)

where
Wo = Sw*qo + 10w’gd + 10w?q] + Swqg. (2.37)

Second, set ey (s, y) = p(s)Yo(y) + &(s, y¥) so that

x —x(s)
(Qb(s) + 8Y) <S7 W) .

w(s, x) =
A2(s)
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By standard computations, we obtain for ey

_(_ a2 _ 5,05\ _ (et As
Osey = dyey +ey — (ey + 0p)” + O ; 50"y + )LAf?Y

2 . (2.38)
+ (73 +b>AQb+(f—l)(Qwey)ywbw;}—Wy,

where

W=5(0p+ey)*q —50% +10(Qp + £v) 3>+ 10(Qp + £v)?¢>+ 5(Qp + £v)g*.

Finally, we replace €(s, y) = ey (s, y) — p(s)Yo(y) and use LYy = 5Q4, to obtain
. 2 5 5 4
956 = (—8y8 +e—(e+pYo+ QOp) + O+ p50 YO)
y
As As
= Yo+ (5Q*(p = @), + T (Ae + pAYo) + (7“ + b) AQy (239)

X,
+ (5 =1) Qo+ + pYo)y + Dy + 0 — W,

and
W =5(Qp + &+ pYo)'q — 50% +10(Qp + & + pY0)*q*
+10(0p + € + pY0)2q> +5(0p + € + pYo)g*.

We now claim the following bounds which we will be used along the proof:
Claim 2.6. (a) Estimates on g(s).

,9+l —6 1 1 —
lallz Sxg 20 llay®lz SAsx 2 lg®)le SA2()x7. (2.40)

(b) Properties of the function p(s):

|p©) = crt©x 0 0)] S corte1 ) SA2@IpE)L @4
3l A(s) _
e pl) =g IS ﬁlp(S)le 1 (242)
22

'((SQ“(p—q))y,Q)—co( fQ) 027370 Es;| ()l+ 3(())|p(s)|, (243)
py— 22, Lg%l < |p|<x——1 +1) (2.44)

f2 x ‘
Pl S [ o1+ 21l |2 ). (245)




BLOW UP FOR THE CRITICAL GKDV III 589

(c) Estimates for the remainder term W': let
W =5(Qp +¢+ pYo)'p = 50%p + 10(Qp + & + p¥0)*p’
+10(Qp + & + pY0)*p* +5(Qp + & + pYo)p*.

Then,

1
~ 1\2\ A
/|W—W|e—%'y' S (IPI+|bI+ (/sze—'%o> >—|p|, (246)
X

1

(), 00) [ +](T), 0)| 5 87+ + o] ol + ] [ e W)

/2 . (2.47)
+ | €%e 10,
(W)y, yAQ)| S / 2B by 2 (2.48)

Proof of Claim 2.6.
(a). Since go(t) is solution of (1.1), for all ¢,

1

_o4+1 _g—1
lgo®liL2 = lfollz Sxg °5 Elqo®) =E(fo) Sx, °,

and (2.40) follows.

(b). Since p(s) = A%(s)qo(s,x(s)), (2.41) follows from (2.29) and (2.17). In
particular, since c¢g < 0, we have p < 0.
Next, by (2.29), (2.17) and (2.15), splitting the two cases Aly| < **) and

x(s)
4

Aly| > , we have

et |p(s) —q(s, »)| = 6_%X%(S)|610(S, x(8)) = qo(s, M)y + x(s)) |

qa<s>um)

_blo3 _ _x()

S ke F 230 (a0 oy + ¢
3 (s) (249)

S coe” FA2(s) <X‘9‘1(s) + e‘mxo_@_l>

bl 3 A Iyl
Scoe” TA()x 0 (s) S Sple T
X
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Next, by (2.29) and (2.17),

(50w -a),.0) =5 [ 00w -0) =~ [ &%,
= —Xg(s)/ 0> (»)xqo(s, A(s)y + x(s))dy
=i gy [ 08 =23 [ 03 (il +30)) = () dy

_3d ) / 03 () (xd0(s. M(5)y +x(9)) — fo(hy + x(s))) dy

=0 ( / Q) 013 (5)x "~ (s) + O (x%ef%m))

+ 0 ()L%x_e_2> + 0 (A%x_9_3(s)>

_ syt ¥ 3
=a( [ Q)orzx "'+ 0(Sipl)+0(Slpl).
X X

where we have split the integrals above into |y| > ‘1—1x(s) and |y| < ‘1—1x(s) and using

the fact that for |y| < %x(s),)»y +x(s) > x(s) — |y| > %x(s) > %t + %xo, so that
(2.17) holds for x = Ay 4+ x(s), and (2.43) is proved.
Now, we prove (2.44). By explicit differentiation and Lemma 2.3,

1 s

P = 5500 = 23 @0)s (5, X)) + 231D (s, 3(5)

by
= /\%(qo)z(s,x(s)) + /\%xsfé(x(S)) +0 (x—3|p| (

’;—S—l‘+1)).

Since |x5| < X(l% — 1]+ 1), (2.45) follows.

%—1)“))

X A
= —0=|p|+0 (—3|p|(
X X

(c). For (2.46), we first note

W—w=5[(0s+e+pr)* = 0*| (0 = ) +10(Qp + £ + pY)* (P? = ¢

+10(Qp + & + pY0)*(P° — ¢°) +5(Qp + & + pYo) (p* — ¢*).
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Thus,

/e—%lyllw _ ﬁ}|

1
< (pl + |b|)/e—3y|p—q| + (/ sze—'fo')z (/ e—@—fo)'y'|p—q|2)2
LAWY
_3 _ bl
+fe p? —g?1 < (|p|+|b|—|—(/82e i ) );|p|,

using (2.42), and the following similar estimate

A 1yl

2 — g2 < Epte T
X

Next, (2.47) follows from the parity properties and then direct estimates. (2.48)
follows from direct estimates. Note that p? appears in (2.48) because there is no
cancellation due to parity for this term. This concludes the proof of Claim 2.6. [

Step 3. Estimates induced by the conservation laws. By L? norm conservation,

/u2(0>—/Q2:/Q%—fQ2+/(e+pYo+q>2+2/(e+pYo+q)Qb

= 2b(P, Q) + O(IbI*™") + [lell, + 0 (b~ T |le]| 2)
+0(pl+ lgll2)-

Estimate (2.27) follows. By energy conservation, Q" + Q% = Q and [£Q =0,
20%E (1) = 2E(Qp + & + pYo +q)
=260 -2 [(e+p¥0+0) (- O + (@3- 09) -2 [wHo + 00
+/(s+pYo+q>§ -3 /((Qb+8+PYO+C])6— 05— 603 + pY +9))
= —2b(P, Q)+ 0" + O (1bI'"*37 (el 2 + p| + gl 12) )
2 ([ne+ [0)+2 [w-n0+ie+0e
+ 0 (lleyll 21l + llgyll12)) + 2X%E (o)

1
—gf(<Qb+e+pYo+q>6—Q2—6Q2<s+p¥0+q>—q6).
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By (2.2), we have [ Y00 + [ Q = %f Q. Using in addition (2.4), (2.42), (2.41),
we obtain

|b|1+2)/
2 ||5y||L25|E(”0)|+ ‘“2/Q+ 2 + v +T(”8”L2+|p|+”an2)

_p—1
+@+ s+x

b2

S |E(uo)| + 4A2/Q+cok Ix” +E

lpl . Ipl | p* | -o-1
+ = + Py + v + x,

Step 4. Modulation equations. We argue as in [38], proof of Lemma 2.7, differen-
tiating with respect to s the orthogonality conditions f eAQ =0, f ¢Q' = 0 and
f £Q = 0 and using (2.39) to obtain (2.31) and (2.32). Here, we will treat only the
terms coming from ¢ and pYp in (2.39) and we refer the reader to [38] for more
details on the other terms.

