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Rigidity and regularity
of codimension-one Sobolev isometric immersions

ZHUOMIN LIU AND MOHAMMAD REZA PAKZAD

Abstract. We prove the developability and C1,1/2loc regularity of W2,2 isomet-
ric immersions of n-dimensional domains into Rn+1. As a conclusion we show
that any such Sobolev isometry can be approximated by smooth isometries in the
W2,2 strong norm, provided the domain is C1 and convex. Both results fail to be
true if the Sobolev regularity is weaker than W2,2.
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1. Introduction

It has been known since at least the 19th century that any smooth surface with zero
Gaussian curvature is locally ruled, i.e. passing through any point of the surface
is a straight segment lying on the surface. Such surfaces were called developable
there. This terminology was used as an indication that any such surface is in iso-
metric equivalence with the plane, i.e. any piece of it can be developed on the flat
plane without any stretching or compressing. Meanwhile, it was already suspected
that there exist somewhat regular surfaces applicable to the plane, but yet not devel-
opable (see [4] for a review of this question). Nevertheless, it was not until the work
of John Nash at the zenith of the last century that the existence of such unintuitive
phenomena was rigorously established.

In his pioneering work, Nash settled several questions. He established that any
Riemannian manifold can be isometrically embedded in a Euclidean space [19].
Moreover, if the dimension of the space is large enough, this embedding can be
done in a manner that the diameter of the image is as small as one wishes. As
for the lower dimensional embeddings, Nash [20] and Kuiper [17], established the
existence of a C1 isometric embedding of any Riemannian manifold into another
manifold of dimension one higher. Their method, which is now famously re-cast in
the framework of convex integration [8], involved iterated perturbations of a given
short mapping of the manifold towards realizing an isometry.
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A surprising corollary of these results is the existence of a C1 flat torus in R3
[3]. Another one is that there are C1 isometric embeddings of the two-dimensional
unit sphere into three dimensional space with arbitrarily small diameter. By con-
trast, it was established by Hartman and Nirenberg that any flat C2 surface in R3
must be developable [9], while Hilbert had already shown that any C2 isometric
immersion of the sphere must be a rigid motion. This latter result is a special case
of a similar statement for any closed convex surface inR3, see [25, Chapter 12]. On
the other hand, the former result was generalized by Pogorelov’s for C1 isometries
with total zero curvature in [23, Chapter II] and [24, Chapter IX].

A natural question arises in this context for the analyst: What about isometric
immersions of intermediate regularity, say of Hölder or Sobolev type? Regarding
Hölder regularity, rigidity of C1,↵ isometries of two-dimensional flat domains has
been established for ↵ � 2/3, see [1, 2], while their flexibility in the sense of Nash
and Kuiper is known for ↵ < 1/7, see [2, 6]. The critical value for ↵ is conjec-
tured to be 1/2 in this case. As for the regularity of Sobolev isometries, following
the results of Kirchheim in [16] on W 2,1 solutions to degenerate Monge-Ampère
equations (see Proposition 1.3), the rigidity of W 2,2 isometries of a flat domain
was established in [22]. More precisely, it was established that such mappings are
developable in the classical sense, namely:
Theorem 1.1 (Pakzad [22]). Let v 2 W 2,2(6, R3) be an isometric immersion,
where 6 is a bounded Lipschitz domain in R2. Then v 2 C1,1/2loc (6, R2). Fur-
thermore, for every point x of 6, there exists either a neighborhood of x , or a
unique segment passing through x and joining @6 at both ends, on which rv is
constant.
Remark 1.2. It can be shown that this statement is actually valid for all bounded
open sets 6 ⇢ R2, i.e. without any assumption on the regularity of the boundary.
All one must prove is that the constancy segments, whose existence is locally estab-
lished, can be extended all the way to the boundary one step at a time. Assuming
the existence of any supposedly maximal constancy segment which does not reach
the boundary, a contradiction could be achieved by creating a Lipschitz domain
60

⇢ 6 including the closure of that segment and applying Theorem 1.1 to 60. In
the same manner, the regularity assumption on @� in Theorem 1.4 can be removed.

To put this result in context, it is worth noting that a W 2,2 function on a two-
dimensional domain barely fails to be C1, but there is information available about
weak second derivatives, and e.g. the Gaussian curvature of the image of a W 2,2

isometric immersion of a flat domain is identically zero as an L1 function. This
indicates that these isometries are far from the highly oscillatory solutions of Nash
and Kuiper and hence possibly should behave in a rigid manner. Note that only the
C1 regularity result was stated in [22] and was a major ingredient of the proof, but
the higher Hölder regularity announced here is an immediate consequence of the de-
velopability. In [18] it was established that the C1 regularity can be extended to the
boundary if the domain is of class C1,↵ . This does not hold true anymore for merely
C1 regular domains. Finally, the following proposition is a key step in establishing
the above rigidity result and will be instrumental in proving Theorem 1.4:
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Proposition 1.3 (Kirchheim [16], Pakzad [22]). Let 6 be as above and let f 2

W 1,2(6, R3) be a map with almost everywhere symmetric and singular (i.e. of zero
determinant) gradient. Then f 2 C0(6) and for every point x 2 6 there exists
either a neighborhood U of x , or a segment passing through it and joining @6 at
both ends, on which f is constant.

It was proved furthermore in [22] that any W 2,2 isometry on a convex two-
dimensional domain can be approximated in strong norm by smooth isometries.
This is a nontrivial result, since the usual regularization techniques fail due to the
non-linearity of the isometry constraint. The idea was to make use of the developa-
bility structure of these mappings and reduce the approximation problem to the one
about mollifying the expressions RT R0 for the Darboux moving frames R(t) along
the curves orthogonal to the rulings. The convexity assumption is a technical one,
and as shown by Hornung [10,12], can be replaced by e.g. piece-wise C1 regularity
of the boundary, see also [11].

It is natural to ask whether these results can be generalized to higher dimen-
sions. In [26], the authors showed the generalized developability of smooth isomet-
ric immersions of Euclidean domains into Euclidean spaces. We would like to pose
the same problem for the same class of isometric immersions but considered only
under sufficient Sobolev regularity assumptions. A first main result in this direction,
presented in this paper, is the developability of W 2,2 codimension-one isometries
of flat domains in Rn:

Theorem 1.4. Let u 2 W 2,2(�, Rn+1) be an isometric immersion, where � is a
bounded Lipschitz domain in Rn . Then u 2 C1,1/2loc (�, Rn+1). Moreover, for every
x 2 �, either ru is constant in a neighborhood of x , or there exists a unique
(n � 1)-dimensional hyperplane P 3 x of Rn such that ru is constant on the
connected component of x in P \�.

The interesting feature of this new result is that the Sobolev regularity W 2,2

is much below the required W 2,n+" for obtaining C1 regularity. An extra difficulty
which comes in the way of the proof in dimensions higher than 2 is that the argu-
ment used in [22, Lemma 2.1] to show the continuity of the derivatives of the given
Sobolev isometry is no more generalizable to our case. Indeed, in [22], a very im-
portant first step of the proof of developability is to show the C1 regularity. Here, on
the other hand, we first show the developability of the mapping without having the
C1 regularity at hand. Our proof is based on induction on the dimension of slices of
the domain, and on careful and detailed geometric arguments. Having established
developability, the C1 regularity (and better) follows in a straightforward manner.

The problem of regularity and developability of Sobolev isometric immersions
of co-dimension k > 1 is more involved and could not be tackled through the
methods discussed in this paper. In a forthcoming paper by Jerrard and the second
author [15], another approach, more analytical in nature, is adapted to study this
problem. It is based on the fact that the Hessian rank inequality

rank(r2v)  k a.e. in � (1.1)
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is satisfied by the components v = u j of such an isometry. Note that this equation
becomes the degenerate Monge-Ampère equation when k = n � 1. Similarly as
in [22], regularity and developability of the Sobolev solutions to (1.1) directly im-
plies the same results for the corresponding isometries. However, one loses some
natural advantages when working with (1.1) rather than with the isometries them-
selves as done in the present paper: the solution v is no more Lipschitz and it is
just a scalar function, so one loses the extra information derived from the length-
preserving properties of isometries. Methods of geometric measure theory applied
to the class of Monge-Ampère functions developed by Jerrard in [13, 14] are used
to overcome these obstacles.

The second main result of this paper concerns approximation of W 2,2 isome-
tries by smooth ones:

Theorem 1.5. Assume � ⇢ Rn is a C1 bounded convex domain and that u 2

W 2,2(�, Rn+1) is an isometric immersion. Then there is a sequence of isometric
immersions um 2 C1(�, Rn+1) converging to u in W 2,2 norm.

The main idea of the proof, similar as in the two-dimension case, is to mollify
the curves which pass orthogonally through the constancy hyperplanes of Theo-
rem 1.4 both in the domain and on the image. This latter problem, framed within
the general isometry mollification problem, is still nonlinear. However, identifying
these curves with suitable orthonormal moving Darboux frames R(t) 2 SO(n) and
R̃(t) = [(ru)R(t),n(t)] 2 SO(n + 1), where n is the unit normal to the image of
the isometry in Rn+1, we could linearize the problem by considering the curvature
matrices RT R0(t) 2 so(n) and R̃T R̃0(t) 2 so(n + 1) and recover an approximat-
ing sequence of moving frames through their regularization. Many technical details
must nevertheless be taken care of in this process; in particular one must make sure
that the mollified curves can be used to define new smooth isometries. Also, the
mapping as a whole cannot be described by one single pair of such curves and the
domain must be partitioned into suitable subdomains.
Remark 1.6. Neither the C1 regularity nor the convexity of the boundary seem to
be absolutely necessary for the density result to hold true (see e.g. [12] for finer
results in two-dimension), but omitting these assumptions goes beyond the scope
of our paper. However, both of the results in Theorems 1.4 and 1.5 are sharp in
the sense that they fail to be true if the isometric immersion is only of class W 2,p

for p < 2. An immediate counterexample is the following isometric immersion
u : B2 ⇥ (0, 1)n�2 ! Rn+1, whose image can be visualized as a family of cones
over a hyperplane of dimension n � 2:

u(r cos ✓, r sin ✓, x3, · · · , xn) :=

 
r
2
cos(2✓),

r
2
sin(2✓),

p

3
2
r, x3, · · · , xn

!
.

The paper is organized as follows: In Section 2 we will review some basic ana-
lytic properties of isometric immersions with second order derivatives. Section 3
is dedicated to the proof of Theorem 1.4. In Section 4 we will show that smooth
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isometric immersions are strongly dense in the space ofW 2,2 isometric immersions
from a domain of Rn into Rn+1. The proof of Lemma 4.13, which is a crucial and
difficult step in establishing the density result is postponed to the Appendix for the
convenience of the reader.
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2. Preliminaries

Let � be a bounded Lipschitz domain of Rn , with n � 2. We define the class of
Sobolev isometric immersions from � to Rn+1 as

I 2,2
�
�, Rn+1�

:=

�
u 2 W 2,2��, Rn+1�

: (ru)Tru = I a.e.
 
. (2.1)

Note that the condition (ru)Tru = I implies that u is Lipschitz continuous, thus,

I 2,2
�
�, Rn+1�

⇢ W 2,2��, Rn+1�
\ W 1,1�

�, Rn+1�. (2.2)

Given u 2 I 2,2(�, Rn+1), let u j , with 1  j  n + 1, be the j-th component of u
and let u,i = @u/@xi , 1  i  n, be the partial derivative of u in the ei direction.
Throughout the paper we will use the same notation for all functions.

For a.e. x 2 �, consider the cross product n(x) = u,1(x) ⇥ · · · ⇥ u,n(x). That
is, n(x) is the unique unit vector orthogonal to u,i (x) for all 1  i  n such that
u,1(x), · · · , u,n(x),n(x) is a positive basis of Rn+1.

Note that n can also be identified differential forms: consider the 1-form

!i =

n+1X
j=1

u j,i dx j .

Then
n = ⇤(!1 ^ · · · ^ !n), (2.3)

because for any ⇠ 2

V1(Rn+1),

h⇠,ni=h⇠, ⇤(!1^· · ·^!n)i = (�1)n⇠^!1^· · ·^!n = (�1)n det[⇠, u,1, · · · , u,n].

Since u 2 W 2,2
\ W 1,1(�, Rn+1), it follows from (2.3) that n 2 W 1,2(�, Rn+1).
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Since u is isometric immersion, hu,i , u, j i = �i j for all 1  i, j  n. Since
u 2 W 2,2(�, Rn+1), we can differentiate using the product rule to obtain

⌦
u,ik, u, j

↵
+

⌦
u,i , u, jk

↵
= 0 a.e. (2.4)

Permutation of indices i, j, k yields
⌦
u,i j , u,k

↵
+

⌦
u,i , u,k j

↵
= 0 a.e. (2.5)⌦

u,ki , u, j
↵
+

⌦
u,k, u, j i

↵
= 0 a.e. (2.6)

Using the fact that u,i j = u, j i for all i, j , we add (2.4) and (2.5), then subtract (2.6)
to obtain, ⌦

u,i , u, jk
↵
= 0 a.e. for all 1  i, j, k  n. (2.7)

Since for a.e. point in the domain, n, u,1, · · · , u, j is an orthonormal basis of Rn+1,
we can write

u, jk =

nX
i=1

⌦
u, jk, u,i

↵
u,i +

⌦
u, jk,n

↵
n.

Then (2.7) gives

u, jk =

⌦
u, jk,n

↵
n a.e. for all 1  j, k  n. (2.8)

Note that A jk := hu, jk,ni is the element in row j and column k of the second
fundamental form A, which is a symmetric n ⇥ n matrix. In particular, (2.8) holds
for each component of u, jk and n, i.e.,

u`, jk = A jkn` for all 1  `  n + 1, 1  j, k  n.

