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Vortex dynamics for the two-dimensional non-homogeneous
Gross-Pitaevskii equation

ROBERT L. JERRARD AND DIDIER SMETS

Abstract. We derive the asymptotical dynamical law for Ginzburg-Landau vor-
tices in an inhomogeneous background density under the Schrödinger dynam-
ics, when the Ginzburg-Landau parameter goes to zero. New ingredients include
lower bounds and approximations across the vortex cores.
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1. Introduction

We are interested in the two-dimensional Gross-Pitaevskii equation

i@t u �1u +

1
"2

⇣
V (x) + |u|2

⌘
u = 0 (GP)

for u : R2 ⇥ R+
! C, where 0 < " ⌧ 1 and V : R2 ! R+ is a smooth potential

such that
V (x) ! +1 as |x | ! +1.

The Gross-Pitaevskii equation is a widely used model to describe the dynamics of
a Bose-Einstein condensate in a trapping potential V . The equation on R2 arises
via dimension reduction from 3 dimensions; this has been justified for particular
choices of V in [1] for example.

Equation (GP) is Hamiltonian, with Hamiltonian given by

E",V (u) =

Z
R2

|ru|2

2
+

1
"2

 
V (x)

|u|2

2
+

|u|4

4

!
.
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Another quantity which is preserved by the flow associated with (GP) is the total
mass M , given by

M(u) =

Z
R2

|u|2.

For each m > 0, there exists1 at least one positive ground state ⌘ ⌘ ⌘",m : R2 !

R+ of total mass equal to m. By definition, a ground state ⌘ realizes the infimum

E",V (⌘) = inf
n
E",V (g), g 2 H1

⇣
R2, C

⌘
, M(g) = m

o
,

and satisfies the Euler-Lagrange equation

�1⌘ +

1
"2

⇣
V + ⌘2

⌘
⌘ =

1
"2
�⌘,

where we write the Lagrange multiplier as 1
"2
� for some � ⌘ �",m .

In the limit " ! 0, we have

⌘2 ! ⇢T F in L2
⇣
R2

⌘
,

where the function ⇢T F , known as the Thomas-Fermi profile in the physics literature,
is given by ⇢T F(x) := (�0 � V )+(x) where the number �0 is uniquely determined
by the mass condition Z

R2
(�0 � V (x))+ dx = m.

We will study the behaviour of solutions of (GP) which correspond, in a sense to
be made precise later, to perturbations of the ground state ⌘ by a finite number of
quantized vortices, each carrying a single quantum of vorticity. Our goal is to prove
that these vortices persist, and to describe their evolution in time.

We will show that to leading order the vortices do not interact, and that each
one evolves (in a renormalized time scale) by the orthogonal gradient flow for the
function log ⇢T F , with a sign depending on the winding number of the given vortex.
More precisely, let

�T F :=

�
x : ⇢T F(x) > 0

 
be the interior of the limiting support2 of the ground state, let {b0i }

l
i=1 be distinct

points in �T F , and let d1, . . . , dl 2 {�1,+1}. For each i 2 {1, · · · , l}, we denote
by bi (t) the solution of the ordinary differential equation

ḃi (t) = di
r

?⇢T F

⇢T F
(bi (t)) , (1.1)

where r
?

=

�
� @x2, @x1

�
, with initial datum bi (0) = b0i .

1 We refer to Section 9 for the details on a number of statements regarding the ground states
which we state without justification in this introduction.
2 Note that we do not assume that �T F is simply connected or that its boundary is smooth.
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Theorem 1.1. Let (u0")">0 be a family of initial data for (GP) such that

M
⇣
u0"

⌘
= m,

E",V
⇣
u0"

⌘
 E",V (⌘) + ⇡

lX
i=1

⇢T F

⇣
b0i
⌘

|log "| + o (|log "|) ,

and

curl

 
j (u0")
⇢T F

!
�! 2⇡

lX
i=1

di�b0i in W�1,1
loc (�T F),

as " ! 0. Then, as long as the points {bi (t)}li=1 remain distinct,

curl
✓
j (ut")
⇢T F

◆
�! 2⇡

lX
i=1

di�bi (t) in W�1,1
loc (�T F),

as " ! 0, where ut" := u"(·, t |log "|).

Here, j (ut") := (iut",rut") where (z, w) := Im(zw̄). Therefore,

1
2
curl

✓
j (ut")
⇢T F

◆
=

1
2
curl j

✓
ut"

p

⇢T F

◆
= J

✓
ut"

p

⇢T F

◆

is the Jacobian determinant of ut"/
p

⇢T F . It is widely recognized, in the present
regime for the Ginzburg-Landau energy, that the notion of a vortex of winding
number di located at the point bi (t) is appropriately described by the presence of
the term 2⇡di�bi (t) in the limit of the vorticity field curl j

�
ut"/

p

⇢T F
�
.

Remark 1.2. Note that the ordinary differential equations (1.1) are decoupled.
Also, since ⇢T F(bi (t)) = ⇢T F(b0i ) for any t 2 R the points {bi (t)}li=1 remain dis-
tinct for all times unless two of them are located on the same level line of ⇢T F and
have opposite circulations.

Results of this sort in the homogeneous case ⌘ ⌘ 1 were first proved in the late
1990s, see [5, 6], and have subsequently been developed by a number of authors,
see for example [2, 11, 15]. The point of this paper is thus to understand the effect
of the inhomogeneity on the dynamical law for the vortices.

We remark that a number of authors have studied questions about vortex dy-
namics in inhomogeneous backgrounds for parabolic equations [12, 14], or more
recently [19] for a quite general class of equations of mixed parabolic-Schrödinger
type. The case of pure Schrödinger dynamics presents distinct difficulties and as far
as we know has not been treated until now.

The sequel of this introduction is devoted to the presentation of the strategy
leading to Theorem 1.1. We notice that will actually prove a result (Theorem 1.3
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below) which is stronger in two respects than Theorem 1.1: first it describes the dy-
namics of vortices at small but fixed value of ", rather than asymptotically as " ! 0
in Theorem 1.1, and second it applies to a broader class of inhomogeneous equa-
tions (see (NHG) below) where ⌘ need not necessarily be the profile of a ground
state.

1.1. Perturbation equation and Theorem 1.3

For the class of initial data which we consider in Theorem 1.1, it is convenient to
rewrite the corresponding solutions of (GP) in the form

u(x, t) = ⌘(x)w(x, t) (1.2)
and to study the evolution equation for w. One easily checks that if u is a solution
to (GP), then w solves

i⌘2@tw � div
⇣
⌘2rw

⌘
+

1
"2
⌘4

⇣
|w|

2
� 1

⌘
w = �

�

"2
⌘2w.

In particular, the change of phase and time scale

v(x, t) = exp
✓
i
�

"2
t

|log "|

◆
w

✓
x,

t
|log "|

◆

leads to the equation

i |log "|⌘2@tv � div
⇣
⌘2rv

⌘
+

1
"2
⌘4(|v|

2
� 1)v = 0 (NHG)

for v. Note that the change of time scale is related to the fact that the phenomenon
which we wish to describe, namely vortex motion, arises in times of order one in
that new time scale (see the definition of ut" in the statement of Theorem 1.1).

Our analysis will henceforth focus on equation (NHG). Equation (NHG), like
(GP), is Hamiltonian, with Hamiltonian given by the weighted Ginzburg-Landau
energy

E",⌘(v) ⌘

Z
R2
e",⌘(v) =

Z
R2
⌘2

|rv|
2

2
+ ⌘4

�
|v|
2
� 1

�2
4"2

. (1.3)

As a matter of fact, using the Euler-Lagrange equation for ⌘, one realizes that

E",V (u) = E",V (⌘) + E",⌘(v) +

�

2"2
⇣
M(u) � M(⌘)

⌘
. (1.4)

In the sequel, we enlarge our framework and consider equation (NHG) where ⌘ :

R2 ! R is any smooth positive function such that the corresponding Cauchy prob-
lem is globally well-posed for initial data in H1(R2, ⌘ dx) and such that the corre-
sponding solutions can be approximated by smooth solutions3. In particular, under
those assumptions the energy E",⌘ is preserved along the flow of (NHG).

3 This can be verified for a wide variety of weight functions ⌘, but we wish not consider that
discussion here since we already know by means of the change of unknown (1.2) that it satisfied
when ⌘ is a ground state.



VORTEX DYNAMICS FOR INHOMOGENEOUS GP EQUATION 733

Let " > 0 and let� ⇢ R2 be a bounded open set. Let {a0i }li=1 be distinct points
in �, and let d1, . . . , dl 2 {�1,+1}. For each i 2 {1, · · · , l}, we denote by ai (t)
the solution, as long as it does not reach @�, of the ordinary differential equation

ȧi (t) = dir? log ⌘2 (ai (t)) , (1.5)

where r
?

= (�@x2, @x1), with initial datum ai (0) = a0i .
We assume that ⌘min := infx2� ⌘(x) > 0, and we fix a time Tcol > 0 such that

⇢min := min
t2[0,Tcol]

min

(⇢
1
2
d(ai (t), a j (t))

�
i 6= j

[ {d(ai (t), @�)}i [ {1}

)
>0. (1.6)

Finally, we consider a finite energy solution v of (NHG), we set vt := v(·, t) and
we define, for t 2 [0, Tcol],

r ta := kJvt � ⇡
lX

i=1
di�ai (t)kW�1,1(�), (1.7)

and

6t
:=

E",⌘(vt )
|log "|

� ⇡
lX

i=1
⌘2(ai (t)). (1.8)

We will deduce Theorem 1.1 from:

Theorem 1.3. There exist positive constants "0, �0 and C0, depending only on l,
⌘min, ⇢min, and kr⌘2kL1(�), such that if 0 < "  "0 and if 60 + r0a  �0, then

r ta  r0a +

✓
60 + r0a +

log |log "|
|log "|

◆⇣
eC0t � 1

⌘
+ C0"

1
2 , (1.9)

as long as t  Tcol and 60 + r ta(t)  �0.

