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Weak normality of families of meromorphic
mappings and bubbling in higher dimensions

SERGEY IVASHKOVICH AND FETHI NEJI

Abstract. Our primary goal in this paper is to understand whether the sets of
normality of families of meromorphic mappings between general complex man-
ifolds are pseudoconvex or not. It turns out that the answer crucially depends on
the type of convergence one is interested in. We examine three natural types of
convergence introduced by one of us earlier and prove pseudoconvexity of sets of
normality for a large class of target manifolds for the so called weak and gamma
convergencies. Furthermore we determine the structure of the exceptional com-
ponents of the limit of a weakly/gamma but not strongly converging sequence,
they turn to be rationally connected. This observation allows to determine ef-
fectively when a weakly/gamma converging sequence fails to converge strongly.
An application to the Fatou sets of meromorphic self-maps of compact complex
surfaces is given.

Mathematics Subject Classification (2010): 32H04 (primary); 32H50, 32Q45
(secondary).

1. Introduction

1.1. Convergence of meromorphic mappings

When one works with sequences of meromorphic functions and, more generally,
mappings one finds himself bounded to consider several notions of their conver-
gence. Some of these notions were introduced in [10] and [18], we shall recall
the essentials below. An important question is: what can be said about the maxi-
mal open sets where the given sequence converges? It occurs that pseudoconvexity
or not of domains of convergence/normality in the case of meromorphic mappings
crucially depends on the type of convergence one is looking for.

Now let us briefly describe the ways one can define what does it mean that
a sequence { fk} of meromorphic mappings between complex manifolds U and X
converges. We start with the most obvious one. A sequence { fk} of meromorphic
mappings between complex manifolds U and X is said to converge strongly to a
meromorphic map f if the graphs 0 fk converge over compacts in U to the graph
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0 f in Hausdorff metric. Our first result shows that 0 fk then converge to 0 f in a
stronger topology of cycles.

Theorem 1.1. If fk strongly converge to f then for every compact K b U the
volumes 0 fk \ (K ⇥ X) are uniformly bounded and therefore 0 fk converge to 0 f
in the topology of cycles.

This type of convergence is natural and has some nice features. For example
the strong limit of a sequence of holomorphic maps is holomorphic and vice versa,
if the limit f is holomorphic then for every compact K b U all fk for k � 1
are holomorphic in a neighborhood of K and uniformly converge there to f . This
statement was called the Rouché Principle in [18].

But strong convergence has also some disadvantages. The first, crucial for us is
the fact that the sets of strong convergence, i.e., maximal open subsets of U where
a given sequence converges strongly on compacts, are not pseudoconvex in general.
Moreover, the sets of strong normality (see later on) of families of meromorphic
mappings can be just arbitrary, see Example 2.8. Also if one takes X = PN the
”most immediate” notion of convergence does not correspond to the strong one.

Therefore in [18] along with the notion of strong convergence we proposed
two weaker ones. We say that fk converge weakly to f if they converge strongly
to f on compacts outside of some analytic set A in U of codimension at least two.
It turns out that this A can be taken to be the set I f of points of indeterminacy of
the limit map f and then for every compact K in U \ I f all weakly converging to
f mappings fk will be holomorphic on K (for k big enough) and converge to f
uniformly on K , see Remark 3.2.

One more notion of convergence from [18], which we need to recall here, is the
gamma convergence (0-convergence). We say that fk gamma-converge to f if they
strongly converge to f outside of an analytic set (now it can be of codimension one)
and for every divisor H in X and every compact K b U the intersections f ⇤

k H \K
have bounded volume counted with multiplicities, see more about the last condition
in section 3.2.

Remark 1.2. Strong convergence (or s - convergence) will be denoted by fk ! f ,
the weak one (or w - convergence) as fk * f , and 0 - convergence as fk

0
�! f .

Note that in the second and third definitions we suppose that the limit f is defined
and meromorphic on the whole of U if, even, the convergence takes place only on
some part of U . In the first case the limit exists on the whole of U automatically.

For the better understanding of these notions let us give a description of the
listed types of convergence in the case when X is projective, i.e., imbeds into PN

for some N . In that special case the notions of convergence listed above permit an
explicit analytic description as follows. Every meromorphic mapping f with values
in PN can be locally represented by an (N + 1)-tuple of holomorphic functions

f (z) =

h
f 0(z) : ... : f N (z)

i
, (1.1)
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where not all of f 0, ..., f N are identically zero, see section 4. More precisely, if
f : U ! PN is a meromorphic mapping then for every point x0 2 U there exists a
neighborhood V 3 x0 and holomorphic functions f 0, ..., f N in V satisfying (1.1).
If the zero sets of f j contain a common divisor then we can divide all f j by its
equation and get a representation such that GCD( f 1, ..., f N ) = 1 in every Ox ,
x 2 V . In that case the indeterminacy set of f is

I f \ V =

n
z 2 V : f 0(z) = ... = f N (z) = 0

o
(1.2)

and has codimension at least two. Representation (1.1) satisfying (1.2) is called
reduced. We shall prove the following:

Theorem 1.3. Let { fk} be a sequence of meromorphic mappings from a complex
manifold U to PN . Then:

i) fk
0
�! f if and only if for any point x0 2 U there exist a neighborhood

V 3 x0, reduced representations fk = [ f 0k : ... : f Nk ] and not necessarily
reduced representation f = [ f 0 : ... : f N ] such that for every 0  j  N the
sequence f jk converges to f j uniformly on V ;

ii) fk * f if and only if fk
0
�! f and the limit representation f = [ f 0 : ... : f N ]

is reduced;
iii) fk ! f if and only if fk * f and corresponding non-pluripolar Monge-

Ampère masses converge, i.e., for every 1  p  n = dimU one has
⇣
ddc kzk2

⌘n�p
^

⇣
ddc ln k fkk2

⌘p
!

⇣
ddc kzk2

⌘n�p
^

⇣
ddc ln k f k2

⌘p
(1.3)

weakly on compacts in U .

Here in (1.3) we suppose that V = 1n , z1, ..., zn are standard coordinates and
k f k2 = | f 0|2 + ... + | f N |

2, i.e., ddc ln k f k2 is the pullback of the Fubini-Study
form by f . Non-pluripolar MA mass of ln k f k2 of order p in V here means

Z
V \I f

⇣
ddc kzk2

⌘n�p
^

⇣
ddc ln k f k2

⌘p
, (1.4)

where I f is given by (1.2), i.e., is the indeterminacy set of f .

Remark 1.4. a) Reducibility or not of the limit representation f = [ f 0 : ... : f N ]

in this theorem does not depend on the choice of converging representations fk =

[ f 0k : ... : f Nk ], provided they are taken to be reduced (the last can be assumed
always). Indeed, any other reduced representation of fk has the form fk = [gk f 0k :

... : gk f Nk ], where gk are holomorphic and nowhere zero. If the newly chosen
representations converge to some representation of f then gk must converge, say
to g, and this g is nowhere zero by Rouché’s theorem. Therefore the obtained
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representation of the limit is f = [g f 0 : ... : g f N ] and it is reduced if and only if
f = [ f 0 : ... : f N ] was reduced.
b) The case when the representation f = [ f 0 : ... : f N ] of the limit is not neces-
sarily reduced was studied for mappings with values in PN by H. Fujimoto in [10],
who called it meromorphic, or m-convergence. According to the part (i) of our the-
orem it turns out that our 0-convergence (in the case of X = PN ) is equivalent to
m-convergence of Fujimoto.

1.2. Sets of normality and Bloch-Montel type criterion

In this paper we consider two classes of complex manifolds: projective and Gaudu-
chon, the last is the class of complex manifolds carrying a ddc-closed metric form -
a Gauduchon form. Let F be a family of meromorphic mappings between complex
manifoldsU and X . F is said to be strongly/weakly or gamma normal if from every
sequence of elements of F one can extract a subsequence converging on compacts
in U in the corresponding sense. The maximal open subset NF ⇢ U on which F
is normal is called the set of normality. As it was already told the sets of strong
normality could be arbitrary. In Subsection 3.1 we prove the following:

Theorem 1.5. Let U be a domain in a Stein manifold Û such that Û is an enve-
lope of holomorphy of U and let fk : Û ! X be a weakly converging on U se-
quence of meromorphic mappings with values in a disk-convex complex manifold X .
Then:

(a) If the weak limit f on fk meromorphically extends fromU to Û then fk weakly
converge to f on the whole of Û .

(b) If, in addition, the manifold X carries a pluriclosed metric form then the weak
limit f of fk meromorphically extends to Û and then the part (a) applies.