Proof of (2.31) and (2.32). It follows from computations in [38, proof of Lem-
ma 2.7] and Claim 2.6 that

(A_s +b) _ (e LA0y)
A IAQI2,

1 1
Ag 2 y\ 2
< ( 7“‘+b‘ + |b|> (|p|+|b|+ (/eze_ly_o> )+ Ipl (/sze—%)
X 2 _ bl
Faf (o1 ([ 8)) + il + il + [ e840 4+ 21

We proceed similarly for ’;—S — 1, taking into account different cancellations due to
parity properties

X ) _ e LOGAOY)
(I N ) YN
1AQI,
5(%+b‘+ a )(|p|+|b|+(/sze'f")i)

+|bs|+/ 21 4 p? +—|p|.
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Then, taking the scalar product of (2.39) by Q and arguing similarly, we have the
following rough estimate for by:

A 2 x 2 Iyl Lyl 2
Ts+b‘ + Ts_l‘ +|b|2+/szem+|p|</szel>

A
+|ps|+|b||p|+p8+)—c|p|.

|bs| S

Combining these estimates with (from (2.44))

X
|ps|=< Ts_l“{‘l)

"o+ 21l
A P xp

< |bllpl +

A A Xs
o+ Tl (5 -]+ ),
A+ ‘|P|+xlp| 5 +

from (2.45), we obtain (2.31) and (2.32).

Proof of (2.33). First, we derive a refined equation for by, taking the scalar product
of equation (2.39) by Q and proceeding as in [38, proof of Lemma 2.7].
Recall from [38],

b? by
(. 0) = —|efz + o). (@0 =—zlefi +o(b").

Note also that from direct computations and parity properties

(e + pYo+ ) = 0F = p50*¥y — 50%) . 0) — 206p((Q*¥o P, 0)|
+ (W, 0) = 208p((P QY. 0)|

1

bl i\ 2
< |b|3+|p|3+/s2e—f—o + (Ipl + 1b]) (/ s2e—1—) .

(See [38] for details on the nonlinear terms in ¢.) Using (2.43) and the above esti-
mates we find

16
(J 0)?

by + 2b* —

As
<_ pS(Y()v Q) - TP(YO’ AQ)

—bp [20((Q3Y0P)y, Q) +20((PQ?),, Q)] (2.50)

+ ¢ </ Q) xi(s)xgl(s)>‘

1
bl 2 A2 A
g|b|3+|p|3+/gze 0 + (|p| + |b]) (/gze ) + 1P+ 5lpl. 25D
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We claim the following cancellation
— (Yo, AQ) +20((Q*YoP)y, Q) +20((PQY),, 0) =0.  (252)
Indeed, L(P') = (LP) +200°Q'P = AQ + 2003 Q’P, and so from (2.3),

— (Yo, AQ) +20((Q*Yo P)y, Q) +20((PQ%)y, Q)
= (Yo, AQ) —20(Yo + 1, PO’ Q")

, 1
——(Yo+1,L(P))+/AQ=—(L(Y0+1),P)—§/Q

1 —pey L _
—/P—E/Q_P(oo) 2/Q_o.

A
‘——p(Yo, AQ) +bp [20((Q3Y0P>y, 0) +20((PQ%)y, Q)H

Thus,

+b‘|(Yo,AQ)|

Now, from (Yy, Q) = —% f 0 (see (2.2)), using (2.41) and (2.44) we note that

16 3 (=01
W(—ps(Yo, Q) + cob (/ Q)M(S)x (S))

P bt (22 05) Lo (Lp)) o2 1)) @53
= C X — . .
T 2% T3 Pl x
Therefore,
4 1 3 X
by + 2b* — ax (22 42
T Tt (M+ x

I 3 My A2 A
SIbP +1p1P + 270 + (1pl + 16 ( [ e 1o + lpl+ lpl (254

Now we prove (2.33). By direct computation,

4 3 3X X
013 (s)x? ) = — A= dx? <__S +9_s>
((f Q) co (s)x ) col” 2x

d (b by A b by _b? As b
S22 s 3 07 o p) 2.
ds <A2) PR VAR VIS Y T ST

and (2.33) follows from (2.54) and (2.31). [

d
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3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which follows from the mod-
ulation equations of Proposition 2.4 coupled with the control of the well localized
error ¢ as in [38]. We present the new dynamical arguments and postpone the proofs
of two technical lemmas adapted from [38] to the Appendices.

3.1. The bootstrap argument

Let
and define
co = —fTQ(e — Do — 1)L (3.1)

Given's > 50, (b(s), A(s), x(s)) € R} x R} x R, we define:

b 4
g(s) = AZ((S )) 7o FeaTs). S =A2() + f—Co ).
Let (¢;)i=1,2, ¥ be smooth functions such that:
24 for y < —1,
gi(y) =314y for —3<y<3 ¢()>0 VyeR, (32
y! fory > 2,
o —1,
e or y < —
Y = TP v =0 vyeR. (33)
1 for y > —3,
Let B > 100 and
Ve(y) =¥ (%) . QiB=¢i (%) , i=1,2,
and define the following norms on ¢
Nits) = [ &5, sy + [ (s, )gi8(y)dy, (34)
y

Nisools) = / 25, )¢, gy, i=1.2. (35)
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We now claim the following bootstrap proposition which is the heart of the analysis:

Proposition 3.1 (Bootstrap). Let so = so(B) > 1 large enough and set

xg = x(s0) = F, (3.6)

1—
(1—p)0

Letgg € H' be such that
10 10,2 2 _ _ _
50 [/ oy eo(dy + |I80||H1] <1, (e0,yAQ)=(e0,AQ)=(e0,0)=0. (3.7)
y>

Then, there exists

gL L
(Xo,bo)EDZ{(X,b) : |A—s0_ﬂ|§s0ﬂ v, Ib—ﬂsallisol 10}, (3.8)

such that the solution of (1.1) with initial data

X0

uo(x) = — (Qbo + 1§ 90(s0, x0) Yo + 60) <T) =+ qo(so, x) (3.9)
)\'2

S

has a decomposition (b(s), A(s), x(s), £(s)) as in Proposition 2.4 which satisfies>
on [so, +00):

@1 (1sols' )+ (1r@sth) <,

(BS2) [b(s)|<10s™", {557 <r(s)<10s77, [os' P <(1 = B)x(s) <10s'~7;

(BS3) / YO0:2(s, yydy < 100710, Nis) <572, fle() i < ().
y>0
Moreover,

‘%X(S)—1‘+|sﬂk(s)—1|+‘ib(s)—1’ 5s—%, (3.10)
§ B

ey @ o+ e 2 S 1 G

2 Recall that s = s(t) is the rescaled time (2.30).
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Let us observe that (3.10) now gives the leading order behavior of the scaling pa-
rameter A(s) = st‘ (1 + o(1)), and the conclusion of Theorem 1.1 now immediately
follow from the change of variables (2.30) depending on the value of § as in step (iv)
of Section 1.4.

The rest of this section is therefore devoted to the proof of Proposition 3.1.
First observe by uniqueness of the decomposition that

bo = b(s0), Also) =Ao x(s0) =x0, &(s0) = €.
We now argue by contradiction, assuming that for all (Ao, bg) € D, we have
s* (Ao, bo) := sup {s > so such that (BS1)-(BS2)-(BS3) holds on [sg, s]} < 400.

We will derive a contradiction by first closing the bootstrap bounds (BS1)-(BS2)-
(BS3), and then finding a pair (A9, bp) using a topological argument.

3.2. First consequences of the bootstrap bounds
Let us start with some quantitative bounds which follow from the bootstrap bounds
and Proposition 2 4.

Claim 3.2 (Consequences of the bootstrap estimates). (i) For 5o = s9(8) large
enough, there holds:

o if B> %,for all s € (sg, s™),1(s) = fsf] A(sHhds' < 1;
o if0 <p <1 forallt >0,x(r) > 3t + 3xo.