Remark 1.4. i) As we shall discuss in Section 1.2 below, the quantity r ta , which is a
sort of discrepancy measure, can be thought of as measuring the distances between
the “actual vortex locations” and the desired vortex locations. The quantity 6t ,
multiplied by |log "|, corresponds to the excess of energy of the solution v with
respect to an energy minimizing field possessing the vortices at the points ai (t).
Notice that since E",⌘ is preserved by the flow for v and ⌘2 is preserved by the flow
for the a0

i s, we have 6
t
⌘ 60, 8 t 2 [0, T ].

ii) Theorem 1.3 is interesting for initial data such that 60 + r0a is small. The exis-
tence of such data is standard. For example, if we fix f : [0,1) ! [0, 1] such that
f 0

� 0, f (0) = 0, and f (s) ! 1 as s ! 1, then for the initial data

v0(z) :=

lY
i=1

f
✓

|z � ai |
"

◆ 
z � a0i
|z � a0i |

!di
, x := (x1, x2) ⇠

= z = x1 + i x2,
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one can check that 60  C|log "|�1, r0a  C". In any case, (1.9) contains the
error term in log |log "|/|log "| which implies that (1.9) only yield the inequality
60 + r ta  �0 for times at most of order log |log "|.

iii) One could supplement the claims of Theorem 1.3 with closeness estimate for
j (v) to a reference field j⇤ of very simple form. This would follow from an ap-
plication of Corollary 5.2 below; however at the level of approximation which we
have adopted here it is only meaningful in a neighborhood of size o(1/|log "|) of
the vortex core.

1.2. Elements in the proofs

Under the conditions that will prevail throughout most of this paper, we will be able
to identify points ⇠ t1, . . . ⇠

t
l and a number r

t
⇠ such that

�����Jvt � ⇡
lX

i=1
di�⇠ ti

�����
W�1,1(�)

 r t⇠  "1/2 ⌧ r ta. (1.10)

This is expressed in Proposition 4.1 below, and entitles us to think of ⇠ ti , i =

1, . . . , l as being the “actual locations of the vortices” in vt , up to precision of
order  r t⇠ . Admitting this interpretation, then basic facts about the W

�1,1 norm,
recalled in Section 2, imply that

r ta =

1
⇡

(1+ o(1))
lX

i=1

��⇠ ti � ati
�� (1.11)

is essentially the aggregate distance between the actual vortex locations and the
desired vortex locations, as remarked above.

Heuristic considerations also suggest that if vt is a function with vortices at
points ⇠ t1, . . . , ⇠

t
l (or more precisely, if (1.10) holds), then

E",⌘(vt ) ' ⇡ |log "|
�
1� o(1)

� lX
i=1

⌘2
�
⇠ ti
�
. (1.12)

Hence E",⌘(vt )�⇡ |log "|
Pl

i=1 ⌘
2(⇠ ti ) corresponds to energy that is not committed

to the vortices, and this energy in principle can cause difficulties for our analysis.
From (1.10), (1.11), we have

E",⌘(vt ) � ⇡ |log "|
lX

i=1
⌘2(⇠ ti )  |log "|

✓
6t

+

1
⇡

(1+ o(1))
��
r⌘2

��
1
r ta
◆

 |log "|
⇣
60 + Crta

⌘
.

(1.13)
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For our analysis, it suffices to use estimates in the spirit of (1.13) that are a little
weaker than those suggested in (1.13), these are established in Proposition 3.1.
We expect from (1.12) and (1.13) that control of r ta should yield a good deal of
information about vt . This is expressed in Proposition 5.1, where we compare
j (vt ) to a reference field j t

⇤
. An important feature of that approximation is that it

holds across the vortex core.
In order to control the evolution in time of r ta , we rely on some evolution equa-

tions satisfied by smooth solutions of (NHG). Conservation of energy is a conse-
quence of the identity

@t e",⌘(v) = div
�
⌘2(rv, vt )

�
, (1.14)

and the canonical equation for conservation of mass can be written

|log "|
2

@t
�
⌘2(|v|

2
� 1)

�
= r ·

�
⌘2 j (v)

�
. (1.15)

The vorticity Jv satisfies an evolution equation that it is convenient to write in
integral form:

d
dt

Z
�
' Jv

=

1
|log "|

Z
�

 
✏l j'xl

⌘2xk
⌘2

"
vx j · vxk + � jk

⌘2

"2
�
|v|
2
� 1

�2#
+ ✏l j'xk xlvx j · vxk

! (1.16)

where ' is any smooth, compactly supported test function and "l j is the usual anti-
symmetric tensor. This follows from the fact that Jv =

1
2curl j (v) together with the

equation for the evolution of j (v), which is obtained from (NHG) after multiplying
by rv and rewriting the result.

Identity (1.16) is central to our analysis of vortex dynamics, as in previous
works [2, 5, 6, 11, 15] on the homogeneous case (for which of course (1.16) still
holds, with ⌘ ⌘ 1). Under the conditions that Jv is approximately a measure of
the form ⇡

Pl
i=1 di�⇠i (t), where ⇠i (t) are the vortex locations and di 2 {±1} their

signs, one expects the left-hand side of (1.16) to satisfy

d
dt

Z
�
' Jv ⇡

d
dt

Z
�
'
⇣
⇡
X

di�⇠i (t)
⌘

⇡

d
dt

⇣
⇡
X

di'
�
⇠i (t)

�⌘

= ⇡
X

dir'(⇠i (t)) · ⇠̇i (t).

Assuming that this holds, then to understand the vortex velocities ⇠̇i , it only suf-
fices to understand the right-hand side of (1.16). It turns out that it also suffices
to consider test functions ' that are linear near each vortex. For such test func-
tions, in the homogeneous case r⌘2 ⌘ 0, the integrand on the right-hand side of
(1.16) is supported away from the vortex locations, and one is thus able to control
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vortex dynamics by controlling terms of the form vxi · vx j away from the vortex
cores. This argument is a key feature of all existing work on vortex dynamics in the
homogeneous case.

When r⌘2 6= 0, it becomes necessary to control terms like vxi · vx j across the
vortex cores. Carrying this out, in particular relying on the approximation given
by Proposition 5.1, is the main new point in our analysis. Once this is established,
the whole argument is completed by using a Gronwall type argument on a quan-
tity related to r ta , namely 60 + g(r ta), where the function gb is defined in (3.1).
This demonstrates in particular that the new information found in Proposition 5.1 is
strong enough to close the estimates and conclude the proof.

2. A useful lemma

We frequently use the W�1,1 norm. The specific convention we use is in our defi-
nition is

��µ��
W�1,1(�)

:= sup
n
hµ,'i : ' 2 W 1,1

0 (�),max
�
k'k1, kr'k1

 
 1

o
.

In this paper, we will only use this norm on measures or more regular objects,
although of course it is well-defined for a somewhat larger class of distributions.

The following lemma, which we will use numerous times, is an easy special
case of classical results (see [3] for example).

Lemma 2.1. Suppose that � is an open subset of Rn , and that {ai }li=1 are distinct
points in �. Define ⇢a := min{{12 |ai � a j |}i 6= j [ {d(ai , @�)}i [ {1}}. Given any
points {⇠i }

l
i=1 in � and {di }li=1 2 {±1}l , if

�����
lX

i=1
di� (ai � ⇠i )

�����
W�1,1(�)



1
4
⇢a, (2.1)

then (after possibly relabelling the points {⇠i }
l
i=1),

�����
lX

i=1
di�

�
ai � ⇠i

������
W�1,1(�)

=

lX
i=1

��ai � ⇠i
��. (2.2)

In the remainder of this paper, we will always tacitly assume that under the condi-
tions of the lemma, the points ⇠i are labelled so that the conclusion holds.

We give a short proof for the reader’s convenience.
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Proof. For i = 1, . . . , l, define 'i (x) := di (12⇢a � |x � ai |)+.
Then max(k'ik1, kr'ik1) = max(12⇢a, 1) = 1, for every i , so

�����
lX

i=1
di� (ai � ⇠i )

�����
W�1,1(�)

�

*
lX
j=1

d j
�
�a j � �⇠ j

�
,'i

+

=

⇢a
2

�

X
j
di d j

⇣⇢a
2

� |⇠ j � ai |
⌘

+

.

Then (2.1) implies that {⇠ j }
l
j=1 \ B(ai , ⇢a/2) is nonempty for every i . Since

{B(ai , ⇢a/2)}li=1 are pairwise disjoint, it follows (after possibly reindexing) that
{⇠ j }

l
j=1 \ B(ai , ⇢a/2) = {⇠i } for all i . Now let ' =

P
i 'i . The functions {'i }

have disjoint support, so max(k'k1, kr'k1) = 1, and thus k

Pl
i=1 di�(ai �

⇠i )kW�1,1(�) � h

Pl
i=1 di (�ai � �⇠i ),'i =

Pl
i=1 |ai � ⇠i |. On the other hand, if

 is any compactly supported function such that max(k k1, kr k1)  1, then
*

lX
i=1

di
�
�ai � �⇠i

�
, 

+


lX
i=1

�� (ai ) �  (⇠i )
��


lX
i=1

��ai � ⇠i
��.

Hence k

Pl
i=1 di�(ai � ⇠i )kW�1,1(�) 

Pl
i=1 |ai � ⇠i |.

3. Relating weighted and unweighted energy

In this section, we relate the weighted and unweighted energy under some lo-
calization assumptions on the Jacobian. For a measurable subset A ⇢ R2 and
v 2 Ḣ1(A, C) we set

E",⌘(v; A) :=

Z
A
e",⌘(v) and E"(v; A) := E",1(v, A).

Define the function g on R+ by

g(x) =

8>><
>>:
x +

|log x |
|log "|

if x >
1

|log "|
1+ log |log "|

|log "|
otherwise.

(3.1)

We have

Proposition 3.1. Let � ⇢ R2 an open set, {ai }li=1 distinct points in �, {di }li=1 2

{±1}, and ⌘ : � ! R a positive Lipschitz function such that inf� ⌘ =: ⌘min > 0.
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Set ⇢a := min{{12d(ai , a j )} i 6= j [ {d(ai , @�)}i [ {1}}, and let "  exp(� 8
⇢a

) and
v 2 Ḣ1(�, C) be such that

6a :=

 
E",⌘(v)

|log "|
� ⇡

lX
i=1

⌘2(ai )

!
+

< +1. (3.2)

Assume also that

ra :=

�����Jv � ⇡
lX

i=1
di�ai

�����
W�1,1(�)



⇢a
8

. (3.3)

Then there exists a constant C , depending only on l, kr⌘2k1 and ⌘min, such that

E"̃(v; B(ai , R))

|log "̃|
 ⇡ + C

�
6a + g(ra)

�
for i = 1, . . . , l

E"̃(v;� \ [
l
i=1B(ai , R))

|log "̃|
 C

�
6a + g(ra)

� (3.4)

where R = 4max(ra, |log "|�1) 
⇢a
4 and "̃ :=

"
⌘min

, and the function g is defined
in (3.1).