As a result the sets of weak normality are locally pseudoconvex provided the target
is disk-convex and Gauduchon. Recall that an open subsetN of a complex manifold
U is called locally pseudoconvex if for every point p 2 @N there exists a Stein
neighborhood V of p in U such that V \N is Stein.

Corollary 1.6. Let F ⇢ M(U, X) be a family of meromorphic mappings from a
complex manifoldU to a disk-convex Gauduchon manifold X . Then the set of weak
normalityNF of F is locally pseudoconvex. If F = { fk} is a sequence then the set
of its weak convergence is locally pseudoconvex.

Remark 1.7. This corollary clearly follows from Theorem 1.5. Sets of 0-normality
are also locally pseudoconvex under the same assumptions, see Proposition 3.10 in
Section 2.

As one more supporting argument in favor of weak convergence we prove in
Section 5 the following normality criterion.
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Theorem 1.8. Let {Hi }di=0, d � 1, be hypersurfaces in projective manifold X such
that Y := X \

Sd
i=0 Hi is hyperbolically imbedded to X . Let F be a family of

meromorphic mappings from a complex manifold U to X such that:

i) for every i = 0, ..., d and every compact K b U the volumes f ⇤Hi \ K
counted with multiplicities are uniformly bounded for f 2 F ;

ii) F uniformly separates every pair Hi , Hj , 0  i < j  d.

Then the family F is weakly normal on U .

Conditions i) and ii) are explained in Section 5, they are intuitively clear and
more or less necessary. The classically known case of a system of divisors with
hyperbolically imbedded complement is 2N +1 hypersurfaces in PN in general po-
sition - Theorem of Bloch, see [13]. A criterion for m-normality (i.e., 0-normality
in our sense) was given by Fujimoto in [10].

1.3. Rational connectivity of the exceptional components of the limit

Strong convergence obviously implies the weak one and the latter implies the
gamma-convergence, see Remark 3.6:

s-convergence =) w-convergence =) 0- convergence. (1.5)

Our second principal task in this paper is to understand what obstructs a weakly/
gamma converging sequence to converge strongly. The problem is that by Theo-
rem 1.1 the volumes of graphs of a strongly converging sequence are uniformly
bounded over compacts in the source. When dimension n of the source U is two
and X is Kähler the volumes of the graphs of a weakly converging sequence are still
bounded, see [18]. The same is true if is X an arbitrary compact complex surface
(and again dimU = 2), see [32]. We shall say more about this in Section 6. But
this turns out not to be the case starting from dimension three, i.e., the volumes of
graphs of a weakly converging sequence can diverge to infinity over compacts of
U . Via (1.3) this turns out to be a geometric counterpart of a well known disconti-
nuity of Monge-Ampère masses, see Example 6.1 in Section 4. Nevertheless for a
sequence 0 fk of 0-converging meromorphic graphs we can consider the Hausdorff
limit 0̂ (its always exists after taking a subsequence). Set 0 := 0̂ \ 0 f , where 0 f
is the graph of the limit map f , and call 0 a bubble. For a 2 � := pr1(0) set
0a := pr2(pr

�1
1 (a)\0), here pr1 and pr2 are natural projections, see Section 2. We

prove the following statement.

Theorem 1.9. Let X be a disk-convex Gauduchon manifold and let fk : U ! X be
a weakly converging sequence of meromorphic mappings which does not converge
strongly. Then for every point a 2 � the fiber 0a is rationally connected. If X is,
moreover, projective then the same is true also for 0-converging sequences.
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Here by saying that a closed subset 0a of a complex manifold is rationally
connected we mean that every two distinct points p, q 2 0a can be connected by
a chain of rational curves which is entirely contained in 0a , see Section 7 for more
details.

1.4. Fatou sets of meromorphic self-maps

Families of a special interest are the families of iterates f n := f � ... � f of some
fixed meromorphic self-map of a compact complex manifold X . The maximal open
subset X where { f n} is relatively compact is called the Fatou set of f . Depending
on the sense of convergence that one wishes to consider one gets different Fatou
sets: strong, weak or gamma Fatou sets. We denote them as 8s , 8w and 80
respectively, their dependance on f will be clear from the context.

Corollary 1.10. Let f be a meromorphic self-map of a compact complex surface.
Then the weak Fatou set 8w of f is locally pseudoconvex. If 8s is different from
8w then:

a) X is bimeromorphic to P2;
b) 8w = X \ C , where C is a rational curve in X;
c) the weak limit of any weakly converging subsequence { f nk } of iterates is a

degenerate map of X onto C .

It should be pointed out that our Fatou sets are different from the Fatou sets as
they were considered in [8]. In [8] the Fatou set of f is the maximal open subset
8 of X \

S
1

n=0 f �n(I f ) where the family { f n} is equicontinuous (remark that on
X \

S
1

n=0 f �n(I f ) all iterates are holomorphic). If, for example, f : P2 ! P2 is
the Cremona transformation [z0 : z1 : z2] ! [z1z2 : z0z2 : z0z1] then 8s = 8w =

80 = P2 but 8 = P2 \ { three lines }. In Subsection 8.2 an example of higher
degree and with an interesting dynamics on the indeterminacy set is given. This is
one more instance which shows how crucially can change a picture when the notion
of convergence changes.
Notes
1. Let us make a final note about the goals of this paper. On our opinion the most
interesting information about a converging sequence of meromorphic mappings is
concentrated near the “limit“ of their indeterminacy sets. We describe the most
reasonable (in our opinion) notions of convergence of meromorphic mappings and
conclude that the weak one is the most appropriate. At the same time we detect
that if a weakly/gamma converging sequence does not converge strongly then this
imposes very serious restrictions on the target manifold (it is forced to contain many
rational curves). In some cases (ex. iterations) this puts strong constraints also on
the sequence itself.
2. Domains of convergence of holomorphic functions of several variables were,
probably, for the first time considered by G. Julia in [24]. In [24] and then in [6]
it was proved that these domains are (in some sense) pseudoconvex. Domains of
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convergence of meromorphic functions of several variables were studied in [38] and
then in [37]. In these early papers convergence was understood as holomorphic (i.e.,
uniform) convergence outside of the union of indeterminacy sets of meromorphic
mappings in question.

ACKNOWLEDGEMENTS. We are grateful to Alexander Rashkovskii for explaining
to us the Example 6.1 with unbounded Monge-Ampère masses.

2. Topologies on the space of meromorphic mappings

2.1. Complex manifolds and meromorphic mappings

Our manifolds will be Hausdorff and countable at infinity if the opposite is not
explicitly stated. We shall also everywhere suppose that they are disk-convex.
Definition 2.1. A complex manifold X is called disk-convex if for every compact
K b X there exists a compact K̂ such that for every h 2 O(1, X) \ C(1̄, X) such
that h(@1) ⇢ K one has h(1̄) ⇢ K̂ .
The minimal such K̂ is called the disk envelope of K . Let X be equipped with
some Hermitian metric h. By !h denote the (1, 1)-form canonically associated
with h. We say that the metric h is d-closed or Kähler if d!h = 0. We say that h
is pluriclosed or Gauduchon if ddc!h = 0. In [11] it was proved that on a compact
complex surface every Hermitian metric is conformally equivalent to the unique
ddc-closed one.
Remark 2.2. We shall need only the existence of such metric forms on compact
complex surfaces and this can be proved by duality: non existence of a positive ddc-
closed (1, 1)-form is equivalent to the existence of a non-constant plurisubharmonic
function. The latter on a compact complex manifold is impossible.

We also fix some metric form !1 on U . In the case of a polydisk U = 1n

we will work with the standard Euclidean metric e. The associated form will be
denoted by !e = ddckzk2 =

i
2
Pn

j=1 dz j ^ dz̄ j . By pr1 : U ⇥ X �! U and
pr2 : U ⇥ X �! X denote the projections onto the first and second factors. On the
product U ⇥ X we consider the metric form ! = pr⇤1!1 + pr⇤2!h .

A meromorphic mapping f between complex manifolds U and X is defined
by an irreducible analytic subset 0 f ⇢ U ⇥ X such that

• the restriction pr1|0 f : 0 f ! U of the natural projection to 0 f is a proper
modification, i.e., is proper and generically one to one.

0 f is called the graph of f . Due to the irreducibility of 0 f and the Remmert proper
mapping theorem the set of points over which pr1 is not one to one is an analytic
subset of U of codimension at least two. This set is called the set of points of in-
determinacy of f and is usually denoted as I f . Therefore an another way to define
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a meromorphic mapping f between complex manifolds U and X is by consider-
ing a holomorphic map f : U \ A ! X , where A is an analytic subset of U of
codimension at least two, such that the closure 0 f of its graph is an analytic subset
of the product U ⇥ X satisfying the condition above. Remark that the analyticity
of the closure of the holomorphic graph is not automatic. Think about the natural
projection f : C2 \ {0} ! C2 \ {0}/z ⇠ 2z of C2 \ {0} onto a Hopf surface. The
properness of the restriction of the projection pr1 to the closure is, unless X is disk
convex, not automatic too.