(ii) For all s € (sg, 5¥),

1 A 1
0<—pis) S -, —S- (3.12)
S X S
1
A A |
L fgze—% + = (3.13)
) 52
1
A 1 2
TY’S +</2_> |xs|<s_’3<1+</826_1y_0>>, (3.14)

Iyl 1
Ibs| +1ps| S /sze‘%o + =, (3.15)

d (b (fQ)co)\ O 9(s)> ;2< 12_9+§</82e—%)2+/82 %) (3.16)
s 10

(iii) For all s € (so, s*),

les)l72 S ‘/u ) -

2||sy(s)||L2 S|E©)] +s~ T +x, 2. (3.18)
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Proof. Let 3 1< B < % Then

s s 103 _
t(s)=f 23 (s")ds' < 103f ") Pds' < —(s 3+ —s_3‘3+1> <1
S0 S0 313 -1

for sp large enough. For g = %
N 3,7 / 3 N 1073t
t(s) =/ A7(s")ds” <107 log — sothat s > spe .
50
Thus

for so large enough. Since x(s) > gxo, we obtain x(7) > 3 + %xo. Finally, for
0<B< %,

)

_ 3 10° 1-38 1-38
t(s)—/so)»(s)ds_w< —55 ")

so that for large s
1—-3p8)t 1+8
o= (L2200 =387 L o0,
103
and

3
x(s) > —s'78 > 1518,
20

Since x(s) > %xo,we obtain x (1) > t'tF + %xo.
The estimate (3.12) is a consequence of (2.41) and g 4+ (1 — B)6 = 1, so that

0<p= )»%x_e(s) < s_gs_e(l_ﬁ) < 1

s
The estimates (3.13)-(3.16) are immediate consequences of (2.31)-(2.33), (2.45),
the bootstrap assumptions and the upper bound 8 < u O

3.3. Closing the estimates on ¢

We now close the bounds on ¢ and claim the improved bound: for all s € [sg, s*],
5

(BSY) [0 062 (s, x)dx <5710, Ni(s) <4572 [le@)ln S 8@,

Let @19 be a smooth function such that

0 for y <0,

y10 for y>1° 0<¢piS@)pfor0<y<1.

p10(y) = {

The control of the tail of ¢ on the right is a direct consequence of the following
brute force monotoncity formula:
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Lemma 3.3 (Dynamical control of the tail on the right). For all s € [sg, s*],

0 d 1
A 105 {)&0/@082} 5N"‘°C+s_2' (3.19)

See proof of Lemma 3.3 in Appendix B.

The control of the ; (&) norm, which is fundamental for the proof, now fol-
lows by adapting the mixed Energy/Morawetz monotonicity formula first derived
in [38]. Recalling the definitions (3.2), (3.3), we claim:

Lemma 3.4 (Monotonicity formula). There exist i > 0 such that the following
holds for B > 100 large enough. Let the energy—virial Lyapounov functionals for
i=1,2,

1
Fi = / |:8§1//3 + 82(/)1',3 - 5((8+Qb+PYO+Q)6 — (Qp+pYo+q)°

(3.20)
— 60 (0} +4™+50" (p¥ot+q)) )wg].
Then the following estimates hold on [sg, s*]:
(i) Lyapounov control: fori =1,2, j >0
dr . . . .
- [sffi] + s / (ai + 82> o g S sih 4 sI7OTI0B, (321)
(iii) Coercivity of F; and pointwise bounds: fori = 1,2, j > 0,
1 1
—GHNSFS G+ (3.22)

See the proof of Lemma 3.4 in Appendix B.

Proof of (BS3'). From Lemma 3.3, (BS2) and (BS3),

d
- {)»10/%082} < 510 (NMOC +S—2) < §—108-2

so that by integration on [so, s], and (3.7),

?\IO(S)/WOEZ(S) < Xlo(so)/q)losz(so) + Csoflfloﬂ < 2.

By the properties of ¢19 and (3.7), we obtain

210(s) / y'0%2(s, y)dy < 3. (3.23)
y>0
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Now, we apply Lemma 3.4 with j = 2 We find by (3.21) and 8 < E’

d

s [SZf]<s T4 10(35—8) (3.24)

The initial smallness (3.7) ensures s00|]: (0)|] < 1 and thus the time integration of
(3.24) on [s9, s*] ylelds .7: (s) <s 2s for some § = §(B) > 0. Using (3.22), we

conclude NV;(s) < s 2s Syt < 58" > for so large enough, which together with
(3.23) and the control of the full H! norm through the conservation laws (2.27),

(2.28) concludes the proof of (BS3). O
3.4. Closing the estimates on (b, 1, x)

We now use the obtained bounds on ¢ and the modulation equations on the geomet-
rical parameters of Proposition 2.4 to close the bounds on (b, A, x). We claim: for
all s € [sg, s*],

(BS2) [b(s)| < 557", §57F <i(s) <557, 3s17F < (1= Byx(s) < 5s'F.

Proof of (BS2'). First, note that from (2.33), (2.31), and using (BS2)-(BS3), 1 <
B < 1. we have on [so, s*]:

6| S5 1H28, (3.25)

A

= —|—b‘ <571, (3.26)
- 1‘ <si (3.27)

By (BS1) and (BS2), we have using (1 — 8)(60 — 1) = g the estimate:

As) — ico
Jo

)»2(S)+—Co : x| a2 (s) — L —"“(s)

/e f

S (A6 +x*9+1(s>) SsTEm (st +s*“*f‘><9*“) SsPom,

2
1 ) x—29+2(s)

(3.28)

Using (3.27), we find

2
xs<s)—<ico ! )x‘””(s)

0% =1 ,Ss_ﬂ_ll_o—l—s_%_ﬂgs_ﬂ_%
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and hence
‘("ﬁx —(1=pIP| g5, (3.29)

from20 — 1 = ﬁ and the choice of ¢ in (3.1) which gives:

(11— ‘3)*(17/3) =20 -1) (ico 1 )2
f 0—-1)

Since from (3.6) we have (1; g)x(so) = 1, the time integration of (3.29) on [sp, s]
S

0
1 1
yields [x 7T (s) — (1 — B) " FTs| < s1=70. Thus,

L

x(s) — 1‘ <5710, (3.30)

sl

I-8)
-8

Inserting (3.30) into (3.28), we find for A,

|sPA(s) — 1] S50, (331)
Finally, using |g(s)| < s~126=3  we find
s 1
‘—b(s) — 1‘ <sTo, (3.32)
B
From (3.30), (3.31) and (3.32), (BS2) follows for s large enough. ]

3.5. Choice of 19 and bj by a topological argument

We now claim from a standard topological argument based on the outgoing behavior
of the ODE’s for (f, g) that we can find (bg, Lg) € D such that the remaining
condition (BS1) is closed. Indeed, let
g
G(s) = g()s' 5, F(s) = f(s)s2 1,

and
H(s) = F2(s) + G*(s).

From (BS2') and (BS3’), since s* = s*(xg, bg) < +00, it follows from a standard
continuity argument that at s = s* > s,

H(s*) = 1. (3.33)

We first claim the strict outgoing behavior:

H'(s*) >

T (3.34)
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Proof of (3.34). Since
1
G'(s) = (1 - 28+ g) g(s)s_zﬂ"‘% + g/(s)sl_zﬂ"‘%,

we have using (3.25):

G'(s*) = ( 28+ > 669 Lo ((s*)*“*%)). (3.35)
Similarly,
1 1 1
F/(s*) = (g + E) FHEH T 4 f (57 (sM) 0,

We now estimate f’(s). By direct computations and then (3.26), (3.27) and (BS1)-
(BS2),

1 A 1 2
f's) = 57 —f—Qcoxsx_9
1 5 b 4 0 _5_8
E}@ |:)\2_f—QCO)L 2x ]+0(S 4 2)
1 s _5_8 _1_B_1
—EMg(s)—l-O(s 4 2)—0(s 2 5)
Thus,
B 1Y F(s%) 1L
N *
F(s)—<2+10 . +0((s) m). (3.36)
Therefore

H'(s*) = 2F'(s*)F(s*) + 2G'(s*)G (s*) > —H(S*) ((s )~ _> 1
- ~— 10 s* = 20s*’

for sg large enough.