Proof. Let r 2 [ ra, ⇢a
8 ] be a number that will be fixed later. Then the balls

{B(ai , 4r)}li=1 are disjoint and contained in�. Let i 2 {1, · · · , l}; by monotonicity
of the W�1,1 norms with respect to the domain, we deduce from (3.3) that

kJv � ⇡di�ai kW�1,1(B(ai ,4r)  ra  r.

It follows from the lower bounds estimates of Jerrard [8] or Sandier [18] that

E�
�
v, B(ai , 4r)

�
� ⇡ log

4r
�

� K1, (3.5)

for every � > 0, where K1 is a universal constant. We next write

E",⌘(v, B(ai , 4r)) =

Z
B(ai ,4r)

⌘2(x)
|rv|

2

2
+ ⌘4(x)

(|v|
2
� 1)2

4"2

�

Z
B(ai ,4r)

⌘2(x)

2
64 |rv|

2

2
+

(|v|
2
� 1)2

4
⇣

"
⌘min

⌘2
3
75

�

✓
inf

x2B(ai ,4r)
⌘2(x)

◆
E"̃

�
v, B(ai , 4r)

�
.

(3.6)
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Therefore, from (3.5) with the choice � = "̃, and noting that | log r | � log |
⇢a
8 | �

log 8 � 1, we obtain

E",⌘
�
v, B(ai , 4r)

�
� ⌘2(ai )⇡ |log "| � K2 (r |log "| + |log r |) , (3.7)

where K2 depends only on kr⌘2k1 and ⌘min.
On the other hand, we deduce from (3.2) and (3.7) that

E",⌘
�
v,B(ai ,4r)

�
 E",⌘(v,�) �

X
j 6=i

E",⌘
�
v, B(a j , 4r)

�

⇡⌘2(ai )|log "|+6a|log "|+(l�1)K2 (r |log "|+|log r |) .

(3.8)

Hence, going back to (3.6) we obtain

E"̃
�
v, B(ai , 4r)

�


1�
infx2B(ai ,4r) ⌘

2(x)
�E",⌘�v, B(ai , 4r)

�
 ⇡ |log "̃| + K3

�
6a|log "| + r |log "| + |log r |

�
,

(3.9)

where K3 depends only on l, kr⌘2k1 and ⌘min.
Concerning the energy outside the balls B(ai , 4r), we have from (3.2) and (3.7)

E",⌘(v,� \ [i B(ai , 4r)) = E",⌘
�
v,�) �

X
i
E",⌘(v, B(a j , 4r)

�

 6a|log "| + lK2 (r |log "| + |log r |) .

(3.10)

Hence,

E"̃(v,� \ [i B(ai , 4r)) 

1
inf ⌘2

E",⌘
�
v,� \ [i B(ai , 4r)

�
 K4

�
6a|log "| + r |log "| + |log r |

�
,

(3.11)

where K4 depends only on l, kr⌘2k1 and ⌘min.
The function r 7! r+| log r |/|log "| is minimized taking r := max

�
ra, 1

|log "|
�
,

in which case r 
⇢a
8 by assumption on ra and ". The conclusions (3.4) follow with

the choice C := max(K3, K4).

Remark 3.2. If we define 6̃a :=

E",⌘(v)
|log "| � ⇡

Pl
i=1 ⌘

2(ai ) , then (3.7) implies that

6̃a �

X
i

 
E",⌘

�
v, B(a j , 4r)

�
|log "|

� ⇡⌘2(ai )

!
� � lK2

✓
r +

| log r |
|log "|

◆

for every r 2 [ra, ⇢a8 ]. Choosing r = max(ra, 1
|log "| ) as above, we find that 6̃a �

�lK2g(ra). In particular, 6a = (6̃a)
+

 6̃a + 2lK2g(ra). So all our estimates
remain true if we replace C(6a + g(ra)) by C(6̃a + (2lK2 + 1)g(ra)).
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4. Improved localization for Jacobians

In this section, we prove that if the Jacobian of a function v is known to be suffi-
ciently localized, then, provided the excess energy of v with respect to the points of
localization is not to big, the localisation is actually potentially much stronger. A
result in the same spirit was obtained by Jerrard and Spirn in [10] for the Ginzburg-
Landau functional without a weight. Our proof here below makes a direct use of
Theorem 1.1 and Theorem 1.20 in [10] by relating the weighted and unweighted
Ginzburg-Landau energies according to Section 3.

Proposition 4.1. Let � ⇢ R2 be a bounded, open set, {ai }li=1 distinct points in �,
{di }li=1 2 {±1}, and ⌘ : � ! R a positive Lipschitz function such that inf� ⌘ =:

⌘min > 0. Set ⇢a = min
�
{
1
2d(ai , a j )} i 6= j [ {d(ai , @�)}i [ {1}

 
. Let "  exp(� 8

⇢a
)

and let v 2 Ḣ1(�, C) be such that

6a :=

 
E",⌘(v)

|log "|
� ⇡

lX
i=1

⌘2(ai )

!
+

< +1. (4.1)

Also, assume that

ra = kJv � ⇡
lX

i=1
di�ai kW�1,1(�) 

⇢a
16

. (4.2)

Then there exists C1 � 1, depending only on a lower bound for ⇢a and ⌘min and on
an upper bound for l and kr⌘2k1, and for each i 2 {1, · · · , l} there exists a point
⇠i 2 B(ai , 2ra), such that

�����Jv � ⇡
lX

i=1
di�⇠i

�����
W�1,1(�)

 r⇠ ⌘ r⇠ (6a, ra)

⌘ " exp
�
C1

�
6a + g(ra)

�
|log "|

� (4.3)

where g is defined in Proposition 3.1.

Remark 4.2. Note that Lemma 2.1 and (4.2), (4.3) imply that

lX
i=1

��ai � ⇠i
��


1
⇡

(ra + r⇠ ). (4.4)

Remark 4.3. Since g(r) �
log |log "|

|log "| for every r , our requirement that C1 � 1
implies that

r⇠ � "|log "|. (4.5)
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As mentioned, the proof of Proposition 4.1 relies very heavily on estimates from
[10]. Following the proof, we discuss some small adjustments we have made in
employing these estimates here. Also, from here upon in many places we will
denote by C constants whose actual value may change from line to line but which
could eventually be given a common value depending only on l, ⇢min, ⌘min and
kr⌘2k1.

Proof. Since "  exp(� 8
⇢a

), our assumptions imply that the hypotheses of Propo-
sition 3.1 are verified. Then, since B(ai , ⇢a2 ) ⇢ B(ai , R) [ (� \ [

l
i=1B(ai , R)) for

any R < ⇢a
2 , and recalling that g(r) �

log |log "|
|log "| for all r , we deduce from (3.4) that

E"̃
�
v; B

�
ai , ⇢a2

��
log(⇢a2"̃ )



E"̃
�
v; B

�
ai , ⇢a2

��
|log "̃|

✓
1+ 2

| log ⇢a2 |

|log "̃|

◆

 ⇡ + C
�
6a + g(ra)

� (4.6)

for i = 1, . . . , l, and similarly (3.4) implies that

E"̃
�
v;� \ [

l
i=1B

�
ai , ⇢a4

��
|log "̃|

 C
�
6a + g(ra)

�
. (4.7)

According to Theorem 1.20 in [10], it follows from (4.2) and (4.6) that for every
i 2 {1, . . . , l}, there exists some ⇠i 2 B(ai , 2ra) such that��Jv � ⇡di�⇠i

��
W�1,1(B(ai , ⇢a2 ))

 C "̃ exp
⇥
C
�
6a + g(ra)

�
|log "|

⇤
. (4.8)

In addition, Theorem 1.1 in [10] implies that if V is any bounded, open subset of �
then

kJvkW�1,1(V )  C "̃ E"̃(v, V ) exp
✓
E"̃(v, V )

⇡

◆
 C "̃ exp

�
E"̃(v, V )

�
. (4.9)

In particular, this and (4.7) imply that

kJvkW�1,1(�\[
l
i=1B(ai ⇢a4 ))  C "̃ exp

⇥
C
�
6a + g(ra)

�
|log "|

⇤
. (4.10)

Now for i 2 {1, . . . , l}, let �i 2 C1

c (B(ai , ⇢a2 )) be functions such that �i = 1 on
B(ai ⇢a4 ), 0  �i  1, and kr�ik1  C⇢�1

a . Also, let �0 = 1 �

Pl
i=1 �i . Then

for any ' 2 C1

0 (�), such that k'kW 1,1(�)  1,*
', Jv � ⇡

lX
i=1

di�⇠i

+
=

lX
j=0

*
� j', Jv � ⇡

lX
i=1

di�⇠i

+

= h�0', Jvi +

lX
i=1

⌦
�i', Jv � ⇡di�⇠i

↵



lX
i=1

���i'��W 1,1C" exp
⇥
C(6a + g(ra))|log "|

⇤
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where we have used (4.8) for i = 1, . . . , l and (4.10) for i = 0. Thus*
', Jv � ⇡

lX
i=1

di�⇠i

+


C
⇢a
" exp

⇥
C
�
6a + g(ra)

�
|log "|

⇤

 " exp
⇥
C1

�
6a + g(ra)

�
|log "|

⇤
for a suitable C1, depending on the lower bound ⇢0 for ⇢a as well as l, ⌘min,
kr⌘2k1. This implies (4.3).

To facilitate comparison between some facts that we have used above and the pre-
cise statements in [10], we make the following remarks.

First, we have used some estimates in cruder but simpler forms than they
appear in [10]. For example, on the right-hand side of (4.8), we have replaced
an expressions of the form (C + K0)2 exp( K0⇡ ) from [10], where here we take
K0 = C(6a + g(ra))|log "|, by the simpler expression C exp(K0). We have also
used the fact that K0 = C(6a + g(ra))|log "| � log |log "| to allow us to absorb
some lower-order terms from [10].

Second, estimates in [10] are stated in terms of a slightly different norm,
kµkẆ�1.1(V ) := sup{hµ,�i : � 2 C1

c (V ), kr�k1  1}. This does not cause
any problems for us, since clearly kµkW�1,1(V )  kµkẆ�1,1(V ).