The volume of the graph 0 f of a meromorphic mapping f is given by

n!Vol(0 f ) =

Z
0 f

!n =

Z
0 f

�
pr⇤1!1 + pr⇤2!h

�n
=

Z
U

�
!1 + f ⇤!h

�n
, (2.1)

where n = dimU .
Remark 2.3. Let us make a few remarks concerning the notion of a meromorphic
mapping.

a) If V is a subvariety of U such that V 6⇢ I f then the restriction f |V of f to V
is defined by taking as its graph 0 f |V the irreducible component of the inter-
section 0 f \(V ⇥ X) which projects onto V generically one to one. Therefore
0 f |V ⇢ 0 f \ (V ⇥ X) and the inclusion here is proper in general. The full
image of a set L ⇢ U under f is defined as f [L] := pr2

�
0 f \ [L ⇥ X]

�
.

b) It is probably worth to notice that x 2 I f if and only if dim f [x] � 1. This
follows from the obvious observation that

I f = pr1
⇣n

(x1, x2) 2 0 f : dim(x1,x2) pr1
���1
0 f

(x1) � 1
o⌘

.

c) If dim V = 1 then the irreducible component of 0 f \ (V ⇥ X) which projects
onto V is a curve. Since the projection is generically one to one it is on to one
everywhere and therefore the restriction f |V is necessarily holomorphic.

d) Let us give the sense to f ⇤!h in the formula (2.1). The first integral there has
perfectly sense since we are integrating a smooth form over a complex variety.
Denote by I "f the "-neighborhood of the indeterminacy set I f of f . Then (2.1)
shows that the limit

lim
"!0

Z
U\ Ī "f

�
!1 + f ⇤!h

�n
= lim
"!0

Z
U\ Ī "f

nX
p=0

C p
n !

n�p
1 ^ f ⇤!

p
h (2.2)

exists. Therefore all f ⇤!
p
h are well defined on U as positive currents.

2.2. Analytic cycles and currents

Before turning to the notions of convergence of meromorphic mappings let us recall
the natural topologies on the space of analytic subsets of a complex manifold.
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Recall that an analytic cycle of dimension r in a complex manifold Y is a for-
mal sum Z =

P
j n j Z j , where {Z j } is a locally finite sequence of reduced analytic

subsets of pure dimension r and n j are positive integers called multiplicities of Z j .
The set |Z | :=

S
j Z j is called the support of Z . In our applications Y will be

U ⇥ X and r will be the dimension n = dimU . By a coordinate chart adapted to
Z we shall understand a relatively compact open set V in Y such that V \ |Z | 6= ;

together with a biholomorphism j of V onto a neighborhood Ṽ of 1̄r
⇥ 1̄q in

Cr+q , r + q = dimY , such that j�1(1̄r
⇥ @1q) \ |Z | = ;. We shall denote such

chart by (V, j). The image j (Z \ V ) of the cycle Z \ V under biholomorphism j
is the image of the underlying analytic set together with multiplicities. Following
Barlet and Fujiki, see [2] and [9], we call the quadruple E = (V, j,1r ,1q) a scale
adapted to Z .

If pr : Cr
⇥ Cq

! Cr is the natural projection, then the restriction pr | j (Z\V ):

j (Z \ V ) ! 1r is a branched covering of degree say d. This branched covering
defines in a natural way a holomorphic mapping � j,Z : 1r

! Symd(1q) to the
d-th symmetric power of1q by setting � j,Z (z0) =

�
(pr | j (Z\V ))

�1(z0)
 
. The latter

denotes the unordered set of all preimages of z0 under the projection in question.
This construction, due to Barlet, allows to represent a cycle Z ⇢ Y by a set of holo-
morphic maps � j↵,Z : 1r

! Symd(1q), where {(V↵, j↵)} is some open covering
of |Z | by adapted coordinate charts.

Definition 2.4. One says that Zk converges to Z in the topology of cycles if for ev-
ery coordinate chart (V, j) adapted to Z there exists k0 such that 8k � k0 this chart
will be adapted to Zk and the sequence of corresponding holomorphic mappings
� j,Zk converge to � j,Z uniformly on 1r .

This defines a metrizable topology on the space Cr (Y ) of r-cycles in Y . This
topology is equivalent to the topology of currents: Zk ! Z if for any continuous
(r, r)-form � with compact support one has

Z
Zk
� !

Z
Z
�,

see [9]. It is also equivalent to theHausdorff topology under an additional condition
of boundedness of volumes. Recall that the Hausdorff distance between two subsets
A and B of a metric space (Y, ⇢) is a number ⇢(A, B) = inf{" : A" � B, B" � A}.
Here by A" we denote the "-neighborhood of the set A, i.e. A" = {y 2 Y :

⇢(y, A) < "}.

Now, Zk ! Z if and only if for every compact K b Y there exists CK > 0
such that Vol2r (Zk \K )  CK and Zk \K ! Z \K with respect to the Hausdorff
distance. This statement is the content of the Harvey-Shiffman’s generalization of
Bishop’s compactness theorem. For the proof see [15]. We denote the space of
r-cycles on Y endowed with the topology described as above by Clocr (Y ).
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2.3. Strong convergence of meromorphic mappings

Let { fk} be a sequence of meromorphic mappings of a complex manifold U to a
complex manifold X .

Definition 2.5. We say that fk converge strongly to a meromorphic map f : U !

X (s-converge) if the sequence of graphs 0 fk converge over compacts to 0 f in
Hausdorff metric, i.e., for every compact K b U one has 0 fk \ (K ⇥ X)

H
�!

0 f \ (K ⇥ X).

Now let us prove Theorem 1.1 from the Introduction, i.e., that Hausdorff con-
vergence in the case of graphs implies the boundedness of volumes (over compacts)
and therefore the convergence in the topology of cycles. Let us underline at this
point that in this theorem one does not need to suppose anything on the target man-
ifold X .

Proof of Theorem 1.1. The reason why Hausdorff convergence of graphs implies
their stronger convergence in the topology of cycles is that, being the graphs, the
analytic cycles 0 fk converge to 0 f withmultiplicity one. Now let us give the details.
Let a 2 U \ I f be a regular point of f and set b = f (a). Then we can find
neighborhoods D1 3 a and D2 3 b biholomorphic to 1n , n = dimU and 1p, p =

dim X respectively such that 0 f \

�
D̄1 ⇥ @D2

�
= ;. In particular V = D1 ⇥ D2 is

an adapted chart for 0 f , let (V, j,1n,1p) be a corresponding scale. Here j : V !

1n
⇥1p is some biholomorphism. From Hausdorff convergence of 0 fk to 0 f we

see that for k � 1 0 fk \

�
D̄1 ⇥ @D2

�
= ;. Therefore 0 fk \ (D1 ⇥ D2) ! D1 is

a ramified covering (i.e., is proper) of some degree dk . But 0 fk is one to one over a
generic point of D1. Therefore dk = 1 and 0 fk \ V converge to 0 f \ V as graphs
(in particular as cycles). We proved that fk converge to f on compacts of U \ I f as
holomorphic mappings.

Let now a 2 I f and take some b 2 f [a]. As above take a neighborhood
V = D1 ⇥ D2 ⇠

= 1n
⇥1p of (a, b), where a = 0 and b = 0 in these coordinates.

Denote by (w0, w
00

) the coordinates in1n
⇥1p. Perturbing the slope of coordinate

w
00 we can suppose that ({0} ⇥1p) \ 0 f has 0 as its isolated point.

Remark 2.6. After perturbation of the slope of w
00 the decomposition j (V ) =

1n
⇥1p will not correspond to the decomposition U ⇥ X .