By standard arguments (see, e.g., the proof of Lemma 6 in [4]), the strict outgo-
ing behavior (3.34) ensures that the map (Lo, bg) € D — s*(xp, bo) is continuous.
We define the continuous maps

2
_ 1
ro(Fo) = 5,7 <1 Fos, 10)

1G Ozﬁ 7% (F))

bo(Fo, Go) = Bsy "y (Fo) | 1 +
_1
14— Goso 3

1

3
10

1
4 _
1— Fos,, — Fos

_ —1
= IBSO
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so that

Now, consider the continous map
M . BRZ —> SRZ,
(Fo, Go) (F(S*()»O(Fo), bo(Fo. Go))). G(s* (Ao (Fo). bo(Fo. Go))))-

where Bg. and Sg» are, respectively, the ball and the sphere of R? of radius 1. For
(Fo, Go) € Spa,we have M(Fy, Go) = (Fp, Go), in other words, M is the identity
on the sphere Sp2. The existence of such a continuous map M is in contradiction
with Brouwer’s fixed point theorem. Therefore, there exists Ao and by such that

B —B—15 a1 ~l-1p
Ao — 5o | <59 s 1bo—Bsy | <5 ) (3.37)

and s*(Xg, bg) = +00. In particular (BS1)-(BS2)-(BS3) hold on [sg, +00).
Finally, (3.30), (3.31) and (3.32) imply (3.10).
This concludes the proof of Proposition 3.1 and therefore also of Theorem 1.1.

A. Proof of Lemma 2.3

Recall that cp € R and 6 > 1 are fixed, xo > 1 is to be taken large enough and ¢go
is the solution of

g0 + 3 (3290 +43) =0,  qo(0,x) = fo(x), (A.1)

where the function fj is smooth and satisfies

fo(x) = cox~? for x > 3, fo(x) =0forx <, (A2)
dka 60—k
forall x € R,forall k >0, W(x) < colx|7" 7" (A3)
X

First, for xo large enough, | fo|l;2 is small and it follows from the L? and H*
Cauchy theory (Corollary 2.9 in [20]) that go is global and bounded in H* for all
s > 0, with

sup llgo llms S 8(xg").
t
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We define

q1(t, x) = qo(t, x) — fo(x),
g1+ 3:(32q1 + (q1 + f0)° — f) = Fo, q1(0,x) =0, (A4)

where Fy = =93 fo — 3. (f).
For any 6 > 0, define a smooth function ¢g such that

n X 1
g(x) = x? forx > 4, @g(x) =e8 forx <0, ¢ >0, ¢" <—-¢p"onR. (AS)

N

For0 <6; <20 +4, 6 #20+3, set
t X0
My, (1) = /qlz(t)fﬂel (X i Z) dx,
1 I Xo
£ = ((aqu)z(r) -5 (@+m°- f5- 6q1f05)) 00,2 (x— - Z) dx,
Fo, k(1) = [ (0yq1)" (D)o, +2x | * — 17 dx, k> 2.
We differentiate Mp, (¢) (omitting the variable x — th - % for the function ¢p, ):
1
M, (1) = —3/(<3bcc11)2<pé1 — Z/qlzwél +/q12<pé’[
+ 2/ ((fh + fo)’ — fdj) (q190,)x +2 ‘f Foq199,
2 7 3 2
< =3 | (0xq)" 9y, — = | 919,
16
@+ ° f
—2/ [7 L@+ f0’a Yo,

6 6

1
2 |2

Py
2
/Fo—/l
Po,
v
< —3/(8xq1)2s0é1 /‘h‘/’el +o(x )/ql(pel / zfp’l'
01

Thus, for xq large enough, we have obtained

1 ‘/’9
M, (1) + — [a ] /F2 o
91()+10f (BxqD)* + a7 | 0h, S 7

2 7
1%,

2 [ [tar+ 007~ at o= 15 i+ 2
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For xp large enough,

2 01+1
Po t X - I X
2 2(0+3
/Fo_/](x_z_z>§/rm x )(X—Z—Z>
Po, x>54+32+4

" / (—20+3)
P+ W <x<t+X044 (A.6)

8§78

+/ e%(x_%_%)
x<f+P
St +x) 704

Therefore, using also My, (0) = 0, we find by integration:

t 01—20-3
(t + xo)! if0 <6;—-20-3<1
Mp, (1)+ [a 2+2]/< T ) AT
6, (1) /0/ (3xq1)" +q7 | Po < xB1=26-3 i£6,-26-3 < 0. (A7)

We argue similarly for Ep, ().
/ _ 2 5 5 /
Ey (1) —2/3z41 [—3x91 - ((m + fo)” — fo)] ®o,+2 — 2/ 0:910xq19p, 42
1 1
-7 / [(aanz(t) —5 (@ + = 55 - 6q1f05)] @42
2
= —/ [afql + ((ql + fo)’ — fos)] Ph12
- 2[ [3;%611 +(q1 + fo)° — fos] Fowe, +2
2 [ [+ @i 10 = 5] vanst o =2 [ Fodsangi
1 1 )
-3/ [(aanz(z) =5 (@ +° - 15 - 6q1f05)] Vb2

4

We use the following computations and estimates

‘/ [33% +(q1 + fo)® — fos] Fope,+2

S ‘/ 0xq1(Fope,+2)x | + ‘/ (@1 + fo)° — fos] Fowe, +2

1 2
100/(816411) (P91+2+ 100/91¢é1

g 2 fogﬁﬂg 2

+ +

+C/ 0 o222 4 | Ry Py, + [Fo 220042 )
¢91+2 (pGI
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2 / 03918:q19h, 12 = —2 / (071)°0h, 1o + / (0xq1)°@) 1

1
<=2 [ @000+ 5 [ @00,

‘2 [ L@+ f0° = 5] osanst

= ’10 [ 0@+ 104500+ 10 [ (@4 10* = £5) 8. fotrar6, 0

= 100 /(aqu) Pp, 11 +C/6112<Pé1-

<L @:q1)0h o1 +C | [Fol*wp 1o
= 100 01+1 60142

Combining these estimates, and using the expression of Fy as in (A.6), we find

2 ‘/ Fodxq194, 12

Ej (1) <— f(a 9’12~ 15 /(GXQ1)2¢£)1+2 + qulz<p51+C(t+ x0) 17204,
By integration, and using (A.7),

E91(t)+_/ / (a QI) + (3xq1) ]¢él+2

< Ja +x0)" 723 if0<6,-20-3 <1
~ g if 6;—20—3 < 0.

(A8)

We look for an estimate on dygi(¢) from the above estimate on Ejp, (¢). Note first
that

2 oo too Do, 12
lg? Jaaallie < / PR AN R / PHCALLE
! : x * : x «/@91-4-2

(A9)

1 1
2 2
N </‘112> (/|3x611|2§091+2+/|f11|2§091) ,
so that
2
/ @Svo+2 < 147 a2l / ai < ( / q%) ( / 10:q1 %08, +2 + M, <r>>.

