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Generalized stochastic flow associated to the Ito SDE
with partially Sobolev coefficients and its application

DEJUN LUO

Abstract. We consider the Ito SDEs on R” with partially Sobolev coefficients.
Assuming the exponential integrability of the negative part of the divergence of
the drift coefficient and the partial gradient of the diffusion coefficient with re-
spect to the Cauchy measure, we show the existence, uniqueness and stability of
generalized stochastic flows associated to such equations. As an application, we
prove the weak differentiability in the sense of measure of the stochastic flow
generated by the Itd SDE with Sobolev coefficients.

Mathematics Subject Classification (2010): 60H10 (primary); 60B12, 42B25
(secondary).

1. Introduction

We consider the following stochastic differential equation

in which o = (o"k)liiin,lfkfm is a matrix-valued function, b = (b', ..., b") is
a vector field, and B; is an m-dimensional standard Brownian motion defined on
some probability space (2, F,P). It is well known that if o and b are globally
Lipschitz continuous, then equation (1.1) generates a unique stochastic flow X; of
homeomorphisms on R”. When the coefficients are less regular, for instance, they
only have log-Lipschitz continuity, it is still possible to prove the homeomorphic
property of the stochastic flow, see [13,24].
On the other hand, recently there are intensive studies on ODEs

dX
d—tt=b(Xt)’ Xo =x € R", (12)
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with weakly differentiable coefficients, see for instance [1,8,9]. Here by weakly dif-
ferentiable coefficients, we mean that they have Sobolev or even BV regularity. The
methods adopted in [1,9] are quite indirect, in the sense that the authors first estab-
lished the well-posedness of the corresponding first order PDEs (transport equation
or continuity equation), from which they deduced the existence and uniqueness of
generalized flow of measurable maps associated to (1.2) (see also [7] where the
standard Gaussian measure Y, is taken as the reference measure). This strategy can
be seen as an extension of the classical characteristics method, and is now widely
called the Di Perna—Lions theory. In [18,19], Le Bris and Lions made use of these
ideas to study the Fokker—Planck type equations with Sobolev coefficients; based
on Ambrosio’s commutator estimate for BV vector fields, we slightly extend their
results to the case where the drift coefficient has only BV regularity, see [22]. The
generalization of this theory to the infinite dimensional Wiener space has been done
in [3,14], see also [21] in which we studied the Fokker—Planck type equations on
the Wiener space. In [10], the authors gave a rather sketchy argument of how to
extend the Di Perna—Lions theory to compact Riemannian manifolds; by proving
a commutator estimate involving the heat semi-group and Sobolev vector fields on
manifolds, this theory was recently generalized in [12] to complete Riemannian
manifolds under suitable conditions on the lower bound of the Ricci curvature. Us-
ing the pointwise characterization of Sobolev functions, Crippa and De Lellis gave

in [8] direct proofs to many of the results in the Di Perna—Lions theory.
It seems that Di Perna and Lions’s original method does not work for study-

ing SDE (1.1), as pointed out in the introduction of [26]. X. Zhang successfully
implemented in [25] the direct method of Crippa and De Lellis to the 1t6 SDE and
proved the existence and uniqueness of stochastic flow of maps generated by (1.1).
A drawback of the main result in [25, Theorem 2.6] is the requirement that |Vo |
is bounded, a condition which is weakened in [27]. In [15] the authors took the
standard Gaussian measure y,, as the reference measure, and obtained similar re-
sults under the exponential integrability of |Vo 2, |divy, (o) |2 and |divy, (b)|. Here
div,, denotes the divergence with respect to the Gaussian measure y;,. Note that the
exponential integrability of |Vo 12 is quite weak, but that of |div,, (o) |2 prevents us
from covering the classical case of globally Lipschitz coefficients, see [15, Theo-
rem 1.2]. This is one of the reasons that we do not take y,, as the reference measure
in this paper. Another reason is that the results in Lemma 6.3 do not hold for the
Gaussian measure y,,. Here we also mention that we choose a finite measure on R”
as the reference measure and assume the divergences of the coefficients o and b are
exponentially integrable, hence they can be unbounded (both locally and globally,
see Theorem 2.3 and [15,27]), while the papers [1,8,9] are set in the framework
of the Lebesgue measure, hence the authors naturally assume that the divergence
div(b) (or its negative part [div(b)] ™) is bounded.

The present work is motivated by [4,8, 18], in which the authors studied the
weak differentiability of the generalized flow associated to the ODE (1.2) with
Sobolev vector field b. Again the results in [18] are derived from the related
transport equation, while the ones in [4, 8] follow from the pointwise inequality
of Sobolev functions. Since the generalized stochastic flow of measurable maps has
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already been established in [15,25,27], we intend to study in this work the differ-
entiability of the stochastic flow. However, we are unable to transfer the methods
in [4, 8] to the case of SDE for proving the approximate differentiability of the
stochastic flow. The main problem is that the level set Gr (see Lemma 2.4) of the
stochastic flow depends on the random element w, hence one has to take expecta-
tion twice in order to estimate an quantity of the form (2.5) in [8]. We do not know
how to handle this problem.

Therefore, we follow the idea of [18] to study the differentiability in the sense
of measure of the stochastic flow. To this end, we first consider a special form
of SDE (1.1) whose coefficients o and b have the structure below: there is n; €
{1,...,n — 1}, such that

o1 = (o) and by = (b',..., ™M)

1<i<ni,1<j<m
only depend on the first 7;-variables (x!, ..., x"!). In the following we also de-
note by oy (respectively by) the last (n — nj)-rows (respectively components) of
the diffusion matrix o (respectively the drift ), and x; = (b .o x™M), x =
(x™M*+1 .. x™) (thus x € R” can be written as (x1, x2)). Our basic assumptions,
among other conditions that will be specified later, are

q Lg .
o] € le,loc’ by € le,loc’ (1.3)
and
2q 1,29 q L.q
02 € Lxl,loc(sz,loc)’ b2 € Lxl,loc(Wxg,loc)‘ (1'4)

Here g > 1 is a fixed number. Note that we don’t require o2 and b, have Sobolev
regularity with respect to x;. Thanks to the key observation (6.4), we are able to
deal with this special case.

The paper is organized as follows. In Section 2 we first recall the definition
of generalized stochastic flow associated to 1td’s SDE (1.1). After that, we extend
the known results on the existence and uniqueness of stochastic flows generated by
Itd’s SDE to allow the coefficients to be locally unbounded. Recall that the main
results in [15,25,27] require the coefficients o and b have linear growth. This
extension is necessary for proving the differentiability of the stochastic flow, since
the linear growth condition for the second equation in (5.2) will basically result in
the boundedness of the gradients of o and b, which is too restrictive.

Then we state and prove an intermediate result in Section 3, where the coef-

ficients oy € W;l”zjz Toc and by € W;{,qxz,loc' One reason for establishing such a
result is to avoid regularizing the coefficients o7 and b; in the proof of the exis-
tence of stochastic flows generated by Itd6’s SDE with partially Sobolev coefficients
(see Theorem 4.3); otherwise, we cannot apply the a-priori estimate in Lemma
4.1, since the coefficients oo and b, have no Sobolev regularity on the variable
x1 = (x', ..., x™). We also find a uniform estimate of the Radon-Nikodym den-
sity of the form Lemma 3.2, which does not involve the exponential integrability of

V022



538 DEJUN Luo

The main result of this paper is presented in Section 4, where the key step is
to prove an a-priori estimate which follows the idea of Crippa and De Lellis [8,
Theorem 3.8] and has appeared in [15,25,27] in similar forms. The main difference
between this estimate and the previous ones is that we only assume partial Sobolev
regularity on the coefficients. As some of the arguments in Sections 3 and 4 are
analogous to those of Section 2, we only give relatively detailed proofs in Section
2 and omit them in the subsequent sections to save space.

In Section 5 we apply the results obtained in the previous section to show the
weak differentiability in the sense of measure of the generalized stochastic flow of
measurable maps, following the ideas in [18, Section 4]. The main part consists in
checking that the systems of Itd equations fulfil the assumptions in Section 4.

Finally, we present in the appendix some preliminary results that are used in
the paper. Especially, we give a careful analysis of the expression of the Radon—
Nikodym density which makes it possible for us to study the SDE with the above-
mentioned special structure. We also prove an inequality for the integral of local
maximal functions on the whole R” with respect to some general finite measure
which seems to have independent interest.

2. The Ito SDE with locally unbounded coefficients

First of all we give the precise meaning of the generalized stochastic flow (cf. [15,
Definition 5.1] and [27, Definition 2.1]). This notion is related to some reference
measure on R”. In this paper, we mainly consider the generalized Cauchy distribu-
tions (following the terminology of [5, Section 3]): for some « > n/2, set

Ax) = —alog (14 [x*) (x e R") and du=e*™ dx. 2.1)

The exact value of o has no importance. It is clear that u(R") < +o00. As usual,
the space of continuous functions taking values in R” is denoted by C ([0, T'], R").
For a measurable map ¢ : R” — R, we write ggiu = po@~! for the push-forward
of 1 by ¢ (also called the distribution of ¢ under ). Denote by 6, B the time-shift
of the Brownian motion, that is, (6 B); = B;1y — B forallt > 0.

Definition 2.1. We say that a measurable map X: © x RY - C ([0, T],R") isa
generalized stochastic flow associated to the 1to6 SDE (1.1) if

(i) foreacht € [0, T] and almost all x € R", w — X;(w, x) is measurable with
respect to F;, i.e., the natural filtration generated by the Brownian motion
{Bs:s <t};

(ii) foreacht € [0, T], there exists K; € L' (P x p) such that (X;(w, -))#u admits
K; as the density with respect to ;

(iii) for (P x w)-a.e. (w, x),

T T
/ }G(Xs(a),x))‘zds —}—/ |b(Xs(a),x))| ds < +o0;
0 0
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(iv) for p-a.e. x € R”, the integral equation below holds almost surely:

t

t
X,(w,x):x+/ o (Xs(w, x)) dBS-I-/ b(Xs(w,x))ds, forallzre [0, T];
0 0

(v) the flow property holds
Xits(w, x) = X;(0: B, Xs(w, x)).