For sufficiently small " > 0 we take polydisks 1n
" and 1

p
" in (perturbed)

coordinates (actually only w
00 needs to be perturbed). We get an adapted chart for

0 f which possed the following property:

i) Ṽ := j (V ) writes as Ṽ = 1n
⇥1p, p = dim X .

ii) Local coordinates (w0, w
00

) of1n
⇥1p enjoy the property that z0 := w0

2 1n

is a local oordinate in U (but w00 is not a local coordinate on X).
iii) j (0 f \ V ) ! 1n is a ramified covering of degree d � 1.
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Again from Hausdorff convergence of 0 fk to 0 f we get that for all k � 1 the in-
tersection j (0 fk \ V ) is a ramified covering of 1n of degree dk . Obviously dk � d
for k � 1. If for some subsequence dk > d we shall get a contradiction as fol-
lows. In that case some irreducible component of 0 f \ V will be approached
by 0 fk \ V at least doubly. Let 0 stands for this irreducible component. Since
dim

⇥
0 f \ (I f ⇥ X)

⇤
 n � 1 (by irreducibility of 0 f ) we see that 0 fk multiply

approach every compact of 0 \ (I f ⇥ X). Take a point c 2 0 \ (I f ⇥ X) having a
relatively compact neighborhood W ⇢ 0 \ (I f ⇥ X) such that pr1|W : W ! W0
is biholomorphic, i.e., W is the graph of f over W0 b U \ I f . Now it is clear
that 0 fk \ (W0 ⇥ X) cannot approach 0 f \ (W0 ⇥ X) = W with multiplic-
ity more than one, because 0 fk is a graph of a holomorphic map over W0 for
k � 1.

We proved that every irreducible branch of 0 f \ V the graphs 0 fk approach
with multiplicity one. Therefore j (0 fk \ V ) ! 1n is a ramified covering of
the same degree d as j (0 f \ V ) ! 1n for k � 1. This proves at a time that
0 fk converge to 0 f in the topology of cycles and that their volumes are uniformly
bounded.

Strong convergence has some nice features, one was mentioned in the Intro-
duction. Moreover, as it is explained in [20], strong topology is natural in studying
fix points of meromorphic self-mappings of compact complex manifolds. But do-
mains of strong convergence and strong normality are quite arbitrary. We shall
explain this in more details. Let F be a family of meromorphic mappings from a
complex manifold U to a disk convex complex manifold X .

Definition 2.7. The set of normality of F is the maximal open subset NF of U
such that F is relatively compact on NF . If F = { fk} is a sequence then the set
of convergence of F is the maximal open subset of U such that fk converge on
compacts of this subset.

To be relatively compact in this definition means that from every sequence of
elements of F one can extract a converging on compacts subsequence. The sense
of convergence (strong, weak or other) should be each time specified.

Example 2.8.
1. Let X be a Hopf three-fold X := C3 \ {0}/z ⇠ 2z. Denote by ⇡ : C3 \ {0} ! X
the canonical projection. Let D b C2 be any bounded domain. Take a sequence
{an} ⇢ D accumulating to every point on @D. Let gn : C2 ! C3 be defined as
gn(z) = (z � an, 1/n). Set fn := ⇡ � gn . Then the set of normality of F = { fn}
has D as one of its connected components.

Remark 2.9. For an analogous example with X projective see [18, Example 4].
2. The same example is instructive when understanding the notion of weak con-
vergence. Take a converging to zero sequence an . Then fn from this example will
converge on compacts of C2 \ {0} but the limit will not extend to zero meromorphi-
cally. I.e., fn will not converge weakly in any neighborhood of the origin.
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3. Pseudoconvexity of sets of normality

3.1. Weak convergence and proof of Theorem 1.5

In view of such examples a weaker notion of convergence for meromorphic map-
pings was introduced in [18]. Let f 2M(U, X) be a meromorphic map from U to
X and let { fk} ⇢M(U, X) be a sequence of meromorphic mappings.
Definition 3.1. We say that fk converge weakly to f (w-converge) if there exists an
analytic subset A in U of codimension at least two such that fk converge strongly
to f on U \ A.
Remark 3.2. fk converge weakly to f if and only if for every compact of U \ I f
all fk are holomorphic in a neighborhood of this compact for k big enough and
uniformly converge there to f as holomorphic mappings. Indeed, let A be the
minimal analytic set of codimension � 2 such that fk converge strongly to f on
U \ A. Then A must be contained in I f because if there exists a point a 2 A \ I f
then f is holomorphic in some neighborhood V 3 a and then, by Rouché Principle
of [18] fk for k � 1 are holomorphic on compacts in V \ A and converge uniformly
(on compacts) to f there. From here and the fact that codim A � 2 one easily gets
that fk are holomorphic on compacts in V and converge to f .

Now let us turn to the sets of weak convergence/normality. Sets of strong
normality obviously are well defined, i.e., they do exist. The existence of sets of
weak normality was proved in [18, Corollary 1.2.1a].
Remark 3.3. In the formulation of this Corollary the Author of [18] speaks about
“weak convergence” but the proof is about “weak normality“.

Domains of weak convergence of meromorphic mappings turn to be pseudo-
convex for a large class of target manifolds. This follows from the ”mutual prop-
agation principle” stated in Theorem 1.5 in the Introduction. Let us give a proof
of it.

Proof of Theorem 1.5. Let us prove the part (b) first.

Step 1. Extension of the limit. First of all by the main result of [19] every meromor-
phic map f : U ! X extends to a meromorphic map f : Û \ A ! X , where A is
closed, complete (n� 2)-polar subset of Û of Hausdorff (2n� 3)-measure zero. In
more details that means that for every point a 2 A there exists a coordinate neigh-
borhood V ⇠

= 1n�2
⇥ B2 of a = 0 such that A \ (1n�2

⇥ @B2) = ; and for every
z0 2 1n�2 the intersection Az0 := A\B2z0 is a zero dimensional complete pluripolar
subset of B2z0 := {z0} ⇥ B2. Here B2 stands for the unit ball in C2. Moreover, if
A 6= ; then f (S3z0) is not homologous to zero in X . Here S3z0 = @Bz0 is the standard
three-dimensional sphere in C2.

Let U 0 be the maximal open subset of Û \ (I f [ A) such that fk converge to f
on compacts on U 0 as holomorphic mappings.
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Step 2. U 0 is locally pseudoconvex in Û \ (I f [ A). If not then by Docquier-
Grauert criterion, see [7], there would exist a point b 2 @U 0

\ (I f [ A) and a
Hartogs figure h : Hn

" ! U 0 imbedded to U 0 such that the image h(1n) of the
corresponding polydisk contains b. All this is local and therefore we can assume
that h(1n) is relatively compact in U \ (I f [ A). Pulling back fk and f to 1n we
arrive to contradiction as follows. By the Theorem of Siu, see [40], there exists a
Stein neighborhood V of the graph of f � h in 1n

⇥ X . Since for every compact
K b Hn

" we have that the graph of fk |K is contained in V we conclude the same
for every compact of 1n . Now fk � h converge to f � h on compacts in 1n as
holomorphic mappings. But that mean that they converge also around the preimage
of b. Contradiction. Since Û was supposed to be the envelope of holomorphy of U
we obtain that U 0

= Û \ (I f [ A).
Step 3. Removing A. Suppose A is non-empty. Take a sphere S3z0 as described in
Step 1 for some point a 2 A. Using the fact that I f is of codimension � 2 we can
take S3z0 not to intersect I f as well. I.e., S3z0 ⇢ U 0. fk(S3z0) is homologous to zero
in X , because fk meromorphically extends to the corresponding B2z0 . Moreover fk
converge to f in a neighborhood of S3z0 . This implies that f (S3z0) is also homologous
to zero and therefore A should be empty. Contradiction. Part (b) is proved.

The proof of (a) is a particular case of the Step 2 of the proof of part (b).

Remark 3.4. We gave a proof of Theorem 1.5 here because the proof of an anal-
ogous statement in [18] uses a stronger extension claim from the subsequent pa-
per [19]. Namely the Author claimed that A appearing in the Step 1 of the proof
is analytic of codimension two. This was not achieved in [19] (and is not clear for
us up to know). Therefore we find necessary to remark that vanishing of (2n � 3)-
dimensional measure of A together with homological characterization of the ob-
structions for the meromorphic extension is, in fact, sufficient for our particular
task here.

3.2. Gamma convergence of meromorphic mappings

Let again fk be a sequence of meromorphic mappings between complex manifolds
U and X , the last is supposed to be disk-convex. Let f 2M(U, X) be a meromor-
phic map.
Definition 3.5. We say that fk 0-converge to f if:

i) there exists an analytic subset A ⇢ U such that fk strongly converge to f on
U \ A;

ii) for every divisor H in X , such that f (U) 6⇢ H and every compact K b U the
volumes of f ⇤

k H \ K counted with multiplicities are uniformly bounded for
k � 1.

Remark 3.6. This notion is strictly weaker than the weak convergence because A
can have components of codimension one, and remark that the item (i) is automati-
cally satisfied by a weakly converging sequence, because divisors f ⇤H extend from
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U \ A toU and if they have bounded volume on compacts ofU \ A then the same is
true on compacts of U . All this obviously follows from the ingredients involved in
the proof of Bishop’s compactness theorem, see [5] or [43]. It might be convenient
to add to A the indeterminacy set of f and then, see Remark 3.2, fk will converge
to f uniformly on compacts of U \ A as holomorphic mappings.
Example 3.7.
a) Consider the following sequence of holomorphic mappings fk : 1 ! P1:

fk : z !