Finally, the estimate corresponding to (4.9) in [10] is a special case of a more
general result, and as stated there requires the additional assumption that E"̃(v,V )

|log "̃| <

⇡ . However, since kJvkW�1,1(V )  kJvkL1(V )  2E"̃(v; V ), it is clear that (4.9) is
still true if E"̃(v,V )

|log "̃| � ⇡ .
Remark 4.4. If � is simply connected, then we can alternately argue by citing a
result from [11] to obtain an estimate of the form (4.3) with C1 independent of ⇢a ,
at the rather small expense of having to replace ⇢a

16 on the right-hand side of (4.2)
by some smaller quantity depending on l as well as ⇢a . This is in principle useful
if one wants to consider large numbers of vortices. The relevant result (Theorem
3) from [11] is proved using facts from [10], as in the proof above, but combining
estimates on the balls and away from the balls in a more careful way, to avoid
introducing the factors of ⇢�1

a that arise from the cutoff functions that we have
employed here.

The proof of Theorem 3 from [11] can surely be adapted to yield a similar
result without the assumption that � be simply connected, but since the proof is
slightly complicated, we prefer not to tinker with it here.

5. Across the core approximation by reference field

In this section we prove:

Proposition 5.1. Let� ⇢ R2 be an open set, {⇠i }li=1 distinct points in�, {di }li=1 2

{±1}, and ⌘ : � ! R a positive Lipschitz function such that inf� ⌘ =: ⌘min > 0.
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Set ⇢⇠ = min
�
{
1
2d(⇠i , ⇠ j )}i 6= j [ {d(⇠i , @�)}i [ {1}

 
. Let "  exp(� 8

⇢⇠
) and let

v 2 Ḣ1(�, C) be such that

6⇠ =

 
E",⌘(v)

|log "|
� ⇡

lX
i=1

⌘2(⇠i )

!
+

< +1 (5.1)

and �����Jv � ⇡
lX

i=1
di�⇠i

�����
W�1,1(�)

 r⇠ ⌘ " exp(K |log "|) = "1�K (5.2)

for some K 
1
2 .

Define j⇤ = j⇤({⇠i }, r⇠ ) in � by

j⇤(x) =

8>><
>>:
di

(x � ⇠i )
?

max(r⇠ , |x � ⇠i |)2
if x 2 B

✓
⇠i ,

1
|log "|

◆

0 if x 2 � \ [
l
i=1B

✓
⇠i ,

1
|log "|

◆

where (y1, y2)? := (�y2, y1). Then

E",⌘(|v|) +

1
2

Z
�
⌘2

���� j (v)

|v|

� j⇤
����
2

 (C6⇠ + K )|log "| + C log |log "|, (5.3)

and
kr ⇥ ( j (v) � j⇤)kW�1,1  C3r⇠ . (5.4)

where the constant C depends only on l, kr⌘2k1 and ⌘min.

Since K 
1
2 , the assumption that " < exp(�8/⇢⇠ ) implies that r⇠ < 1

|log "| <
⇢⇠
8 . In particular, the balls B(⇠i , |log "|�1), i = 1, . . . , l are pairwise disjoint and
contained in �.

Proof. We will use more than once the fact that

|rv|
2

= |r|v| |
2
+

���� j (v)|

|v|

����
2
. (5.5)

Step 1: verification of (5.4). A direct calculation, using the definition of j⇤, shows
that for any smooth ',

D
',r ⇥ j⇤ � 2⇡

X
di�⇠i

E
=

lX
i=1

2
r2⇠

Z
B(⇠i ,r⇠ )

di ('(x) � '(⇠i ))  C lkr'k1r⇠ .

Thus kr ⇥ j⇤ � 2⇡
P
di�⇠i kW�1,1(�)  Cr⇠ . Recalling that Jv =

1
2r ⇥ j (v), we

deduce (5.4) from this estimate and our assumption (5.2).
It remains to prove (5.3).
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Step 2: decomposing the energy. Note that our assumptions (5.1), (5.2) about the
points {⇠i }

l
i=1 are exactly the same as the hypotheses (3.2), (3.3) about the points

{ai }li=1 in Proposition 3.1, except that here we impose an additional smallness con-
dition on r⇠ . Thus estimates from Proposition 3.1 are all available here. In particu-
lar, recalling (3.10) with the choice r = max(r⇠ , 1

|log "| ) =
1

|log "| , we see that

E",⌘
✓

v,� \ [i B
✓
⇠i ,

4
|log "|

◆◆
 C(6⇠ |log "| + log |log "|).

In view of (5.5), and noting that j⇤ is supported in [i B(⇠i ,
1

|log "| ) to prove (5.3) it
therefore suffices to show that

E",⌘
✓

|v|, B
✓
⇠i ,

4
|log "|

◆◆
+

1
2

Z
B(⇠i ,

4
|log "| )

⌘2
���� j (v)

|v|

� j⇤
����
2

 (C6⇠ + K )|log "| + C log |log "|

(5.6)

for i = 1, . . . , l. Toward this end, note that

|log "|

⇡⌘2(⇠i ) +6⇠ + C

log |log "|
|log "|

�
(3.8)
� E",⌘

✓
v, B

✓
⇠i ,

4
|log "|

◆◆

(5.5)
= E",⌘

✓
|v|, B

✓
⇠i ,

4
|log "|

◆◆

+

1
2

Z
B(⇠i ,

4
|log "| )

⌘2
���� j (v)

|v|

� j⇤
����
2

+

1
2

Z
B(⇠i ,

4
|log "| )

⌘2 | j⇤|2

+

Z
B(⇠i ,

4
|log "| )
⌘2

✓
j (v)

|v|

� j⇤
◆

· j⇤.

Using the explicit form of j⇤ and of r⇠ ,

1
2

Z
B(⇠i ,

4
|log "| )

⌘2 | j⇤|2 �

1
2

min
B(⇠i ,4|log "|�1)

⌘2
Z
B(⇠i ,

4
|log "| )

| j⇤|2

�

�
⌘2(⇠i ) � Ckr⌘2k1|log "|�1

�
⇡ log

|log "|�1

r⇠

=

✓
⇡⌘2(⇠i ) � C

log |log "|
|log "|

◆
|log "|(1� K ).
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By combining the previous two inequalities and rearranging, we see that to prove
(5.6), it suffices to check that�����

Z
B(⇠i ,

4
|log "| )

⌘2(
j (v)

|v|

� j⇤) · j⇤

�����  C
�
6⇠ |log "| + log |log "|

�
. (5.7)

Step 3: proof of (5.7).
First note thatZ

B(⇠i ,
4

|log "| )
⌘2

✓
j (v)

|v|

� j⇤
◆

· j⇤ =

Z
B(⇠i ,

4
|log "| )

�
⌘2(x) � ⌘2(⇠i )

� ✓ j (v)

|v|

� j⇤
◆

· j⇤

+ ⌘2(⇠i )

Z
B(⇠i ,

4
|log "| )

j (v)

|v|

· j⇤ (1� |v|)

+ ⌘2(⇠i )

Z
B(⇠i ,

4
|log "| )

�
j (v) � j⇤

�
· j⇤ .

We estimate the three terms on the right-hand side in turn. First,
�����
Z
B(⇠i ,

4
|log "| )

⇣
⌘2(x) � ⌘2(⇠i )

⌘✓ j (v)

|v|

� j⇤
◆

· j⇤

�����


C
|log "|

kr⌘2k1

⇣
krvk

2
2 + k j⇤k22

⌘

 C

E",⌘(v)

|log "|
+

⇣
1� K + |log "|�1

⌘�

 C
�
6⇠ + log |log "|

�
,

where we have used the fact that |log "|�1E",⌘(v)
(5.1)
 C(6⇠ + l⇡k⌘2k1) 

C(6⇠ + log |log "|).
Next,

⌘2(⇠i )

�����
Z
B(⇠i ,

4
|log "| )

j (v)

|v|

· j⇤ (1� |v|)

�����
 Ck j⇤k1

Z
B(⇠i ,

4
|log "| )

"

2
��
rv

��2
+

1
2"

�
|v|
2
� 1

�2

 Cr�1
⇠ "E",⌘(v)

 C
�
6⇠ + log |log "|

�
,
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using the lower bound (4.5) for r⇠ and arguing as above.
To estimate the final term, note that j⇤ = r

?h, for

h(x) :=

8>>>><
>>>>:

di

"
1
2r2⇠

�
|x � ⇠i |

2
� 1

�
+ log

�
r⇠ |log "|

�#
if |x � ⇠i |  r⇠

di log
�
|x � ⇠i | |log "|

�
if r⇠  |x � ⇠i |  |log "|�1

0 if x 62 [i B
�
⇠i , |log "|�1

�
.

Thus, we can integrate by parts to find that�����
Z
B(⇠i ,

4
|log "| )

( j (v) � j⇤) · j⇤

����� =

�����
Z
B(⇠i ,

4
|log "| )

h r ⇥

�
j (v) � j⇤

������
 max

�
khk1, krhk1

�
k j (v) � j⇤kW�1,1

 C,

after using (5.4) and noting that krhk1 = k jk1 = r�1
⇠ . This completes the

proof.

It follows from the definitions (4.1) and (5.1) of6⇠ and6a , together with (4.4),
that

6⇠  6a + Cg(ra)

for C depending only on kr⌘2k1. Combining this with Propositions 4.1 and 5.1,
we immediately obtain

Corollary 5.2. Under the assumptions of Proposition 4.1

E",⌘(|v|) +

1
2

Z
�
⌘2

���� j (v)

|v|

� j⇤
����
2

 C
�
6a + g(ra)

�
|log "|, (5.8)

where j⇤ = j⇤({⇠i }, r⇠ ), the points {⇠i }
l
i=1 are given by Proposition 4.1, and the

constant C depends only on l, ⇢a , kr⌘2k1 and ⌘min.

6. Small time upper bound on the speed of vortices

Let C1 be the constant given by Proposition 4.1 corresponding to the lower bound
⇢min (as defined in (1.6)) for ⇢a. Let also "  exp

�
�

8
⇢min

�
. Then the conclusions

of Proposition 4.1, applied to vt with this choice of constants, are available to us
for all 0  t  Tcol. Since the conclusions of Proposition 4.1 remain true if we
increase C1, we may assume that

1
C1



⇢min
8

, (6.1)
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which we do in the sequel. We define the stopping time

Tloc = sup
⇢
t  Tcol ; 60 + g(rsa) 

1
2C1

, 8 0  s  t
�

.