In this section we slightly extend the main results of [15,25,27] to allow the
coefficients o and b to be locally unbounded, while the aforementioned papers re-
quired that the coefficients have linear growth. To this end, we introduce some
notations. Fix some ¢ > 1 and take @ > g + n/2 in the definition (2.1) of the
reference measure. We also denote by o = %IXI and b = %IXI to simplify the
notations. We assume the following conditions:

(Cl) o e W bewld:

(C2) thereisa py > 0 such that [, exp [ po([div(b)]™ +[b| + 151> + | Vo |*)]du <
+o0.

Remark 2.2. We have the following observations.

(1) Itis clear that when o and b are globally Lipschitz continuous, they satisfy the
conditions (C1) and (C2). B

(i) The condition (C2) implies 6, b € L?(w) for any p > 1. Then by the choice
of «, there is p sufficiently big such that 2o« — n > 2¢qp/(p — 1), hence
Jrn (1 + |x|)24P/(P=Ddy < +o00. By Holder’s inequality,

1/p (p—D/p
/ Ialz"dus[ / |5I2‘”’du] [ / (1+|x|)2‘fp/<"“>du] <+00.
n Rn ]Rn

Thus o € L% (). In the same way we have b € L9 ().

(iii) Let B € (0,n/po)and Q1 :={x e R" :0 < |x| < landx’ >0, 1 <i <n}.
Assume supp(b) C Q and b(x) = ﬁ(log lx|#)(1,---,1), x € Q. Then
the vector field b satisfies conditions (C1) and (C2). Indeed, [div(b)]” = 0
and |b(x)| < 1{y<1) log #, thus [, ePlPld) < 4-00. This example shows
that the coefficient b (and also o) of the Itd SDE can be locally unbounded. If
we strengthen the condition (C2) by requiring that it holds for all pg > 0, then
such a 8 > 0 does not exist.

We shall prove:

Theorem 2.3. Under the conditions (C1) and (C2), there exists a unique general-
ized stochastic flow associated to the Ito SDE (1.1). Moreover, the Radon—Nikodym
density p; of the flow with respect to the reference measure w satisfies p; € L' log L'
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Here by p; € L'log L' we mean that }EfRn pr]log pr| dp < 400. We remark
that when 7 is small enough, the flow X, is integrable on R” with respect to w, which
is an easy consequence of Lemma 2.4 and Proposition 2.8. The integrability of X,
for general ¢+ > 0 can be proved if we strengthen the condition (C2) by requiring
that it holds for any pg > 0; however, this condition is too restrictive in view of
Remark 2.2(iii).

We shall divide the proof of this theorem into several steps, which are presented
in the following lemmas and propositions. First we prove an a-priori estimate on
the level set of the solution flow X;. We denote by | - ||co,7 the maximum norm in
C([0, T], R™), the space of continuous curves in R”. For R > 0, define the level
set

Gr={(,x) € QxR": |X.(®,X)]loo,7 < R}

Lemma 2.4 (Estimate of level sets). Let X; be a generalized stochastic flow as-
sociated to Ito SDE (1.1), and p; the Radon—Nikodym density with respect to [L.
Suppose that

Ap,T ‘= Ssup ||IOI||LP(P><[L) < +09,
0<t<T

where p is the conjugate number of q. Then under the condition (C2), we have
. C
P x w)(Gy) < r

where C depends on T, Ap 7, ||cr||qu(M) and ||b]l La ) -

Proof. First we deduce from (C2) and Remark 2.2(ii) that |lo|[; 24 () and |||l La )
are finite. For a.e. (w, x) € Q2 x R", we have

t t
X,(x) = x + / o (X, (x)) dB, + / b(X, (x)) ds.
0 0
Therefore

X () lloo,7 < |x| + sup

0<t<T

+ sup . (22)

0<t<T

!
/ b(X(x))ds

0

t
/ o (Xs(x)) dBy
0

By Burkholder’s inequality,

1

T =
E sup < Z[E/ |cr(Xs(x))|2ds:|2.
0

0<t<T

t
/ o (Xs(x)) dBy
0

Now Cauchy’s inequality leads to

T 1
/ E sup du < ZM(R”)% |:/ E/ |cr(Xs(JC))|2du(x)ds:|2
noo0<t<T 0 R®

t
/ o (X, (x)) dB

0

1 r >
=2u(R"): [ /0 E /R n\a(wfps(y)du(y)dsr.
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We have by Holder’s inequality that

E /R lo D5 () die(y) < 110172 105 Lo@xiy < Ap, 7ol 72g -

Therefore

1
E sup du < 2@ TAp )2 N0l 20y (23)

R®  0=<t<T

t
/ o (Xs(x)) dBy
0

Next

t T
/ b(Xs(x))ds|du S/ E/ |b(X(x))| dpe(x)ds
0 0 R”

IE/ sup
R" 0<t<T
T
=/ E/ 1b(y)]ps () dpe(y)ds.
O RI‘I

Again by Holder’s inequality,

t T
E/ sup / b(Xs(x)) ds|du =< / 101 La oy 1051l Lp o ds
R 0<t<T | JO 0 (2.4)
<TAprlbllLaw-
Now integrating both sides of (2.2) on  x R” and by (2.3), (2.4), we get
1
E / IX.lloor di < C1 4 2@ T A1) Nolingy o
+TAprlbllLaw,
where C| := [pa x| dja(x) < 400. Finally by Chebyshev’s inequality,
c 1 C
P xw(GR) =+ 1X. () loo,7 AP x p) < —,
R Jaxrn R
where C is given by the right hand side of (2.5). O

Similar to [25, Lemma 6.1], [15, Theorem 5.2] and [27, Lemma 4.1], we have
the following:
Lemma 2.5 (Stability estimate). Suppose that 0,6 € le,czq and b, b € wha,

J loc
Let X; (respectively X;) be the stochastic flow associated to the Ito6 SDE (1.1) with
coefficients o and b (respectively 6 and b). Denote by p; (respectively p;) the
Radon—Nikodym density of X; (respectively X;) with respect to ju. Assume that

Apr = sup (llollLr@xw VI8 llLr@xw) < 400,
0<t<T
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where p is the conjugate number of q. Then for any § > 0,

52
|x - X[
E log |~ +1)dp
GRQGR )
= CTAP,T{Cn,q[”w’” La(BGR) T || Vo “L24(3(3R)) + || Vo HiZq(BGR))]
1 ) 1 - ~
+ 3_2”‘7 - G’|L29(B(R)) + E[Ha - UHLZq(B(R)) + ”b - b”L‘i(B(R))]}’

where Gg = {(a),x) e QxR": ||}~(.(a),x)||oo,T < R} is the level set of the
flow X;.

Here the space L9 (B(R)) is defined with respect to the Lebesgue measure. The
proof of Lemma 2.5 is similar to the above cited references, hence we omit it.

Now we start to prove the existence part of Theorem 2.3. We have to regularize
the coefficients o and b. Let x € C°(R", Ry ) be such that fR,, x dx = 1 and its
support supp(x) C B(1). For k > 1, define xx(x) = k" x (kx) for all x € R”. Next
choose ¢ € C°(R", [0, 1]) which satisfies ¥|p1) = 1 and supp(yy) C B(2). Set
Yr(x) = ¥ (x/k) forall x € R" and k > 1. Now we define

or = (o *x ) ¥xr and by = (b* xi) V.

Then for every k > 1, the functions o} and by are smooth with compact supports.
Consider the following It6’s SDE:

dX¥ = op(X¥) dB, + br(XF)dr,  XE = x. 2.6)

This equation has a unique strong solution which gives rise to a stochastic flow
of diffeomorphisms on R". Denote by ptk the Radon—Nikodym density of (X f )Py
with respect to ;. Applying Lemma 6.1 for p > 1, we have

1
1 (p+D
I sy = 0 (sup [ exp (a7 prag ) 7
te[0,T]JR"
2.7

We shall give a uniform estimate to the density functions.

Lemma 2.6 (Uniform density estimate). For fixed p > 1, there are two positive
constants Cy p, C2, p > 0 and sufficiently small To > 0, such that for all k > 1,

k
sup o7 lLr@xp)
0<t<Ty

o R (2.8)
<Ci,p /exp[cz,,,To([dw(b)] +1b|+|Vo >+ %) ]du <+o00.
]Rn
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Proof. Using the expressions of AT¥, ASt Pk and A, elementary computations lead

to
IAT? < Co(ldivo) [ + 1517) * xk
and , ~
— A < Co([divD)]™ + 1Bl + Vo |* + 151%) * xk-

Noticing that |div(c)| < |Vo |, we have for any ¢ > 0,
b : - - -
pAtIATE — pPt AT < CpPt[(Idiv(e)]™ + 1Bl + Vo |* + 15 1%) * xk]-

Substituting this estimate into (2.7), we see that there are two constants Cy p, C2 , >
0 such that forany 7 > O and all k > 1,

k
sup “pz ||L1’(]P’><M)
0<t<T

oy
- p(p+
< cl,p< /R exp [C2,, T ([div(D)]™ + 16| + Vo > + |5 %) Xk]dﬂ) :
To simplify the notations, we denote by ® = C5 , T ([div(b)]™+1b|+|Vo [*+]51%);
then
1
X P(p+D
sup sup |lp; lLr@xp) < Cl,p(/ exp [(® * xi) (x) -H»(x)]dx) . (29
k>10<t<T R?
We want to show that there is a constant C > 0 such that for any k > 1,
Ax) < (A% p)(x)+C forall x € R". (2.10)
Indeed, for any u € B(1), one has
L e —ul® < 420 +20uf® < 3(1 4 |x]%),

hence
A(x —u) = —alog(l + |x —ul®) > —alog3 + A(x).