1 : 1+

1
z

+ ... +
1
zkk!

�
=


zk : zk + zk�1 + ... +

1
k!

�
. (3.1)

It is clear that fk converges on compacts of 1 \ {0} to f (z) = [1 : e
1
z ] but, as it is

clear from the second expression in (3.1) the preimage counting with multiplicities
of the divisor H = {Z0 = 0} is k[0] (here [Z0 : Z1] are homogeneous coordi-
nates in P1), i.e., has unbounded volume. And indeed, this sequence should not be
considered as converging one, because its limit is not holomorphic on 1.
b) Set fk(z) = [z : z �

1
k ] : 1 ! P1. This sequence clearly converges to the

constant map f (z) = [z : z] = [1 : 1] on compacts of 1 \ {0}. Moreover, the
preimage of any divisor H = {P(z0, z1) = 0} under fk is {z 2 1 : P(z, z �

1
k ) =

0}, i.e., is a set of points, uniformly bounded in number counting with multiplicities.
Therefore this sequence 0-converge (but does not converge weakly).
Example 3.8. Consider the following sequence of meromorphic functions on 12
(i.e., meromorphic mappings to P1):

fk(z1, z2) =

h
z1 : 2�k zk2

i
.

The limit map is constant f (z) = [1 : 0]. fk converge to f strongly (uniformly in
fact) on compacts of 12 \ {z1 = 0}. If [Z0 : Z1] are homogeneous coordinates in
P1 then the preimage of the divisor [Z1 = 0] is k[z2 = 0], i.e., this sequence does
not converge even in 0-sense on 12.
Remark 3.9. Examples 3.7 (a) and 3.8 are examples of converging outside of an
analytic set of codimension one sequences which are not 0-converging. In the first
case the limit does not extend to the whole source, in the second it does. Con-
vergence of meromorphic mappings of this type was introduced and studied by
Rutishauser in [37].

If in Definition 2.7 the underlying convergence is 0-convergence we get the
corresponding notions of a convergence/normality set. Let us conclude this general
discussion with the following

Proposition 3.10. Let X be a disk-convex Gauduchon manifold. Then the sets of
0-convergence/normality of meromorphic mappings with values in X are locally
pseudoconvex.
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Proof. We shall prove the statement for the sets of 0-normality, the case of sets of
convergence obviously follows. Let D be the maximal open subset of U where the
family F is 0-normal. Suppose that D is not pseudoconvex. Then by Docquier-
Grauert criterion, see [7], there exists an imbedding h : Hn

" ! D of a Hartogs
figure into D such that h extends to an immersion of the polydisk toU with h(1n)\
@D 6= ;. Recall that Hartogs figure is the following domain

Hn
" :=

⇣
1n�1
" ⇥1

⌘
[

⇣
1n�1

⇥ A1�",1
⌘

, (3.2)

where A1�",1 := 1 \ 1̄1�" is an annulus. Let us pull-back our family to 1n by h
and therefore without loss of generality we can suppose thatU = 1n , F is a family
of meromorphic mappings from 1n to X , Hn

" ⇢ D ⇢ 1n is the set of 0-normality
of F such that D 6= 1n .

That means that there exists a sequence { fk} ⇢ F , which converges on D but
does not not 0-converge on compacts in 1n . Let us see that this is impossible. Let
f : D ! X be the 0-limit of fk . Denote by A the analytic set in D such that fk
converge to f on compacts of D\ A. By [19] f extends to1n

\S, where S is closed
(n � 2)-complete polar subset of 1n . Let A0 be the pure (n � 1)-dimensional part
of A. By the theorem of Grauert we have two cases.
Case 1. The envelope of holomorphy of D \ A0 is 1n . In that case the Theorem 1.5
is applicable with U = D \ A0 and Û = 1n and gives us the weak (and therefore
0) convergence of fk on 1n .
Case 2. A0 extends to a hypersurface Ã in 1n and 1n

\ Ã is the envelope of
holomorphy of D \ A0. In that case again by Theorem 1.5 fk weakly converge to f
on 1n

\ Ã. S \ Ã is removable for f , see the Step 3 in the proof of Theorem 1.5.
Therefore fk strongly converge to f outside of a proper analytic set A[ I f . We need
now to prove that f is extendable to1n , i.e., that S is empty. By Lemma 7.3 below
the areas of disks fk(1z0) are bounded uniformly on k and on z0 2 1n�1(1 � ")
for any fixed " > 0, here 1z0 := {z0} ⇥ 1. Therefore the areas of f (1z0) are
bounded to. Theorem 1.5 together with Proposition 1.9 from [19] imply now that f
meromorphically extends onto 1n�1(1� ") ⇥1. Therefore it extends to 1n . The
condition i) of Definition 3.5 is fulfilled.

Let H be a divisor in X . Then for every compact K b Hn
" the volumes

of f ⇤

k H \ K counted with multiplicities are bounded. By Oka-Riemenschneider
theorem, see [36], the volumes of the extensions of these divisors are bounded on
compacts of 1n too. This verifies the condition ii) of Definition 3.5. Proposition is
proved.

4. Convergence of mappings with values in projective space

Now let us examine our notions of convergence on the example when the target
manifold is a complex projective space.
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4.1. Meromorphic mappings to complex projective space

Let a meromorphic mapping f : U ! PN be given. Without loss of generality
we suppose that the image of f is not contained in a hyperplane. Then the (com-
plete) inverse image f �1(H) under f of a hyperplane H is a divisor in U . By
f �1(Pn \ H) we shall understand U \ f �1(H). Denote by [w0 : w1 : ... : wN ] the
homogeneous coordinates of PN . Let Uj = {w 2 PN

: w j 6= 0} and let w0
w j

, ..., wN
w j

be affine coordinates in Uj . Set Dj := f �1(Uj ), i.e., Dj = U \ f �1(Hj ), where
Hj := {w j = 0}. Since U0 is isomorphic to CN the restriction f |D0 : D0 �! U0
is given by holomorphic functions w1

w0
= f1(z), ..., wN

w0
= fN (z). The coordi-

nate change in PN shows that f |D0\Dj : D0 \ Dj �! PN is given by functions
w1
w0

=
1

f j (z) , . . . ,
wN
w0

=
fN (z)
f j (z) which are holomorphic in Dj . Therefore functions

f1, . . . , fN are meromorphic on D0 [ Dj . This proves that f1, . . . , fN are mero-
morphic on

SN
j=0 Dj ⇢ U . We have that U \

SN
j=0 Dj =

TN
j=0 f �1(Hj ), i.e., for

every point from this set the image of every its neighborhood intersects every Hj .
Such point can be only an indeterminacy point of f . I.e., U \

SN
j=0 Dj ⇢ I f . I f is

analytic of codimension � 2 and therefore by the theorem of Levi, see [29] or [14],
every f j meromorphically extends to U .

If f1 ⌘ . . . ⌘ fn ⌘ 0 then f (U) ⌘ 0 2 U0. If not, let f1 6⌘ 0. One finds
holomorphic functions h j et g j 0  j  N in a polydisk neighborhood V of a
given point x 2 U , g j 6= 0 such that

f1 =

h1
g1

, . . . , fN =

hN
gN

and therefore gets

f :=


1 :

h1
g1

: . . . :

hN
gN

�
=

"
NY
j=1

g j : h1
NY
j=2

g j : . . . : hN
N�1Y
j=1

g j

#
.

This proves that f can be locally written in the form

f (z) :=

⇥
f0(z) : f1(z) : . . . : fN (z)

⇤
(4.1)

as claimed.

4.2. Weak convergence of mappings with values in projective space

Let us prove now the part ii) of Theorem 1.3 from the Introduction. I.e.,

Proposition 4.1. A sequence of meromorphic mappings fk from a complex mani-
foldU to PN converges weakly on compacts ofU if an only if for every point z0 2 U
there exists a neighborhood V 3 z0 and reduced representations fk = [ f 0k : . . . :

f Nk ], f = [ f 0 : . . . : f N ] in V such that for every 0  j  N f jk converge to f j
uniformly on V .
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) Let fk * f , i.e., fk converge to f weakly. Shrinking U we suppose that all fk
and f admit reduced representations

fk =

h
f 0k : . . . : f Nk

i
(4.2)

and
f =

h
f 0 : . . . : f N

i
(4.3)

correspondingly. Up to making a linear coordinate change in PN we can suppose
that f [U ] is not contained in any of coordinate hyperplanes, i.e., that f j 6⌘ 0 for
all 0  j  N . Set

Z j
=

n
z 2 U : f j (z) = 0

o
,

and note that
TN

j=1 Z j
= I f . Since fk converge on compacts in Uj := U \ Z j to f ,

see Remark 3.2, we see, taking j = 0, that

f jk
f 0k

◆
f j

f 0
(4.4)

for all j on compacts in U0. Denote by Z0k the zero divisors of f
0
k and note that

they leave every compact of U0 as n ! 1.