Since the function g satisfies g(r)�r onR+, for t Tloc we have r ta 
1
2C1 

⇢min
16 .

In particular, we may apply Proposition 4.1 to vt , {ai (t)}li=1 and {di }li=1, which
yields points {⇠i (t)} such that
�����Jvt�⇡

lX
i=1

di�⇠i (t)

�����
W�1,1(�)

 r t⇠ ⌘r⇠
�
6t
a, r

t
a
�
⌘" exp

�
C1

�
6t
a+g

�
r ta
��

|log "|
�
, (6.2)

where4

6t
a =

 
E",⌘(vt )
|log "|

� ⇡
lX

i=1
⌘2 (ai (t))

!
+

.

Since t 7! vt |� is continuous in H1(�), it is clear that t 7! Jvt is continuous as a
function from R into W�1,1(�), and hence we can choose {⇠i (t)} to be piecewise
constant, and in particular measurable, as functions of t . Since E",⌘ is preserved by
the flow for v and ⌘2(ai ) is preserved by the flow for the ai ’s, we have 6t

a ⌘ 60.
Note in particular that r t⇠ 

p

" for t < Tloc.

Proposition 6.1. There exist positive constants ⌧0, "0 and C , depending only on l,
⇢min, ⌘min and kr⌘2k1, such that "0  exp(� 8

⇢min
) and if 0 < " < "0 and

60 + g(r ta) 

1
4C1

for some t  Tloc, then Tloc � t + ⌧0 and

kJvs � JvtkW�1,1(�)  C
⇣
|t � s| + r t⇠

⌘
, (6.3)

rs⇠  r t⇠ + C|log "|"1/2
⇣
|s � t | + r t⇠

⌘
, (6.4)

�
ai (s), ⇠i (s)

 
⇢ B

⇣
ai (t),

⇢min
4

⌘
, i = 1, . . . , l (6.5)

for every t  s  t + ⌧0.

4 Proposition 4.1 actually uses a version of surplus energy for which the weighted energy E",⌘
is restricted to �. Since the energy density and the weight are non-negative, our definition of
surplus 6ta here, integrating on the whole R2, yields a larger number, and is therefore compatible
with the claim of the proposition.
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Proof. For the ease of notation in the present proof, k · k is understood to mean
W�1,1(�) while | · | denotes the Euclidean norm on R2.
Step 1. Let t  s  min{Tloc, t + ⌧0}, for ⌧0 to be fixed below. We first use
the fact that Jvs, Jvt are well-approximated by sums of point masses to show that
kJvs � Jvtk can be estimated by computing hJvs � Jvt ,'i for a specific test
function ' with certain good properties (in particular, bounds on second derivatives
of '). Toward this end, note that

��Jvs � Jvt
��



�����Jvs � ⇡
lX

i=1
di�⇠i (s)

����� +

�����Jvt � ⇡
lX

i=1
di�⇠i (t)

�����
+

�����⇡
lX

i=1
di

�
�⇠i (s) � �⇠i (t)

������
 rs⇠ + r t⇠ + ⇡

lX
i=1

|⇠i (s) � ⇠i (t)| .

(6.6)

We now fix ⌧0, depending only on kr⌘2k1, ⌘min and ⇢min, such that if t  s 

t + ⌧0, we have |ai (s) � ai (t)| 
⇢min
8 for all i 2 {1, · · · , l}. By Proposition 4.1,

the choice of Tloc, and Lemma 2.1, for every ⌧  Tloc we have |ai (⌧ ) � ⇠i (⌧ )| 

2r ⌧a 
⇢min
8 . By the triangle inequality, it follows that ⇠i (s) 2 B(ai (t), ⇢min4 ) for all

t  s  min(t + ⌧0, Tloc) and i 2 {1, · · · , l}. Let

'(x) =

lX
i=1

di
(x � ai (t)) · (⇠i (s) � ⇠i (t))

|⇠i (s) � ⇠i (t)|
�
⇣

|x � ai (t)|
⌘
, (6.7)

where � 2 C1(R+, [0, 1]) is such that � ⌘ 1 on [0, ⇢min/4], � ⌘ 0 on [
⇢min
2 ,+1).

By construction and the definition of ⇢min, we have ' 2 D(�) and it follows that

⇡
lX

i=1
|⇠i (s) � ⇠i (t)| =

*
⇡

lX
i=1

di
�
�⇠i (s) � �⇠i (t)

�
,'

+



⇣
r t⇠ + rs⇠

⌘
k'kW 1,1 +

⌦
Jvs � Jvt ,'

↵
.

Combining this with (6.6), we conclude that

kJvs � Jvtk  C(rs⇠ + r t⇠ ) + hJvs � Jvt ,'i, with k'kW 2,1  C⇢�2
min. (6.8)

Step 2. We now deduce from (6.8), together with (1.16), the fact that 60 
1
4C1 ,

and conservation of energy, that
��Jvs� Jvt

��


⇣
r t⇠ + rs⇠

⌘
k'kW 1,1 +(s�t) sup

⌧2[t,s]

���� d
d⌧

Jv⌧
����
W�2,1(�)

k'kW 2,1

 C
⇣
r t⇠ + rs⇠ + |t � s|

⌘
,

(6.9)

for t  s  min(t + ⌧0, Tloc), where C depends only on l, ⇢min, ⌘min and kr⌘2k1.
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Step 3. It remains to estimate rs⇠ and to show that t + ⌧0  Tloc. For that purpose,
since rs⇠ = r⇠ (60, rsa), we first use (6.9) to compute

rsa =

�����Jvs � ⇡
lX

i=1
di�ai (s)

�����


��Jvs � Jvt
��

+

�����Jvt � ⇡
lX

i=1
di�ai (t)

����� +

�����⇡
lX

i=1
di

�
�ai (s) � �ai (t)

������
 r ta + C

⇣
|t � s| + r t⇠ + rs⇠

⌘
.

(6.10)

Next, since s  Tloc,

rs⇠ = " exp
⇣
C1

h
60 + g

�
rsa
�i

|log "|
⌘

 r t⇠ + C1|log "|"
1
2
��g0

��
1

�
rsa � r ta

�
+

 r t⇠ +

1
2C

�
rsa � r ta

�
+

,

(6.11)

provided we assume, and this is again no loss of generality, that C|log "0|"
1
2
0 

1
2C

for the same constant C as in (6.10). Combining (6.10) with (6.11) we obtain

rsa � r ta  C
�
|t � s| + r t⇠

�
. (6.12)

Going back to (6.11), this yields the desired estimate of rs⇠ :

rs⇠  r t⇠ + C|log "|"1/2
�
|s � t | + r t⇠

�
.

Then going back to (6.9),

kJvs � Jvtk  C
⇣
|t � s| + r t⇠

⌘

for t  s  min(t+⌧0, Tloc). Finally, by assumption we have60+g(r ta)  1/(4C1)
so that by (6.12) and the fact that g0

 1,

60+g
�
rsa
�

 1/ (4C1)+C
⇣
|t � s| + r t⇠

⌘
 1/ (4C1)+C

⇣
⌧0 + "

1
2
⌘

 1/ (3C1) ,

provided we assume, and this is no loss of generality, that C(⌧0 + "
1
2
0 )  1/(12C1).

It follows that min(t + ⌧0, Tloc) = t + ⌧0, and the proof is complete.
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7. Control of the discrepancy

In this section, we prove a discrete differential inequality for the quantity r ta.More
precisely, we will prove:

Proposition 7.1. There exist positive constants "0 and C0, depending only on l,
⇢min, ⌘min and kr⌘2k1, such that "0  exp(� 8

⇢min
) and if 0 < " < "0 and

60 + g
�
r ta
�



1
4C1

(7.1)

for some t  Tloc, then

rTa � r ta
T � t

 C0
⇣
60 + g

�
r ta
�⌘

where T = t +

(r t⇠ )
2

"  Tloc.

This is the main estimate in the proof of Theorem 1.3.

Proof. We first require the constant "0 to be smaller than the one appearing in the
statement of Proposition 6.1. As in the proof of Proposition 6.1, we will write
simply k · k to denote the W�1,1(�) norm. Note that the condition (7.1) states
exactly that

r ⇠t  "3/4 (7.2)
and then the definition of T and (6.4) yield

rs⇠  2r t⇠ for all s 2 [t, T ] (7.3)

if C is large enough and "0 small enough, which we henceforth take to be the case.
Moreover, from (6.12), we see that rsa  r ta + C(T � t + r t⇠ ) for all s 2 [t, T ], and
then the choice of T and the definition of g imply that

g
�
rsa
�

 2g
�
r ta
�

for all s 2 [t, T ]. (7.4)

1. First note that

rTa � r ta =

�����JvT � ⇡
lX

i=1
di�ai (T )

����� �

�����Jvt � ⇡
lX

i=1
di�ai (t)

�����
 ⇡

lX
i=1

�
|⇠i (T ) � ai (T )| � |⇠i (t) � ai (t)|

�
+ rT⇠ + r t⇠ (7.5)

 ⇡
lX

i=1
⌫i ·

�
⇠i (T ) � ⇠i (t) + ai (t) � ai (T )

�
+ rT⇠ + r t⇠
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for ⌫i =
⇠i (T )�ai (T )
|⇠i (T )�ai (T )| (unless ⇠i (T ) � ai (T ) = 0, in which case ⌫i can be any unit

vector). We now define

'(x) =

X
i
di⌫i · (x � ai (t))� (|x � ai (t)|)

for � 2 C1(R+, [0, 1]) such that � ⌘ 1 on [0, 12⇢min] and � ⌘ 0 on (⇢min,1). It
follows from (6.5) that (since di 2 = 1 for all i)

⇡
lX

i=1
⌫i ·

�
⇠i (T ) � ⇠i (t) + ai (t) � ai (T )

�

= ⇡
lX

i=1
di
h
'(⇠i (T )) � '(⇠i (t)) � '(ai (T )) + '(ai (t))

i
,

so that (7.5) and the definition of rT⇠ imply that

rTa � r ta  h', JvT � Jvt i � ⇡
lX

i=1
di
h
'(ai (T )) � '(ai (t))

i

+ C(rT⇠ + r t⇠ ).