As aresult, forall k > 1,
A *x ) (x) = [ AMx —u)xx(u)du > —alog3 + A(x)
Rﬂ

since x; > 0 and fR" Xk () du = 1. Hence (2.10) holds with C = o log 3. Now by
(2.10) and Jensen’s inequality,

/R Cexp[(@ %) () +A(0)]dx = 3° /R exp [(@ + 2 % 0 Jdx

< 30 / (€ % ) (x) dx
Rn

:3“[ e‘l’“dx:3“/ e®dpu.
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Substituting this estimate into (2.9) and by the definition of ®, we see that if we
take Tp < po/C3,p, then the right hand side of (2.8) is finite. O

In the following we fix p as the conjugate number of ¢ and denote by A,
the quantity on the right hand side of (2.8). Then we have

sup  sup ofllLr@xw < Ap.1p- @2.11)
k>1 0<t<Ty

Using Lemma 2.5 and the density estimate (2.11), we can now show that there exists
arandom field X : @ x R" — C([0, Tp], R™), which is the limit of the sequence of
stochastic flows generated by (2.6).

Proposition 2.7. Under the conditions (C1) and (C2), there exists a random field
X :QxR"— C([0, Tol, R") such that

lim IE/ 1A 1X* = X|loo.7, du = 0.
Rn

k— 00

Proof. The proof is similar to that of [15, Theorem 5.3]. For any & > 1, we denote
by GII‘e the level set of the flow X f on the interval [0, Tp]:

Gh =@ e@xR": X w0, = R}

By Lemma 2.4,

C C
B x (G NG <@ x WG]+ @ x w[(Gh)r] = “=L 212)
R

in which C depends on To, A p 7, |0k [ .24 (1) 10k [l L4 (10)- We have ok | < [o] * X
Jensen’s inequality leads to

) ) _ 2 Xk(x_y)
”Gk”LqZ‘I(M) = /R” (|G| q *Xk)(x)dﬂ(x) = /Rn lo(y)] qdy/w (1 + |x|?)e dx

Notice that for [x — y| < 1/k, one has |y| < |x| 4+ 1/k, hence
L4 y> < 1+2x> +2/k* <3(1 +|x|?) forallk > 1.

Consequently,

f Xk(x —y) dx§3“/ Xk(x —y) dr — 3 2.13)
re (14 |x]2)® re (14 y12)2 1+ y»H*

since fpa Xk dx = 1. As a result,

1/2q
lowll 20y < 3“/2'1( /R o du(y)) =30l 2. 214
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In the same way, we have ||bi|lpa(u) < 39749 |p)| La(w)- Therefore the positive con-

stants (Cy)x>1 are uniformly bounded from above by some C > 0. Combining this
observation with (2.12), we obtain

=| R,

sup (P x w[(Gy N GR)] <
k,[>1

. (2.15)
Now an application of Lemma 2.5 to the flows X f and X 5 gives us

X% — x')2
E 1772 T 1)(1“

og ( >
Gknal, $
< CTOA,),TO{cn,q[||ka||Lq<B<3R» + 10kl s oy + IV 20 sy |
1
+ 8_2||0k _O—l”iZq(B(R)) (216)
1
+ E[Hak — o1l 2 B(ry) T 1ok — bllqu(B(R))]}-
By the definition of by, we have

b % _
DX XK \0b) v i + 215 .

Vbi| < |Vb C
IVbi| < |Vb] * xi + T =

From this we can show that
IVhillLasary) < Cq(IIVDIlLaBER+1) + I1BILa(BGR+1))-
In the same way, ||Vokll 23Ry < Cq(||VG||qu(B(3R+1)) + ||C_T||Lq(B(3R+1))).

Notice that under the conditions (C1) and (C2), Vb and b (respectively Vo and o)
are locally integrable. Hence for any £ > 1,

Cog[IVBilLaaRy + IV 0kl 20 a3y + V062230 | = gk
Now we define

k.1 = llok — o1l 129 (ryy T bk — billLa(B(R))

which tends to 0 as k,/ — +oo. Taking § = & in (2.16), we obtain that for any
k,1>1,

X% — X2, 4,
E/Gk . log T +1)du < Cryng,r < +00. (2.17)
RGOk ki
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We have by (2.15)
E/ (LA IX* = X loo,7) dpt

< P x w[(Gh NG+ /GWG!R (A NXE = X loo,7) AP x 1) (2.18)

2C
<= +/ (LA NIXY = X loo, 1) AP x o).
R Jeknal,

Next for n € (0, 1), set
it ={(@,0) € @ x R" | X* = X'|log, 7, < n}.

Then

[ A = X o) 4 x )
GhnGl,

=</ S kl)(lAIIXk—X’uoo,To)d@xm
(GRNG RNy (GRNGI\Zy

1 X% — X2
SR (WAL (AT
log (1 + s"T) cknat, 8¢

k.l

Ctyn,q.R
2
log (1 + 8'12—)

< nu@®") +

< nu@®R") +

El

where the last inequality follows from (2.17). Substituting this estimate into (2.18),
we get

C1y,n,q,R

2C
E/ (LA NXE = XMoo 70) dpt < —= 4 p(R") + — 2242
n log (1 + 8”7)
k1

First letting k, [ — 400, and then R — 400, n — 0, we obtain

lim E 1A X - X! du = 0.
k,l—l>n—il-00 /r1( ” ”OO’TO) "

Hence there exists a random field X : Q x R" — C([0, Tp], R™) such that

k——+o00

lim IE/ (1 A XY = Xloo,75) die = 0.
Rn

The proof is complete. O]
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Proposition 2.8. For all t € [0, Ty), there exists p; : Q x R" — Ry such that
(X)#pn = pr 0. Moreover, SUPp<r<T, ”pt”LF(]P’x;L) < Ap,To-

The proofs are similar to the arguments of [15, Theorem 3.4] and are omitted
here. To show that (X;)o<;<7, solves the Itd SDE (1.1), we need the following

preparation.
)d,u =0

)du =0.

kli>rrolo lox —ollz2ay =0 and klgrolo b — b”Lz‘i(,u) =0.

Lemma 2.9. We have

lim E < sup / [ox(X¥) — o (X;)]dB;
R" 0

k—o00 0<t<Ty

and

t
| 1uxh — boxojas
0

lim E/ ( sup
k—o00 n \ 0<t<T,

Proof. By elementary calculations, it is easy to show that

Combining these limits with Propositions 2.7 and 2.8, we can finish the proof as
in [15, Proposition 4.1]. L]

For any k > 1, we rewrite the equation (2.6) in the integral form:

t t
XK (x) :x+/ ok(xﬁ)stJr/ br(XX) ds. (2.19)
0 0

When k — 400, by Proposition 2.7 and Lemma 2.9, the two sides of (2.19) con-
verge respectively to X and

X —l—/ o(X,) dBy —l—/ b(Xy)ds.
0 0
Therefore, for almost all x € R?, the following equality holds P-almost surely:

' '
Xi(x)=x —l—/ o (X,)dB; —I—/ b(Xs)ds, forallt €0, Tp].
0 0

That is to say, X; solves SDE (1.1) over the time interval [0, Tp]. Similar to [15,
Proposition 5.6], we can prove the uniqueness of the solution flow on [0, Tp].

Now we extend the solution to any time interval [0, T']. Let 7, B be the time-
shift of the Brownian motion B by Tj and denote by X ,T % the corresponding solution
to the SDE (1.1) driven by 67, B. By the above discussions, {X,T“ OB, x): 0 <
t < To} is the unique solution to the following SDE over [0, Tp]:

t

t
X[ (x) =x+/ o (X (x)) d(QToB)er/ b(X[0(x))ds.
0 0
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For ¢ € [0, Tp], define X;y7,(w,x) = X;°(67,B, X1,(w, x)). Note that X, is
well defined on the interval [0, 27p] up to a (P x u)-negligible subset of 2 x R”.
Replacing x by X7, (x) in the above equation, we obtain

t-‘rT() t+TO
Xipry(x) =x + f o (X(x))dBy + / b(X,(x))ds
0 0

Therefore X; defined as above is a solution to SDE (1.1) on the interval [0, 27p].
Continuing in this way, we obtain the solution of SDE (1.1) on the interval [0, T].
At this stage we can repeat the arguments of [15, Theorem 5.7] to complete the
proof of Theorem 2.3.

3. An intermediate result

In this section we prove a technical result which serves as a bridge between Theo-
rem 2.3 and the main result in Section 4. First we introduce some notations. The
functions o; and b; (i = 1, 2) are the same as in (1.3) and (1.4). We fix some g > 1
and choose @1 > g +n1/2, a > a1 +ny/2. Let

due(x) = (1 + [x[)7¥dx and  dui(x) = (1+ |xi )7 dxy.

Then p (respectively (1) is a ﬁnite measure on R” (respectively R"!). To simplify

the notation we write 61 = 77— +| =1 and oy = lﬁx‘ . bj is defined similarly to o; (i =

1, 2). Our assumptions in this section are:

(H1) o] € W loc,bl € W . lOC;

(H2) [gn, exp [po([divx, (b1~ + 1b1] + 1611% + |Vy,011%)]du < +00 for some
po > 0;

(H3) 02 € le x2,loc? b2 € W X1,X2, loc>

(H4) fRﬂ exp [po([dlvxZ(bz)] + |by| + |62)* + IVX262|2)]dM < o0 for some
po > 0.