Thus, the Hessian of u` satisfies

r
2u` = n`A, 1  `  n + 1. (2.9)

Lemma 2.1. The second fundamental form A 2 Mn⇥n has the following proper-
ties:

@Ai j
@xk

=

@Aik
@x j

in distributional sense for all 1  i, j, k  n; (2.10)

Ai j Akl � Ail Ak j = 0 for all 1  i, j, k, l  n. (2.11)

Proof. For a smooth immersion v : � ! Rn+1, not necessarily isometric, let
gi j = hv,i , v, j i be the first fundamental form. Differentiating gi j twice we get

gi j,kl =

⌦
v,ikl , v, j

↵
+

⌦
v,ik, v, jl

↵
+

⌦
v,il , v, jk

↵
+

⌦
v,i , v, jkl

↵
.
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Summation over the proper permutations of i, j, k, l yields

gi j,kl + gkl,i j � gil,k j � gkj,il = �2
⌦
v,i j , v,kl

↵
+ 2

⌦
v,il , v,k j

↵
. (2.12)

Given any other smooth immersion w : � ! Rn+1, the following identity is also
obvious: ⌦

v,i j , w
↵
,k �

⌦
v,ik, w

↵
, j =

⌦
v,i j , w,k

↵
�

⌦
v,ik, w, j

↵
. (2.13)

Now we consider a sequence of smooth immersions um ! u in W 2,2(�, Rn+1)
with nm ! n in W 1,2(�, Rn+1). Writing the left-hand sides of (2.12) and (2.13)
as distributional derivatives and passing to the limit we get

0 = �2
⌦
u,i j , u,kl

↵
+ 2

⌦
u,il , u,k j

↵
(2.14)

because hu,i , u, j i = �i j for all i, j . In addition, since n is a unit vector, hn,k,ni = 0.
Then by (2.8), hu,i j ,n,ki = 0 for all i, j, k, thus

⌦
u,i j ,n

↵
,k �

⌦
u,ik,n

↵
, j = 0. (2.15)

The two identities in the lemma easily follow from Ai j = hu,i j ,ni, (2.14), and
(2.15). The proof is complete.

Corollary 2.2. The second fundamental form A satisfies rankA  1 and A is sym-
metric a.e. in�. Moreover, the Hessian of each component of u satisfies rankr2u`
1 for all 1  `  n + 1 a.e. on �.

Proof. By identity (2.11), all 2⇥ 2 minors of A vanish, hence the rank of A is less
than or equal to 1. By (2.9), rankr

2u`  rank A  1 and A is symmetric a.e. since
r
2u` is symmetric a.e. The proof is complete.

3. Developability and regularity

Our first main result (Theorem 1.4) follows from:

Proposition 3.1. Let u 2 I 2,2(�, Rn+1), where � is a bounded Lipschitz domain
inRn . Let A be the second fundamental form of u. Let Pk be a k-dimensional plane
of Rn , with k  n. Suppose that on Pk \� we have the following properties:

(1) There exists a sequence of smooth functions u✏ defined in the domain � such
that Z

Pk\�

��u✏ � u
��2

+

��
ru✏ � ru

��2
+

��
r
2u✏ � r

2u
��2dHk

! 0.

Here ru✏ , ru, r2u✏ and r
2u denote the first and second full gradients with

respect to the domain �.
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(2) The full gradient ru satisfies ruTru = IHk-a.e. on Pk \�.
(3) r

2u` = n`A for each 1  `  n + 1Hk-a.e. on Pk \�.
(4) rank A  1 and A is symmetricHk-a.e. on Pk \�.

Then u 2 C1,1/2loc (Pk, Rn+1). Moreover, for every x 2 Pk \�, either ru is constant
on a neighborhood in Pk \ � of x , or there exists a unique (k � 1)-dimensional
hyperplane Pxk�1 3 x of Pk such that ru is constant on the connected component
of x in Pxk�1 \�.

The proof of this proposition is based on induction on lower dimensional slices.
Before we prove Proposition 3.1, we will show that it implies Theorem 1.4.

Proof of Theorem 1.4. We simply take k = n in Proposition 3.1, in which case
Pn \ � = �. Since u 2 W 2,2(�, Rn+1), the convolution of u with the standard
mollifier u✏ obviously satisfies assumption (1). By the fact that u 2 I 2,2(�, Rn+1),
we have ruTru = I a.e. in �, which is property (2). Property (3) follows from
equation (2.9), and property (4) follows from Corollary 2.2 . Therefore, all the
assumptions of Proposition 3.1 are satisfied, and hence the conclusion of Theorem
1.4 follows from the conclusion of Proposition 3.1. The proof is complete.

Corollary 3.2. Let u 2 I 2,2(�, Rn+1), where� is a Lipschitz domain in Rn . Then
for every k-dimensional slice Pk\�, ru is constant either on k-dimensional neigh-
borhoods of Pk \�, or constant on (k � 1)-dimensional slice of Pk \�.

Proof. Since assumptions (1)-(4) of Proposition 3.1 are satisfied a.e. in �, by
Fubini’s theorem, assumptions (1)-(4) also holds in a.e. k-dimensional slice. Thus
the conclusion of Proposition 3.1 holds for a.e. k-dimensional slices. Since ru is
continuous, by a simple approximation argument, it holds on every k-dimensional
slice. The proof is complete.

Assumptions (2), (3) and (4) regard the properties of isometric immersions,
while (1) can be formulated for any general Sobolev function. This latter assump-
tion is necessary for allowing the use of the chain rule which involves the full gradi-
ent even in lower dimensional slices. To be precise, we prove the following lemma
which will play an important role everywhere in the proof of Proposition 3.1:

Lemma 3.3 (Chain Rule). Let 9 2 W 1,2(�, RN ), with N � 1. Let 6 ⇢ � be a
k-dimensional flat domain. Suppose that there exists a sequence of smooth functions
9✏ 2 C1(�, RN ) such thatZ

6

�
|9✏ �9|

2
+ |r9✏ � r9|

2� dHk
! 0, (3.1)

where r9 denotes the full gradient with respect to the domain �. Let v be any
directional vector tangent to 6. Then the chain rule

d
dt

��
t=09(· + tv) = r9v
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holds in the weak sense over the domain 6. In particular,

9 2 W 1,2�6, RN �.
Proof. Let � 2 C1

0 (6); then
Z
6

d
dt

��
t=09

✏(x + tv)�(x)dHk
= �

Z
6
9✏(x)

d
dt

��
t=0�(x + tv)dHk .

Since 9✏ is smooth in �, we have
Z
6

d
dt

��
t=09

✏(x + tv)�(x)dHk
=

Z
6

r9✏(x)v�(x)dHk .

By (3.1) we pass to the limit to conclude that
Z
6

r9(x)v�(x)dHk
= �

Z
6
9(x)

d
dt

��
t=0�(x + tv)dHk .

Thus the chain rule as stated in the lemma holds in the weak sense over the domain
6. The proof is complete.

Remark 3.4. Note that the above lemma involves the full gradient of 9. The as-
sumption 9 2 W 1,2(6, RN ) by itself is not enough to deduce the chain rule.

3.1. Base case: 2-dimensional slices

Suppose for a 2-dimensional plane P2 all the assumptions (1)-(4) in Proposition
3.1 are satisfied. Without loss of generality, we can assume P2 is parallel to the
space spanned by e1 and e2. Indeed, it is easy to see that assumption (1)-(4) in
Proposition 3.1 are invariant under rotating the coordinate system. We denote P2
by Pe1e2 to remind ourselves this fact.

Let f = ru` 2 W 1,2
loc (�, Rn) for some arbitrary 1  `  n + 1. Define

g :=

�
f 1, f 2

�
|Pe1e2\� 2 W 1,2�Pe1e2 \�, R2

�
.

Lemma 3.5. Let f ✏ : � ! Rn be a smooth sequence converging strongly to f in
W 1,2(�, Rn). Let C be a line segment in Pe1e2 \� such that

Z
C

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
dH1 ! 0, (3.2)

rankr f  1 and r f is symmetric forH1-a.e. point on C . Then if g is constant on
C , so is f .



776 ZHUOMIN LIU AND MOHAMMAD REZA PAKZAD

Proof. Let v be the unit directional vector of C . Since v is a linear combination of
e1 and e2,

v =

�
v1, v2, 0, · · · , 0

�
.

Let ṽ = (v1, v2); then the first two components of f satisfy r f 1 · v = rg1 · ṽ
a.e. on C and r f 2 · v = rg2 · ṽ a.e. on C .

Since f satisfies the assumption of Lemma 3.3, the chain rule

d
dt

��
t=0 f (· + tv) = (r f )v

holds in the weak sense on C . In particular, it holds for it first two component f 1
and f 2 and, of course, g.

As g is constant on C ,

0 =

d
dt

��
t=0g(· + t ṽ) (3.3)

in the weak sense. Hence (rg)ṽ = 0 a.e. on C . This implies

r f 1 · v = 0 and r f 2 · v = 0 a.e. on C.

For z 2 C such that r f 1(z) · v = 0 and r f 2(z) · v = 0, rankr f (z)  1 and
r f (z) is symmetric, so we have two cases: (1)r f 1(z) 6= 0 or r f 2(z) 6= 0;
(2)r f 1(z) = r f 2(z) = 0. In the first case, we can assume with loss of generality
that r f 1(z) 6= 0. Therefore, rankr f (z) = 1 and

r f i (z) = aizr f 1(z) for all i � 1.

It then follows that

r f i (z) · v = aiz
�
r f 1(z) · v

�
= 0 for all i � 1.

In the second case, by symmetry,

f i, j (z) = f j,i (z) = 0, for j = 1, 2, and i = 1, · · · , n.

As v = (v1, v2, 0, · · · , 0),

r f i (z) · v = 0 for all i = 1, · · · , n.

Therefore, in either cases, we have proved

r f i · v = 0 a.e. on C for all i = 1, · · · , n.

Hence, f is constant on C by the chain rule (3.3). The proof is complete.
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Corollary 3.6. If g is constant on a 2-dimensional region U in Pe1e2 \ �, f is
constant on U as well.

Proof. Observe that if U is a 2-dimensional region of Pe1e2 \�, which has strictly
positive 2-dimensional Hausdorff measure, then the assumptions (1) and (4) of
Proposition 3.1 imply

Z
U

�� f ✏ � f
��2

+

��
r f ✏ � r f

��2dH2 ! 0,

rankr f  1 and r f is symmetric for H2 a.e. points on U . Thus the same argu-
ment for line segments in Lemma 3.5 gives for any directional vector v of U that
r f i · v = 0 a.e. on U for all i = 1, · · · , n, hence the chain rule implies that f is
constant on U . The proof is complete.

Lemma 3.7. Suppose assumptions (1)-(4) of Proposition 3.1 are satisfied on the
two-dimensional region Pe1e2\�. Let f = ru` 2 W 1,2

loc (�, Rn) for some arbitrary
1  `  n + 1. Then the restriction f 2 C0,1/2loc (Pe1e2 \ �, Rn). Moreover, for
every point x 2 Pe1e2 \�, either there exists a neighborhood in Pe1e2 \� of x , or
a unique line segment in Pe1e2 \� passing through x and joining @� at both ends,
on which f is constant.

Figure 3.1. Inverse image of g in Pe1e2 \�

Proof. The proof is divided into seven steps.

Step 0. Preliminary set up: by assumption (4) of Proposition 3.1, r f satisfies
rankr f  1 and r f = r

2u` is symmetric a.e. on Pe1e2 \ �. Therefore, g :=

( f 1, f 2)|Pe1e2\� 2 W 1,2(Pe1e2 \ �, R2) also satisfies rankrg  1 and rg is
symmetric a.e. on Pe1e2 \�. We employ [22, Proposition 1], which is cited above
as Proposition 1.3. The function g satisfies the assumption of this proposition on
the domain Pe1e2 \ � and hence the conclusions holds true for g. Suppose g is
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constant on some maximal connected neighborhood U ⇢ Pe1e2 \�, by continuity
of g, it is also constant on its closure U \�.

Step 1. We claim that the boundary of U only consists of line segments joining
the boundary and none of these line segments intersect inside �. Indeed, if x 2

@U \ �, then x is not contained in a constancy neighborhood of g, therefore by
Proposition 1.3, there exists a unique line segment CU

x ⇢ Pe1e2 \� passing through
x and joining @� at both ends on which g is constant, which implies @U \ � ⇢S

x2@U\� CU
x . Moreover, for x, z 2 @U \�, CU

x = CU
z if z 2 CU

x and CU
x \CU

z \

� = ; if z /2 CU
x (Figure 3.1). This follows from the fact that if g is constant on

two such intersecting segments, it must be constant on their convex hull inside �
too. On the other hand, suppose g is constant on some line segment CU

x passing
through x 2 @U \� and joining @� at both end, since g is constant on U and CU

x ,
which intersect at x , it must be constant on the convex hull of U and CU

x inside �.
But U is maximal, hence

S
x2@U\� CU

x ⇢ @U \�. Therefore,

@U \� =

[
x2@U\�

CU
x .

Step 2. We claim that we can choose small enough � > 0 so that for any region
U on which g is constant, the 2-dimensional ball B2(x0, �) ⇢ Pe1e2 \� intersects
@U at no more than two line segments belonging to @U . Indeed, let x0 2 Pe1e2 \�
be such that g is not constant in a neighborhood of x0. We use the fact that for
any maximal constant region U , line segments in @U do not intersect inside �. If
x0 is at a positive distance of all constancy regions, the conclusion is trivial. The
same is true if it lies on the boundary of one of the constancy regions and yet is
positively distant from all others. Suppose therefore that there is a sequence of
maximal constancy regions Um converging to x0 in distance, in which case there
are two line segments CUm

x1 and CUm
x2 in @Um whose angle (if they are nonparallel)

or distance (if they are parallel) converges to zero, since both of these sequences of
segments must converge to the same constancy segment passing through x0. Then
since all the other line segments in @Um must be arbitrarily close to @�, we can
again choose � small enough that B2(x0, �) is away from @� and hence it does not
intersect a third line segment in @Um (Figure 3.2).