(7.6)

2. The remainder of the proof is devoted to an estimate of h', JvT � Jvt i. First,
using (1.16),

D
', JvT � Jvt

E
=

Z T

t

@

@s
⌦
', Jvs

↵
ds

=

1
|log "|

Z T

t

Z
�

 
✏l j'xl⌘

2
x j

�
|v"|

2
� 1

�2
4"2

+ ✏l j'xk xlv",x j · v",xk

!

+

Z T

t

Z
�
✏l j'xl

⌘2xk
⌘2

v",x j · v",xk
|log "|

.

(7.7)
We immediately see from (5.8) that

�����
1

|log "|

Z
�

 
✏l j'xl⌘

2
x j

�
|v|
2
� 1

�2
4"2

!�����  C
⇣
60 + g

�
rsa
�⌘

(7.8)

for every s 2 [t, T ]. Moreover, it follows from (6.5) that B(⇠i (s); 4|log "|�1) ⇢

B(ai (t), 12⇢min) if "0 is small enough, and the definition of ' implies that 'xi x j = 0
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in [
l
i=1B(ai (t), 12⇢min), so (3.4) implies that

1
|log "|

Z
�

��✏l j'xk xlv",x j · v",xk
��
 C

1
|log "|

E"
⇣
v;� \ [B

⇣
⇠i , 4|log "|�1

⌘⌘

 C
⇣
60 + g

⇣
rs⇠
⌘⌘

 C
⇣
60 + g

�
rsa
�⌘

(7.9)

for every s 2 [t, T ].
3. We now decompose the remaining term in (7.7). For every s 2 [t, T ], let5
j s
⇤

= j⇤({⇠i (s)}, r t⇠ ) be the approximation to j (vs) obtained in Proposition 5.1.
Note that

v",x j · v",xk = |v"|x j |v"|xk +

j (v) j

|v|

j (v)k
|v|

where for example j (v) j = (iv, @x j v) denotes the j th component of j (v). Thus,
adding and subtracting j s

⇤
in various places, and writing  jk as an abbreviation for

✏l j'xl
⌘2xk
⌘2
, we have for every s 2 [t, T ],

Z
�
 jk

v",x j · v",xk
|log "|

=

Z
�
 jk

�
j s
⇤

�
j
�
j s
⇤

�
k

|log "|

+

Z
�
 jk

1
|log "|

"✓
j (v)

|v|

� j s
⇤

◆
j
( j s

⇤
)k +

✓
j (v)

|v|

� j s
⇤

◆
k
( j s

⇤
) j

#

+

Z
�
 jk

1
|log "|

"
|v"|x j |v"|xk +

✓
j (v)

|v|

� j s
⇤

◆
j

✓
j (v)

|v|

� j s
⇤

◆
k

#
.

(7.10)

We immediately dispense with the easiest terms by using (5.8) to see that
Z
�
 jk

1
|log "|

"
|v"|x j |v"|xk +

✓
j (v)

|v|

� j s
⇤

◆
j

✓
j (v)

|v|

� j s
⇤

◆
k

#
C

⇣
60+g

�
rsa
�⌘

(7.11)

for every s 2 [t, T ].
4. We next consider the first term on the right-hand side of (7.10), which is the term
that yields the dominant contribution. Since j s

⇤
is supported in[i B(⇠i (s), |log "|�1),

clearly
Z
�
 jk

�
j s
⇤

�
j
�
j s
⇤

�
k

|log "|
=

lX
i=1

Z
B(⇠i (s),|log "|�1)

 jk

�
j s
⇤

�
j
�
j s
⇤

�
k

|log "|
.

5 Note that the regularization scale r t⇠ is fixed for s 2 [t, T ].
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For each i = 1, . . . , l, if x 2 B(⇠i (s), |log "|�1), then |x � ai (s)|  |log "|�1 +

rsa + rs⇠ , by (4.4), so for every s 2 [t, T ],

�����
Z
B(⇠i (s),|log "|�1)

�
 jk(x) �  jk (ai (s))

�� j s⇤� j � j s⇤�k
|log "|

�����
 kr jkk1

⇣
|log "|�1 + rsa + rs⇠

⌘
k j s

⇤
k
2
2

|log "|

 C
⇣
|log "|�1 + rsa + rs⇠

⌘
,

using the explicit form of j s
⇤
, which (together with the definition (6.2) of rs⇠ ) also

implies that

Z
B(⇠i (s),|log "|�1)

�
j s
⇤

�
j
�
j s
⇤

�
k

|log "|
=

⇡

|log "|
� jk

 
log

1
rs⇠

� log |log "| +

1
4

!

= ⇡� jk
⇣
1� C1

⇣
60 + g(rsa)

⌘⌘
+ O

✓
log |log "|

|log "|

◆
.

Combining the above computations and recalling that g(r) � max
⇣
r, log |log "|

|log "|

⌘
for all r and that g(rsa) � rs⇠ for s  Tloc, we conclude that

Z
�
 jk

�
j s
⇤

�
j
�
j s
⇤

�
k

|log "|
= ⇡

X
i
 kk (ai (s)) + O

⇣
C1

⇣
60 + g

�
rsa
�⌘

= ⇡
d
ds

 X
i
di' (ai (s))

!
+ O

⇣
C1

⇣
60 + g

�
rsa
�⌘

.

(7.12)

In the last line we have used the definition  kk = ✏lk'xl@xk (log ⌘2) = r' ·

r
?(log ⌘2) together with the ordinary differential equation (1.5) satisfied by the

points ai (·).

5. Combining (7.6), (7.7), (7.8), (7.9), (7.10), (7.11), and (7.12), and recalling (7.3),
(7.4), we find that

rTa � r ta  C(T � t)
�
60 + g(r ta)

�
+ Crt⇠

+

Z T

t

Z
�

 jk

|log "|

✓
j (v)

|v|

� j s
⇤

◆
j

�
j s
⇤

�
k dx ds (7.13)

+

Z T

t

Z
�

 jk

|log "|

✓
j (v)

|v|

� j s
⇤

◆
k

�
j s
⇤

�
j dx ds.
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We now begin to control the integrals on the right-hand side above. We will consider
only the first one, since the estimate of the second one is identical. First,Z T

t

Z
�

 jk

|log "|

✓
j (v)

|v|

� j s
⇤

◆
j

�
j s
⇤

�
k dx ds

=

Z
�

 jk

|log "|
�
j t
⇤

�
k

Z T

t

✓
j (v)

|v|

� j s
⇤

◆
j
ds dx (7.14)

+

Z
�

Z T

t

 jk

|log "|
�
j s
⇤

� j t
⇤

�
k

✓
j (v)

|v|

� j s
⇤

◆
j
ds dx .

We claim thatZ
�

Z T

t

 jk

|log "|
�
j s
⇤

� j t
⇤

�
k

✓
j (v)

|v|

� j s
⇤

◆
j
dsdx  C(T � t)

⇣
60+ g

�
r ta
�⌘

. (7.15)

Using the Cauchy-Schwarz inequality, (5.8), and (7.4), we see that it suffices to
prove thatZ

�

�� j s
⇤

� j t
⇤

��2 dx 

⇣
60 + g

�
r ta
�⌘

|log "| for every s 2 [t, T ].

Toward this end, we fix some such s, and we introduce the notation

⇠̄i :=

1
2
�
⇠ ti + ⇠ si

�
, � := rs⇠ + r t⇠ +

lX
i=1

|⇠i (t) � ⇠i (s)| .

Our choice of T and (6.3) imply that �  C
(r t⇠ )

2

" . Writing Bi := B(ai (t), ⇢min2 ), we
deduce from (6.5) and the support properties of j⇤ thatZ

�

�� j t
⇤
� j s

⇤

��2 dx =

lX
i=1

Z
Bi

�� j t
⇤
� j s

⇤

��2 dx .
For each i , B(⇠̄i , � ) ⇢ B(⇠i (t), 2� ) \ B(⇠i (s), 2� ), so by an explicit computation,
and recalling (7.3) and the definition (6.2) of r t⇠ , we find thatZ

B(⇠̄i ,� )

�� j t
⇤
� j s

⇤

��2 dx  2
Z
B(⇠i (t),2� )

�� j t
⇤

��2 dx + 2
Z
B(⇠i (s),2� )

�� j s
⇤

��2 dx

 2 log

 
2�
r t⇠

!
+ 2 log

 
2�
rs⇠

!
+ C

 C log

 
r t⇠
"

!

 C
⇣
60 + g

�
r ta
�⌘

|log "|.
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Next, on B(⇠̄i ,
1

2|log "| ), the definitions imply that both j
s and j t are nonzero, and in

fact
| j t

⇤
(x) � j s

⇤
(x)|2 =

|⇠i (t) � ⇠i (s)|2

|x � ⇠(t)|2|x � ⇠i (s)|2
.

Since |⇠i (⌧ ) � ⇠̄i | 
�
2 for ⌧ = t, s, it follows that

�� j t
⇤
(x) � j s

⇤
(x)

��2


4� 2

|x � ⇠̄i |4
on B

✓
⇠̄i ,

1
2|log "|

◆
\ B

�
⇠̄i , �

�

and hence that Z
B(⇠̄i ,

1
2|log "| )\B(⇠̄i ,� )

�� j t
⇤
� j s

⇤

��2 dx  C.

Finally,Z
Bi\B(⇠̄i ,

1
2|log "| )

�� j t
⇤
� j s

⇤

��2 dx  2
Z
Bi\B(⇠i (t), 1

4|log "| )

�� j t
⇤

��2 dx
+ 2

Z
Bi\B(⇠i (s), 1

4|log "| )

�� j s
⇤

��2 dx  C.

We deduce (7.15) by combining the previous inequalities.
6. We now consider the first term on the right-hand side of (7.14). ClearlyZ

�

 jk

|log "|
�
j t
⇤

�
k

Z T

t

✓
j (v)

|v|

� j s
⇤

◆
j
ds dx

=

lX
i=1

Z
Bi

Z T

t

 jk

|log "|
( j t

⇤
)k

✓
j (v)

|v|

� j (v)

◆
j
ds dx (7.16)

+

lX
i=1

Z
Bi

Z T

t

 jk

|log "|
( j t

⇤
)k

�
j (v) � j s

⇤

�
j ds dx .