Under the conditions (H1) and (H2), we conclude from Theorem 2.3 that there
exists a unique stochastic flow X ; on R" associated to the Itd SDE (1.1) with
coefficients o1 and b1, such that the reference measure 1] is absolutely continuous
under the action of the flow X1 ;. In the next result we show that under the additional
assumptions (H3)—(H4), the following SDE

dX1; =01(X1,)dB; + b1 (X1,) dt, X1,0 =x1,

3.1
dXo; = 02(X1,s, X2,0)dBr +b2( X1, X20)dt, Xp0=1x2

generates a unique flow X; = (X, X»,) on the whole space R”, which leaves
the measure p absolutely continuous. Notice that the hypotheses (H1) and (H3)
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imply 0 = (01,02) € lel”zjz’loc and b = (b1,by) € W;:f,qxz,loc’ therefore the
following theorem can essentially be seen as a special case of Theorem 2.3 (see
also [27, Theorem 2.4] and [15, Theorem 1.3]). The main difference between the
two results is that we no longer require the exponential integrability of the partial

derivatives Vy, o02; the reason for this will become clear in view of (6.4).

Theorem 3.1. Under the assumptions (H1)-(H4), the It06 SDE (3.1) generates a
unique stochastic flow X; of measurable maps on R". Moreover, the Radon—
Nikodym density p; of the flow with respect to the measure . satisfies p; € L' log L'

We shall not give a complete proof to the above result, but only mention some
arguments that are different from those in Section 2. We focus on the existence
part of Theorem 3.1 which needs to regularize the coefficients o1, b1 and o2, b
separately.

Let x; € C(R™,R,) be such that fRnl x1(x1)dx; = 1 and its support
supp(x1) C Bi(1), where Bi(r) is a ball in R"! centered at the origin with ra-
dius r > 0. For k > 1, define xjr(x;) = k™ x1(kx;). Next choose ¥ €
C°(R™, [0, 1]) so that ¥1]|p,1) = 1 and ¥ vanishes outside B1(2). Denote by
Y1 k(x1) = Yr1(x1/k) for k > 1. Now we set

o1k = (01 % x1.0) Y1k bri= (b1 % x1.6) ¥i1.k5
and
02k = (02 % k) Yk,  box = (b2 * xi) V. (3.2)

Here x; and ¥y are the same as in Section 2. Then the coefficients o; x, bix €
C;°(R™) (i = 1, 2). Furthermore, simple computations yield

l'f—’l’;'” < 2161| * X1k 1'_1’;"’;'” < 21b1| * X1k (33)
and |02,k | - D2,k =
T’m < 2|o2| * Xk, ] +’|x| < 2|b2| * xk- (34)
We now consider the 1t6 SDEs
{dx’;,, = o1k (X¥ ) dB; + b (XK ) dr, Xk =xi,
dX5, = oo x(X{,, X5 ) dB + ba s (XY, X5 ) de, X5 ) =xa.

For any k > 1, the above equation determines a unique stochastic flow Xﬁ‘ =
dI(X)pn]
du

s

(X ]1‘ /0 Xlz< ;) of diffeomorphisms on R". Moreover, denoting by ok =
then by Lemma 6.1, we have forany p > 1l and ¢ € [0, T'],

1
1 b p(p+1
||p,’<||Lp<M>su<R")p+l< sup / exp (tp>|ASH [P —1p? AT ")du) , (35)

0<t<T

where oy = (014, 02,k) and by = (b1 k, by k). We give a uniform estimate for the
densities pF.
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Lemma 3.2 (Uniform density estimate). For fixed p > 1, there are two positive
constants Cy p, C2 p > 0 and Ty > 0 small enough such that

k
sup lo; llLr@®xp)
OEISTO

1

_ o . ez
<c, /R exp [Ca.p To(Idive, (D)™ + B1] + 1V 01 + 61 )]dpus
1

. _ - 2 -2 p<pl+l)
x / exp [C2.p To ([divs, (52)]7 + |b2] + |V, 021* + |521%) |1t :
R™M
Proof. Direct calculations give us
IAT 2 < Co(Idive, (0D)? +1611%) * x1.4 + Co(Idive, (02)* +1521%) * xe, (3.6)
and

—AZP < Co(Idive, ()] + 111 + 16117 + [Vay01 ) % X1 4 37)
+ Co([divy, (02)]™ + |b2| + 521> + Vi, 021%) * xk.
Note that |divy, (0;)] < |Vy,0i| (i = 1,2), thus (3.6) becomes
IAT? < Co(IVi, 011 +1611%) * x1.k + Co(IVxy021? + 1621%) * x-
For any ¢ € [0, T], the above inequality plus (3.7) gives us
92| AT 2 — 1p? AP < 2T pPCo(Idive, (b1 + 1b1| + 16112 + [V 01 2) % X1 &
+ 2T pCo([divy, (b2)]1™ + |ba2| + 1521* + |Viy021%) * -
Denote by
®; = 2Tp>Co([divy, (b1 + |bi| +15:* + |Vy,0i1?), i =1,2.

Then @ is a function defined on R"!, while @, is a function on the whole R”. Now
we have by Cauchy’s inequality,

/ exp (1p*| AT P —1p” AT )du < / ePIHIE (P28 4y
Ri’l

n

1 (3.8)

1 1
§|:/ e2<l>|>kxl,kd/{|2|:/ 32®2*X"d,u;|2.

In the following we estimate the two integrals given in (3.8). First we have

(1+ [x[H = A+ [ ) x (1 + xpHee,
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Thus
/ 2Pk 4y S/ L2 @100 () 1 dx; o dxz2 _
n n 1 —a]
I+ fer[D* (1 + |x2]%) (3.9)
= o (R™) 2P
R™
where du(x2) = Wi% is a finite measure on R"2 and A1 (x1) = —ay log(1+

|x1]%). Similar to (2.10), we can show that there is a constant C > 0 such that for
any k > 1,
A(x1) < g x x10@) +C forallx; € R™. (3.10)

Substituting (3.10) into the inequality (3.9) and by Jensen’s inequality, we obtain
/ 2PN 4y < 11 (R™) €€ / O gy
n R™

< 1o (R") e /R , [ETT ) ] dn (3.11)

= o (R") €€ f P duy.
]R"l

The second integral on the right hand side of (3.8) can be treated in a similar way,
thanks to (2.10). Hence

/ 2Ptk gy < o€ / 2% dy. (3.12)

Now combining the inequalities (3.8), (3.11) and (3.12), we finally obtain from the
definition of ®; and &, that

f exp (tp3|A(17k|2 . tpzA;k,bk)dM
]Rn
1
nay ,C+C\3 3 : R L2 2 :
<(n2(R™) %) expl4Tp° Co([divy, (b)]™ +1b1|+1611"+| Vi, 0117){dp
R

- 2
x [ /R exp {47 p*Co([divey (b2)I™ + [Ba] + 1621 + [Vis02l?) | du] :
Substituting this inequality into (3.5), we see that for any & > 1,

k
sup ”pt ”LI’(PXﬂ)
t<T

. _ - - ) 2p(117+1)
< Crp| | exp[CopT(1dive, 001 + 1Bil + 16112 + V1 ?) L duy
R™

x| [ expCa,T(dive, 621 + b2l + 152 + 1V,02%) | dia ,
Rn
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where Cy p, C2,p are two positive constants independent on k and 7. Under the
conditions (H2) and (H4), there exists Ty > 0 small enough such that the quantity
on the right hand side is finite. O

Having Lemma 3.2 in hand, we can follow the line of arguments in Section 2
to prove Theorem 3.1. We omit the details.

4. SDE with partially Sobolev coefficients

In this section we aim at generalizing Theorem 3.1 to the case where the coefficients
o2 and by only have partial Sobolev regularity. More precisely, we replace the
condition (H3) by

). bye Ll (Whe ),

x1,loc x2,loc

(H3) op € L2, (Wl

x1,loc x2,loc

and we shall show that the results of Theorem 3.1 still hold.

To achieve such an extension, we need an a-priori estimate which only involves
partial derivatives of o, and b,. First we introduce some notations. Throughout this
section we fix a pair of functions

o1 :R" - R"@R" and b;:R" — R™

which satisfy the assumptions (H1) and (H2) in Section 3. Under these conditions,
it is known that the following Itd SDE

dXi1;=01(X1,)dB; +b1(X1)dt, Xi0=x1

generates a unique stochastic flow of measurable maps on R”!, which leaves the
reference measure (1 absolutely continuous, as shown in Theorem 2.3.
Let
03,60 :R" > R"Q@R"™ and by, by : R* — R™

be measurable functions, all verifying the conditions (H3'). Denote by
o= (01,00, b=(b1,b2) and & =(01,62), b= (b1, ).

Let X; = (X1, X2,;) (respectively }2', = (X1, )22,;)) be the stochastic flow gen-
erated by the Itd SDE (1.1) with coefficients o and b (respectively & and b).

Lemma 4.1 (A-priori estimate). Suppose that for any t€ [0,T ], the push-forwards
(Xp)pp and (X¢)gp of the reference measure [ are absolutely continuous with re-
spect to itself, with density functions p; and p; respectively. Moreover,

Apr = sup lpller@eu V IoellLeeeu < +00, 4.1)
0<t<T
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where p is the conjugate number of q. Then for any § > 0,

X2 — XolI2
E/ _ log <—2°°T + 1>du
GrNGR )

2
=Crlpr {anaq [H Vi, o LaBGR) T | V02| L2(B@R) T | V02| L2q(3(4R))]
1 -2 1 - ~
T |o2— 62 HLZq(B(R)) + g[”“z - “qu(B(R)) + b2 — o Lq(B(R))] '

where G g and G R are the level sets of X, and X ¢ respectively.

Proof. We follow the idea of the proof of [15, Theorem 5.2] (see also [27, Lemma
4.1]). Denote by & = X, ; — X2 ;. Then &y = 0. By the Itd formula,

dlog(|&* + 8°)
_ 20 [0a(X0) — 5:2(X01dBy) | 2&. br(Xo) — ba(Xy)

&2 + 82 &2 + 82
| Joxo - &(X)[ o 2loaX0) — G (X)T1E | 42)
&7 + 52 (&% + 6%)?

4
=: Zdli (1).
i=l1

Note that the last term is negative, hence we omit it. We shall estimate the other
terms in the sequel.