Step 3. We construct a foliation of the ball B2(x0, �) ⇢ Pe1e2 \ �. Firstly,
for any x 2 B2(x0, �), we will construct a line segment Cx in B2(x0, �) pass-
ing through x and joining @B2(x0, �) at both ends on which g is constant and
Cx \ Cz \ B2(x0, �) = ; if z /2 Cx . The construction is as follows: for those
x not contained in a constant region of g, this line segment is given automati-
cally by Proposition 1.3. If x is contained in a constant maximal region U of g,
then it is constant on every line segment in U that passes through it so we have to
choose the appropriate one: 1) If B2(x0, �) intersect only one line segment CU in
� that belongs to @U , then we define Cx to be the line segments inside B2(x0, �)
passing through x and parallel to CU ; 2) If B2(x0, �) intersects two line segments
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Figure 3.2. B2(x0, �) intersects @Um at two line segments
.

CU
1 ,CU

2 in � that belongs to @U , let L1 and L2 be the two lines that contain C
U
1

and CU
2 . If L1 and L2 are not parallel, let O := L1 \ L2 and let Cx be the segment

given by the intersection with B2(x0, �) of the line passing through O and x . If
L1 and L2 are parallel, then we let Cx be the line segment inside B2(x0, �) pass-
ing through x and parallel to L1. (Figure 3.3). In this way, we have constructed
a family of line segments {Cx }x2B2(x0,�) in B

2(x0, �) on which g is constant and
Cx \ Cz \ B2(x0, �) = ; if z /2 Cx .

Figure 3.3. Constructin of foliations.

Secondly, for every x 2 B2(x0, �), letN(x) be the vector field orthogonal to Cx . By
making � smaller we can make sure that none of theCx ’s intersect inside Bk(x0, 2�),
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and therefore we can choose an orientation such that N is a Lipschitz vector field
inside the ball of radius �. The ODE,

� 0(t) = N(� (t)) � (0) = x0,

then has a unique solution � : (a, b) ! B2(x0, �) for some interval (a, b) ⇢

R containing 0. Moreover, if necessary by making � smaller, [{C� (t)}t2(a,b) =

B2(x0, �). Therefore, {C� (t)}t2(a,b) is a foliation of B2(x0, �) (Figure 3.4).

Figure 3.4. Foliations of B2(x0, �).

Step 4. We now want to show the assumptions of Lemma 3.5 are satisfied along
C� (t) for a.e. t 2 (a, b). We define the function h : B2(x0, �) ! B2(x0, �) as

h(x) = � (t) if x 2 C� (t).

Since none of theC� (t) intersect inside B2(x0, �), h is well defined and h is constant
along each C� (t), i.e. h�1(� (t)) = C� (t). Since � is Lipschitz, h is Lipschitz as
well. Moreover, since |� 00(t)| is uniformly bounded, we have the one-dimensional
Jacobian Jh > C > 0. (For the definition of general k-dimensional Jacobian see [7,
page 88].)

Let E0 be the set of all x 2 B2(x0, �) such that rankr f (x) > 1 or r f (x)
is not symmetric. By assumption (4) of Proposition 3.1 on f , |E0| = 0. As h is
Lipschitz, we can apply the general co-area formula [7, page 112] to h to obtain,

0 =

Z
E0
Jh(x)dx =

Z
�
H1

�
E0 \ h�1(w)

�
dH1(w)

=

Z b

a
H1

�
E0 \ h�1(� (t))

�
|� 0(t)| dt

=

Z b

a
H1

�
E0 \ C� (t)

�
|� 0(t)| dt.
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Therefore, for a.e. t 2 (a, b), H1
�
E0 \ C� (t)

�
= 0 since |� 0

| = 1. Moreover, by
change of variable formula, if f ✏ is a smooth approximation sequence,
Z
B2(x0,�)

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
Jh

=

Z
�

Z
h�1(w)

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
dH1dH1(w)

=

Z b

a

Z
h�1(� (t))

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
dH1|� 0(t)| dt

=

Z b

a

Z
C� (t)

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
dH1 dt.

Since Jh is bounded, together with assumption (1) in Proposition 3.1, we then have
for a.e. t 2 (a, b), Z

C� (t)

�
| f ✏ � f |2 + |r f ✏ � r f |2

�
dH1 ! 0.

Therefore, the assumptions of Lemma 3.5 are satisfied along C� (t) for a.e. t 2

(a, b).
Step 5. We now prove the Lemma for the ball B2(x0, �). Step 4 and Lemma 3.5
imply that f is constant on C� (t) for a.e. t 2 (a, b). By choosing an initial value for
� arbitrary close to x0 and applying the general co-area formula in a similar manner
we can make sure that f is of class W 1,2 on � . Hence we conclude that f is C0,1/2
on � by the Sobolev embedding theorem. Let F be the set of t 2 (a, b) such that
f is not constant along C� (t), thenH1(F) = 0. We modify f to be constant along
C� (t) for each t 2 F . Note that,

H2
⇣[

{C� (t) : t 2 F}

⌘
 2� sup J�1

h H1({� (t) : t 2 F})=2� sup J�1
h H1(F)=0.

Hence f is C0,1/2 up to modification of a set of measure zero in B2(x0, �). More-
over, f is constant on C� (t) for all t , which foliates B2(x0, �). In addition, by
Corollary 3.6, f is constant on every 2-dimensional region in B2(x0, �) on which g
is constant. Therefore, f is either constant on a line segment joining @B2(x0, �) at
both ends, or constant on a 2-dimensional region in B2(x0, �). This proves Lemma
3.7 for the ball B2(x0, �).
Step 6. Finally, we prove the lemma for the entire domain Pe1e2 \�. Suppose there
is some x 2 Pe1e2 \� that is not contained in a constant region of f . Then by what
we have proved, f is constant on a line segment passing through x and joining the
boundary of B2(x, �x ) ⇢ Pe1e2 \ � for some �x > 0. Let y1y2 be the largest line
segment containing this segment on which f is constant. Suppose y1 2 Pe1e2 \

�, then from what we have proved, f is either constant on 2-dimensional regions
or line segments passing through y1 and joining the boundary of B2(y1, �y1) ⇢
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Pe1e2 \ � for some �y1 > 0. Firstly, y1 cannot be contained in a constant region
of f , otherwise we can prolong the segment [y1, y2]. Thus, there must be a line
segment z1z2 passing through y1 and joining the boundary of B2(y1, �y1) at both
end on which f is constant. Secondly, z1z2 cannot have the same direction as
y1y2, otherwise, we can again prolong the segment y1y2. Then we consider the
region 1 bounded by y2z1, z1z2 and z2y2. Since g is constant on y1y2 and z1z2,
by Proposition 1.3, g must be constant on 1 because no line segment can join the
boundary of Pe1e2 \� passing through a point inside 1 without intersecting either
y1y2 or z1z2 (Figure 3.5). Hence by Corollary 3.17, f is constant on 1 as well,
contradiction to our assumption x is not contained in a constant region of f . The
proof is complete.

Figure 3.5.

Now we are ready to prove Proposition 3.1 for the domain Pe1e2 \�. Since we take
f = ru` for arbitrary 1  `  n + 1, Lemma 3.7 gives all ru` are continuous on
Pe1e2 \� and constant either on 2-dimensional neighborhoods or line segments in
Pe1e2 \ � joining @� at both ends. Therefore, what is left is to prove that they are
constant on the same neighborhoods or line segments in Pe1e2 \�.

Recall from equation (2.3) that n is the wedge product of entries of ru, hence
is continuous. Let

1` =

�
x 2 Pe1e2 \� : n`(x) 6= 0

 
.

Apparently each 1` is open by continuity. Moreover, since |n| = 1 everywhere,
[

1`n+1
1` = Pe1e2 \�.

Let x0 2 Pe1e2 \ �, then x0 2 1` for some `. Without loss of generality, we
assume x0 2 11. Then by the same argument as in the proof of Lemma 3.7, there
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exist B2(x0, �) ⇢ 11 for some � > 0, on which we can construct a foliation
{C� (t)}t2(a,b), i.e. [{C� (t)}t2(a,b) = B2(x0, �) and C� (t) \ C� (t 0) \ B2(x0, �) = ;

for t 0 6= t . Moreover, r2u1 is constant on C� (t) for every t 2 (a, b). Assumption
(1) and (3) in Proposition 3.1, together with the same argument using co-area and
change of variable formulas as in the proof of Lemma 3.7 yield for a.e. t 2 (a, b)

Z
C� (t)

��
ru✏ � ru

��2
+

��
r
2u✏ � r

2u
��2dH1 ! 0

and r
2u` = (n`/n1)r2u1, 2  `  n + 1,H1 a.e on C� (t).
Let v be the directional vector of one such C� (t), then the chain rule in Lemma

3.3 and the fact that ru1 is constant on C� (t) imply

0 =

d
dt

��
t=0ru

1(· + tv) =

�
r
2u1

�
v

in the weak sense in C� (t). Therefore,

�
r
2u`

�
v =

n`

n1
�
r
2u1

�
v = 0, 2  `  n + 1 a.e. on C� (t).

Hence again by the chain rule in Lemma 3.3, ru`, 2  `  n + 1, is constant on
C� (t). Therefore, each ru` is constant on C� (t) for a.e. t 2 (a, b). Furthermore,
since for each 1  `  n + 1, ru` is continuous on Pe1e2 \ �, we conclude that
ru` for all 1  `  n + 1 are constant on all C� (t) that foliates B2(x0, �). On the
other hand, each 2-dimensional regionU of B2(x0, �) automatically satisfies all the
assumptions (1) and (3) in Proposition 3.1, hence the same argument for each C� (t)
gives that ru` for all 2  `  n + 1 is constant on the same region on which ru1
is constant. This proves ru is either constant on 2-dimensional regions or constant
on line segments in B2(x0, �) joining the boundary. The proof of Proposition 3.1
for the domain Pe1e2 \� follows from exactly the same argument as the last step of
the proof of Lemma 3.7. The proof for the base case is complete. ⇤

3.2. Inductive step: k-dimensional slices

In this subsection, we will prove that Proposition 3.1 holds true for k if it holds true
for k � 1 when 2 < k  n. This, combined with the base case k = 2 established in
the previous step, completes the proof of Proposition 3.1.

3.2.1. Developability

Based on the induction hypothesis for k � 1, we first prove a weaker result in k-
dimensional slices of� than Proposition 3.1. That is, we prove that u is developable
on all k-dimensional slices satisfying assumptions (1)-(4) of Proposition 3.1 in the
following sense:
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Proposition 3.8. Suppose Proposition 3.1 is true for any (k� 1)-dimensional slice
of� on which assumptions (1)-(4) are satisfied. Let Pk be any k-dimensional plane
such that assumptions (1)-(4) for u holds on Pk\�, then for every x 2 �, either u is
affine in a neighborhood in Pk\� of x , or there exists a unique (k�1)-dimensional
hyperplane Pxk�1 3 x of Pk such that u is affine on the connected component of x
in Pxk�1 \�.

Proof. We first need to define a terminology that is the higher dimensional version
of “line segments joining the boundary of some domain at both ends”.
Definition 3.9. By a k-plane P in 6 we mean a connected component of a k-
dimensional plane P \6, where 6 is any N -dimensional region with N � k � 1.
Remark 3.10. We emphasize here that such a k-plane P in 6 does not refer to the
entire plane, but just to the part inside a region. On the other hand, it refers to the
entire connected part inside this region.

Let v be any unit directional vector of Pk , let v1, · · · , vk�1 be a set of linearly
independent unit vectors of Pk perpendicular to v. We parametrize the family of
(k�1)-dimensional planes parallel to the space spanned by these vectors as follows:

Py
v1···vk�1 =

(
z : z = y +

k�1X
i=1

sivi , si 2 R
)

, y 2 spanhvi.

Lemma 3.11. Given the direction v, for a.e. y 2 spanhvi, u is C1,1/2loc and is an
isometry on Py

v1···vk�1 \ �. Moreover for every x 2 Py
v1···vk�1 \ �, u is either

affine on a (k � 1)-dimensional region in Py
v1···vk�1 \� containing x , or affine on a

(k � 2)-plane in Py
v1···vk�1 \� passing through x .

Proof. Since u satisfies assumptions (1)-(4) on Pk \ �, by Fubini’s theorem, for
a.e. y 2 spanhvi, assumptions (1)-(4) are also satisfied on Py

v1···vk�1 \ �. Hence
by our induction hypothesis on (k � 1)-slices of �, ru is C0,1/2loc on Py

v1···vk�1 \�.
By assumption (2) ruTru = I a.e., and hence everywhere in Py

v1···vk�1 \ � by
continuity. Therefore, by assumption (1) and the chain rule in Lemma 3.3, u is an
isometry on Py

v1···vk�1 \�.
Moreover by our induction hypothesis, for every x 2 Py

v1···vk�1\�,ru is either
constant on a (k � 1)-dimensional region in Py

v1···vk�1 \� containing x , or constant
on an (k� 2)-plane in Py

v1···vk�1 \� passing through x . Hence by the the chain rule
in Lemma 3.3, u is either affine on (k � 1) dimensional regions in Py

v1···vk�1 \�, or
affine on (k � 2)-plane in Py

v1···vk�1 \�. The proof is complete.