By elementary estimates,���� j (v)

|v|

� j (v)

���� =

| j (v)|

|v|

���|v| � 1
��� 

"

2
|rv|

2
+

1
2"

⇣
|v|
2
� 1

⌘2
,

and from the definitions, and recalling (4.5), we see that k j t
⇤
k1  (r t⇠ )

�1


("|log "|)�1. Thus for every i ,����
Z
Bi

Z T

t

 jk

|log "|
�
j t
⇤

�
k ·

✓
j (v)

|v|

� j (v)

◆
ds dx

����  Ck j t
⇤
k1"(T � t)

E",⌘(v)

|log "|



C
|log "|

(T � t)
⇣
60 + C

⌘

 C(T � t)
⇣
60 + g

�
r ta
�⌘

,

(7.17)
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since
E",⌘(v)

|log "|
 60 + ⇡

lX
i=1

⌘2 (ai (t))  60 + C (l, k⌘k1) . (7.18)

7. Now fix some i 2 {1, . . . , l} and let �̃ i 2 C1

c (B(ai (t), 34⇢min)) be a function
such that �̃ i = 1 on Bi . Then for every s 2 [t, T ],

�̃i
�
j (v) � j s

⇤

�
= r f s +

1
⌘2

r
?gs in B

✓
ai (t),

3
4
⇢min

◆
(7.19)

for f s and gs , real-valued functions on B(ai (t), 34⇢min), solving

r · (⌘2r f s) = r ·

⇣
�̃ i⌘2

�
j (v) � j s

⇤

�⌘
in B

✓
ai (t),

3
4
⇢min

◆
,

⌫ · r f s = 0 on @B
✓
ai (t),

3
4
⇢min

◆
,

(7.20)

and

�r ·

✓
rgs

⌘2

◆
= r ⇥

⇣
�̃ i

�
j (v) � j s

⇤

�⌘
in B

✓
ai (t),

3
4
⇢min

◆
,

gs = 0 on @B
✓
ai (t),

3
4
⇢min

◆
.

(7.21)

Indeed, if we let f s be a solution of (7.20), then ⌘2(�̃i ( j (v) � j s
⇤
) � r f s) is

divergence-free and hence can be written asr?gs on B(ai (t), 34⇢min), so that (7.19)
holds. Then it follows from (7.20) that gs satisfies the equation in (7.21), and that
the boundary condition is satisfied after adding a constant to gs .

Thus Z
Bi

Z T

t

 jk

|log "|
�
j t
⇤

�
k
�
j (v) � j s

⇤

�
j ds dx

=

Z
Bi

 jk

|log "|
�
j t
⇤

�
k

✓
rF +

r
?G
⌘2

◆
j
dx

(7.22)

for

F(x) =

Z T

t
f s(x) ds, G(x) =

Z T

t
gs(x) ds.

We write F = F1 + · · · + F4, where

r ·(⌘2rFm) = Am in B
✓
ai (t),

3
4
⇢min

◆
, ⌫ ·rFm = 0 in @B

✓
ai (t),

3
4
⇢min

◆
,
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for

A1 = �̃ i
Z T

t
r ·

⇣
⌘2 j (v)

⌘
ds

A2 = ��̃ i
Z T

t
r ·

⇣
⌘2 j s

⇤

⌘
ds

A3 =

Z T

t
⌘2r�̃ i ·

j (v)

|v|

(|v| � 1) ds

A4 =

Z T

t
⌘2r�̃ i ·

✓
j (v)

|v|

� j s
⇤

◆
ds.

Using the continuity equation (1.15) — this is a key point in our argument — and
(7.18), we note that

kA1kL2 = |log "|
�����̃ i⌘2

⇣
|v|
2
� 1

⌘���T
t

����
L2

 C"|log "|
⇣
E",⌘

⇣
vT

⌘
+ E",⌘

�
vt
�⌘

 C"|log "|3
⇣
60 + g(r ta)

⌘

since g(r) �
1+log |log "|

|log "| for all r . Next, the definition implies that r · j s
⇤

= 0 for

every s and that k j s
⇤
kL p  Cp|log "|1�

2
p for every p < 2, so

kA2kL p k�̃i kL1 (T�t) sup
s2[t,T ]

���r(⌘2) · j s
⇤

���
L p

C(T�t)|log "|1�
2
p for p<2.

Very much as in (7.17), we can check that

kA3kL1  C(T � t) sup
s2[t,T ]

���� j (v)

|v|

(|v| � 1)
����
L1

C(T�t)"|log "|2
⇣
60 + g

�
r ta
�⌘

,

and it follows from (5.8) and (7.4) that

kA4kL2  C(T � t)
⇣
|log "|

⇣
60 + g(r ta)

⌘ ⌘1/2
.

Clearly, for any q1, . . . , q4 2 [1,1],

Z
Bi

 jk

|log "|
�
j t
⇤

�
k · (rF) j dx 

C
|log "|

4X
m=1

k j⇤kqm krFmkq 0

m
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where 1
qm +

1
q 0

m
= 1. Using elliptic estimates and Sobolev embedding theorems,

and taking q1 =
4
3 ,

1
|log "|

k j⇤k 4
3
krF1k4 

C
|log "|

k j⇤k 4
3
kA1k2

 C"|log "|
3
2
⇣
60 + g

�
r ta
�⌘

 C(T � t)
⇣
60 + g

�
r ta
�⌘

.

The last inequality follows from the choice of T and (4.5), which imply in particular
that T � t � "|log "|2. Similarly, taking q4 = 4/3,

1
|log "|

k j⇤k 4
3
krF4k4 

C

|log "|
3
2
kA4k2  C

(T � t)
|log "|

⇣
60 + g

�
r ta
�⌘1/2

 C(T � t)
⇣
60 + g

�
r ta
�⌘

,

since |log "|�1  g(r ta). For any q2 2 (1, 2), taking p2 < 2 such that p⇤

2 = q 0

2, so
that 1p2 =

3
2 �

1
q2 , we find from our estimate of A2 that

1
|log "|

k j⇤kq2krF2kq 0

2


C
|log "|

k j⇤kq2kA2kp2

 C(T � t)|log "|�2  C(T � t)g
�
r ta
�
.

And, recalling by Stampacchia’s estimate that for any p 2 [1, 2) there exists Cp
such that krF3kp  CpkA3k1, we compute, choosing q3 = 3 for concreteness,

1
|log "|

k j⇤k3krF3k 3
2

 k j⇤k3kA3k1  C(T � t)(r t⇠ )
�
1
3 "|log "|

⇣
60 + g

�
r ta
�⌘

 (T � t) ("|log "|)2/3
⇣
60 + g

�
r ta
�⌘

again using the fact that r t⇠ � "|log "| for all t , see (4.5). Combining the above, we
find that for every i 2 {1, . . . , l} and 0 < " < "0 with "0 sufficiently small,Z

Bi

 jk

|log "|
�
j t
⇤

�
k · (rF) j dx  C(T � t)

⇣
60 + g

�
r ta
�⌘

. (7.23)

8. Next,
Z
Bi

 jk

|log "|
( j t

⇤
)k ·

(r?G) j

⌘2
dx =

Z
Bi

 jk

⌘2|log "|
( j t

⇤
)k · r

? (G1 + G2 + G3) j dx

for Gm solving

�r ·

✓
rGm
⌘2

◆
= A0

m in B
✓
ai (t),

3
4
⇢min

◆
, g = 0 on @B

✓
ai (t),

3
4
⇢min

◆
,
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with

A0

1 :=

Z T

t
�̃ ir ⇥

�
j (v) � j s

⇤

�
ds,

A0

2 :=

Z T

t
r

?�̃ i · j (v)

✓
1�

1
|v|

◆
ds,

A0

3 :=

Z T

t
r

?�̃ i ·

✓
j (v)

|v|

� j s
⇤

◆
ds.

The terms containing G2 and G3 are estimated exactly as the terms containing F3
and F4 in Step 7 above, leading to

Z
Bi

 jk

⌘2|log "|
�
j t
⇤

�
k r

? (G2 + G3) j dx  C(T � t)
⇣
60 + g

�
r ta
�⌘

.

For the remaining term, we invoke the interpolation inequality

��A0

1
��
W�1,p  C

��A0

1
��✓
W�1,1

��A0

1
��1�✓
L1 (7.24)

for p 2 (1, 2) and ✓ such that 1p =
✓
1 +

1�✓
2 (see e.g. [20] Theorem 2.4.1 com-

bined with Sobolev embedding theorem). To estimate the W�1,1 norm, we fix
⇣ 2 C1

c (�), and we compute

⌦
⇣, A0

1
↵
=

Z T

t

D
�̃ i⇣,r ⇥

�
j (v) � j s

⇤

�E


Z T

t

����̃ i⇣���
W 1,1

��
r ⇥

�
j (v)� j s

⇤

���
W�1,1 ds

 C(T � t)r t⇠ k⇣kW 1,1

using (5.4) and (7.3). Thus
��A0

1
��
W�1,1  C(T � t)r t⇠ . (7.25)

Also, for every s 2 [t, T ],
��
r ⇥ ( j (v) � j s

⇤
)
��
L1  k2JvkL1 +

��
r ⇥ j s

⇤

��
L1  CE",⌘(v) + 2⇡l.

Estimating E",⌘ as usual by C|log "|(60 + g(r ta)), integrating the last inequality
from t to T , and combining it with (7.25) and (7.24), we obtain

kA0

1kW�1,p  C(T � t)(r t⇠ )
✓
⇣
C|log "|

⇣
60 + g

�
r ta
�⌘⌘1�✓

.
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Then using Hölder’s inequality and (again) the fact that k j s
⇤
kp0  C(rs⇠ )

2
p0 �1 for

p0 > 2,
Z
Bi

 jk

⌘2|log "|
( j t

⇤
)k · r

?(G1) j dx



C
|log "|

(T � t)(r t⇠ )
✓+ 2

p0 �1
⇣
C|log "|

⇣
60 + g

�
r ta
�⌘⌘1�✓

 C(T � t)|log "|�✓
⇣
60 + g

�
r ta
�⌘1�✓

 C(T � t)
⇣
60 + g

�
r ta
�⌘

,

since it turns out that ✓ +
2
p0

� 1 = 0, and noting that |log "|�1  g(r ta) for all t .
Assembling these estimates, we find that

Z
Bi

 jk

|log "|
( j t

⇤
)k

⇣
r

?G
⌘
j
dx  C(T � t)

⇣
60 + g

�
r ta
�⌘

.

Now by combining this with (7.13), (7.14), (7.15), (7.17), (7.23), we finally obtain

rTa � r ta  C(T � t)
⇣
60 + g

�
r ta
�⌘

. (7.26)

8. Proof of Theorem 1.3

Our main result is a straightforward corollary of the discrepancy estimate proved in
the previous section.