Let tg(x) = inf{r > 0 : [X;(x)| V |)~(t(x)| > R} for x € R"”. Remark that
almost surely, Gg, Gg C {x : Tg(x) > T} and for any r > 0, {tg > t} C B(R).
Thus by Cauchy’s inequality,

E[/ swp |11(t)|du]§E[/ sup |11(t)|du}
GRrNGRr 0<t<T B(R) 0<t<T AtR
1

2
su(R”)%[ f E( sup |11<r>|2>du].
B(R) 0<t<T ATp

Burkholder’s inequality gives us

T ATR [02(Xt) _ 5'2(5@)]*51
E L) < 16E / | d )
(Oftsfqu/\rR| 1)) ) = ( 0 (&2 + 82)2 1

T ATR _ o~ v 2
_ 16E</ lo2(X;) — 62(X))| dt).
0

‘ 2

B &% + 67
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As a result, by changing the order of integration, we obtain

]E[/ _sup |11(t)|du]

GrNGR 0<t<T

e U E(/T”R l02(Xs) — G2(X0) 2 dt)d T w3
= " e 0 &1 + 82 # '

- = 1
e [ /T (E / 02(X;) — 62(X,)|? dM) dt}z
“"1LJo (tR>1) |&]2 + 82 '

02 (X;) — 52(X,) = 02 (Xy) — 02(X,) + 02 (X)) — 62(X,).

Note that

We have by (4.1) and Holder’s inequality that

loa(X;) — 62(X0)1? 3 2 -
E/ n = E/ (02 — )1y | (Xy)du
rer) | G+ 02 52 {TR>t}| o] X

< E/ 02 — 5275 du
827 Jaw)

=

2
52 ”02 02||L2q(B(R),,U.)'

Since u|pr) < Lalp(r) for any R > 0, where £, is the Lebesgue measure on R”,
we obtain

4.4)

2% X0 Apr, e
E/{rR>r} &% + 82 = ;2 lo2 = &2l 20 )

Next on the set {tp > t}, we have X;, X; € B(R), hence |X; — )~(,|]Rn = |X2: —
Xo g < 2R. As (Xp)#p < pand (Xq)pp <, we can apply Lemma 6.2(i) to
get

|02(X1) — 02 (X)| < Cy| X2 — Xot| (M2,2R|Viy02|(X0) + M2 2| Vi,02|(X0)).

Thus

E / lo2(X¢) — 02(X1)|?
{tr>1} |$t|2 + 82

~ \2
= CﬁzE/ (M2 |V, 02|(Xs) + M2 pR|Vi,021(X1)) " dpa
{tr>1}

<2C2E / (Ma2kIV2y021) (01 + 5r) dit.
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Holder’s inequality gives us
1

2, q
dug4c,%2Ap,T</ (M2,2R|Vx2(;2|)qdu>. 4.5)
B(R)

|02 (X1 =02 (X))
E 2 2
{tr>t} |€t| +6

‘We have

2 2
/ (Ma,28|Vx,000) dpe < / (M2,2R|Viy02) ™ dx
B(R) B(R)

2
< / dx / (MR Vi, 02]) ™ dxs.
B1(R) B>(R)

Recall that B; (R) is a ball in R" centered at the origin with radius R, fori = 1, 2.
Lemma 6.2(ii) gives us

2
/ (M2,2R|Vxy021) " dxy < Cq,nZ/ |V, 0212 duxs.
By(R) B,(3R)

Therefore
2q 2q
(M2,2R|sz(72|) d,lL =< Cq,nz |sz02| dx.
B(R) B(4R)

Substituting this estimate into (4.5), we obtain

1

&\ 02
E lo2(X;) — 02(X))| du=C . A, T(/ V00l dx) 7
(tr>1) &1 + 82 - oemer B(4R)

’ 2
= Cq’nzAp,T ” VXQGZ ”LZ‘I (BAR))"

Combining this inequality with (4.3) and (4.4), we arrive at

EU _ sup IIl(t)IdM}

GrNGRr 0<t<T
1
2

1 1
~ 12 2
S CTA;’T |:8_2 ||G2 - 02||L2q(B(R)) + C(/],n2 ||VX202||L2q(B(4R)):| . (46)

Now we begin estimating the term 7> (¢). We have

r by(X;) — br(X
E[/ sup |12(z)|du] < 2/ []E/ 1b2(Xs) — ba(Xe)] d,u]dt.
GgrNGR 0<t<T 0 GrNGr  (|&]? + 82)2

For x € Gg N Gg, one has )N(t(x) € B(R) forall t € [0, T'], then

by(X;) — ba(Xy) 1 .
Ll 1’|dM§—E |by — bol py dut
GrNGr (|62 + 82)2 5 Jaw 4.7

Ap T
)

E

< b2 — ball La(B(RY)-
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By Lemma 6.2(i) and Holder’s inequality, analogous arguments as for estimating
(4.5) lead to

1ba(X,) — ba(X,)| q
GrGr (&2 +8%)2

< anE/ (MR |Viybol (X)) + Mo og| Vi, bo| (X)) dpe
GrNGpR

E

< CE / (Ma.ax|Visbal) (or + 1) dpt
B(R)
< zcg’nzAp,T||vx2b2||L‘l(B(4R))-

This together with (4.7) gives us

E[ / _ sup |12(t)ldu]
GrNGR 0<t<T

| 4.8)
<2TAp7 (5 b2 — balla Ry + C;’,,,Z ||Vx2b2||L’1(B(4R)))-
Similarly we can show that
E[/ - sup |0 du]
GrNGR 0<t<T (4 9)
1 ~ 12 2 '
< CTAp,T (8—2 ||02 - 62||qu(B(R)) + Cé,nz ||VX2U2||L24(B(4R))> .
Combining the estimates (4.6), (4.8) and (4.9), we obtain the result. O

The a-priori estimate in Lemma 4.1 has some direct consequences. The first
one is the stability of generalized stochastic flow, whose proof is analogous to that
of Proposition 2.7.

Theorem 4.2 (Stability). Suppose there is a sequence of coefficients or j : R" —
R™ @ R" and by ;. : R* — R"2, verifying the conditions (H3") and (H4). Assume
that o3 i (respectively by ) converge to oy (respectively by) in L (R™) (respec-

tively L{IOC (R™)) as k — oo. We also assume that o
Cy:= sup [No2kll 20 ) + 1624l La ()] < 00, (4.10)
and for any R > 0,
Ca.r = sup [ Vayba.kllLaBR)) + V02,4l 120 (B(R)) | < +00. (4.11)

k>1
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Let Xf = X1, Xé,t) be the stochastic flow generated by the Itd6 SDE (1.1) with
the coefficients oy = (01, 02.k) and by = (b1, by k). Suppose that for all k > 1, the

; . d(xk ;
density function ,0,]‘ = (d’—ﬂ)#“ exists and

Ap T :=sup sup ||p,k||Lp([p>XM) < +o00. (4.12)
k>10<t<T

Then there exists a random field X, : @ x R" — C([0, T], R"2) such that
lim E | 1A X5~ Xalloordu=0.
k— 00 R~

Now we are ready to show the existence of generalized stochastic flows to the Itd
SDE (1.1) with partially Sobolev coefficients.

Theorem 4.3 (Existence and uniqueness). Under the assumptions (H1), (H2),
(H3') and (H4), the It6 SDE (1.1) generates a unique stochastic flow X,= (X11,X2.9),
which is well defined on some small interval [0, T1]. Moreover, the Radon—Nikodym
density p; = % exists and satisfies

sup [loellLr@xp) < +00.
0<t<T;

Proof. With the a-priori estimate (Lemma 4.1) in hand, the proof of uniqueness is
simple (cf. [15, Proposition 5.6]). We split the proof of the existence part into three
steps.

Step 1. In this step we shall regularize the coefficients o7, b2, and then apply Theo-
rem 3.1 to get a sequence of stochastic flows.

To this end, we define 02 ; and by x as in (3.2). We remark that there is no need

to regularize the coefficients o and b;. Consider the family of Itd6’s SDE:

dXy, = 01(X1,)dB; + b1 (X1,4) dt, X1,0 = x1, 4.13)

dX5, = ook (X14, X5 ) dB, 4+ ba k(X1 X5 ) dt, X0 = x2. '

Now we check that the regularized coefficients o x and b,  satisfy the conditions

(H3) and (H4) stated at the beginning of Section 3. Under the assumption (H3'),
it is clear that oo € Wy 2 | byy € W9 | hence (H3) is verified. Now we
show that there is p; > 0 small enough such that

/ exp { p1([dive, (02,017 + b2kl + 524 1* + |Vay02417) } die < +00,

02k
+lxl*

- b . _
where by \ = %Iﬁcl and 02 x = j In fact, we have

[divy, (62,01 < ([diva, (52)]~ +2C|b2]) * xx
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and
|V, 004> < C(IViy021* + [3217) * .

These estimates together with the inequalities (3.4) give us

[divy, (b2)1™ 4 |bak| + 1624 1% + [ Vey02.4 ]
< 2C ([dive, (b2)]™ + |b2] + [521* + |Vi,001%) * - (4.14)

Now similar to the proof of Lemma 2.6, we can show that
/ exp {p([divy, (02,017 + 1b2,k| + 152.k1> + [V, 004[7) } dit
S/ exp {2pC ([divy, 0)]™ + 2| + 1621* + [Vi,001) # xx}dp (4.15)
o : - A =~ 12 2
<3 [ exp 2pC (v 021" + b2l +1628 + V10

where C > 0 is independent on k > 1. Hence when p < p; := po/2C, the right
hand side is finite; in other words, the condition (H4) is also satisfied.