Now we want to show that a substantial part of Lemma 3.11 is true for every
rather than a.e. (k � 1)-dimensional plane in �.

Lemma 3.12. Given a direction v, for all y 2 spanhvi and for all x 2 Py
v1···vk�1\�,

u is either an affine isometry on a (k � 1)-dimensional region in Py
v1···vk�1 \ �
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containing x , or an affine isometry on a (k � 2)-plane in Py
v1···vk�1 \ � passing

through x .

Remark 3.13. We obtain from the proof of Lemma 3.11 that u is C1 on a.e. plane.
However, Lemma 3.11 does not imply u is C1 on every plane because even though
ru is continuous on a.e. plane, we cannot conclude from here thatru is continuous
in �, so we cannot pass to the limit to conclude as in Lemma 3.11.

Proof. Given y 2 spanhvi, Lemma 3.11 guarantees a sequence ym 2 spanhvi,
ym ! y such that Lemma 3.11 is true on Pym

v1···vk�1 \� for every m.
Let x 2 Py

v1···vk�1 \�, we divide the proof into the following two cases:

(1) There is a sequence of (k � 2)-planes Pm in Pym
v1···vk�1 \ � on which u is an

affine isometry and Pm converges to x in distance.
(2) There does not exist such a sequence of (k � 2)-planes.

Suppose we are in case (1); then the limit of Pm must also be a (k � 2)-plane P in
Py
v1···vk�1 \� passing through x . Also since u is Lipschitz continuous, u must also
be an affine isometry on P , which proves the lemma in this case (Figure 3.6).

Figure 3.6. Case (1).

Suppose now we are in case (2). If we cannot find such a sequence of (k � 2)-
planes, then we can find xm 2 Pym

v1···vk�1 \�, xm ! x with the property that there is
✏ > 0 such that u is an affine isometry on Bk�1(xm, ✏) ⇢ Pym

v1···vk�1 \�. Otherwise,
there will again be a sequence of (k� 2)-planes (i.e. the boundaries of the maximal
affine regions containing xm) converging to x in distance, contradiction to the fact
that we are in case (2). Continuity of u then must force u to be an affine isometry
on Bk�1(x, ✏) ⇢ Py

v1···vn�1 \�, which again proves the lemma in this case (Figure
3.7). The proof is complete. ⇤

Lemma 3.14. Suppose u is an affine isometry on two line segments C1 and C2 in
Pk \ � intersecting at a point x in the interior of both C1 and C2. Let H be the
convex hull of the line segments C1 and C2, then u is an affine isometry on H \�.
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Figure 3.7. Case (2).

Proof. We parametrize C1 and C2 by {x + tv1, t 2 [�a, b]} and {x + sv2, s 2

[�c, d]}, respectively, with both v1 and v2 unit vectors. We can assume v1 and v2
are linearly independent, otherwise, the conclusion of the lemma is obvious. Since
u is affine on both C1 and C2, u(C1) and u(C2) are both line segments inRn+1. We
can again parametrize the lines that contain the line segments u(C1) and u(C2) by
u(x)+ t ṽ1 and u(x)+sṽ2, where both ṽ1 and ṽ2 are unit vectors due to the isometry
assumption.

Let y 2 H \ �, we can of course assume that y is neither in C1 nor C2,
otherwise, there is nothing to prove. In this way, we can find a line L3 passing
through y and intersecting C1 at only one point, denoted x13; and C2 at only one
point, denoted x23, where the segment x13x23 lies inside �. Since x13 2 C1, x13 =

x + t0v1 for some t0 2 [�a, b]. Similarly x23 = x + s0v2 for some s0 2 [�c, d].
Then since

y = wx13 + (1� w)x23 for some w 2 [0, 1], (3.4)

it follows
y = x + wt0v1 + (1� w)s0v2.

To prove that u is an affine isometry on H , we need to prove

u(y) = u(x) + wt0ṽ1 + (1� w)s0ṽ2. (3.5)

We first claim that the angle between line segments u(C1) and u(C2) is the same
as the angle between C1 and C2. Since x is in the interior of C1 and C2, we can
construct a parallelogram ABCD centered at x , with A,C 2 C1 and B, D 2 C2.
Since u is an affine isometry onC1 andC2, |u(A)�u(x)| = |A�x |, |u(B)�u(x)| =

|B� x |, |u(C)�u(x)| = |C� x | and |u(D)�u(x)| = |D� x |. On the other hand,
|u(A) � u(B)|  |A � B| and |u(B) � u(C)|  |B � C| since u is 1-Lipschitz
(Figure 3.8).
This implies the angle ↵2 between the line segments u(x)u(A) and u(x)u(B) must
be smaller than or equal to the angle ↵1 between x A and x B, and the angle �2
between the line segments u(x)u(B) and u(x)u(C) must be smaller than or equal
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Figure 3.8.

to the angle �1 between x B and xC . Hence ↵2 = ↵1 and �2 = �1. This proves our
claim.

Since by assumption, u is an affine isometry on x13x and x23x , we have

u
�
x13

�
� u(x) = t0ṽ1 and u

�
x23

�
� u(x) = s0ṽ2

for the same t0, s0 and unit vector ṽ1, ṽ2 as defined before. In particular, |u(x13) �

u(x)| = |x13 � x | and |u(x23) � u(x)| = |x23 � x |. Moreover, since the angle
between line segments u(C1) and u(C2) is the same as the angle between C1 and
C2, we have |x13 � x23| = |u(x13) � u(x23)|.

On the other hand, u(x13x23) is a 1-Lipschitz curve, hence the length the the
curve u(x13x23), denoted by |u(x13x23)|, satisfies |u(x13x23)|  |x13 � x23|. Alto-
gether we have��u�x13� � u

�
x23

���


��u�x13x23��� 

��x13 � x23
��
=

��u�x13� � u
�
x23

���.
This implies ��u�x13x23��� =

��u�x13� � u
�
x23

���.
Hence the curve u(x13x23) must coincide with line segment u(x13)u(x23). There-
fore, u also maps the line segment x13x23 onto a line segment u(x13)u(x23), which
means u is affine on x13x23.

Finally, since u is 1-Lipschitz, |u(x13)�u(y)|  |x13�y| and |u(x23)�u(y)| 

|x23 � y|. However, since u is affine on x13x23,��u�x13� � u
�
x23

���
=

��u�x13� � u(y)
��
+

��u(y) � u
�
x23

���


��x13 � y
��
+

��y � x23
��
=

��x13 � x23
��.

But we already showed that |x13�x23| = |u(x13)�u(x23)|. Hence |u(x13)�u(y)| =

|x13 � y| and |u(x23) � u(y)| = |x23 � y|. Therefore,

u(y) = wu
�
x13

�
+ (1� w)u

�
x23

�
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for the same w as (3.4), which yields (3.5). The proof is complete.

Corollary 3.15. Given a `-dimensional (`  k) region U in Pk \ �, and a line
segment C in Pk \ � for which there exists x 2 C \ U that lies in the interior
of both U and C , if u is an affine isometry on both U and C , then u is an affine
isometry on the convex hull H of U and C inside �

Proof. Let y 2 H \ �. We need to show that u(y) = u(x) + t ṽ for some ṽ given
by a linear combination of directional vectors in u(U) and u(C) and |t ṽ| = |y� x |.
Let Py be a 2-dimensional plane that contains y and C . Then Py intersects U at
some line segment Cy . Since u is an affine isometry on both C and Cy , by Lemma
3.14, u is an affine isometry on the convex hull of C and Cy (Figure 3.9).

Figure 3.9.

Since this convex hull contains both y and x , this implies u(y) = u(x) + t ṽ for
some vector ṽ, |t ṽ| = |y � x |, and ṽ is a linear combination of directional vectors
of u(C) and u(Cy). Our claim then follows because Cy ⇢ U and u is an affine
isometry on U , so any vectors of u(Cy) is a linear combination of vectors in u(U).
The proof is complete.

By obvious induction we then have:

Corollary 3.16. Suppose U1 and U2 are k1 and k2-dimensional regions (k1, k2 

k) in Pk\�with nonempty intersections. Moreover, there exists a point x 2 U1\U2
belonging to the interior of both U1 and U2. If u is an affine isometry on both U1
and U2, then u is an affine isometry on the convex hull of U1 and U2 inside �.

Now we are ready to prove Proposition 3.8. Given x 2 Pk \�, we first claim
that there is a (k � 1)-dimensional hyperplane Px0 in Pk and a (k � 1)-dimensional
neighborhood Ux

0 ⇢ Px0 \ � containing x on which u is an affine isometry. Oth-
erwise, for all (k � 1)-dimensional hyperplanes in Pk \ � that pass through x , x
is not contained in any (k � 1)-dimensional neighborhood on which u is an affine
isometry. In particular, let v1, · · · , vk be linearly independent vectors of Pk and
let Pxv1···v̂i ···vk , i = 1, ..., k be the (k � 1)-dimensional hyperplanes in � passing
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through x and parallel to the space spanned by v1, · · · , vi�1, vi+1, · · · , vk . Since
x is not contained in any (k � 1)-dimensional neighborhood in Pxv1···v̂i ···vk \ � on
which u is an affine isometry, by Lemma 3.12 there exists (k � 2)-planes Pî 3 x
in Pxv1···v̂i ···vk \ � such that u is an affine isometry on Pî . By Corollary 3.16, u is
an affine isometry on the convex hull of Pî for all 1  i  k (Figure 3.10 Case 1).
Let vî be a directional vector of Pî . Since Pî ⇢ Pxv1···v̂i ···ek , which is orthogonal to
vi , at least k � 1 out of these k vectors are linearly independent. This convex hull
has k � 1 linearly independent directional vectors, hence it must contain a (k � 1)-
dimensional neighborhood of x , contradiction to our assumption, which proves our
claim.

Figure 3.10. Case 1 (left) and Case 2 (right).

Therefore, we have proved that x must be contained in a (k�1)-dimensional neigh-
borhood Ux

0 ⇢ Px0 \ � for some (k � 1)-dimensional hyperplane Px0 and u is an
affine isometry on Ux

0 . If U
x
0 is the entire connected component containing x in

Px0 \�, then the conclusion of the proposition is achieved. Otherwise, we can find
a maximal (k � 2)-plane Px in Ux

0 , which is not a (k � 2)-plane in Px0 \�, i.e., it
is away from @�, on which u is an affine isometry. Let Px1 be any other (k � 1)-
dimensional hyperplane containing the region Px . We have Px = Ux

0 \Px1 and since
the maximal affine region Px ⇢ Px1 \� is not a (k�2)-plane in Px1 \�, by Lemma
3.12, x must be contained in a (k� 1)-dimensional neighborhoodUx

1 ⇢ Px1 \� on
which u is an affine isometry (Figure 3.10 Case 2). By Corollary 3.16, u is an affine
isometry on the convex hull ofUx

0 andU
x
1 , whose interior is a k-dimensional region,

which also achieves the conclusion of Proposition 3.8. The proof is complete. ⇤

3.2.2. Regularity and the conclusion of the inductive step

In out last step, we will essentially show that Proposition 3.8 combined with as-
sumptions (1)-(4) of Proposition 3.1 for a k-dimensional slice Pk , implies the con-
clusion of the latter proposition. This will hence conclude the inductive step. The
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key point is to show that if u is affine on a (k � 1)-plane, then its full gradient must
be constant on the same region. The arguments are very similar to what we used in
the proofs of Lemmas 3.5-3.7. We will first prove the following:

Lemma 3.17. Suppose on a k-plane P (1  k  n) in � we have the following:

(1) There is a sequence of smooth functions u✏ 2 C1(�, Rn+1) such that
Z
P

|u✏ � u|2 + |ru✏ � ru|2 + |r
2u✏ � r

2u|2dHk
! 0.

(2) Rankr
2u`  1 and r

2u` is symmetric a.e. on P for all 1  `  n + 1.

Then if u is affine on P , ru is constant on P .

Proof. Let v be any unit directional vector in P . By assumption (1) and the chain
rule in Lemma 3.3, u is affine on P implies

ru(x)v = constant for a.e. x 2 P.

Take the directional derivative one more time, together with assumption (1) we
obtain,

(v)Tr
2u`v = 0 for a.e. x 2 P (3.6)

for all 1  `  n + 1. However, to show that ru is constant on P , we need a
conclusion stronger than (3.6), i.e.,

r
2u`v = 0 for a.e. x 2 P (3.7)

for all 1  `  n + 1. Indeed, by assumption (2), we can write r
2u` as

r
2u`(x) = �(x)b(x) ⌦ b(x) a.e.

for some scalar function � and b 2 Sn�1. Then (3.6) implies,

(v)T�(x)b(x) ⌦ b(x)v = �(x)hv,b(x)i2 = 0 a.e.

This then implies
�(x)hv,b(x)i = 0 a.e.

Therefore,
r
2u`v = �(x)hv,b(x)ib(x) = 0 a.e.

which is exactly (3.7). The proof of the lemma is complete.
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Let Pk be any k-dimensional plane such that assumptions (1)-(4) in Proposition
3.1 hold on Pk \�.

By means of Lemma 3.7 and making use of Proposition 3.8 and Corollary 3.16,
similarly as before we get

@U \� =

[
x2@U\�

PUx

where PUx is some (n� 1)-plane in� containing x with the property that for x, z 2

@U \�, PUx = PUz if z 2 PUx and PUx \ PUz \� = ; if z /2 PUx .
Similarly as in the proof of Lemma 3.7 (Figure 3.5), it suffices to show that

the conclusions holds true locally. If x0 2 Pk \ � is a point lying in an affine
neighborhood for u in Pk , then Lemma 3.17 and the assumptions of Proposition 3.1
immediately imply that ru must be constant in the same neighborhood, which is
the desired conclusion. Otherwise, we may and do choose a small � > 0 so that
for any region U on which u is affine, the k-dimensional ball Bk(x0, �) ⇢ Pk \ �
intersects @U at no more than two (k � 1)-planes belonging to @U .