Also,
/qlfo(p9|+2 /qlwe. My, ().
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Thus,
2 6 2 o4
Eq (1) > /(8)(‘]1) Vo, +2 — C/(ql +q1 fo) e, +2
| (A.10)
> 5 /(3x41)2§00,+2 — CMy, (1),
and so
t
[+ [ [[@ar7+@ar?]e.
0
(A.11)
< Ja +x0)172-3 if0 < 6,—20-3 < 1
~ag if 6;—20-3 < 0.
Note also that for any x,
qi(t, X)po,+1 (x —7- Z) S/ lg1119xq1 @0, +1 +/ |q1|2<pél+1
* * (A.12)
< |3xCI1I2<P91+z+fIQ1|2€091,
and, with 6; = 20 + %, using the properties of ¢g, 11, for x > %(t + xp),
g1, 0] S x- D = xmOHR)F < o 642), (A.13)

Finally, we briefly treat the case of higher order derivatives. We use an induction
argument, assuming at the stage k that for all 1 < k’ < k, for all x, ¢

!
k' 2 t X0
/0 /(ax q1) (t)(p(;]+2k, <x T Z) dt

’ ¢ X0
+ /(8,5 q1 (t))2¢91+2k/ (x — Z _ Z)

t X0

+ 105 g1 ()10, 1201 (x — - =

(A.14)
4 4 )

_ (t +x0)"7273 if0<6,—20-3 <1
B B if6,—20-3 <0

and we prove the same estimates for k' = k using Fy, .
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Indeed, by simple computation:

Fél 0]

2/ (3%q1), (35 q1) wo, 26 — %/(3f41)2¢51+2k
- —2/ (05 q1) (95 q1) po, 126 — 2/8xk+1 <(611 + fo)s—fos) 05 q196,+2¢
—%/(a§41)2¢é1+2k +/ (05 Fo) (95q1) 9o, +2
—3/ (3f+1‘11)2<051+2k —%/(3§41)2‘P§1+2k
2/ a ((q1 + fo)® — f(j5> ((3f+lm)<091+2k + (3fQ1)¢él+2k)

+ / (9% Fo) (35q1) 0o 2«

IA

We claim, arguing as in (A.6), that

/( g1 @, o + C1H 0,

0:Fp)(0
V( 0)( XQI)(P6|+2k =100

Next, we claim that

‘ [ 3 (@ 07 = ) (@5 a0+ Ghanieh, o)
(A.15)

k+
= 100 /(8 QI)<P91+2k+ 100 /(8XQI)(P9,+21< +Z/(a QI) ¢9]+2k/

Indeed, looking for example at the purely nonlinear term in g1, we have

‘ / (g q1) o, 1ok | +

‘ f (g (5 q)@h, 4k

<p9 +2k 1 k2
< C (8k 5 ) 1 _/ 8
< / (g7) p 200 (091)" P, 2k

01+2k

1 k+1 2
+ ﬁ/(ax-i_ q1) ¢é1+2k,
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and
o5\ 2 ‘P§1+2k
/(ax (ql)) /
P, +2k

2
k(5
S / <3x(611)) PO, +2k) +2ky+2k3+ 2Ky +2ks+ 1

N Z (Hle [ @5 q1) %0212 HLoc> I 4 q1) 02,2 (- |3,]§5fZ1 |290é1 2ks—1
k1 +ko+k3+kg+ks=k
ks>kg>k3>kp>k|

k
SsegH D /(3)15 40 Pp o1
k

where the L°° norms above are estimated using (A.14). The other terms, all con-
taining fy, are similar and easier.

By integration of F ,; using (A.15) and (A.14), we obtain

(t +x0)1=2073 if0<6,—20-3 <1
Fo (¢ gkt1 oo
o k(H/ /( RETES {xgl 203 it 6,—26-3 < 0.

Arguing as in the proof of (A.12), we prove (A.14) for ¥ = k. The induction
argument being complete, we finish the proof as in (A.13).

B. Proof of monotonicity results on

B.1. Proof of Lemma 3.3

We compute from (2.39):

1d 2
2d 106" = [ &s€910

= A5 ne+ (- —~ Y S+ 05 Y
= [ ©w0e| - e+ (—&yy +e—(e+ pYo+ Qp) + Qp + p50 0),
4 As As
—psYo+ (50 (p—q))y+7pAYo+ TH’ AQyp

Xg
+(7— )(Qb+8+PYO)y+<Db+\IJb_Wyi|
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We integrate by parts the linear term and use ypj, = 10¢jo for y > 1 and ¢{jj <
¢}, for y large enough to derive the bound

Ag
/golos [TbAe + (—eyy + s)y}

= —Effwios —5/%0%—5/%08 +§/¢i/68

10 A s

1 2 2
B P108” — Z/‘Pio(gy +é )+CN1,loc-

IA

Integrating by parts in the nonlinear term, we can remove all derivatives on ¢ to
. . _1
obtain (using |Qp| + [(Qp)y| < Ce™2” for y > 0)

_1
‘ f pr0e [ (e + 0)° — 0} ] ‘5 / pi0e” e (e + 1) + / #ioe’
y y>0
5/ e—%y82(|s|3+1)+/<p;086.
y>0
Thus, by standard Sobolev estimates,
5_o03] | <A 5ot I 2
v10¢ | (e + Op) 0y |~ 1loc +8(a™) 9010(8y +¢&%).
Next, by the bootstrap estimates,
‘/¢m8k8+Qb+p%f—5pQﬁb—(8+QwﬂJ
_1 1
§/’ ee™2 (P + IblIp| + IpI(lel + IoI°) S Mo + -
y>10 S

By 3.15)and Yy € ),

1
Ps / Yogi0e| S M joc + 3

By (2.42) and (3.12),

‘ / 5(0*(p — 0))yew0

=[5t =@ o),
1 _
<5 [ded+lebe™n

C
2 1
< m/ey%o-i-a/\/’l,loc + 2
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By (3.14),
1
S M,loc + R
s

As
o AYopioe

The terms involving the geometric parameters are controlled from the exponential
localization of Qj, on the right and (3.13)—(3.14):

1 1
( +NIZIOC>M2 CS‘N‘UOC—'—S_z’

As
n +b’ ‘/‘/JIOS(AQb) N

- 1‘ ‘/wloe(Qb +e4 pYo)y| S

1 1
/ lp10€ P | S |bs|N12,1OC S 5_2 +Nl,loc~

We control similarily the interaction with the error from (2.10):

/|§0108‘~I’b| S N 1.loc S 2 +Mloc

Finally, we claim that

forr

We only treat the first term in W, the other terms are similar and easier. First,
integrating by parts, we remove the derivative from ¢ to obtain derivative on g, ¢1g.
Indeed,

C
< CMNioe 3 + 55 / 24l (B.1)

- [ [s@rte+ptir'a=50%] sonn= [5(Qsre+ptra 50" nro),
-/ { (@ 6+ pY0) = Qb+ pY0)® = 50%]
= 5(05 + PYo)y [ (@5 + ¢ + pYo)* — (0 + pY0)*| + 20Q3Qy5}519010
5/ [(Qb +e+ pYo)t — Q4] €99
=~ [[@s e+ p10° = Qs + ¥ = 50%] G010+ avi)

=5 [ (@04 100, (@1 +e 4 pYo)* = (s + p¥0)*] - 40° 01 g

+5 [ [y +e+ pror* - 0] cavty
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From the above expression, we obtain for s large enough (using [e|zo < [lell g1 S
8(a*) and [lgllz(y=0) S §)

'/ [S(Qb +e+ pYo)tq — 5Q4Q]y £Q10

_h
S /(ILII + lgyDe™ 2 (lel + [ pl + 1bDle| + /(qulfmo +lqloip)lel’

82¢io+3(a*)/ % lgylg10-

c 1
<C =4
= CNie + 3+ 100

To control the last term above, we use g,(t,y) = Xgaxqo(t, Ay + x(¢)) so that
lgy(t, VIS 230y +x@) ™ A (@) + D7, for y > 10,and
1
Az 1
2 < 2 -1 2 1
€ — e“(y+1 <— ¢ .
f lel*lgyleio S =0 /y>0 (y+1D g0 = 100 P10
The collection of above estimates yields the bound:
d 2 )\‘S 2 1
— 10— < -
s /fplob“ + iy /(.0108 S Mijoe + 2

and (3.19) is proved.