Lemma 4.2. Divisors Z0k converge to Z0 in cycle space topology.

Let us prove this lemma first. Fix a point a 2 Z0 \ Z j (if Z0 \ Z j is not empty)
and take a relatively compact neighborhood V 3 a such that V̄ \ Z j

= ;. We have
that f 0k / f jk ◆ f 0/ f j on V̄ . The Rouché’s theorem easily implies now that Z0k \ V
converge to Z0 \ V as currents.
Remark 4.3. In fact the cycle space topology on the space of divisors coincides
with the topology of uniform convergence of defining them holomorphic functions,
see [42]. And this immediately gives the previous assertion.

We conclude from here that Z0k converge to Z
0 as cycles on compacts inU \ I f .

But then by [33], Theorem II, we obtain that they converge on the whole of U .
Lemma 4.2 is proved.

We continue the proof of the Theorem. Shrinking U if necessary we can sup-
pose thatU is biholomorphic to1n

= 1n�1
⇥1 and Z0k \U regularly covers1n�1

for k � 1. Now each Z0k can be written as the zero set of a uniquely defined unitary
polynomial Pk fromO1n�1[zn] and these Pk uniformly converge to P - the defining
polynomial for Z0. After multiplying each [ f 0k : ... : f Nk ] by the unit Pk/ f 0k we get
the reduced representations

fk =

h
Pk : g1k ... : gNk

i
.
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The same with
f =

h
P : g1... : gN

i
.

But now Pk ◆ P and therefore from (4.4), which reads now as

g jk
Pk

◆
g j

P
(4.5)

on compacts in U0, we get that for every 1  j  N g jk ◆ g j on compacts
in U0 = U \ Z0. But from the maximum principle it follows that g jk ◆ g j on
compacts in U .

( For proving the inverse statement we start with converging reduced representa-
tions (4.2) to (4.3), i.e., f jk ◆ f j on U . Then for every 0  j  N on every
Uj = U \ Z j we get a convergence on compacts

 
f 0k
f jk

, ...,
f Nk
f jk

!
◆

 
f 0

f j
, ...,

f N

f j

!
.

And since the codimension of I f =

T
Z j is at least two we deduce the weak

convergence of fk to f .

4.3. Strong convergence and convergence of meromorphic functions

Strong convergence of meromorphic maps into PN can be described in the follow-
ing way. First, if fk ! f then fk * f . Therefore [ f 0k : ... : f Nk ] ◆ [ f 0 : ... : f N ]

for an appropriate reduced representations. According to (2.2) the volume of the
graph of fk is

Z
U\I fk

�
!1 + f ⇤

k !FS
�n

=

Z
U\I f

nX
j=0

C j
n!

j
1 ^ f ⇤

k !
n� j
FS . (4.6)

Since f ⇤

k !FS = ddc ln k fkk2 this is nothing but the non-pluripolar Monge-Ampère
mass of ln k fkk2 as appeared in (1.3). By Proposition 1.1 volumes of 0 fk converge
to the volume of 0 f , i.e.,

Z
U\I fk

!
j
1 ^

⇣
ddc ln k fkk2

⌘n� j
!

Z
U\I f

!
j
1 ^

⇣
ddc ln k f k2

⌘n� j
(4.7)

for 0  j < n. In the case U = 1n this gives (1.3). Vice versa, if one has
convergence of volumes the appearance of an exceptional component is impossible
and we conclude the part (ii of Theorem 1.3:
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Proposition 4.4. fk converge to f strongly if and only if

i) the appropriate reduced representations converge uniformly;
ii) for every 0  j  n � 1 one has (4.7).

Now let us descend to the convergence of meromorphic functions. Meromorphic
functions on a complex manifoldU are exactly the meromorphic mappings fromU
to P1. I.e., all our previous results and notions are applicable to this case.

Proposition 4.5. If a sequence { fk} of meromorphic functions converges weakly
then it converges strongly.

Proof. Let f be the weak limit of fk . We shall see in a moment, see Corollary
5.6 that volumes of graphs in this case are uniformly bounded over compacts in U .
Therefore after going to a subsequence we get that the Hausdorff limit 0̂ := lim0 fk
is a purely n-dimensional analytic subset of U ⇥ P1. We claim that lim0 fk = 0 f
in fact, i.e., that there are no exceptional components. If not take any irreducible
component 0 of this limit different from 0 f . Denote by � its projection to U . � is
a proper analytic set of codimension at least twoU . But then 0 should be contained
in � ⇥ P1 and the last analytic set is of dimension dimU � 1. This is impossible,
because all components of lim0 fk are of pure dimension dimU . Therefore � = ;

and lim0 fk = 0 f .

4.4. Gamma convergence in projective case

In [10] and subsequent papers of Fujimoto the following type of convergence of
meromorphic mappings with values in PN was considered, it was called the m-
convergence (or meromorphic convergence): fk m-converge to f if there exist re-
duced (admissible in the terminology of [10]) representations fk = [ f 0k : ... : f Nk ]

which converge uniformly on compacts to f = [ f 0 : ... : f N ], but the last is not
supposed to be reduced (i.e., admissible), only not all f j are identically zero. Let
us prove the item i) of Theorem 1.3.

Proposition 4.6. When the target manifold X is the complex projective space PN

the 0-convergence of meromorphic mappings is equivalent to m-convergence in the
sense of Fujimoto.

Proof. ) Suppose that fk
0
�! f . Let � be the an analytic subset ofU such that our

sequence converge strongly on compacts of U \ � . We add to � also the indetermi-
nacies of the limit f and therefore fk will converge to f on U \ � in compact open
topology. Let f = [ f 0 : . . . : f N ] be some reduced representation of the limit map.
Making linear change of coordinates we can suppose, without loss of generality that
f 0 6⌘ 0, i.e., that f (U) 6⇢ H0, where H0 = {Z0 = 0} in homogeneous coordinates
[Z0 : . . . : ZN ] of PN . We have that f ⇤

k H0 converge on compacts in U in the cycle
space topology (after taking a subsequence).
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Take some a 2 � and choose a chart (V, j) adapted both to � and f ⇤H0
with coordinates z1, ..., zn around a in such a way that a = 0 and (� [ f ⇤H0) \�
1n�1

⇥1
�
projects to 1n�1 properly. Then f ⇤

k H0 \ V also projects to 1n�1

properly for k � 1. After going to a subsequence once more we can fix the degree d
of ramified coverings f ⇤

k H0\V ! 1n�1 and write the corresponding polynomials
Pk 2 O1n�1[zn] defining f ⇤

k H0 \ V . Pk converge to some P on (compacts of)
1n�1. Let fk = [ f 0k : ... : f Nk ] be some reduced representations of fk on V .
Notice that f ⇤

k H0 \ V = { f 0k = 0}. Divide each such representation by the unit
f 0k /Pk and get representations fk = [Pk : g1k : ... : gNk ] with converging first
terms Pk . At the same time (g1k/Pk, ..., g

N
k /Pk) represents fk in nonhomogeneous

coordinates of the chart Z0 6= 0 on PN . Therefore g jk /Pk converge to some f
j on

compacts of V \ (� [ f ⇤H0). Therefore g jk converge to g
j := f j P on compacts

of V \ (� [ f ⇤H0) to. By maximum principle they converge everywhere on V to
the extension of g j . We get that reduced representations fk = [Pk : g1k : ... : gNk ]

converge term by term to a (may be non reduced) representation [P : g1 : ... : gN ]

and this can be only a representation of f .

( Suppose now that fk m-converge to f . Again change coordinates in PN , if
necessary, in such a way that f (U) 6⇢ H0. Let V be a neighborhood of some point
a 2 U . If a 2 f ⇤H0 then take (V, j) to be an adapted chart to this divisor. In any
case take V to be biholomorphic to 1n�1

⇥1. Let Fk = ( f 0k , ..., f Nk ) be the lifts
of fk to CN+1 in V such that Fk converge to the lift F = ( f 0, ..., f N ) of f . From
here one gets immediately that f jk / f 0k converge to f j/ f 0 uniformly on compacts
of V \ { f 0 = 0}, i.e., that our maps converge strongly outside of a divisor.

Now let H = {P(Z0, ..., ZN ) = 0} be a divisor such that f (U) 6⇢ H . Us-
ing convergence of lifts Fk = ( f 0k , ..., f Nk ) to F = ( f 0, ..., f N ) one gets that
fk(U) 6⇢ H for k � 1. One has also that P( f 0k , ..., f Nk ) uniformly converge to
P( f 0, ..., f N ) and this is equivalent to the convergence of divisors.