We now focus on Bk(x0, �) ⇢ Pk \ �. For any x 2 Bk(x0, �), as in Lemma
3.7, we construct a (k � 1)-plane Px in Bk(x0, �) passing through x on which u is
affine and Px \ Pz \ Bk(x0, �) = ; if z /2 Px , see Figure 3.3. We then construct a
foliation of Bk(x0, �), see Figure 3.4 and obtain that the assumptions of Lemma 3.7
are satisfied along P� (t) for a.e. t 2 (a, b) by the same argument as Step 4 and Step
5 of Lemma 3.7. It then follows that ru is constant on P� (t) for a.e. t 2 (a, b).

By choosing an initial value for � arbitrary close to x0 and applying the co-area
formula in a similar manner we can make sure that ru is of classW 1,2 on � . Hence
we conclude that ru is C0,1/2 on � by the Sobolev embedding theorem. Let F be
the set of t 2 (a, b) such that ru is not constant along P� (t), thenH1(F) = 0. We
modify ru to be constant along P� (t) for each t 2 F . Note that,

Hk
⇣[�

P� (t) : t 2 F
 ⌘

 c(2�)k�1H1({� (t) : t 2 F}) = c(2�)k�1H1(F) = 0

for some constant c. Hence ru is C0,1/2 up to modification of a set of measure zero
in Bk(x0, �). Moreover, ru is constant on P� (t) for all t , which foliates Bk(x0, �).
Thus ru is constant on any region on which u is affine. Therefore, ru is constant
either on a (k�1)-plane or k-dimensional region in Bk(x0, �). This implies that the
conclusions of Proposition 3.1 under the induction hypothesis are true and hence
the inductive step is established. As a conclusion the proofs of Proposition 3.1 and
Theorem 1.4 are complete. ⇤

4. Density: proof of Theorem 1.5

In this section we show that isometric immersions smooth up to the boundary are
strongly dense in I 2,2(�, Rn+1) if � ⇢ Rn is a convex C1 domain. Note that it
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is sufficient to prove that I 2,2 \ C1(�, Rn+1) is strongly dense in I 2,2(�, Rn+1).
Having this result at hand, and since � is assumed convex, the approximating se-
quence can be easily rescaled to be smooth up to the boundary.

4.1. Foliations of the domain

We have argued in the proof of Theorem 1.4 in section 3.2.2 that for every maximal
region U ⇢ � on which u is affine, @U \ � =

S
x2@U\� PUx , where PUx is some

(n � 1)-plane in � containing x with the property that for x1, x2 2 @U \�, PUx1 =

PUx2 if x2 2 PUx1 and P
U
x1 \ PUx2 \� = ; if x2 /2 PUx1

We say a maximal region on which u is affine is a body if its boundary contains
more than two different (n � 1)-planes in �.

Lemma 4.1. It is sufficient to prove Theorem 1.5 for a function in I 2,2(�, Rn+1)
with a finite number of bodies.

Proof. The proof is similar to the proof of [22, Lemma 3.8] and is omitted for
brevity.

Now we can just assume u 2 I 2,2(�, Rn+1) has finite number of bodies. Each
body is closed and so is therefore their union, whose complement we denote bye�. Note that now for every n-dimensional maximal-affine region U ⇢

e�, @U \
e�

consists of at most two (n � 1)-planes.
Similarly as in the proof of Lemma 3.7, for every x 2

e�, we will construct an
(n�1)-plane Px in e� passing through it on whichru is constant and Px\Pz\e� =

; if z /2 Px . To apply the same construction in Lemma 3.7, we makes use of
Theorem 1.4 and the fact that @U \

e� consists of at most two (n � 1)-planes, see
in Figure 4.1.

Figure 4.1. Construction of global foliations in e�.
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For every x 2
e�, we define the normal vector field N(x) as the unit vector orthog-

onal to the family Px constructed above. Since none of the Px ’s intersect inside e�
we can choose an orientation such that N is a Lipschitz vector fields. The ODE,

� 0(t) = N(� (t)) � (0) = x0 (4.1)

has a unique solution � : (a, b) !
e� for some interval (a, b) ⇢ R containing 0.

Note that Px = P� (t) if x 2 P� (t), therefore, {P� (t)}t2(a,b) is a local foliation of e�
such that ru is constant on P� (t) for all t 2 (a, b) (Figure 4.2).

Figure 4.2.

4.2. Leading curves in the domain

Definition 4.2. Let {Px }x2e� be a family of (n�1)-planes ine� passing through x on
which ru is constant, satisfying Px \ Pz \

e� = ; if z /2 Px and Px = Pz if z 2 Px .
We say that a curve � 2 C1,1([0, `],e�) parametrized by arclength is a leading
curve if it is orthogonal at any possible point of intersection z 2 � ([0, `]) \ Px to
Px = Pz for all x 2

e� (Figure 4.3).
It is easy to see that � constructed in Subsection 4.1 when restricted to the

interval [0, `] is a leading curve, since by the ODE (4.1), |� 0
| = 1 and |� 00

| is
bounded as N is Lipschitz.
Definition 4.3. The (n � 1)-dimensional hyperplane F� (t) orthogonal to � (t) at
t 2 [0, `] is called the leading front of � at t 2 [0, `] (Figure 4.3).

Remark 4.4. It then follows from the definition of the leading curve that F� (t) \

F� (t̃)\e� = ; for all t, t̃ 2 [0, `] such that t 6= t̃ . Moreover, F� (t) ⇢
e�, otherwise,

F� (t) \ B 6= ; where B is one of the bodies in� \
e�. Since ru, being continuous,
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Figure 4.3. Leading curve and leading fronts.

is constant on F� (t) \
e� and B, it must be constant on their convex hull, which is

again a body, contradiction to that a body is a maximal region.
We say that a curve � covers the domain A ⇢ � if

A ⇢

[�
F� (t) : t 2 [0, `]

 
.

By�(� )we refer to the biggest set covered by � in�. We now restrict our attention
to the covered domain �(� ). It is obvious that �(� ) is convex since it is bounded
by F� (0), F� (`) and @�.

From the construction in Subsection 4.1, the (n � 1)-planes P� (t) in e�, t 2

[0, `] which constitute a local foliation of e� are global foliations of �(� ). More-
over, P� (t) = F� (t) \�(� ) = F� (t) \� for all t 2 [0, `]. We relabel them P� (t)
to be in consistence of notation and we name them:
Definition 4.5. The component P� (t) := F� (t) \� is called the leading (n � 1)-
plane in � of � at t 2 [0, `].

Let {Ni (t)}n�1i=1 be an orthonormal basis for the leading front F� (t) (Figure 4.3)
such thatNi is Lipschitz for all 1  i  n�1 and det[� 0(t),N1(t̃), · · · ,Nn�1(t̃)] =

1. It is obvious that such orthonormal basis exists because we can pick {Ni (0)}n�1i=1
as an orthonormal basis for F� (0) that forms a positive orientation with � 0(0) and
then move this frame along � in an orientation preserving way (note that � is not a
closed curve so this is possible). Let 8 : [0, `] ⇥ Rn�1

! Rn be defined as

8(t, s) := � (t) +

n�1X
i=1

siNi (t), (4.2)

where s = (s1, · · · , sn�1). Then we can represent the leading front at t 2 [0, `] as

F� (t) =

n
8(t, s), s =

�
s1, · · · , sn�1

�
2 Rn�1

o
. (4.3)
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For each t 2 [0, `], define the open set

6� (t) =

n
s =

�
s1, · · · , sn�1

�
2 Rn�1

: 8(t, s) 2 �
o

. (4.4)

It is obvious that 0 2 6� (t), hence it is non-empty. Then we can also parametrize
the leading planes as

P� (t) =

�
8(t, s), s =

�
s1, · · · , sn�1

�
2 6� (t)

 
. (4.5)

Now define
6� := {(t, s),8(t, s) 2 �}. (4.6)

Of course we can also write

6� =

�
(t, s), t 2 [0, `], s =

�
s1, · · · , sn�1

�
2 6� (t)

 
.

We will focus on the restriction of8 in6� . However, if no confusion is caused, we
still denote such restriction 8. It is easy to see that 8 maps 6� into �(� ). Indeed,
if x = 8(t, s) for some (t, s) 2 6� , by definition of6� ,8(t, s) 2 �. On the other
hand, 8(t, s) 2 F� (t), thus, x = 8(t, s) 2 F� (t) \� ⇢ �(� ).

Lemma 4.6. 8 : 6� ! �(� ) is one-to-one and onto. In particular,

�(� ) =

�
8(t, s), (t, s) 2 6�

 
=

[�
P� (t) : t 2 [0, `]

 
.

Proof. We first show8 is one-to-one. Suppose8(t1, s1)=8(t2,s2)while (t1,s1) 6=
(t2, s2). Since s 7! 8(t, s) is obviously one-to-one by the definition of 8, it must
be t1 6= t2. We have argued in Remark 4.4 that F� (t1)\ F� (t2)\� = ;. Therefore,
F� (t1) \ F� (t2) \ �(� ) = ; since �(� ) ⇢ �. However, 8(t1, s1) 2 F� (t1) and
8(t2, s2) 2 F� (t2), contradiction to 8(t1, s1) = 8(t2, s2).

We will now show 8 is onto. Let x 2 �(� ); then x = 8(t, s) for some
t 2 [0, `] and s 2 Rn�1. Since x 2 �(� ),8(t, s) 2 �(� ) ⇢ �, hence (t, s) 2 6� .
The proof is complete.

Obviously we can rewrite 8(t, s) := � (t) +

Pn�1
i=1 siNi (t), t 2 [0, `], s 2

Rn�1 as

8(t, S · s) = � (t) + S

 
n�1X
i=1

siNi (t)
!

, t 2 [0, `], s 2 Sn�2, S � 0.

We then rewrite the representation of leading front in (4.3) in an equivalent way:

F� (t) =

n
8(t, S · s), S � 0, s =

�
s1, · · · , sn�1

�
2 Sn�2

o
. (4.7)

For each t 2 [0, `] and s = (s1, · · · , sn�1) 2 Sn�2, define the scalar function,

S�s (t) := sup{S � 0 : 8(t, S · s) 2 �}. (4.8)
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That is, S�s (t) is the distance from � (t) to @� in the direction
Pn�1

i=1 siNi (t). From
the definition of 6� (t) and 6� ,

6� (t) =

n
(S · s) : s =

�
s1, · · · , sn�1

�
2 Sn�2, 0 < S < S�s (t)

o
, (4.9)

and

6� =

n
(t, S · s), t 2 [0, `], s =

�
s1, · · · , sn�1

�
2 Sn�2, 0 < S < S�s (t)

o
. (4.10)

Since |� 0(t)| = 1, � 00(t) · � 0(t) = 0, we can then write � 00(t) =

Pn�1
i=1 i (t)Ni (t).

Similarly we can also write

N0

i = i0�
0

+

n�1X
j=1

i jN j . (4.11)

It is easy to see that i0 = �i , ii = 0 and i j = � ji . These equations can be
written as the matrix equation

0
BBBB@

� 0

N1
N2
...

Nn�1

1
CCCCA

0

=

0
BBBB@

0 1 2 · · · n�1
�1 0 12 · · · 1n�1
�2 �12 0 · · · 2n�1

...
...

... · · ·

...
�n�1 �1n�1 �2n�1 · · · 0

1
CCCCA

0
BBBB@

� 0

N1
N2
...

Nn�1

1
CCCCA . (4.12)

Given two non-parallel leading fronts F� (t) and F� (t̃), denote their (n � 2)-plane
of intersection by F(t, t̃). Given s = (s1, · · · , sn�1) 2 Sn�2, define Ls(t, t̃) as the
distance from � (t) to F(t, t̃) along the direction

Pn�1
i=1 siNi (t) (we set Ls(t, t̃) =

+1 if it does not hit F(t, t̃) along this direction: see Figure 4.4). We then define

L�s (t) := inf
�
Ls(t, t̃) : t̃ 6= t

 
. (4.13)

Since all F(t, t̃) are outside �, L�s (t) � S�s (t) for all s 2 Sn�2 and t 2 [0, `].

Lemma 4.7. L�s (t)
⇣Pn�1

i=1 sii (t)
⌘

 1 for all t 2 [0, `] and s = (s1, · · · , sn�1)2
Sn�2.

Proof. Suppose F� (t) and F� (t̃) are not parallel. Solving for their intersection
yields

� (t) +

n�1X
i=1

siNi (t) = � (t̃) +

n�1X
i=1

riNi (t̃).

This is a linear system of n equations and 2n � 2 unknowns (si )n�1i=1 and (ri )n�1i=1 .
A solution for this system of equations exists because the two leading front are not



RIGIDITY OF SOBOLEV ISOMETRIC IMMERSIONS 797

Figure 4.4.

parallel. Then direct computation using Cramer’s rule gives the formula for F(t, t̃)
explicitly,

F(t, t̃) =

(
x 2 F� (t) : (x � � (t)) ·

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

Ni (t)
!

= 1

)
,

where
hi (t, t̃) := det

⇥
N1(t̃), · · · ,Nn�1(t̃),Ni (t)

⇤
for 1  i  n � 1, and

H(t, t̃) = det
⇥
N1(t̃), · · · ,Nn�1(t̃), � (t) � � (t̃)

⇤
.