B.2. Proof of Lemma 3.4

Step 1. Weighted L? controls at the right.
We first recall from [38, proof of Proposition 3.1], the following controls for
all s € [0, so],

/ yeZ(s) < <1 + %) 1%10c(s)’ (B.2)
y>0 A9 (s)
/ y262(s) < (1 + %) f]oc(s), (B.3)
y>0 A9 (s)
1
/ le()l SN (). (B.4)
y>0

Step 2. Algebraic computations on F;.
First, note that the equation of & (2.39) can be rewritten as

b6 — 5 ne = (=02 z
58—7 8—(— VE+ € — )y

—psYo+ G0 p — )y + %pAYO + <% +b> AQ, (BYS)

Xs

+ (5 =1) @b+ + pYo)y + Dy + W,
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where
Z=(0p+pYo+q+e’—0;—50*pYo+q) —q°,

/
By = ~bs (16 + 7Y(06)y) P Wy = (Qf = Qv + OF) +bAQy,
We compute
fji [sj]:] =2 | ¥pley)sey +2 [ & [8g0~ B — ¢BZ]
ds ) y)séy s i,
=2 [ Va0 [(6+ 0o+ Yo +0)° — Qs+ po+ ) - 560}
=2 [ npFo+ a0 [(€ + O+ pYo+ 0 = @1+ Yo+ - 560°]
+10 f Vaaa'e + L7,
which we rewrite as

s_]a |:S].¢'>i| — 1(1) + fz(l) + f(l)’ (B6)

where
G As
fi'= 2/ (Ss — TAS) (—(wBSy)y +€9i,p — WBZ),
ij As .
2(,J>= 27 / Ae (—(¥Bey)y + €9 — VBZ) + éfi,
H = —2/ VB(00); (e + Qs + pYo+a)° = (Qp + pYo+9)° — 50}

- 2/1/'B(psYo+qs) [(8+ O +pYo+q)° —(Qp+pYo+q)° — 58Q4]

+ 10/1//quq48.
We claim the following estimates on the above terms: for some o > 0,
i 0 L _ 2 2\ 7 —4
25/ = Mo/(8y+e><p,,B+Cs , (B.7)
%f,f” < % / (242 glp+Cs* 405", fork=23. (B8

Inserting (B.7) and (B.8) into (B.6) yields (3.21) for all j. In Steps 3-5, we prove
(B.7) and (B.8).
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Observe that the definitions of ¢; and v imply the following estimates:

VyeR, /" MI+1e] DI+ DIy DIHIY O Se () Sei(v), (B.9)
Vye(=00,2], ey () + ey () 4+ 0i(n) < 9l (), (B.10)
VyeR, ¢(3) S e1(0) S (). (B.11)
In particular,

Nl,loc(S)SA/’Z,loc(S)SNl (S)SNZ(S), /52(5, y)<p1,3(y)dy §M,loc(s)~ (B.12)

Step 3. Control of fl(i). Proof of (B.7). We compute fl(i) using (B.5)

/( eyyte=2), (—(Wsey)y+egis—VpZ)

Ay
+2 + T b) AQy (—(¥Bey)y +e¢ip — VBZ)
+2(3 -1 / Qb+ + pYo)y (~Wney)y + 605 — V37)

+ 2/ Dy (—(¥Bey)y +€0iB — YBZ)
/ Wy (—(¥Bey)y + e0ip — ¥BZ)

+ / <_pSY0 +G60 P — )y + );L—SPAYO) (—(¥Bey)y + €9ip — VBZ)
)+
Term f 1(2 : We first integrate by parts
fl(lf = / [—ew +e—Z], [~eyy +e—Z] Vs
+2 / [~y +6 = Z], (~¥pey + 5o — V)

We compute the various terms

z/[—gyy+s 7] [~ey +e— 2] b5 = —/wg [ty +e— 2]
- f W [—ev + 6] — f Vi |[mew e =2~ [-ey +e])
- [ / W2, +262) + / 20y — wg’>}
- / v {[—eyy +e—Z] — [~y +a]2} :
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Next after integration by parts:
2 [ [-en +el, [-¥he, + eoin — )]
2 2 3 / 1 / 1 1/
<o [ [ 4 (ta~ i 13)
1

+ / &’ (E«oi,g ~V8) = 5 (9i5 — x/fBY”) }

—2/ Zy(pip — ¥p)e = 2/ Z(@l g —Vp)e + 2/ Z(gi.p — VB)Ey
1
= 2/ Z(p;i p — ¥p)e — 3 /(%‘,B —¥p)

{[(Co+e+pYo+)0 = (Qs+pYo+a)0— 60— 60°c— 300" (pYo+q)e
—2f(<oi,3—wB)(Qb)y[(Qb+e+pYo+q)5— (Qp + pYo +q)° — 50;¢]
+40 f (015 —¥B)Q Q> (pYo + q)e
—2/«0,-,3— vB)(PYo+ay)[(Op+ e + pYo+ q)° — (Qp+pYo+ q)° —50%].

We collect the above computations and obtain the following

"

fl(,if = _/ [3‘/’B%y + G+ V5 — I/fg/)8§ +(¢i 5 — ¢ ple ]

1 6 6 5 5
- 5/ [(e+Qp+PpYo+49)°—(Qp+pYo+49)°—60pe—6g°¢
—300*(pYo+q)e—6Ze](p) s—V}p)

- 2f(<p,-,3 —¥B)(0p)y[(Qp + &+ pYo +q)° — (O + pYo + q)° — 503¢]
+40 / (pi.5 —¥B)Q' Q> (pYo + q)e

— 2/<<p,-,3— VB)(pY§ + ) [(Qp+ &+ pYo + @)°— (Qp+pYo + q)° — 50%]

+ 2/ ZyeyYp — / ‘/f% [_Eyy +e—Z] — ey + 8]2}
=AD"+ DT+ D7

Where (f ¢ ))< ™= respectively corresponds to integration on y < —g, ly] < g,

y > 7. We recall
lelloe S lellgr S 8. (B.13)
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e For the region y < —B/2, we rely on monotonicity type arguments and estimate
using (B.9):

1 1
20,1 2 7 2
8|¢-I§—/ e°g; S—/ £°¢; g
/y<—3/2 PBI~ 2 | g 7B T 100 Jio gyt THE

1 1
2 " 2.7 2 7
ell/fBIS—/ e3P p < — €591 B>
/y<—3/2 Y B2 ), pp Y7100 Jo gy TR

*

by choosing B large enough. By (B.13) (for B large and o* small)

/ [(s+Qb+pYo+q)6—(Qb+pY0+q)6—6Q,§s—6qse
y<—B/2

—30Q4(pYo+q)8—6Zg]((pl{’B—wg)
S / (3@ +AQsl* +1pI* + a1he® + (b1 + Ipl + laDle]) ¢} 5
y<—B/2

i
B 1 2
< (8(a*)+8(s01)+e_ﬁ)/ (plf’Bez—i-—z </ szgpl{B)
y<—B/2 s y<—B/2 ’
1

_/ gz(p{ +i
100 Jy._pp 0BT Y

where we have used from the definition of ¢ and (3.12) the relation

1
2 1
4
(/61 901{,3) S 2

Similarily for small «* depending on B,

A

| j@n = uw(@), [@o o+ pYot 0 = (@5 + p¥o +0)° - 50}
)

<772

—20/(<Pi,B — )0’ 0 (pYo + q)e

S B/ (168 + 22000 +1pP +1a1) (1051 + 1BII(P ) D] 5
y<—7%

+8 [ 1l (1P + 1aP) 10,1+ 161P 1) D

+8 [ leldlpl + 14D (0,05 - 0'0*|vL

1

1
2 25,/
< — e, +eNg; g+ —-
— 100 y<—B/2( y 1.8 st
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The next term in ( fl(if)< is

—2f(go,-,3 —¥B)(PYg+4[(Qb + e+ pYo+q)° — (@ + pYo +9)° —50%].
To estimate it, we note the following:

(0 + 2+ pYo+a)° = (Qp+ Yo +)° — 50|

S lel + el + lel (bl + |pl + gD
Now, using

1 1
/Iplwi,gdy S 7 /qukpi,de < 2 (B.14)

we obtain proceeding as before

‘f«pi,g — ) (PYS+q)[(Qp + &+ pYo+q)° — (O + pYo + q)° —50%]

1 1
< 2 AP —.
™ 100 y<—B/2(8y Tegipt s4

We further estimate using (B.13) and (galf)2 Sy’ < (<plf)2 fory < —%:

‘/ Zyeyy,

<

~

/ L Ve {00, 1(0p + 2+ pYo+9)* = 031 = Q' (pXo +q)}‘
y

<=7

+

+ ‘ / ayq*evy

/ L Ve (Y5 +a)(Qb + &+ pYo+ @) — QY
y

<72

+

/y L VBes(Qp e+ pYo+ )t

<772
1 1

S (ezB+a<s0—1>+a<a*>)f ¢ pey + )+
y<—% §

1

C
- 2 2\ ./ =
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The remaining nonlinear term is estimated using the local H? control provided by
localization (see more details in [38])

/) 3 i {[_Eyy te- Z]2 — [~y + 8]2}‘

/ Vs (=26 +2e-27)Z
y

<72

<~ yplenP+leP+c / @] 5?7
100 Jy.—2 y<—£ !
1 2 2 2\ 7 ] 1
< / .
100 Jy<—pp2 [5”‘#3 HARERCY] s4

e In the region y > g, we have ¥p(y) = 1, so that several terms cancel in fl(i]).