Remark 4.7. The relation between weak/gamma convergence and m-convergence
for the case of X = PN was indicated without proof in [18].

5. Bloch-Montel type normality criterion

The aim of this section is to test the notion of weak convergence on the Bloch-
Montel type normality statement, i.e., we are going to prove here the Theorem 1.8
from the Introduction.

5.1. Preliminaries

Before proceeding with the proof let us recall few basic facts. We start with an
extended version of Zalcman’s lemma, see [31]:
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Lemma 5.1. A family F of holomorphic mappings from 1n to a compact Hermi-
tian manifold (X, h) is not normal at z0 2 1n if and only if there exist sequences
zk ! z0, rk & 0, fk 2 F such that fk(zk + rkw) converge uniformly on compacts
in Cn to a non-constant entire mapping f : Cn

! X such that kd f (w)kh  2 for
all w 2 Cn .

This f may well have rank one. We shall also need the following result from
[21], which is a precise version of Gromov compactness theorem (we shall need it
in the integrable case only):

Proposition 5.2. Let uk : 1 ! X be a sequence of holomorphic maps into a disk-
convex Hermitian manifold (X, h) with uniformly bounded areas, which uniformly
converges on some annulus A1�",1 adjacent to the boundary @1. Then uk converge
to stable complex curve over X after a reparametrization. Moreover, the compact
components of the limit are rational curves.

For the notions of stable curve over X , convergence after a reparametrization,
as well as for the proof we refer to [21]. The obvious conclusion from this type of
convergence is the following:

Corollary 5.3. If uk converge in stable sense to u and u(1) intersects a divisor H
in X , but is not contained in H , then all uk(1) intersect H for k � 1.

Proof. It was proved in [22] (more details are given in [21]) that for any k � 1 one
can join uk with u by a holomorphic one parameter family of stable maps, see [22,
Proposition 2.1.3 ] for the exact statement. For us it is sufficient to understand that
there exists a normal complex surface Y ⇡

�! 1 foliated over the disk1 such that all
fibers Ys := ⇡�1(s) are disks and a holomorphic mapping U : Y ! X such that
U |Y0 = u and U |Ys0 = uk for some s0 2 1 and some k.

Remark 5.4. The fact that this family can be contracted to a surface with normal
points is proved in [22, Lemma 2.2.6].

Let h be a defining holomorphic function of the divisor H near the point of
intersection u(1) \ H . Then h � U is holomorphic on Y (for this one might need
to take disks of smaller radii) and is equal to zero at 0 2 Y0 ⇢ Y . At the same time
it cannot vanish on

S
s21 @Ys because U |Ys (@Ys) is close to u(@1) for all s 2 1.

Therefore the zero set of h � U must intersect every Ys . And that means that uk(1)
intersects H .

Let us make one more remark. Let !FS be the Fubini-Study form on PN .
For a holomorphic map f : 1̄ ! CN (we always suppose f to be defined in a
neighborhood of the closure 1̄), the area of f (1) with respect to the Fubini-Study
form is

areaFS f (1) =

Z
1
f ⇤!FS. (5.1)
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Denote by Z = (Z0, ..., ZN ) coordinates in CN+1 and let ⇡ : CN+1
\ {0} ! PN

be the standard projection. Consider the following singular (1, 1)-form on CN+1

!0 = ddc ln kZk
2 . (5.2)

The following statement is a simple case of King’s residue formula, but we shall
give a simple proof for the sake of completeness.

Lemma 5.5. For a holomorphic lift F = ( f 0, ..., f N ) : 1̄ ! CN+1 of f : 1̄ !

PN (i.e., f = ⇡ � F) such that F |@1 does not vanish one has

areaFS f (1) =

Z
@1

dc ln kFk
2
� NF . (5.3)

Here NF is the number of zeroes of F counted with multiplicities.

Proof. By the very definition of the Fubini-Study form one has ⇡⇤!FS = !0. And
therefore it is immediate to check that in a neighborhood of a point a 2 1 such that
F(a) 6= 0 one has that f ⇤!FS = F⇤!0. As the result

areaFS f (1) =

Z
1
f ⇤!FS =

Z
1\ZF

F⇤!0, (5.4)

where ZF := {z1, ..., zk} is the set of zeroes of F , i.e., such zl that f j (zl) = 0
for all j = 0, ..., N . Let nl be the multiplicity of zero zl . Then F(z) = (z �

zi )nl (g0(z), ..., gN (z)), where at least one of g j -s is not zero at zl . We have that

ddc ln kFk
2

= nl�zl + ddc ln kGk
2 ,

where G(z) = (g0(z), ..., gN (z)). Therefore ddc ln kGk
2 is an extension of F⇤!0

to zl . The rest obviously follows from the Stokes formula.

Let us observe the following immediate corollary from this lemma.

Corollary 5.6. Let fk : U ! PN be a 0-converging sequence of meromorphic
mappings and let L be a divisor in U such that fk converge uniformly on compacts
of U \ L . Let V ⇠

= 1n�1
⇥1 be a scale adapted to L and to the limit M of f ⇤

k H0,
where H0 = [Z0 = 0]. Then the areas of the analytic disks fk(1z0) are uniformly
bounded in z0 2 1n�1 and k 2 N.
Proof. Let (z0, zn) be coordinates in1n�1

⇥1. Denote by Fk = ( f 0k , ..., f Nk ) lifts
of fk toCN+1. Consider restrictions fk |1z0 . Due to the fact that our chart is adapted
to M = lim f ⇤

k H0 we have that f
0
k does not vanish on @1z0 for k � 1 and, since

it is also adapted to L the lifts Fk = ( f 0k , ..., f Nk ) converge in a neighborhood of
@1z0 . By (5.3) we have

areaFS fk(1z0) 

Z
@1z0

dc ln kFkk2  c, (5.5)

i.e., the areas are uniformly bounded for z0 2 1n�1 and all k.
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Remark 5.7. For a family F of meromorphic mappings from a manifold U to a
projective manifold X to be normal an obvious necessary condition is that for any
fixed hypersurface H ⇢ X and any fixed compact K b U the volumes counting
with multiplicities of intersections f ⇤H \ K should be uniformly bounded for f 2

F . It was proved by Fujimoto in [10] that this condition (in the case X = PN and
Hi are hyperplanes) turns out to be also sufficient, but only for the meromorphic
(i.e., 0) normality. We in this paper are interested in the normality in the weak
convergence sense (which is, that’s to say, stronger than meromorphic one). In
that case there is one more necessary condition. Take two hypersurfaces H0 and
H1 in X . Let { f ⇤H0 : f 2 F} and { f ⇤H1 : f 2 F} be the families of their
preimages by elements of our family f 2 F . By boundedness of volumes condition
for every sequence f ⇤

k Hi , i = 0, 1, some subsequences f ⇤

k j Hi converge to divisors
L0 and L1. If there exist coinciding (without taking to account the multiplicities)
components L 0

0 and L
0

1 of L0 and L1 respectively, then fk j cannot weakly converge
in a neighborhood of L 0

0 = L 0

1. Indeed, since the limit f is a holomorphic map
outside of I f , the preimages f ⇤H0 and f ⇤H1 cannot have common components.
But L 0

0 and L
0

1 are such components. Contradiction. This will be formalized in the
following definition.

Let F be a 0-normal family inM(U, X). Fix a divisor H in X . Remark that
for every relatively compact D b U the intersections f ⇤H \ D̄ from a pre-compact
family of sets when f is running over F . Therefore one can find a finite collection
of scales {E↵} such that every f ⇤H \ D̄ can be covered by some of corresponding
V↵ and the members of this covering are adapted to f ⇤H . This collection {E↵} of
scales depends on D b U , but does not depend on f 2 F and, moreover, does not
depend on H taken in some compact family of divisors, in our case this family is
{H0, ..., Hd}, i.e., is finite.
Definition 5.8. We say that a family F of meromorphic mappings from a complex
manifold U to a complex manifold X uniformly separates hypersurfaces H0 and
H1 from X if for any f 2 F and any adapted for both f ⇤H0 and f ⇤H1 scale
E↵ = (V↵, j↵,1n�1,1) as above, the Hausdorff distance between f ⇤H0 \ V↵ and
f ⇤H1 \ V↵ for f 2 F is bounded from below by a strictly positive constant.

Hausdorff distance is taken here in the Euclidean metric of Cn . A constant
in question may well depend on divisors H0, H1 and adapted chart V↵ , but it is
supposed not to depend on f 2 F .