Note that H(t, t̃) 6= 0 since � (t) � � (t̃) is not parallel to F� (t̃).
We firstly claim that

Ls(t, t̃)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
 1. (4.14)

Indeed, we divide the situation into two cases. In the first case, suppose we travel
from � (t) along a given direction

Pn�1
i=1 siNi (t) and hit F(t, t̃), then for x 2 F(t, t̃),

x � � (t) = Ls(t, t̃)

 
n�1X
i=1

siNi (t)
!

.
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Therefore,

Ls(t, t̃)

 
n�1X
i=1

siNi (t)
!

·

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

Ni (t)
!

= Ls(t, t̃)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
= 1.

(4.15)

Suppose for a certain direction
Pn�1

i=1 siNi (t)we do not hit F(t, t̃), in which case we
set Ls(t, t̃) = +1; then we must hit F(t, t̃) through the direction�

Pn�1
i=1 siNi (t),

therefore, by (4.15),

L�s(t, t̃)

 
n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
= 1.

In particular, since L�s(t, t̃) > 0,

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si > 0.

We then must have

Ls(t, t̃)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
< 0. (4.16)

Now (4.15) and (4.16) together give that in either case (4.14) holds true, which
proves our claim.

We secondly claim that

L�s (t)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
 1 (4.17)

for all t, t̃ 2 [0, `] and s 2 Sn�2. Indeed, if for a given t, t̃ and s 2 Sn�2, F� (t) and
F� (t̃) are not parallel, and

�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si � 0, (4.18)

then,

L�s (t)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
 Ls(t, t̃)

 
�

n�1X
i=1

hi (t, t̃)
H(t, t̃)

si

!
= 1
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which gives (4.17) for this case. If for a certain t, t̃ and s 2 Sn�2, (4.18) fails to
hold, then (4.17) is obviously satisfied. Finally, if F� (t) and F� (t̃) are parallel, then
hi (t, t̃) = 0 for all 1  i  n � 1, hence the (4.17) is again satisfied.

We thirdly claim that

�

hi (t, t̃)
H(t, t̃)

! i (t), 1  i  n � 1, (4.19)

as t̃ ! t . Indeed, since det[� 0(t),N1(t), · · · ,Nn�1(t)] = 1 for all t 2 [0, `],

H(t, t̃) ⇡ det
⇥
N1(t̃), · · · ,Nn�1(t̃), � 0(t̃)(t � t̃)

⇤
= (�1)n�1(t � t̃)

as t̃ ! t . Moreover,

hi (t, t) = det
⇥
N1(t), · · · ,Nn�1(t),Ni (t)

⇤
= 0.

Then,

�

hi (t, t̃)
H(t, t̃)

⇡ �

hi (t, t̃) � hi (t, t)
(�1)n�1(t � t̃)

!

(�1)n�1
✓
det

⇥
N0

1(t), · · · ,Nn�1(t),Ni (t)
⇤
+ · · ·

+ det
⇥
N1(t), · · · ,N0

n�1(t),Ni (t)
⇤◆

.

(4.20)

Recalling (4.11) and plugging this expression into (4.20), it is easy to see that all
other terms vanish except

det[N1(t), · · · ,N0

i (t), · · · ,Nn�1(t),Ni (t)]
= �i det

⇥
N1(t), · · · , � 0(t), · · · ,Nn�1(t),Ni (t)

⇤
= i det

⇥
N1(t), · · · ,Nn�1(t), � 0(t)

⇤
= (�1)n�1i

because det[� 0(t),N1(t), · · · ,Nn�1(t)] = 1. This proves (4.19).
Passing in (4.17) to the limit t̃ ! t we obtain the lemma. The proof is com-

plete.

Recall that S�s (t) as defined in (4.8) satisfies 0  S�s (t)  L�s (t) for all s 2

Sn�2 due to the fact that F� (t) \ F� (t̃) \� = ; for all t, t̃ 2 [0, `], t̃ 6= t . We then
have:

Corollary 4.8. S�s (t)
⇣Pn�1

i=1 sii (t)
⌘

 1 for all t 2 [0, `] and s=(s1, · · ·,sn�1)2
Sn�2.
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Proof. If
Pn�1

i=1 sii (t) � 0, then S�s (t)
⇣Pn�1

i=1 sii (t)
⌘

 L�s (t)
⇣Pn�1

i=1 sii (t)
⌘



1. If
Pn�1

i=1 sii (t) < 0, then the result is obviously true.

From the definition of 8 in (4.2), 8 is Lipschitz, hence its Jacobian J8 =

det D8 exists a.e. on 6� , where 6� has two equivalent representations (4.6) and
(4.10). We will show the Corollary 4.8 implies J8 > 0 a.e. on 6� , namely:

Lemma 4.9. J8(t, s) = 1�

Pn�1
i=1 sii (t) > 0 for all (t, s) 2 6� .

Proof. Differentiating 8(t, s) with respect to (t, s1, · · · , sn�1) gives

J8(t, s) = det

"
� 0(t) +

n�1X
i=1

siN0

i (t),N1(t), · · · ,Nn�1(t)
#

. (4.21)

Substituting (4.11) into (4.21) we obtain, after Gaussian elimination, that

J8(t, s) = 1�

n�1X
i=1

sii (t). (4.22)

If
Pn�1

i=1 sii (t)  0, then obviously J8(t, s) > 0. Suppose now
Pn�1

i=1 sii (t) > 0.
By (4.8) and (4.10) we have

n�1X
i=1

sii (t) = |s|

 
n�1X
i=1

si
|s|
i (t)

!
< S�s (t)

 
n�1X
i=1

si
|s|
i (t)

!
 1

by Corollary 4.8. Therefore, J8(t, s) > 0 for all (t, s) 2 6� . The proof is com-
plete.

4.3. Moving frames in the target space

We are now in a position to define the moving frame in the target space Rn+1. Let
Ni (t), 1  i  n � 1 be as in Subsection 4.2. Define the leading curve correspond-
ing to � in u(�(� )) to be

�̃ := u � � .

We also recall from Subsection 4.1 the definitions (4.2), (4.5), and that ru is con-
stant on P� (t) for each t 2 [0, `]. Hence for each t 2 [0, `], ru �8 is constant on
6� (t).
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Consider the Darboux frame (�̃ 0, v1,· · ·,vn�1,n)where vi (t)=ru(� (t))Ni (t),
i = 1, . . . , n � 1 and n(t) = �̃ 0(t) ⇥ v1(t) ⇥ · · · ⇥ vn�1(t). Since u is an isometric
affine map along P� (t) for each t 2 [0, `] we obtain

u(8(t, s)) = �̃ (t) +

n�1X
i=1

sivi (t) (4.23)

for all t 2 [0, `] and s 2 6� (t). Differentiating with respect to t , by (4.2)
we get

ru(8(t, s))

 
� 0(t) +

n�1X
i=1

siN0

i (t)

!
= �̃ 0(t) +

n�1X
i=1

siv0i (t), (4.24)

and differentiating with respect to si , 1  i  n � 1 we obtain for each i ,

ru(8(t, s))Ni (t) = vi (t). (4.25)

By the linear expansion of N 0

i in (4.11) and (4.12), together with (4.24) and (4.25)
we get

�̃ 0(t) +

n�1X
i=1

siv0i (t)

= ru(8(t, s))

 
1�

n�1X
i=1

sii (t)

!
� 0(t) +

n�1X
i=1

si

 
n�1X
j=1

i j (t)v j (t)
! (4.26)

with ii = 0 and i j = � ji . Also, by (4.24), for s = 0 we have

ru(8(t, 0))� 0(t) = �̃ 0(t).

Since ru �8 is constant on 6� (t) for each t 2 [0, `], we obtain

ru(8(t, s))� 0(t) = ru(8(t, 0))� 0(t) = �̃ 0(t) for all s 2 6� (t). (4.27)

Alongside (4.25), this shows that at each point in �(� ), ru maps an orthonormal
frame to another orthonormal frame and this orthonormal frame only depends on t .
Finally, using (4.26) and matching coefficients yields for all 1  i  n � 1,

v0i = �i �̃
0

+

n�1X
j=1

i j v j , ii = 0 and i j = � ji . (4.28)
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In other words, the following system of ODEs is satisfied by the Darboux frame
of �̃ : 0

BBBBBB@

�̃ 0

v1
v2
...

vn�1
n

1
CCCCCCA

0

= K

0
BBBBBB@

�̃ 0

v1
v2
...

vn�1
n

1
CCCCCCA

. (4.29)

Here the skew-symmetric curvature matrix K is given by

K =

0
BBBBBB@

0 1 2 · · · n�1 n
�1 0 12 · · · 1n�1 0
�2 �12 0 · · · 2n�1 0

...
...

... · · ·

...
...

�n�1 �1n�1 �2n�1 · · · 0 0
�n 0 0 · · · 0 0

1
CCCCCCA

.

4.4. Change of variable formula

Recall that 8 : 6� ! �(� ) is one-to-one and onto, where 6� was defined in
(4.6), For (t, s) 2 6� , let ui (t, s) := ( @

@xi u) �8(t, s), note that ui is the i th column
of ru �8. The following holds for all (t, s) 2 6� : since ruTn · � 0

= n · ru� 0
=

n · �̃ 0
= 0 and ruTn ·N j = n · ruN j = n · v j = 0 for all 1  j  n � 1, we have

ruTn = 0, i.e. ui · n = 0 for all 1  i  n. Thus,

ui =

�
ui · �̃ 0

�
�̃ 0

+

X
j

�
ui · v j

�
v j +

�
ui · n

�
n

=

�
ui · �̃ 0

�
�̃ 0

+

X
j

�
ui · v j

�
v j

=

�
ui · ru� 0

�
�̃ 0

+

X
j

�
ui · ruN j

�
v j

=

�
ruT ui · � 0

�
�̃ 0

+

X
j

�
ruT ui · N j

�
v j

=

�
ei · � 0

�
�̃ 0

+

X
j

�
ei · N j

�
v j .

(4.30)

Note that the right-hand side of (4.30) is independent of s. Differentiating with
respect to s j , 0  j  n � 1, by (4.2) we get for all 1  i  n and 1  j  n � 1,

✓
r

@

@xi
u
◆

(8(t, s))N j (t) = 0. (4.31)
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Differentiating ui with respect to t we obtain

✓
r

@

@xi
u
◆

(8(t, s))

 
� 0(t) +

n�1X
j=1

s jN0

j (t)

!

=

�
ei · � 00(t)

�
�̃ 0(t) + (ei · � 0(t))�̃ 00(t)

+

n�1X
j=1

�
ei · N0

j (t)
�
v j (t) +

n�1X
j=1

�
ei · N j (t)

�
v0j (t).

(4.32)

If we write N0

i as a linear combination of �
0 and N j , j = 1, · · · , n � 1 as in (4.11)

and (4.12), the left-hand side of (4.32) becomes
 
1�

N�1X
j=1

s j j (t)

!✓
r

@

@xi
u
◆

(8(t, s))� 0(t).

For the right-hand side of (4.32), if we write out � 00, �̃ 00, N0

j and v0j as linear com-
binations of � 0, �̃ 0, N` and v`, ` = 1, · · · , n � 1 and n as in (4.11) and (4.28), we
obtain,

�
ei · � 00

�
�̃ 0

+

�
ei · � 0

�
�̃ 00

+

X
j

�
ei · N0

j
�
v j +

X
j

�
ei · N j

�
v0j

=

 
ei ·

X
j
 jN j

!
�̃ 0

+

�
ei · � 0

�  X
j
 jv j + nn

!

+

X
j

 
ei ·

 
� j�

0

+

X
`

 j`N`

!!
v j +

X
j

�
ei · N j

�  
� j �̃

0

+

X
`

 j`v`

!

=

X
j

�
ei ·  jN j

�
�̃ 0

+

�
ei · � 0

�X
j
 jv j +

�
ei · � 0

�
nn�

�
ei · � 0

�X
j
 jv j

+

X
j

X
`

�
ei ·  j`N`

�
v j�

X
j

�
ei ·  jN j

�
�̃ 0

+

X
`

X
j

�
ei · N`

�
` j v j =(ei ·� 0)nn

where we used the fact that i j = � ji . By Lemma 4.9, 1�

Pn�1
j=1 s j j (t) > 0 for

all (t, s) 2 6� . Therefore,
✓

r

@

@xi
u
◆

(8(t, s))� 0(t) =

(ei · � 0(t))n(t)n(t)

1�

n�1X
j=1

s j j (t)

. (4.33)
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Since8 is Lipschitz with J8(t, s) = 1�

Pn�1
j=1 s j j (t) > 0, the change of variable

x = 8(t, s) with (4.23) and (4.33) yields
Z
�(� )

|u(x)|2dx

=

Z `

0

Z
6� (t)

������̃ (t) +

n�1X
i=1

sivi (t)

�����
2

·

 
1�

n�1X
j=1

s j j (t)

!
dHn�1(s)dt,

(4.34)

Z
�(� )

|ru(x)|2dx = n|�(� )|, (4.35)

Z
�(� )

|r
2u(x)|2dx =

Z `

0

Z
6� (t)

X
i

�
ei · � 0(t)

�2
2n(t)

 
1�

n�1X
j=1

s j j (t)

! dHn�1(s)dt

=

Z `

0

Z
6� (t)

2n(t) 
1�

n�1X
j=1

s j j (t)

!dHn�1(s)dt.

(4.36)

4.5. Approximation process for u|�(� )

Recall L�s (t) and S�s (t) defined in (4.13) and (4.8) respectively. Since all leading
fronts meet outside �, we must have L�s (t) � S�s (t) for all s 2 Sn�2 and t 2 [0, `].

Lemma 4.10. There exists a sequence of isometries um 2 W 2,2(�(� ), Rn+1) con-
verging strongly to u with the property that each um has a suitable leading curve
�m : [0, `m] ! Rn for which L�ms (t) � S�ms (t) > ⇢m > 0 for all s 2 Sn�2 and
t 2 [0, `m].