For the remainding terms, we argue as before. We rely on (B.9) to estimate:

1 1
20,0 2 2
8|¢-|§—/ 7] i—f e°9i g,

/y>B/2 PBI~ B2 [ g TP 7100 Jiapn 0B

and we use the exponential localization of Q, to the right and (B.13), to control:

/ (e+Qp+pYo+9)®  (Qp+pYo+q)°
y>B/2 6 6

- Qis—5Q4<pYo+q>—Ze>¢;,B
< (e (10014 5 +0t) & b1+ lal+ 11 o
y>B

1
< (%) +8(sy ") + e 1) 82¢;,3+s—4

1

< — gzq){ _|_ E
— 100 y>B/2 i.B st

/ €T 0ot PYo @) = (@0t pYot)® —5Q}e ] Qo) (Vn — pin)
y>

— 20/ Q'0°(pYo + 9)e(¥s — ¢i.B)
y>B/2

_ L
100 Jy~ /2

Since Yy € ), we argue similarly to obtain

C
2
& ¢£’B+s—4.

[ = 0m0p%5 (@1 +c 4 pYot @) = (@ + pYo +0)° ~ 50%]

1

< — gz(p{ + £
— 100 y>B/2 i.B st
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Next, we have from (B.14),

‘/(wi,g —¥B)ay [(Qs+ e+ pYo+ @) = (Qp + pYo+)° = 50%]

- 1 / 29 4 C
— 7! —.
— 100 y>B/2 Yip s4

Also,

‘/ ZyeyUp

e In the region |y| < B/2, ¢; p(s,y) = 1+ y/B and ¥ g(y) = 1. In particular,

;s = ¥ = 0 in this region, and we obtain

1 2 2 AN C
Sﬁ/(€yy+€y+8 )w3+s—4

= ‘/Z(gyy‘/’% +ey¥p)

; 1
s =5/ . {385 e
56+ 00+ Yo+~ (@1 + p¥o+)° — 60]s
—300*(pYo + q) — 628)
+2((e+ Qv+ pYo + @) = (Qp + pYo +9)° = 504e ) ¥(Qp),
—40yQ'Q*(pYo + q)e
+25(pYg+ ) (e + @ + pYo +@)° = (Qp+ pYo+9)° - SQ;,‘s)}

1
- __/ {3s§+82—5Q482+20yQ/Q382} + Ryvir(e),
B Jiyi<s)2

where

1 1
Rw(s)=——/ (e + Qp+ pYo+9)° — (Qp+ pYo +q)° — 603
B Jiyi<pp2 (3

—300*(pYo +q)e — 6Ze — 15Q482>
+2((e + @y + pYo+a)° = (Qp + pYo+9)° = 504¢ ) ¥(Qb),
—20yQ'Q*(pYo + q)s — 10y Q' 0’¢?

£ 2505 + ) (e + Qb + Yo + 9 (O + pYo+0)° - sgge)}.
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As before, we estimate

| Rvir ()] 5/ &’ (a(a*>+|b|+|p|+|q|)+/ lel(p* + g% + b?)
lyl<B lyl<B
1

1
< — 2+ + —.
100 ly|<B/2 ) S4

We now recall from [38] the following coercivity result:

Lemma B.1 (Localized viriel estimate). There exists By > 100 and u3 > 0 such
that if B > By, then

1
/ (3g§+ e2— 50%2+ 20y Q’Q382) > 3 f (g§+ 82) _— /826%.
lyl<B/2 lyl<B/2 B

Thus for o™ small enough we have

("))N<—ﬂ/ (82+82)+i/8 o
(1’1 - 2B Iy|<B/2 Y B2 s4

The collection of above estimates yields the bound

1(2 = B [Wﬁﬁyy + wf,g(ey +e& )] + e (B.15)
for some universal ;4 > 0 independent of B.

Term fl(i%: We decompose f1,2 in a suitable way:

W) o *s As
fia=2 - +b /AQ(Le) -2 = +b /e(l — i, B)AQ
As
+2b <7 + b) / Ao P) (—(Usey)y + e0i — V5Z)
As
2 (7 i b) [ A0 (-tmse, — (1= vy, + 1 - yw2)
(5 +2) 4
+2 7+b /AQ(Z—SQ €).
Observe from (2.25) that

/AQ(Ls) = (e,LAQ) = —2(¢, Q) = 0.

We now use the orthogonality conditions (¢, yA Q) = 0 and the definition of ¢; p
to estimate

‘/ AQe(l — ¢iB)

=‘/AQ8<1—§01',B+%>‘§€_
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so that for B large enough we have

'(% + b) /AQe(l P

For the next term in f 1.2» We first integrate by parts to remove all derivatives on ¢.
Then, by the properties of ¢; p, ¥, P and yxp (2.6), we obtain for o™ small,

A
‘21) (T + b) /A%P) (—~Wsey)y + 205 — VbZ)

1 N2 1
§|b|< 120C S2> _SOOBNIOC()+_

Next, integrating by parts, using the exponential decay of Q and since ¥p(y) = 1
B
on[— R 00):

and finally

‘(As +b>/AQ[Z—5Q4e] <

| C
< il
= 500 B N Joc(s )+

The collection of above estimates yields the bound

(t) C
|f = 100 BNloc
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Term fl(lg: Integrating by parts, we claim the identity

¢ [ vs[(@+ pro+a o~ 0f - 603 — 60° 0k + ) - 601°]
= [vaen,z=5 [va00*+ [0}~ 0),ev
+5f(Qb —0),0*(PYo+ 9V + / VYo Z + /(Q5 — ) pYg¥s
+5 [ 00X+ aptiyn + [ var¥ia®0s
+/¢qu [0+ pYo+q+0)° - 07 +fwgsyz
+5 [ e, 0¥+ 0.
Therefore,
= (-1 {2/ Q' [Le — ey + (L = ¥p)eyy — e(1 = ¢ip)]
+ 2/(Qb — QO +e+pYo)y [~Vpey — ¥neyy +£9i5]
43 [ V5 [@ot pYota+er— 05-60% ~ 60°(pYo+ ) ~ 604
+2fst<QZ - Q)+ 10/ ¥B(0p — ), 0*(PYo + q)
+2 [ va (@ = 0¥y +10 [ QYo+ p¥ivn +2 [ varvia*os

+2 [ s [@vtprorater = 0 -50i*]+10 [ vne, 0 oW,

The first term is treated using the cancellation L Q' = 0 and the orthogonality
conditions (&, AQ) = (¢, Q) = 0, so that (yQ’, &) = 0. Thus, by the definitions of

@i, p and Vp,

‘2 — — 1 / Q L8 — leé’y + (1 - 1;019)5)))1 —&(l — g, B)]

=l (Z =) [ o [-vhes+a v, — (143 - 0a)

: 1 a4 C
e = 500 g Vitee t

N
N
=
%_NI
+
raN| —
N———"
ml

Sl
=
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Then, as before, integrating by parts, and using the Cauchy-Schwarz inequality,

‘219 (z—s - 1) /(XbP)y [—VBey — ¥Beyy + 201 8]

1 1 1 4 C
< — 2 B2
S( , +s ) Nloc_soo Nloc e

‘2 (xf - 1) /Ey [_wg’gy - WBgyy + 8(,01"3]

| C
55(0[*)/(83” %5 =300 B /<8§+82>‘”1{’B+s_4’

- 1‘ ‘/py(; [_1//;?8)’ - wBsyy +8§Di,B]

! 1yl 4 1 g 2, .2 ¢
5( floc*?)}”iﬁocfﬁy 5+ oot 5

In conclusion, for f1 3 one gets

(i) K4 2. .2 ¢
|fl|§%E (€y+8)§0;,3+s—4,
for B large enough and «* small enough, s¢ large enough.