Next, since o1 and b; satisfy (H1) and (H2), we can apply Theorem 3.1 to
conclude that for every k > 1, the Itd SDE (4.13) generates a unique stochastic flow
X f = X1, X]2(, ;) which leaves the reference measure p absolutely continuous,
and by Lemma 3.2, there is Ty small enough such that the Radon—Nikodym density

k

k
K= S5 pas the following estimate: for all 1 < Tp,

k
loF lLrx )

. _ — - b 2p(;+1)
<Cip . exp {C2,p To([divy, (b1)]™ + |b1] + 15117 + |V, 0117) Jdpe
ni

. _ = _ 2 2 2p(111+1)
X exp {C2,p To([diva, (b2,0)] 7+ |b2k| + 162,417 + | Viy02.4]7) Jdpe .
Rn

Since p; does not depend on k, Ty can also be chosen to be independent of
k > 1. Substituting the estimate (4.14) into the above inequality and by an analo-
gous argument of (4.15), we can find two constants C| » C) b > Oand 77 < Ty,

still independent on k, such that for all ¢ < T7,
Il of lLr@xp)

/ / . - 115 =12 2 m
<Ci,| [ ew{Ch, T liv o1 +ibr i1 P19 P )
nl .

1
2p(p+1)

x [ / exp {C5 , Ti ([diva, (b2)]™ + |b2| + |52l + |VX202|2)}du]
Rn
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Step 2. We show in this step that the family of flows (X f )k>1 are convergent in
some sense. For this purpose we check the conditions of Theorem 4.2. First, by
Remark 2.2(ii), the inequality (2.14) shows that (4.10) is satisfied. Next by (4.16),
we see that under the assumptions (H2) and (H4),

Ap1y =sup sup [|pfllLr@xp < +00, (4.17)
k>10<t<T)

which is nothing but (4.12). It remains to check (4.11). Direct computations lead to
Vi,b2.k] < [Vaybol * xi +2C b2 * xi.-

Thus

[ Vabalfar=c, [ [(Vabal ) + (Bl 60 )ar. @9
B(R) B(R)

By Jensen’s inequality,

/ Vi, b k! dx < Cq/ (| Vi, b2|? + |b2|?) * xa dx
B(R) B(R)

q 7|14
< Cq[ Vi, ”Lq(B(R—H)) +Cq ||b2||Lq(B(R+1))'
Therefore

sup | Vi, b2 kllLaB(r)) < +00.

k>1
Analogously, we can show that sup;~; [|Vx,02 k[l 124 (p(ry) < +00. Hence (4.11) is
also satisfied. By Theorem 4.2, there exists X, : 2 x R" — C([0, T1], R"?) such
that

k— 00

lim E/ LA|IX5 = X5 llo.; d = 0. (4.19)

Step 3. In the last step we prove that the random field X; = (X1, X2,) is the
stochastic flow generated by the Itd SDE (1.1). First the same proof as that of Propo-
sition 2.8 shows that there exists a family {p; : 0 < ¢ < T} of density functions
such that (X;)su = p;u for any ¢ € [0, T1]. Moreover supg<;<7, lotllLr@xp) <
Ap 1, where A, 7, is defined in (4.17).

Thanks to (4.19), we have the following analogues of Lemma 2.9:

)du =0
)dM:O.

t
lim E( sup / [02.6(X5) — 02(X)|dB,
R? 0

k— 00 0<t<T

and

t
lim E( sup / [bz,k(Xf) — by(X;)]ds
Rn 0

k—o00 0<t<T
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With the above two limit results in hand, we let k goes to 4-00 in the following
equation

t t
Xé,t = X2 +/ UZ,k(Xf) dB; +/ bz,k(Xf) ds
0 0
and conclude that X, is the flow generated by (1.1). 0

Following the arguments of Section 2, we can finally extend the flow X, to any
time interval [0, T']; moreover, the push-forward (X;)#u = p;p and the density
function p, € L'log L'.

5. Weak differentiability of generalized stochastic flow

Using the results of the preceding section, we intend to prove in this section that
the generalized stochastic flow associated to the Itd SDE with Sobolev coefficients,
for which the existence and uniqueness were established in Theorem 2.3 (see also
[15,25,27]), is weakly differentiable in the sense of measure, as in [18].

First we introduce some notations and assumptions. Let d, m > 1 be integers.
Suppose we are given a matrix-valued function o : R — R™ ® R and a vector
field b : RY — R?. B, is an m-dimensional standard Brownian motion. We
consider the following It6’s SDE

dX;(x) =0 (X;(x))dB; + b(X;(x))dt, Xo(x) =x. (5.1)

In this section we write X, (x) to stress the initial condltlon of the stochastic flow.
Fixg > 1l and a; > d/2. We denote by duuq(x) = (1 —l— |x| )~ dx which i 1s a finite
measure on R?. We still write & (respectively b) for T +| 7] (respectlvely [EuTT |) Our
assumptions in this section are:

(AD) o € W2 and b € W7,

loc °

(A2) [raexp[po([div(®)]™ +1bl + |5|*> + |Vo|*)] duy < +oo for some pg > 0.

By Theorem 2.3, we see that under the assumptions (A1) and (A2), the SDE (5.1)
generates a unique stochastic flow X, of measurable maps on R“, such that the
reference measure (41 is absolutely continuous under the flow. In order to prove the
weak differentiability of the map X, : R? — R?, we need one more condition:

(A3) [ra e”!VPldu; < 400 for some py > 0.

We follow the line of arguments in [18, Section 4]. Consider the Itd6 SDE on

R,
dX;(x)=0(X;(x))dB; + b(X;(x)) dt, Xo(x)=x,
dY;(x,y)= [VG(Xz(X))]Yz(X’)’) dBt+[Vb(Xt(x))]Yt(xsy) dr, Yo(x,y)=y.

(5.2)
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As mentioned for the case of ODE in [18, Section 4], the above system of equations
should be the limit of a system obtained by perturbing the initial condition of the
first equation. That is, for ¢ > 0, we may consider

dX;(x +ey) =0(X;(x +ey))dB; + b(X;(x +¢ey))dt, Xo(x+¢ey) =x+¢y.
Combining this equation together with (5.1), we obtain a system:

dX;(x) = o (X;(x))dB; + b(X,(x)) dt, Xo(x) = x,
d[Xt()H‘Sy)—Xt(X)] — o(Xi(xtey))—o (X (x)) dB, (5.3)

€ B
+b(Xz (X+€yi)*b(Xz (x)) dt, Xo(X+6yE)*X0(X) —

y.
Now it is clear that the system of equations (5.2) should be the limit in a certain
sense of the above system as ¢ — 0.

We now interpret both systems (5.2) and (5.3) as the 1t6 SDE with partially
Sobolev coefficients studied in Section 4:

dX1; =01(X1,)dB; + b1 (X1,) dt, X1,0 = x1,
dXo; = 02(X1t, X2,0)dB; + b2(X1 1, X2,p) dt, X320 = x2.

where x = (x1, xp) € R" x R" and nq + np = n. In fact,

o for system (5.2), we set x; = x,x2 = y,n; = ny =d, X1, = X4, X0, =
(ViXy)y, o1 =0,by =band op = (Vy0)y, by = (ViD) y;

e for system (5.3), we introduce the parameter ¢ > 0 and set x; = x,x; =
y,np = ny = d,Xl,t = X;,X;t = w,al = O’,b] = b an
of = o(x+sy8)fa(X)’ by = b(x+ey£)fb(X)'

In the following we shall show that the two systems (5.2) and (5.3) interpreted as

above verify the conditions of Section 4, and that the stochastic flows associated

to (5.3) are convergent to that of (5.2) as ¢ — 0. To this end, we shall fix « >

21 4 g + d /2 throughout this section. The reason for this special choice of o will

become clear in the following proofs. Denote by

dxidxy
(1 + x> + [x22)

dp(xr, x2) =

Then p is obviously a finite measure on R?¢. We first prove:

Lemma 5.1. Under the assumptions (A1)—(A3), both systems (5.2) and (5.3) sat-
isfy the conditions (H1), (H2), (H3') and (H4).

Proof. First, note that for both systems (5.2) and (5.3), the conditions (H1) and (H2)
on o] and b; are exactly the same assumptions (A1) and (A2) for o and b. In the
following we check the hypotheses (H3") and (H4) for the two systems under the
additional assumption (A3) on the drift vector field b.
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(1) We first treat the system (5.2). Since o2(x1,x2) = (Vo(x1))x, we have
Vx,02(x1, x2) = Vo (x1), hence for any R > 0,

/ dx, / (o201, x2) 27 + [Viy02 (1, x2) ) dxz
Bi(R) B>(R)

<[ an / (IV0 ()P 2 + Vo (e [29) ds
Bi(R) By (R)

< +R2‘1)Ede/ Vo (x1)|% dx; < +o0.
B1(R)

Recall that B;(R) is a ball in R% = R9 centered at the origin with radius R (i =

1,2), and £ is the volume of unit ball in R. Hence o> € Li? loc(lez’zlgc). In the

same way we can show that by € Lzl’loc(W;;’lOC). As aresult, (H3') is satisfied.

Next note that divy, (b2)(x1, x2) = div(d)(x1) which is independent on x; €
R"2 = R9. Since by(x1, x2) = (Vb(x})) x2, we have

- Vb(x1)) xz
|b2(x1, x2)| = Ki) < |Vb(x))|;
1+ |(x1, x2)]
similarly |62(x1, x2)|*> < |Vo(x1)|?. Moreover, |Vx202(x1,x2)|2 = |Vo(x))|%.

Combining these facts, it is clear that the assumptions (A2) and (A3) imply that o,
and b, satisfy the condition (H4) for some p; € (0, pol.