Proof. Theproofisexactlythesame as the 2-dimensional case, [22, Proposition 3.2].
For this reason, it is omitted.

Remark 4.11. By the above lemma, we can just assume u has a suitable leading
curve � that satisfies L�s (t) � S�s (t) > ⇢ > 0 for all s 2 Sn�2 and t 2 [0, `].

Lemma 4.12. Suppose L�s (t) � S�s (t) > ⇢ > 0 for all s 2 Sn�2 and t 2 [0, `].
Then there is a sequence of smooth maps in I 2,2(�(� ), Rn+1) converging strongly
to u.

Proof. The idea is to construct a smooth curve �m approximating � . We do not
know yet this curve is a leading curve of um or not, so we cannot call the (n �

2)-dimensional hyperplane orthogonal to �m at t leading fronts. Instead we call
them orthogonal fronts and denote them by F�m (t). If we manage to show all such
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orthogonal fronts meet outside �(�m), �m becomes a leading curve for um and
F�m (t) are actually the leading fronts. We then define um to be isometric affine
mapping along each leading front F�m (t). Since all the leading fronts intersect
outside �, um is well-defined.

We first need the following:
Lemma 4.13. There exists smooth curve �m such that �m(t) ! � (t) strongly in
W 2,p([0, `], Rn) for all 1  p < 1 and satisfies F�m (t) \ F�m (t̃) \� = ; for all
t, t̃ 2 [0, `].
Proof. The construction is long and technical so we postpone the proof to Ap-
pendix A.

We also need to define the curves �̃m in the target space u(�(� )) corresponding
to �m . Recall that the normal curvature n defined in (4.29) is bounded. We choose
a sequence of uniformly bounded smooth function ̃n,m such that ̃n,m ! n a.e. in
[0, `], (and hence in L p for all 1  p < 1).

We need to flatten ̃n,m around the end points 0 and ` for two reasons: first, it
might happen that �(� ) * �(�m) so we need to extend the isometric immersion
defined on �(�m) smoothly to the region of �(� ) outside �(�m). Second, so far
all the construction is on one covered domain �(� ) and our final goal is to glue
all the different covered domains together smoothly. By flattening ̃n,m around the
end point 0 and `, um constructed later is affine near the leading planes P� (0) and
P� (`) (for definition of leading planes see Definition 4.5) so that we can join all the
pieces smoothly. The modification goes as follows: by (4.33), the second derivative
of u vanishes whenever n = 0. Put

`⇤m =

⇢
` if �(� ) ⇢ �(�m) and,
sup

�
t 2 [0, `], F�m (t) \ F� (`) \�(� ) = ;

 
otherwise.

By step 1 of Lemma 4.13 in the Appendix, F�m (t) ! F� (t) uniformly, hence
`⇤m ! ` as m ! 1.

Let  1 be any smooth non-negative function which is 0 on [�1,1) and 1 on
(�1,�2). Let  2 be any smooth positive function which is 0 on (�1, 1] and 1
on (2,1). We put,

n,m(t) :=  1(m(t � `⇤m)) 2(mt)̃n,m(t), t 2 [0, `]

and we solve the following linear system for initial values �̃ 0

m(0) = �̃ 0(0), vi,m(0) =

vi (0), and nm(0) = n(0):0
BBBBBB@

�̃ 0

m
v1,m
v2,m

...
vn�1,m
nm

1
CCCCCCA

0

= Km

0
BBBBBB@

�̃ 0

m
v1,m
v2,m

...
vn�1,m
nm

1
CCCCCCA

.
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Here the matrix Km is given by

Km =

0
BBBBBB@

0 1,m 2,m · · · n�1,m n,m
�1,m 0 12,m · · · 1n�1,m 0
�2,m �12,m 0 · · · 2n�1,m 0

...
...

... · · ·

...
...

�n�1,m �1n�1,m �2n�1,m · · · 0 0
�n,m 0 0 · · · 0 0

1
CCCCCCA

.

We define
�̃m(t) = �̃ (0) +

Z t

0
�̃ 0

m(⌧ )d⌧.

By the same argument as in Step 1 in the proof of Lemma 4.13, �̃m ! �̃ in
W 2,p([0, `], Rn+1) and the moving frame (�̃ 0

m, v1,m, · · · , vn�1,m,nm) converges
to (�̃ 0, v1, · · · , vn�1,n) uniformly.

Eventually, we define our approximating sequence um on �(�m)

um

 
�m(t) +

n�1X
i=1

siNi,m(t)

!
= �̃m(t) +

n�1X
i=1

sivi,m(t), (4.37)

where �m is defined in Lemma 4.13. Such �m assures that all its leading fronts
intersect outside �, hence um is well-defined and smooth over �(� ) \�(�m).

As before, let 8m : [0, `] ⇥ Rn�1
! Rn be defined as

8m(t, s) = �m(t) +

n�1X
i=1

siNi,m(t),

and let 1�m = {(t, s) : 8m(t, s) 2 �(� )}. The same argument as in Step 6 in
Lemma 4.13 gives that 8m(t, s) is a bi-Lipschitz mapping of 1�m onto �(� ) \

�(�m). By differentiating with respect to t, s1, · · · , sn�1, as in (4.27) and (4.25),
we see that at each point of x , rum(x) maps an orthonormal frame to an orthonor-
mal frame. Hence rum(x)Trum(x) = I. Moreover, um is affine near P�m (`) and
can be extended by an affine isometry over�(� ). Therefore, um 2 I 2,2(�(� ), Rn).
Everything we have proved for isometric immersions of course applies, in particu-
lar, by (4.30), (4.33), and (4.31) we have for all 1  i  n � 1

@

@xi
um �8m(t, s) =

�
ei · � 0

m(t)
�
�̃ 0

m(t) +

n�1X
j=1

�
ei · N j,m(t)

�
v j,m(t), (4.38)

✓
r

@

@xi
um

◆ �
8m(t, s)

�
� 0

m(t) =

�
ei · � 0

m(t)
�
n,m(t)n(t)

1�

n�1X
i=1

sii,m(t)

, and (4.39)

✓
r

@

@xi
um

◆ �
8m(t, s)

�
N j,m(t) = 0, for all 1  j  n � 1 (4.40)
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for all t 2 [0, `] and s = (s1, · · · , sn�1) 2 1�m (t). Moreover, by (4.34), (4.35),
and (4.36) we computeZ

�(� )

��um(x)
��2dx

=

Z
�(� )\�(�m)

��um(x)
��2dx +

Z
�(� )\�(�m)

��um(x)
��2dx

=

Z `

0

Z
1�m (t)

������̃m(t) +

n�1X
i=1

sivi,m(t)

�����
2

·

 
1�

n�1X
i=1

s j j,m(t)

!
dHn�1(s)dt

+

Z
�(� )\�(�m)

��um(`) + rum(`)(x � �m(`))
��2dx,

(4.41)

Z
�(� )

��
rum(x)

��2dx = n|�(� )|, (4.42)

Z
�(� )

��
r
2um(x)

��2dx
=

Z
�(� )\�(�m)

��
r
2um(x)

��2dx +

Z
�(� )\�(�m)

��
r
2um(x)

��2dx

=

Z `

0

Z
1�m (t)

2n,m(t) 
1�

n�1X
i=1

sii,m(t)

!dHn�1(s)dt + 0.

(4.43)

It is easy to see that um ! u inW 2,2(�(� ), Rn+1) because (� 0

m,N1,m, · · ·Nn�1,m)
converges to (� 0,N1, · · ·Nn�1) uniformly, (�̃ 0

m, v1,m, · · · , vn�1,m,nm) converges
to (�̃ 0, v1, · · · , vn�1,n) uniformly, n,m ! n, i,m ! i , 1  i  n � 1 in
L p([0, `]) for all 1  p < 1, 1�

Pn�1
i=1 sii,m(t) � min{⇢/16d, 1/2}, 1�m (t) !

6� (t) for all t 2 [0, `] and |�(� ) \�(�m)| ! 0. The proof is complete. ⇤
Combining Lemmas 4.10 and 4.12 we get a smooth approximation sequence

for any isometry u in �(� ).

4.6. Approximation for u in �

The proof is exactly the same as the proof in [22, Section 3.3]. Since it is the final
part of the argument, we briefly review it for the convenience of the reader.

Recall that we defined a maximal region on which u is affine a body if its
boundary contains more than two different (n � 1)-planes in � (recall Definition
3.9 for the definition of (n�1)-planes in�) and we have shown that we can assume
� has only a finite number of bodies and is partitioned into bodies and covered
domains. We call the maximal subdomain covered by some leading curve � an
arm. Similarly to Lemma 4.1 we also have,
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Lemma 4.14. It is sufficient to prove Theorem 1.5 for a function in I 2,2(�, Rn+1)
with a finite number of arms.

Proof. The proof is the same as the two-dimensional case in [22, Lemma 3.9] and
is omitted for brevity.

Now since � is convex and simply-connected, we claim that two bodies are
connected through one chain of bodies and arms: it suffices to consider the graph
obtained by retracting bodies to vertices and arms to edges. This graph is simply
connected because it is a deformation retract of�. Therefore every two vertices are
connected through only one chain of edges, which proves the claim (Figure 4.5).

Figure 4.5. Graph of retraction of �.

We begin by a central body B1 and define our approximating sequence on each
arm as in Subsection 4.5. Note that for this final purpose, we have constructed
our approximating smooth isometric immersion to be affine near both ends, this
allows us to apply an affine transformation to the target space of each arm so that
the affine regions near its ends join together smoothly all the way till we reach
B2. Meanwhile, we also apply an affine transformation to u(B2) so that it joins
the last arm smoothly. It is easy to see from the uniform convergence of each
term in representation (4.38) that such affine transformation converges to identity
as m ! 0. Now we continue our construction using B2 as a new starting point.
Note that we will never come back to B1 because they are connected through only
one chain of arms. The construction of the approximating sequence on the entire
domain � is complete. ⇤

Appendix

A. Proof of Lemma 4.13

Step 1. Recall from the matrix of moving frame defined in Subsection 4.2. that
� 00(t) =

Pn�1
i=1 i (t)Ni (t)), with i bounded. We can choose uniformly bounded
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smooth functions ̃i,m ! i a.e. on [0, `], and hence in measure due to the fact
that [0, `] is bounded. Since the sequence ̃i,m are uniformly bounded, it follows
̃i,m ! i in L p for all 1  p < 1. Similarly we can find uniformly bounded
smooth functions i j ,m ! i j a.e. on [0, `] (hence in L p for all 1  p < 1) for
i j , 1  i, j  n � 1. By solving the system of ODEs

0
BBBB@

00

m
N1,m
N2,m

...
Nn�1,m

1
CCCCA

0

=
eKm

0
BBBB@

00

m
N1,m
N2,m

...
Nn�1,m

1
CCCCA ,

where the matrix eKm is given by

eKm =

0
BBBB@

0 ̃1,m ̃2,m · · · ̃n�1,m
�̃1,m 0 12,m · · · 1n�1,m
�̃2,m �12,m 0 · · · 2n�1,m

...
...

... · · ·

...
�̃n�1,m �1n�1,m �2n�1,m · · · 0

1
CCCCA ,

we obtain a unique orthogonal frame (00

m(t),N1,m(t), · · · ,Nn�1,m(t)) with initial
condition 00

m(0) = � 0(0), and Ni,m(0) = Ni (0). We can then define

0m(t) = 0(0) +

Z t

0
00

m(⌧ )d⌧.

We want to show that (00

m,N1,m, · · · ,Nn�1,m) ! (� 0,N1, · · · ,Nn�1) uniformly.
This result is given by the following theorem due to Opial [21, Theorem 1]:

Lemma A.1 (Opial). Suppose the linear system of differential equations

x 0(t) = Ak(t)x(t), x(0) = ak, k = 0, 1, 2, · · · (A.1)

admits a solution xk(t) in [0, `] for all k. Suppose ak ! a0,
Z t

0
Ak(s) ds !

Z t

0
A0(s) ds

uniformly for all t 2 [0, `] and Ak is a bounded sequence in L1, i.e.

sup
k

kAkkL1([0,`]) < 1.

Then the solutions xk(t) converge to x0(t) uniformly.
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Since ̃i,m ! i and i j ,m ! i j in L p for all 1  p < 1, in particular for
p = 1, the conditions in Lemma A.1 are satisfied, hence (00

m,N1,m, · · · ,Nn�1,m)

converges to (� 0,N1, · · · ,Nn�1) uniformly. Since 0
00

m =

Pn�1
i=1 ̃i,mNi,m , 0

00

m are
uniformly bounded, and 000

m ! �
00 a.e. (and hence in L p for all 1  p < 1),

Poincaré inequality for intervals implies that 0m ! � in W 2,p([0, `], Rn) for all
1  p < 1.

However 0m is not our desired curve since we cannot guarantee that all its
leading fronts intersect outside �. This happens if 0m is too “curvy”. We need to
“flatten” its curvature continuously. This needs to be done in several steps:

Step 2. We construct ˜̃m = ( ˜̃1,m, · · · , ˜̃n�1,m) continuous on t 2 [0, `] and for
each t 2 [0, `] and s = (s1, · · · , sn�1) 2 Sn�2,

⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ˜̃i,m(t)

!
 1 (A.2)

where

S0ms (t) = sup

(
S � 0 : 0m(t) + S

 
n�1X
i=1

siNi,m(t)

!
2 �

)
.

We first need the following lemma using the implicit function theorem for C1 func-
tions:

Lemma A.2. S0ms (t) is uniformly continuous on (s, t) 2 Sn�2 ⇥ [0, `] and S0ms (t)
converges to S�s (t) uniformly on (s, t) 2 Sn�2 ⇥ [0, `].