Term f, 1(2: Recall

1(2 = _st/ (Xb + yy(Xb)y) P (_ngyy - 1//;38)1 +E€9i,B — 1032) .

We estimate after integrations by parts

1

BN}

l\)l'—‘

loc?

‘/(Xb+ V)’(Xb)y) P (_ngy) ,' 5f|8| |(WB((Xb+ Vy(Xb)y)P)y)y| SB

l

<B

i loc

‘/ xb +vy(xp)y) Pewi s

The estimate of the nonlinear term follows from (B.13) and ¢ < (gplf )2 for y< - %:

‘f(xz, +7y(xp)y) PwBZ‘ 5/1//3((|Qb|4| + p* el + e+ b+ pP+g?)

1

< b (/(|s|2 n |s|6>w3)7 il

N

1
! 2, 2 2 1
< B (/(sy+s )(p,ﬁg) 5
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Together with (3.14), these estimates yield the bound

w4

| f1,4] < 300 B

, c
<s +e€ )qoi,B + s
Term fl(fg: Recall:

1(,i5) = 2/ Wy (—~(WBey)y +e9i5 — VBZ).

We now rely on (3.15) to estimate by integration by parts and the Cauchy-Schwarz
inequality,

1 1

1 g C
2
Bb./\/; C_SOOBNIOC 5—4

‘f(‘lfb)yWBSy S

By (2.10) and the exponential decay of ¢; p in the left,

1 1
'/\pbgo,-,gs < (sz% +e W) I < = 500 ’;‘U\/ loc + C|b|*.

For the nonlinear term, similarly and using (B.13),

/‘IJMDBZ

The collection of above estimates yields the bound

1 pg 2 2 / C
=350 B (Sy“ )‘ﬂw*?

C

'u’4 2 2 /
<8y+8 )‘/’i,B+S_4

(i)
fisl = 100 B

Term f's (). Recall that this term writes

As
'/ <_psYO + 50 p — @)y + TpAYo> (—(¥Bey)y + e9ip — 1//32)’ :

By (3.15), (2.42), (3.14),

_|_

As
'(—ps Yo+ (5 Q4(p—q))y+ TpAYo>

b (1 Iyl
§e_% (—2+/8 e_2),
S

and thus |f(l)| < 8(a¥) [ & e + SL4

As
(—ps Yo+ (50*(p—9))y+ TpAYo>

y
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Step 4. f;i’j) term. Recall:

- As /
fz(w) — 275 / Ae (—(¥Bey)y + 69 — ¥BZ) + ;.7:1'.

We integrate by parts to compute:

- _ 2 1 2.0
AE(WBgy)y = 8y¢B + 3 8ywa’

1 2./
(Ae)egip = =5 | £
/Aé‘llfgz

- / (f n ygy> wB[(Qb +pYo+q+e)° — 0 —50%pYo +q) — qs]

2

= [ Sun @+ prota+er - 03— 504 M +0) - a7

(Qp+pYo+q+e)®  (Qp+ pYo+q)°
- ()”/fB)y 6 - 6

~ Qe
—50*(pYo + e — Q) (pYo +4) — qse]

—/wa(Qb)y[<Qb+pYo+q +€)° = (Qp+ pYot )~ 50je
~50}(pYo+q)e —200}(pYo + e

~ [ y0ap¥s (@ pYo+a+ e = (@ + po + ) ~ 50

vs / (0F — 0%, (pYo + Qeyys

625

- /)”//B[(Qb + pYo+q+e)° = (Qp+ pYo+)° = 50% - 0F — 5¢%].
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Thus,

P A 1 1
2(1’1) = 275{ /83%; - 5/83)’%3 - §/€2y<ﬂ,{,3

+ [ 50n[(@s+ pYo+a+ = 0~ 50 Yo+ ) — o]

(Qp+pYo+q+8)° (Q»+pYo+q)°
- (wa)y 6 - 6 -

—50*(pYo + q)e — Q3 (pYo +q) — qu}

5
ng

- /wa(Qb)y[(Qb + pYo+q 46> —(Qp+ pYo+q)° —50%e
— 505 (pYo + q)e — 2003 (pYo + q)¢]

~ [ 3vap¥s[@o+ pYota e - (0 + pYo+ )~ 50%]
+5 f (@5 — QY (pYo+@)eyys

_/ Vs [(Q”+pY0+‘1+€)5—(Qb+PYo+q)5—5Q4€—QZ—Sq“S” + 17

For y < —B, we use the exponential decay of ¥/, ¢; p and (B.9) to estimate:

<=2
S/ y(sz / |y|<ﬂl Bg
y<— y<**
L 99
. 100 y 100
5/e§w£,3+ / |yl'PeBe? / et
y<—7 y<—7%

2 7 10
5/8),(,01‘734‘ i,loc’

where we have used [ __ |y|100€38 < llell7, < 8(a*).

[ 01 el 6+ i

Together with similar estimates for the other terms, this yields the bound:
()< < / mo, !
(2R BS +N10C e30in + Nl T 3
1
* AP
< 8w )/(sy + e g+ a
The middle term f (@) s also estimated as follows:

1] < (@) /(s§ +e0l 5+ -
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It only remains to estimate ( f;i’j ))> . Most terms in ( fz(i’j ) are easily estimated sim-
ilarly as before. We focus on the following two delicate terms (because of weight

at 4-00): .
2 J 2
/ R Y9 - —/ L E 9B
y=7 s y=7

The function 1 being bounded, the other terms are easier.
First, using (B.3),

. _3
Second, using A3 joc < 572 and B < 4,

1
1 _bl\?2
/Bszyq),{’B,S —+</82e 10) /Bschi,g
Y>3 § Y>3

1 1 10
S.z < N2100> 7 N M4N2 loc +510'B_9-

\Dloo

<
s 2loc = 100 B

Step 5. f3(i) term.

f(t) = 2/ VB (Op)s [(8 + O0p+ pYo+q)° — (Qp + pYo +q)° — SsQi]
- 2/¢B(PSY0 +gs) [(8 + 0+ pYo+9)°— (Qp + pYo+q)° — 58Q4]

410 / s
First,
1(Qp)sl = |bs P (x (1" y) + y1bI” yx"(16]” )| < 1bs],

'/ V() [+ Qs + PYo+0)° = (O + pYo +)° = 56 0}

St [ wn (20008 +1pF +1aF + 5@ +lel(e™ ¥ p*+ %)

< (Siz +M,loc> (/(85 + &M yp + (f SZWB)% </ qglﬁB)%)

_ c
< (a(a*) +8(s, 1)) / &%) 5+ 7
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For the next two terms, we first remark that by explicit computations:

1
/WB(psYO +q‘v)2 5 S_2

Thus, as before,

‘/ Ye(psYo + g5) [(e + 0y + pYo+q)° — (Qp + pYo +q)° — 5€Q4]

C
< (s +o67h) [ v+

Finally,

: : 1
'/WBQS‘]48 5 (/ 1#3(%614)2) (f WBSZ) §/¢382+S_4'

Step 6. Proof of (3.22). We proceed as in [38]. Recall that for B large enough,
w >0,

/ Vae, + ¢ipe” — 5Yp0*e” = uM;.

We only have to estimate the error term as follows. For sy large enough, and a*
small enough,

‘ [(@vrepYora)-QspHota)~60(QF +a%+5 Q" (pYoa))~60%* v

1
1 N1 N 1
53—2(/%38) +;/¢BS SENH_S_“'

This concludes the proof of Lemma 3 4.
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