(2) Now we deal with the second system (5.3). First we show that b5 € Lfl | Oc(lez’ql OC)
for any ¢ < 1. By Fubini’s theorem,
& q _ —q q
/ dxl[ |5 (x1,x2)|? dxo = dxz/ e ?|b(x;+ex2) —b(x)| dx;.
Bi(R) By(R) By (R) Bi(R)
54

For any fixed ¢ < 1 and x, € B>(R), by the pointwise characterization of Sobolev
functions, we have for a.e. x; € R"1,

|b(x1 + ex2) — b(x1)| < Cqelxal(Myxy | VD|(x1 + x2) + M5y |VB|(x1)). (5.5)
Therefore
/ e b (x1 + exp) — b(x1)|? dx;
B1(R)

< Cy,qlx2|? /B " [(Myx,)IVDI(x1 + £x2))T + (M), | VB (x1))?] dixy.
1
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For ¢ < 1 and |x2| < R, by the maximal function inequality,
/ (Myxy) VD] (x1 + £x2))7 dx :f (Myxy) VDI () du
Bi(R) ex2+ B (R)
<[ (el blw)
B1(2R)
<Cj q / [Vb(u)|? du.
" JBIGR)

Consequently,
/ e79|b(x1 + ex2) — b(x1)|? dx1 < Cy qx2| f |Vb(u)|? du.
Bi(R) Bi(3R)

1

Substituting this inequality into (5.4), we easily see that

q ~ d q
sup 5 (k) dx /;MR) \b;(m,xz)\ dxy < CyyZqR ™ ||Vb||L4(Bl(3R)) < 400,

O<e<l

where T, is the volume of the unit ball in R?. Therefore, bg € LZI loc (L?C2 loc

since V., b5 (x1, x2) = Vb(x1+ex2),itis easy to show that Vy,b5 € LZI loc (Lz2 1OC).

). Next,

Hence the assertion follows. In the same way we can show that o3 € L™ (Wl’zq )

x1,loc x2,loc
for any ¢ < 1. Thus we have finished verifying (H3").
The verifications of (H4) for o5 and b5 are more complicated. First we have
divy, (b5)(x1, x2) = div(b)(x1 + ex2). Hence for p > 0,

dive. (b1~ ePldivd) (x1+ex2)]™
K= / Pl I 4y (xy, x0) = f dXZ/ 3 5 dxi.
R2d Rd rd (1 + [x1|% + |x2]%)

Making the change of variable | = x| 4 ¢x2 in the inner integral leads to

ePldivd) (u)]™
Kl,sZ/ de/ 3 5 du;.
Rd Rd (1 + |uy — exa|= + [x2]9)¢

When ¢ < 1/2, one has |u1|2 <2lu; — exz|2 + 2|8)C2|2 <2lu; — sxz|2 + |xz|2/2,
thus

1+ uy —exa> + x2)? = (1+ [ug >+ |x2?) /2. (5.6)

Therefore

ePldiv®) )]~
Kl,s §2af Mz/ 3 3 du1
RY rd (1 + [ur]® + |x2]9)¢

< 2% s (RY) / ) PO DT qp (uy),
R
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where dpy = (1 4 |x2]>)*1 =% dx; is a finite measure on R”2 = R¢. Therefore by
(A2),if p < po, we have

sup f Pl 01”4 < 4o, (5.7)
e<1/2 JR

We now prove that fde eP 165 du < +oo for p sufficiently small. In fact,
\b(x1+£x2) b(xp)|
Pl exl’ e }
e du = 3 5 dx;.
R2d Rd R (14 [xq]% + [x2]5)*

Again by the pointwise inequality (5.5), we get

eP|5§| du
R2d

/dx/ CXP{PCd(Mm\IVbI(M+SX2)+M|x2|IVb|(X1))}dx
Rd I A+ 51 2+ D)

(5.8)

1.

We first estimate the term

K / /‘ exp pCdM|X2||Vb|(x1 +8x2)}
e Rd Rd (1 4+ [x1]? + |x2]?)«

1-

Similar to the treatment of K ¢, changing the variable and by (5.6), we have for all
e<1/2,

ex CuM . |Vb|(u
Ky, <2 / / p{pCa 2|xz\| |2( 1)}du1
Rd Rd (I + Jur|= + |x2|9)“

< o - e ePCaMixy IVBIuD) g,y i
= /Ra (1+|x2|2)°‘ @ /Rd #1()

where the measure w1 is defined at the beginning of this section. We split the right
hand side into two parts:

d
K <2° G2 [ opCaMiag VB g ()
(i<t (1 + 2= Jpa 5o
dX2 .
¢ — PCaMivy) Vb (uy)
i -/{IXz>1} (1 + |x22)e— /Rd ePm el Vdpr (ur).

Denote the two terms by Kéls) and Kézs) respectively. Now we are going to apply

Lemma 6.3. In the present case, A(z) = (1 + [z|%)™ (z € RY) and § = 1 or |x2].
It is easy to show that for any § > 1,

1+ (k + 1)282
A():Su ( +( +)

ay
1+ (k— 1)282) = (L+a88,

k>1
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Thus for |x3| > 1, an application of (6.7) gives us

/R[ ePCaMix,|IVD dpg < /Rd (1 + pCdM|xZ||Vb|) dps

(5.10)
+ 6 X Sd(l + 4|x2|2)a1 / e2pCd\Vb| dMl
R4
By Cauchy’s inequality and (6.6), we obtain
1
d 2
/ M)y, IVb|dpy < [MI(R )/ (M, IVDI) dl/vl:|
R4 R4

3 (5.10)

< [24 x 541 R (1 + 4l )™ / | IVblzdm}
R

2
= CUIIVDIl 200 (1 + 4lx2?) ™2

(1)

Substituting (5.11) into (5.10), we can find some positive constant Cp, 4 > 0 such
that

depCdM‘XZHVbl d“/] < Cp,d(l +4|x2|2)a1 /d62pcd|Vb| d“/l
R R

Therefore

1+ 4|x%)"
K §2°‘Cp,d</ 20Cal VPl dm)/ (|—;|a)—ozldx
Re lal>1 (14 |x2]?)

Since @ > 2« + d /2, the second integral is finite. As a result,

sup K < 2a@p’d/ 2PCalVhl gy
e<1/2 R4

By (A3), we see that when p < po/(2Cy), the right hand side is finite. Notice that
Kéle) <2%y /Rd ePCaMIVEIE) ) (uy),

where X is the Volume of the d-dimensional unit ball. In the same way we can

prove that sup, . K2 . < toofor p < po/(2C4). Substituting these estimates
into (5.9), we conclude that if p < po/(2Cq), K> . is bounded uniformly in & <
1/2. In the above discussions, we have indeed proved

ex CiMi.,|Vb|(x
/ / p{pCa 2|xz|| |2( 1)}dx1 - oo,
Rd Rrd (1 + |x1]% + |x2]5)®
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Therefore an application of Cauchy’s inequality to (5.8) gives us that for any p <
po/(4Ca),

sup / e””;i‘d,u < 4o00. (5.12)
e<1/2 JR

Analogously, we can show that when p is small enough, it holds

sup / Pl du < +o0. (5.13)
e<1/2 JRM

Finally, since V,, 028 (x1,x2) = (Vo)(x1 + exz), we follow the arguments for esti-
mating K . and arrive at

2
sup / PVl dy < 400
e<1/2 JRX

for p sufficiently small. Combining this estimate with (5.7), (5.12) and (5.13), we
conclude that o5 and b5 satisfy the condition (H4), uniformly in ¢ € (0,1/2]. [

By Lemma 5.1, we can apply the main result of Section 4 (Theorem 4.3) to both
systems (5.2) and (5.3). Therefore, the system (5.2) (respectively (5.3)) generates
a unique stochastic flow Z;(x,y) = (X;(x), Y;(x,y)) (respectively Zi(x,y) =
(X:(x), e71(X; (x + £y) — X;(x)))); moreover the Radon-Nikodym densities p; =

d
uniform estimate in Lemma 5.1, Ty does not depend on & < 1/2) such that

W and p; = w exist, and there is a 7p > 0 small enough (note that by the

Ap1y = ( sup ”/Ot”LP(Px;L)) \/( sup  sup ”pf”L/’(]P’X/L)) < o0, (5.14)

0<t<Ty £<1/20<t<Ty

where p is the conjugate number of g. Next we want to prove that Y7 (x, y) =
e (X (x + ey) — X;(x)) is convergent to Y;(x, y) in a certain sense, following the
idea of Theorem 4.2.

Theorem 5.2. Under the assumptions (A1)—(A3), we have for any T > 0,

. - _
11mE/RZd1/\ s =Y pdu=0.

e—0

Proof. First we show that

lim E/de LAfYe =Y 7 dr=0. (5.15)

e—0

The proof is similar to that of Theorem 4.2, and we shall apply Lemma 4.1 to show
the convergence. It is easy to see that for any R > 0,

|V, 2 ”Lq(B(R)) + [ Vx,02 ”qu(B(R)) < +o0.
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Notice that we already have the uniform density estimate (5.14), hence it only re-
mains to check the following conditions:

Ci1:= sup (||02€||L24(m + ||b§||qu(M)) < 400 (5.16)

e<1/2

and 5
of - opin LL(R*) and b5 — by in L] (R*). (5.17)

By Remark 2.2 and (5.12), (5.13), we easily deduce that C; defined in (5.16) is
finite. Next, since o3 (x1, xp) = ZEFI=CN) and gy (x1, x3) = (Vo (x1)) x2,
the convergence o; — o7 in leoqc (R24) follows from the fact that o € WI})’Czq (RY).
Similarly we conclude that b5 converge to b, in Lfoc (R??). Hence the convergences
in (5.17) are verified. Now we are ready to follow the line of the proof of Theorem
4.2 to obtain the convergence (5.15).

Finally we can use the flow properties of Z; = (X;, Y;) and Z; = (X;, Y{) to
extend the convergence to the whole interval [0, T']. ]

This theorem shows that the generalized stochastic flow associated to the Ito
SDE (5.1) is weakly differentiable in the sense of measure, provided that its co-
efficients o and b satisfy the assumptions (A1)-(A3). Note that if o and b are
globally Lipschitz continuous, then they fulfil (A1)—(A3). In this case, however,
our result is weaker than that in [6], where the authors proved that almost surely,
the map X, : RY — R is almost everywhere differentiable with respect to the ini-
tial data for any time, by using the theory of Dirichlet form. In [20, Section 5], we
considered the Stratonovich SDE with smooth diffusion coefficient o and Sobolev
drift coefficient b, and proved the approximate differentiability of the generalized
stochastic flow by using the Ocone-Pardoux decomposition, which essentially re-
duces the problem to prove the differentiability of the flow generated by some ODE
with random Sobolev coefficient.