Proof. Let t0 2 [0, `] and s0 = (s01 , · · · , s0n�1) 2 Sn�1 be arbitrary. We parametri-
ze locally Sn�2 by the polar coordinates: si = si (✓) where ✓ = (✓1, · · · , ✓n�2) 2

U1 ⇢ [0,⇡)n�3 ⇥ [0, 2⇡). Let ✓0 2 U1 be such that s0i = si (✓0).
Let � 0 = � (t0) and N0i = Ni (t0). Let x0 be the intersection of the line segment

L = {� 0 + S
�Pn�1

i=1 s
0
i N

0
i
�
, 0  S} and @�. Then x0 = � 0 + S0

�Pn�1
i=1 s

0
i N

0
i
�
for

some S0 > 0.
Since � is a C1 domain, there exits an open subset of U2 ⇢ Rn�1 and a C1

function ↵ : U2 ! @� and ↵(⌘01, · · · , ⌘0n�1) = x0 for some (⌘01, · · · , ⌘0n�1) 2 U2.
Consider F : Rn

⇥ Rn⇥(n�1)
⇥U1 ⇥ R ⇥U2 ! Rn

F
�
� ,N1, · · ·Nn�1, ✓, S, ⌘1, · · · , ⌘n�1

�
= �+S

 
n�1X
i=1

si (✓)Ni

!
�↵(⌘1, · · · , ⌘n�1).

Since x0 2 @� \ L ,

F
�
� 0,N01, · · · ,N0n�1, ✓

0, S0, ⌘01, · · · , ⌘0n�1
�

= 0.

Let
x =

�
� ,N1, · · · ,Nn�1, ✓

�
, y =

�
S, ⌘1, · · · , ⌘n�1

�
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and
↵k :=

@↵

@⌘k
, 1  k  n � 1.

Then

det
✓
@F
@y

�
� 0,N01, · · · ,N0n�1, ✓

0, S0, ⌘01, · · · , ⌘0n�1

◆�

= det

"
n�1X
i=1

si
�
✓0

�
N0i ,↵1

�
⌘01, · · · , ⌘0n�1

�
, · · · ,↵n�1

�
⌘01, · · · , ⌘0n�1

�#
6= 0.

Otherwise, the line segment L would be parallel to the tangent plane of @� at x0,
which is not possible since � is convex.

By the implicit function theorem, there is an open neighborhood

V1 ⇢ Rn
⇥ Rn⇥(n�1)

⇥U1

of x0 = (� 0,N01, · · · ,N0n�1, ✓
0), V2 ⇢ R ⇥U2 of y0 = (S0, ⌘01, · · · , ⌘0n�1), and a

C1 map y : V1 ! V2 such that

F(x, y(x)) = F(x, S(x), ⌘1(x), · · · , ⌘n�1(x)) = 0,

for all x 2 V1.
Since � , Ni , 1  i  n� 1 are Lipschitz on [0, `] and 0m ! � uniformly and

Ni,m ! Ni uniformly on [0, `] for all 1  i  n � 1, there exists an open interval
O ⇢ R containing t0, an open subset 1 ⇢ U1 containing ✓0 and an integer M such
that for all t 2 [0, `] \ O , ✓ 2 1 and m � M

x(t, ✓) = (� (t),N1(t), · · · ,Nn�1(t), ✓) 2 V1 and

xm(t, ✓) = (0m(t),N1,m(t), · · · ,Nn�1,m(t), ✓) 2 V1.
Evidently xm(t, ✓) ! x(t, ✓) uniformly for all t 2 [0, `] \ O and ✓ 2 1. Since S
is C1 on x 2 V1,

S
�
xm(t, ✓)

�
! S(x(t, ✓)) uniformly on t 2 [0, `] \ O and ✓ 2 1. (A.3)

Moreover, since S is C1 on x 2 V1 and x is uniformly continuous on t 2 [0, `] \ O
and s 2 s(1), S is uniformly continuous on t 2 [0, `] \ O and s 2 s(1).

Now note that since F
�
x(t, ✓), y(x(t, ✓))

�
= 0 and F

�
xm(t, ✓), y(xm(t, ✓))

�
=

0, for each s = s(✓) 2 s(1) ⇢ Sn�2, we have S�s (t) = S(x(t, ✓)) and S0ms (t) =

S(xm(t, ✓)). Thus by (A.3),

S0ms (t) ! S�s (t) uniformly on t 2 [0, `] \ O and s 2 s(1),

and S0ms (t) is uniformly continuous on t 2 [0, `] \ O and s 2 s(1).
It remains to observe that since [0, `] and Sn�2 are both compact they can be

covered by a finite union of neighborhoods on which (A.3) holds. The proof is
complete.
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Define

�m(t) := min

(
1, 1/

 
sup
|s|=1

(⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!)!)

where ̃i,m, 1  i  n � 1 are those found in Step 1. A first observation is that
0 < �m  1. Indeed, there must exist s 2 Sn�2 such that

Pn�1
i=1 si ̃i,m(t) � 0 so

the supreme over all s 2 Sn�2 must be nonnegative. On the other hand, S0ms as well
as all ̃i,m are bounded so �m is bounded below by a positive number.

Second, we observe that �m is continuous. Indeed, by Lemma A.2,

�
S0ms (t) + ⇢/2

�  n�1X
i=1

si ̃i,m(t)

!

is uniformly continuous on (s, t) 2 Sn�2 ⇥ [0, `]. Hence the supremum over Sn�2
is attained and a simple argument gives

h(t) := sup
|s|=1

(⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!)

is continuous.
We then define a vector-valued function ˜̃m = ( ˜̃1,m, · · · , ˜̃n�1,m) as

⇣
˜̃1,m(t), · · · , ˜̃n�1,m(t)

⌘
:= �m(t)

�
̃1,m(t), · · · , ̃n�1,m(t)

�

˜̃m is obviously continuous. It remains to show that ˜̃m satisfies (A.2). Indeed, for
any s = (s1, · · · , sn�1) 2 Sn�2,

⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ˜̃i,m(t)

!
= �m

⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!
.

If
Pn�1

i=1 si ̃i,m(t) � 0, then by the definition of �m ,

�m(t)
⇣
S0ms (t)+

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!
 min

(⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!
,1

)
 1.

If
Pn�1

i=1 si ̃i,m(t) < 0, then

�m(t)
⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!
< 0  1.

Thus (A.2) is satisfied.
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Step 3. We want to show that ( ˜̃1,m, · · · , ˜̃n�1,m) ! (1, · · · , n�1) a.e. Indeed,
we know that ̃m = (̃1,m, · · · , ̃n�1,m) ! (1, · · · , n�1) a.e.. Therefore, all we
need to show is �m ! 1 a.e.

By possibly replacing �m by a subsequence, it suffices to prove �m ! 1 in
measure. From the definition of �m , it is enough to show that the Lebesgue measure
of the set

Em =

(
t 2 [0, l], 9s 2 Sn�2,

⇣
S0ms (t) +

⇢

2

⌘ n�1X
i=1

si ̃i,m(t)

!
> 1

)

goes to zero. First by assumption, L�s (t) � S�s (t) > ⇢ > 0 and by Lemma 4.7,
L�s (t)(

Pn�1
i=1 i (t)si )  1, thus

�
S�s (t) + ⇢

�  n�1X
i=1

sii (t)

!
 1 (A.4)

for all t 2 [0, `] and s 2 Sn�2. Indeed, if
Pn�1

i=1 sii (t)) � 0,

�
S�s (t) + ⇢

�  n�1X
i=1

sii (t)

!
 L�s (t)

 
n�1X
i=1

i (t)si

!
 1

which gives (A.4).
If t 2 Em , there is s 2 Sn�2 such that

n�1X
i=1

si ̃i,m(t) >
1

S0ms (t) + ⇢/2
.

Therefore all t 2 Em and our choice of s = s(t) as above, we have

��̃m(t) � (t)
��

�

n�1X
i=1

si ̃i,m(t) �

 
n�1X
i=1

sii (t)

!

>
⇢/2+ S�s (t) � S0ms (t)�

S0ms (t) + ⇢/2
��
S�s (t) + ⇢

� �

⇢/2�

��S�s (t) � S0ms (t)
��

⇢2/2
.

By Lemma A.2, we have

S0ms (t) ! S�s (t) uniformly on s 2 Sn�2 and t 2 [0, `],
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hence we can find m sufficiently large so that |S�s (t) � S0ms (t)| < ⇢/4 for all
s 2 Sn�2 and t 2 [0, `]. Since ̃m !  a.e.

lim
m!1

��Em��  lim
m!1

����
⇢
t :

��̃m(t) � (t)
��
�

1
2⇢

����� = 0

which is what we wanted to show.

Step 4. Since ˜̃m = ( ˜̃1,m, · · · , ˜̃n�1,m) are continuous, for each m we can find m
smooth and |

˜̃m � m | ! 0 uniformly on t 2 [0, `]. Hence for m sufficiently large

⇣
S0ms (t) +

⇢

4

⌘ n�1X
i=1

sii,m(t)

!
 1. (A.5)

Step 5. We now define our desired curve �m . Given m = (1,m, · · · n�1,m) smooth
as found in Step 4, and i j ,m ! i j found in step 1, we again solve the system of
ODEs

0
BBBB@

� 0

m
N1,m
N2,m

...
Nn�1,m

1
CCCCA

0

= Kn⇥n
m

0
BBBB@

� 0

m
N1,m
N2,m

...
Nn�1,m

1
CCCCA ,

where

Kn⇥n
m =

0
BBBB@

0 1,m 2,m · · · n�1,m
�1,m 0 12,m · · · 1n�1,m
�2,m �12,m 0 · · · 2n�1,m

...
...

... · · ·

...
�n�1,m �1n�1,m �2n�1,m · · · 0

1
CCCCA ,

and denote by the orthogonal frame (� 0

m(t),N1,m(t), · · ·Nn�1,m(t)) the unique so-
lution with initial conditions � 0

m(0) = � 0(0) and Ni,m(0) = Ni (0). Moreover,
by Lemma A.1, (� 0

m(t),N1,m(t), · · ·Nn�1,m(t)) ! (� 0(t),N1(t), · · ·Nn�1(t)) uni-
formly. Let

�m(t) = � (0) +

Z t

0
� 0

m(⌧ )d⌧.

We claim �m satisfies for m sufficiently large

⇣
S�ms (t) +

⇢

8

⌘ n�1X
i=1

sii,m(t)

!
 1. (A.6)
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Indeed, by the same argument of Lemma A.2 using the implicit function theorem,
S�ms also converges to S�s uniformly. Together with Lemma A.2 we obtain that
|S�ms � S0ms | converges to 0 uniformly. Thus the claim follows from (A.5).
Step 6. Finally, we claim that orthogonal fronts satisfy F�m (t) \ F�m (t̃) \ � = ;

for all t, t̃ 2 [0, `].
For �m and its moving frame (� 0

m,N1,m, · · · ,Nn�1,m) found in Step 5, let

8m : [0, `] ⇥ Rn�1
! Rn

be defined as

8m(t, s) = �m(t) +

n�1X
i=1

siNi,m(t).

Let6�m = {(t, s) : 8m(t, s) 2 �}. By the same argument as Lemma 4.6,8m maps
6�m onto �(�m) where �(�m) is the subset of � covered by all orthogonal fronts
F�m (t), t 2 [0, `]. By the same computation as in (4.22)

J8m (t, s) = 1�

n�1X
i=1

sii,m(t).

Let d := diam(�); we claim that

1�

n�1X
i=1

sii,m(t) � min{⇢/16d, 1/2}

for all (t, s) 2 6�m . Indeed, if
Pn�1

i=1 (si/|s|)i,m(t) � 1/2d, then by (A.6),

1� |s|

 
n�1X
i=1

si
|s|
i,m(t)

!
� 1� S�ms (t)

 
n�1X
i=1

si
|s|
i,m(t)

!

�

⇢

8

 
n�1X
i=1

si
|s|
i,m(t)

!
�

⇢

8
·

1
2d

.

If
Pn�1

i=1 (si/|s|)i,m(t) < 1/2d, then

1� |s|

 
n�1X
i=1

si
|s|
i,m(t)

!
> 1�

|s|
2d

�

1
2
.

Hence, the claim follows. By the inverse function theorem due to Clarke [5], 8 ad-
mits a local Lipschitz inverse, actually a global Lipschitz inverse 8�1

m : �(�m) !

6�m since the Jacobian is everywhere bounded below by a positive constant in6�m .
In particular, 8m is one-to-one on 6�m . This implies that all orthogonal fronts
F�m (t), t 2 [0, `] meet outside �. The proof of Lemma 4.13 is complete. ⇤



816 ZHUOMIN LIU AND MOHAMMAD REZA PAKZAD

References

[1] YU. F. BORISOV, The parallel translation on a smooth surface, III (Russian), Vestnik
Leningrad. Univ. 14 (1959), 34–50.

[2] YU. F. BORISOV, Irregular surfaces of the class C1,� with an analytic metric (Russian)
Sibirsk. Mat. Zh. 45 (2004), 25–61; translation in Siberian Math. J. 45 (2004), 19–52.

[3] V. BORRELLI, S. JABRANE, F. LAZARUS and B. THIBERT, Flat tori in three-dimensional
space and convex integration, Proc. Natl. Acad. Sci. USA 109 (2012), 7218–7223.

[4] F. CAJORI, Generalizations in geometry as seen in the history of developable surfaces,
Amer. Math. Monthly 36 (1929), 431–437.

[5] F. H. CLARKE, On the inverse function theorem, Pacific J. Math. 64 (1976), 97–102.
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