Proof of Theorem 1.3. Let Y denote the solution of the ordinary differential equa-
tion

Ẏ (t) = C0
⇣
60 + g(Y (t))

⌘
, Y (0) = r0a ,

where g is the function defined in (3.1), and let {Yn}1n=0 be a discrete approximation
to Y (·) obtained via an Euler approximation implicit in the statement of Proposi-
tion 7.1. Thus, we define

Y0 = r0a , Yn+1 = Yn + (tn+1 � tn)C0
⇣
60 + g(Yn)

⌘
,

tn+1 := tn +

⇣
rn⇠

⌘2
"

where
rn⇠ := r⇠ (60,Yn) = " exp

⇣
C0

⇣
60 + g

�
Yn

�⌘⌘
|log "|).
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Since the function f (Y ) := C0
�
60 + g(Y )

�
is convex, a forward Euler approxi-

mation to the solution of the equation Y 0
= f (Y ) is always less than or equal to the

actual solution, and it follows that Yn  Y (tn) for all t . Then repeated application
of Proposition 7.1 shows that

r tna  Yn  Y (tn) for every n such that tn  Tcol and 60 + g(Yn) 
1
4C1 .

Given an arbitrary t 2 (0, Tcol] such that 60 + g(Y (t)) 
1
4C1 , there exists some n

such that t 2 [tn, tn+1] and r tna  Y (tn). Then by Proposition 6.1, see in particular
(6.10), as well as (7.3),

r ta  r tna + C
⇣
(tn+1 � tn) + r tn⇠

⌘
 Y (t) + C"1/2, (8.1)

since the bound 60 + g(Y (tn)) 
1
4C1 guarantees that r

tn
⇠  "3/4 and hence that

tn+1 � tn  "1/2. It remains to bound the function Y from above. For that purpose,
we notice that since g(y)  y+ log |log "|/|log "| for every y � 0, we have Y (t) 

Ỹ (t) where Ỹ is the solution of the ordinary differential equation

˙Ỹ (t) = C0
✓
60 +

log |log "|
|log "|

+ Ỹ (t)
◆

, Ỹ (0) = r0a .

The solution of the latter is explicitly given by

Ỹ (t) = r0a +

✓
60 + r0a +

log |log "|
|log "|

◆⇣
eC0t � 1

⌘
,

and the conclusion therefore follows from (8.1), increasing the value of C0 to the
value of C in (8.1) if necessary.

9. Some properties of the ground state

In this section we briefly recall some facts about minimizers of the functional6

E",V (u) =

Z
RN

|ru|2

2
+

1
2"2

✓
V (x)|u|2 +

1
2
|u|4

◆
dx (9.1)

in the space

Hm :=

⇢
u 2 H1

⇣
RN

; C
⌘

:

Z
RN

V |u|2 < 1,

Z
RN

|u|2 = m
�

(9.2)

6 Note that we make no restriction on the dimension N here.
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where V : RN
! [0,1) is a smooth function such that V (x) ! 1 as |x | ! 1,

and m > 0 is a parameter.
For every positive ",m, the existence of a function ⌘",m : RN

! (0,1) min-
imizing E",V in Hm is standard, and follows easily from the growth of V (which
implies that the L2 constraint is preserved for weak limits of sequences with equi-
bounded energy) together with the strong maximum principle and the fact that
E",V (|u|)  E",V (u) for all u.

In the introduction, we already introduced the unique number �0 such thatZ
RN

(�0 � V )+dx = m,

and we have denoted by ⇢T F := (�0 � V )+ the Thomas-Fermi profile associated to
V and m.We also note w := (�0 � V )�. We will prove:

Proposition 9.1. Let ⌘ = ⌘".m 2 Hm be a positive minimizer of E",V inHm . Then���⌘2 � ⇢T F

���
L2(RN )

 C"2/3. (9.3)

Moreover, for any K ⇢⇢ �T F := {x 2 RN
: ⇢T F(x) > 0}, there exists a constant

C = C(m, V, K ) such that
���⌘2 � ⇢T F

���
L1(K )

 C"2/3,
���r⌘2���

L1(K )
 C. (9.4)

This is quite standard, and is proved for particular potentials V in [7] for example.
We include a complete proof, since the references we know all impose slightly more
restrictive conditions than we consider here (for example, symmetry conditions, or
the assumption that �0 is a regular value of V ).

Proof. It suffices to prove the result for "  "0, for some "0 > 0.

1. First, as is standard, for u 2 Hm we rewrite

E",V (u) =

Z
RN

"
|ru|2

2
+

1
4"2

⇣
|u|2 � ⇢T F

⌘2
+

1
2"2

w|u|2
#
dx

+

1
"2

✓
�0
m
2

�

1
4

Z
RN
⇢2T F

◆

=: E",⇢T F (u) + C1(",m).

Thus, it is clear that a function minimizes E",V in Hm if and only if it minimizes
E",⇢T F inHm .

2. Next we claim that
inf
Hm
E",⇢T F  C"�2/3. (9.5)
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Note that this immediately implies (9.3). We verify (9.5) by choosing U" :=

c" f"(
p

⇢T F), where

f"(s) =

(
"�↵s2 if s  "↵

s if s � "↵,

where c" is chosen so thatU" 2 Hm . Then straightforward estimates very much like
those in [7], for example, show that E",⌘(U")  C("�↵ + "2↵�2), and (9.5) follows
by taking ↵ = 2/3. (This crude estimate has the advantage of holding for every
m > 0, so that we do not require �0 to be a regular value of V . If �0 is a regular
value, then a variant of the same construction shows that infHm E",⇢T F  C|log "|.)

3. Since V ��0 = (V ��0)+�(V ��0)� = w�⇢T F , we may write the variational
equation satisfied by ⌘ in the form

�1⌘ +

1
"2

⇣
⌘2 � ⇢T F + w

⌘
⌘ =

1
"2

(�" � �0) ⌘,

where 1
"2
�" is a Lagrange multiplier. Multiplying by ⌘ and integrating, and using

the fact that ⌘ 2 Hm , we find that

m
"2

(�" � �0) =

Z
R2

|r⌘|2 +

1
"2


w⌘2 +

⇣
⌘2 � ⇢T F

⌘2
+

⇣
⌘2 � ⇢T F

⌘
⇢T F

�
.

It follows that

m
"2

(�" � �0)  4E",⇢T F (⌘) +

1
"2

��⇢T F��L2(RN )

���⌘2 � ⇢T F

���
L2(RN )

 C"�4/3 (9.6)

by (9.5) and (9.3).

4. Now let ⇢T F," := (�" � V )+. It follows from (9.6) that

k⇢T F," � ⇢T FkL1(RN ) = |�" � �0|  C"2/3, (9.7)

so that K ⇢⇢ �" := {x 2 RN
: ⇢T F," > 0} if " > 0 is sufficiently small, which we

henceforth take to be the case. Note also that

�1⌘ +

1
"2

⇣
⌘2 � ⇢T F,"

⌘
⌘ = 0 in �". (9.8)

Now fix some r 
1
2 dist(K , @�T F). In view of (9.7), and since V is C2, there exists

a, k > 0 and "0 > 0 such that

⇢T F," > a2 and
��1p

⇢T F,"

��
 k whenever 0 < "  "0. (9.9)
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For any x 2 K and b 2 (0, a), define

⇣x,b(y) = ⇣(y) = b

 
|y � x |2

r2
� 1

!2

in B(x, r). Then for b 2 (0, a2 ),

�1⇣ +

1
"2

⇣
⇣ 2 � ⇢T F,"

⌘
⇣  �1⇣ �

3a2

4"2
⇣ < 0 in B(x, r) (9.10)

whenever " is sufficiently small. It follows that ⌘ � ⇣x,b in B(x, r) for every
b 2 (0, a2 ), as otherwise we could find some b0 2 (0, a2 ) such that minB(x,r)(⌘ �

⇣x,b0) = 0. Since ⌘ > 0, the minimum would have to be attained in the interior of
B(x, r), and this is impossible in view of (9.8) and (9.10).

It follows that
⌘(y) �

9a
32

=: ↵ in B(x, r/2). (9.11)

Note also that k⌘kL1(RN )k

p

⇢T F,"kL1(RN ), since otherwise ⌘̃ :=min(⌘,kp⇢T F,"k1)
would satisfy E",⇢T F (⌘̃) < E",⇢T F (⌘), contradicting the minimality of ⌘.
5. Now write ✓ := ⌘ �

p

⇢T F,". Then

�1✓+a"(x)✓ = 1
p

⇢T F," for a"(x)=
1
"2

�
✓ + 2p⇢T F,"

� �
✓ +

p

⇢T F,"

� (9.11)
�

↵2

"2

in B(x, r/2), and |✓ |  2kp⇢T F,"
kL1(RN ) on B(x, r/2). Now for y 2 B(x, r/2)

define

2"(y) :=

k
↵2
"2 + 2

��p⇢T F,"

��
L1(RN )

exp

"
↵

r"

 
|y � x |2

2
�

r2

8

!#

where k is the bound for k1p

⇢T F,"k1 found in (9.9). Then 2 � ✓ on @B(x, r/2),
and there exists "0 > 0 such that

(�1+ a")2 � k � (�1+ a")✓ in B(x, r/2), if 0 < " < "0.

It follows that 2 � ✓ in B(x, r/2), and similarly �2 � �✓ in B(x, r/2). Thus��⌘ �

p

⇢"
��
 C"2 on B(x, r/4). (9.12)

6. Returning to (9.8), we see that

�1⌘ + b"⌘ = 0 in B(x, r/4), for b" =

1
"2

⇣
⌘2 � ⇢"

⌘
,

and (9.12) implies that kb"kL1(B(x,r/4)  C independent of " 2 (0, "0) and x 2 K .
Since we already know that k⌘kL1(RN )  C , we conclude from standard elliptic
regularity that kr⌘kL1(B(x,r/8))  C . Also, it follows from (9.7) and (9.12) that
k⌘2 � ⇢kL1(K )  C"2/3, so we have proved (9.4).
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10. Proof of Theorem 1.1

In view of (1.4), Theorem 1.1 is a direct consequence of Theorem 1.3 combined
with Proposition 9.1 and the continuity of the solution of an initial value problem
with respect to the nonlinearity.
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