6. Appendix

In this section we present some results that are used in the paper. We assume the
coefficients o : R" — R™ @ R" and b : R" — R” of the Ito SDE

dX, =o0(X;)dB, +b(X,)dt, Xo=x (6.1)

are smooth and bounded together with their derivatives of all orders. Here By is still
an m-dimensional standard Brownian motion. Then the above equation generates a
stochastic flow X, of diffeomorphisms on R".

First we recall the expression for the Radon—Nikodym density of the stochastic
flow with respect to some reference measure. Let A € C 2(R") and define a measure
on R” by

du(x) = *®dx.
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It is well known that the push-forward (X;)#u (respectively (X, ! )#i) of w by the

flow X, (respectively the inverse flow X, 1y is absolutely continuous with respect
to . Denote by

1
d[(X) ] () and () = d[(X; D]

au i (x).

pr(x) =

We have the following simple identity:

pe ) = 1/5(X; (). 62)

Moreover by [17, Lemma 4.3.1], a simple computation gives us (see also [27,(3.6)])

t
Br(x) = exp ( /0 (A7 (X,(x)), dBy) + fo

t

AP (X)) ds), (6.3)
in which

AY =div(o) +0*Vi and AT’ =div(b) + L — %{v(;, (Vo)*).
Here by div(o) = (div(o"l), ey div(o"m)) we mean the R"-valued function

whose components are the divergences of the columns of o; o* is the transpose
of o and L is the second order differential operator associated to (6.1):

1 & . L

Lh = 3 Z a’9;0;r + Zb’aik
i,j=l1 i=1

with a¥/ = Y1, 0%/ and 9; ) = %)\. Finally

n

5 (Biajk)(ajaik).

(Vo. (Vo)*) = i(va"" (Vo)) = i b

k=1 k=1i,j=1

From this expression, we see that if the first nj-rows o] = (o'l Vi<i<n;,1<j<m only

depend on the variables x; = (x!, ..., x™), then
m ni . . n . .
(Vo, (Vo)*) = Z( > (@0 (9;6™)+ D (a,-of")(ajo”‘))
k=1 \ij=1 iy j=ni+1 64
= (Vxlol, (Vxlal)*> + (V)Qaz, (VXZO'Q)*>,

where xo = (x"1+1 .. x") and o, consists of the last (n — n;)-rows of the matrix

o. Notice that the derivatives Vy, 07 are not involved here. This observation is
crucial for the present work.

The following is an L?-estimate for p;(x) which is proved in [27, Lemma 3.2]
(see also [15, Theorem 2.1] for the case where u = y,, is the standard Gaussian
measure).
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Lemma 6.1. Assume that f(R") < +o00. Then foranyt € [0, T] and p > 1,

)1/p(p+l)

2 b
||pt||Lp(ﬂ»xmsu(R")l/@*”( sup / exp (1p3| A | — tp? ATP)dp
te[0,T]1 JR®

(6.5)

In the following we introduce the pointwise inequality for partially Sobolev
functions. To this end, we need the notion of locally maximal function for partial
variables. As in the introduction, n = n{+n, and for x € R"”, we write x = (x1, x2)
where x; € R™ and xp € R"2. Let f : R x R"2 — R be locally integrable. For
almost every x; € R"!, define

M R f(x1,x2) = sup ][ | f(x1, y2)| dy2
O0<r<RJ B(x2,r)

1

= sup f fGr,y0)|dys, R >0,
0<r<R Enz (BZ(xZa I‘)) By (x2,1) | |

Here B, (x2,r) means the ball in R"2 centered at x, with radius r, and £, is the
Lebesgue measure on R"”2. Recall that B;(r) is the ball in R" of radius r centered
at the origin, i = 1, 2. The main point of the first result in the next lemma lies in
the fact that the exceptional set N is chosen to be a negligible subset of R”.

Lemma 6.2.

(1) Suppose that f : R" x R"2 — R belongs to the space Lylcl,loc(WJclé}loc)' Then
there is a dimensional constant C > 0 (independent of ) and a negligible set
N C R" xR"2, such that for all (x1, x3), (x1, y2) ¢ N with |x;—y2|r2 < R,

it holds

| f(x1, x2) = fx1, y2)l
< Clxa — y2lrn [ M2, RV, f1(x1, X2) + M2 g Vi, f1(x1, y2) .

Gi) If f € L{;C(Rnl x R") for some p > 1, then there is a constant Cp, 5, > 0

such that

/ (Mo, g f (x1,%2))" dx2 < Cppy / | f (1, x2) [P dxa.
By(r) Br(r+R)

Proof. (i) Here we present a proof based on the well-known pointwise inequality
for Sobolev functions. Let
> O} ,

N= {(xl x2) €R" :x;eR™ and  limsup
Ly (B)—0,x2€B

ﬁf(xl,yz)dm—f(xl,xz)
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where the limit is taken over all balls B C R"2 such that x; is contained in B. N is
a measurable subset of R”. We see that for all x; € R"!, the section
> 0}.

Since f € L! (Wl’1 ), there is an £, -negligible set Ny C R"™, such that

x1,loc x2,loc
1

xp,loc”

le = {xz eR™:  limsup
Ly, (B)—0, x2€B

]i fx1, y2)dys — f(x1, x2)

for every x; ¢ Np, one has f(x1,-) € whl In particular, f(x1,-) € L

xp,loc” ~
Lebesgue’s differentiation theorem gives us L,,(Ny,) = O for all x; ¢ N;. By
Fubini’s theorem we have

L,(N) = /R L, (Ny,) dx; = 0.
n

Define N = N U(N; x R"2). We see that £,,(N) =0. Now fix any (x1,x2), (x1,) ¢
N with |x3 — y2|gm2 < R. Since x| ¢ N1, we have f(xq,-) € W;clé,lloc' By the point-
wise inequality of Sobolev functions (see e.g. [2, page 186] or [15, Theorem A.1]),
there exist a constant C,, > 0 such that for all us, vy ¢ N v, With |[u2 —v2|pm < R,

it holds
| f(x1, u2)— f (x1, v2)| < Cluz—va|rna [ Ma, g | Vi, £1(x1, u2)+ Mo g| Vi, f1(x1,02)].

Now the result follows by noticing that x, y» ¢ N,, and le C Ny, .

(i) This is obvious from the properties of maximal functions. O

The next result is similar to Lemma 6.2(ii), but the integral is taken with respect
to some other reference measure. Perhaps such a result already exists, but we are
unaware of its reference. We present its proof for the reader’s convenience. Suppose
we are given a continuous A € C(R", (0, +00)) such that du = Adx is a finite
measure on R”. Fix § > 0. For every positive integer k, we denote by Ry := {x €
R"™: (k—1)8 < |x| < k§}, that is, the ring between the concentric spheres centered
at the origin with radii (k — 1)8 and k4§, respectively. Set

M= sup A(x), A, = inf A(x),
XERk xe(R)s

where (Ry)s is the §-neighborhood of the ring Rj. We shall denote by

A o
0 =Ssup —.
kzll) A

Obviously Ag > 1. If L(x) = ¢(]x]) and for some 8 > 1, ¢ (s) ~ e’ ass — 00,
then A9 = +00. Therefore Lemma 6.3 does not hold for the standard Gaussian
measure.
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1

The local maximal function M; f (x) of a locally integrable function f € L, .

is defined as usual:

1
M = dy = - dy.
Sf(x) = sup ][B Ol s /B ol

O<r<é 0<r<é En

Lemma 6.3. Assume that Ao < +00 and denote by C, = 5"2°p/(p — 1) for
p > 1.Then

[ ot an <3c,n0 [ 1517 an. (66)
R~ R7
As a result, for any 6 > 0,

/ eQMgf dlL <

Proof. Note that

n

A (1+6Msf)du +6 x S"Ao/ 2 ap. 6.7)

/ (Ms f)P du = Z/ (Ms f)P du < Zxk/ (Ms )P dx. (6.8)
R? k=1"Y Rk k=1 Ry

Next we follow the idea of [23, Chap. I, Section 1] to show that for any p > 1,

(M )P dx < C, f 1P de, 69)

Ry (R)s

where C, = 2P5"p/(p — 1). Indeed, for any s > 0, we define Ri(s) = {x € Ry :
Ms f(x) > s} (note that s — L, (Ri(s)) is the distribution function of Mj f when
restricted on Ry ). Then similar to the argument on [23, pp. 6—7], we have

2 x 5"

La(Ri(s)) < /
S (Ri)sN{1 f1>s/2}

| f)Idy. (6.10)

Next it is easy to show that

(Msf)Pdx = p / Oosf’“ﬁn(Rus»ds.
0

Ry

Substituting (6.10) into the above equality and changing the order of integration,
we finally get
5"2Pp
[ otprac=2Z2 [ jropray.
Ry p— (Ri)s

Now by (6.9) and the definition of A; , we have

C
/(Maf)deEA—pf \£1P du.
Ry Lk J(Ri)s
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Substituting this inequality into (6.8), we obtain

[Lonpran=c, 3 [ rvan=scn [ 1517 dn
R" (Ri)s

kl—k

Finally, by expanding the exponential function, we have

X pk
/ e9M5fd/L=/ <1+9M5f>du+29—/ (Ms /)" de. (6.11)
n Rn k=2 k! R~

Applying the inequality proved above, we get, for any k > 2,

5"2% k noA Hk+l k
(Maf) dp = 3A0 [f17dp <3 x 5" Ap2 LfI" de.
k—1 Jgn R
Therefore,
k n (29)k k n 2011
Zk' (M5 ) du=6x5 AOZ |f| dpu<6x5"Ag € du.
k=2 !
The proof is completed by substituting this inequality into (6.11). O
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