5.2. Proof of the normality criterion of Theorem 1.8

We are going to prove now Theorem 1.8 from the Introduction. Recall that a rela-
tively compact open subset Y of a complex manifold X is said to be hyperbolically
imbedded to X if for any two sequences {xn} and {yn} in Y converging to distinct
points x 2 Ȳ and y 2 Ȳ one has

lim sup
n!1

kY (xn, yn) > 0,
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where kY is the Kobayashi pseudodistance of Y . Y b X is said to be locally
hyperbolically complete (l.h.c) if for every y 2 Ȳ there exists a neighborhood Vy 3

y such that Vy\Y is hyperbolically complete. For example every Y b X of the form
X \ { divisor } is obviously l.c.h. It was proved in [26] that if Y is hyperbolically
imbedded into X and is l.h.c. then Y is complete hyperbolic.

These notions are connected to complex lines in Ȳ by theorem of Zaiden-
berg, see [44]. By a complex line in Y (or in X) one understands an image of a
non-constant holomorphic map u : C ! Y (or X). Sometimes one requires that��dzu( @x )��h  1 for all z 2 C, where h is some Hermitian metric on X . Complex
line u : C ! Ȳ b X is called limiting for Y if there exists a sequence of holo-
morphic mappings un : 1(R) ! Y converging on compacts in C to u : C ! Ȳ .
Theorem of Zaidenberg says now that: for a relatively compact l.c.h. domain Y in
a complex manifold X to be complete hyperbolic and hyperbolically imbedded in
X it is necessary and sufficient that Y does not contain complex lines and does not
admit limiting complex lines.

Nowwe turn to the proof. Let { fk} be a sequence fromF , whereF satisfies the
assumptions of Theorem 1.8 from the Introduction. {Hi }di=0 is our set of divisors.

Step 1. Convergence outside of a divisor. By Bishop’s compactness theorem for
every i some subsequence from f ⇤

k Hi converges to a (may empty) hypersurface in
U . Denote this limit hypersurface as Li . Set

L :=
d[
i=0

Li .

In order not to complicate notations we will not introduce subindexes when extract-
ing subsequences.

If L is empty then for every compact K b U all fk with k big enough send
K to X \

Sd
i=0 Hi , the last is Stein. In particular they are holomorphic in a neigh-

borhood of K and we can use Zalcman’s Lemma 5.1 together with Zaidenberg’s
characterization to extract a converging subsequence.

Therefore from now on we suppose L is nonempty. Take a point z0 2 U \ L
and take a relatively compact neighborhood V 3 z0 biholomorphic to a ball such
that V̄ \ L = ;. Then for k big enough fk(V̄ ) ⇢ X \

Sd
i=0 Hi . This implies that

they all are holomorphic on V and we again can find a converging subsequence on
V as before. Therefore some subsequence of { fk} (still denoted as { fk}) converge
on compacts ofU \ L in the usual sense of holomorphic mappings. Denote by f its
limit. f is a holomorphic map from U \ L to X .
Step 2. Convergence across the divisor. Take a point z0 2 L0, if L0 is empty we can
re-numerate Li -s. Fix an imbedding i : X ! PN and let H be the intersection of X
(i.e., of i(X)) with hyperplane {Z0 = 0} in the standard homogeneous coordinates
[Z0 : ... : ZN ] of PN . After going to a subsequence we have that f ⇤

k H converge,
denote by M the limit. Let (V, j) be an adapted chart for L [M (and therefore also
for L0) at z0 with the scale E = (V, j,1n�1,1). Let Pk[zn] 2 O1n�1[zn] be the
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defining unitary polynomial for f ⇤

k H \V . Pk converges to the defining polynomial
P of M \ V .

Let fk = [ f 0k : ... : f Nk ] be reduced representations of fk on V (we write
fk for i � fk). Then multiplying this representation by the unit Pk/ f 0k we obtain a
reduced representation fk = [Pk : g1k : ... : gNk ]. We have that g jk /Pk converge on
compacts of V \(L[M). Therefore g jk converge there to, denote by g

j its limit. We
see that lifts Fk = (Pk, g1k , ..., g

N
k ) converge to F := (P, g1, ..., gN ) on compacts

of V \ (L [ M). By maximum principle they converge on V .
In particular f extends to a meromorphic mapping from U to X .

Remark 5.9. It is worth noticing that at this stage we proved the 0-normality of
our family. For the case X = PN with Hi hyperplanes this was proved in [10]. One
more point worth of noticing is that the extendibility of f also follows from usual
complex hyperbolic geometry, see [28].
Step 3. Convergence outside of codimension two. Changing indices of Hi , if neces-
sary, we can suppose that our family uniformly separates H0 and H1. Take a point
z0 2 L0 \

S
i 6=0 Li such that L0 in addition is smooth at z0. Take an adapted scale

E = (V, j,1n�1,1) for L0 near z0 which intersects L only by the smooth part of
L0 and, moreover, such that j (L0 \ V ) = d · [1n�1

⇥ {0}] for some multiplicity
d � 1. Fix coordinates (z0, zn) on1n�1

⇥1. By Corollary 5.6 the areas of analytic
disks fk |1z0 are uniformly bounded. Fix some z

0
2 1n�1 and take a subsequence

fk such that fk |1z0 converge in stable topology to f |1z0 plus a chain Cz0 of rational
curves. By Corollary 5.3 if Cz0 intersects some H1 with i 6= 0 then fk |1z0 (1z0)
intersects H1 to. But then f ⇤

k H1 \ V is nonempty and converge to L1 \ V . This
can be only L0 \ V with some multiplicity, because V was chosen in such a way
that L \ V = L0 \ V . The last violates the assumed uniform separability of the
pair H0, H1 by F . Therefore Cz0 is empty. That means that (some subsequence of)
fk |1z0 uniformly on 1z0 converge to f |1z0 . This implies that the whole sequence
fk restricted to 1z0 converge to f . Therefore fk converge to f on U \ Sing L in
compact open topology as holomorphic mappings. This proves the Theorem.
Remark 5.10. Theorem of Bloch, see also [13], states that Y = PN

\

S2N
j=0 Hi

is hyperbolically imbedded to PN , where Hi are hyperplanes in general position.
Therefore Y = PN

\

S2N
i=0 Hi is an example for our Theorem 1.8.

6. Behavior of volumes of graphs under weak and gamma convergence

In this section we are concerned with the following question: let meromorphic map-
pings fk : U ! X converge in some sense to a meromorphic map f , what can be
said about the behavior of volumes of graphs of fk over compacts in U? If fk
converge to f strongly then, as it was proved in Theorem 1.1, for every relative
compact V b U we have that

Vol
�
0 fk |V

�
! Vol

�
0 f |V

�
. (6.1)
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When fk converges only weakly one cannot, of course expect anything like (6.1).
At most what one can expect is that volumes of 0 fk stay bounded over compacts
in U and converge to the volume of 0 f plus volumes of exceptional components.
I.e., the question is if for a weakly converging sequence { fk} one has that for every
relatively compact open V b U there exists a constant CV such that

Vol(0 fk |V )  CV for all k. (6.2)

This turns to be wrong in general, the following example was communicated to us
by A. Rashkovskii.

6.1. Example of Rashkovskii

Example 6.1. There exists a sequence "k & 0 such that holomorphic mappings
fk : B3 ! P3 defined as

fk : (z1, z2, z3) !

h
z1 : z1 � "k : z2 : zk3

i
(6.3)

converge weakly to f (z) = [z1 : z1 : z2 : 0] on compacts of the unit ball B3 ⇢ C3,
but the volumes of graphs of fk over the ball B3(1/2) of radius 1/2 diverge. In fact

Vol
�
0 fk

�
\

⇣
B3(1/2) ⇥ P3

⌘
� k. (6.4)

Consider the following family of plurisubharmonic functions on the unit ball B3 in
C3:

u",k(z) = ln
⇣
|z1|2 + |z1 � "|2 + |z2|2 + |z3|k

⌘
, " 2 (0, 1/4). (6.5)

Note that every u",k is bounded in B3 and its total MA mass in B3(1/2) coincides
with those of the function

ũ",k :=max{u",k, sk} where sk =min
n
ln(|z1|2 + |z2|2 + |z3|k) : z 2 S5(1/2)

o
.

Here S5(1/2) = @B3(1/2) is the sphere of radius 1/2. This fact follows from the
Bedford-Taylor definition of the MA mass of a product of bounded psh functions,
see [4]: ddcu1 ^ ddcu2 := ddc(u1ddcu2) and so on by induction. Here the point
is, of course, to prove that ddc(u1ddcu2) is again a closed positive current. Now
one writes

MAB3(1/2)
�
u",k

�
=

Z
B3(1/2)

�
ddcu",k

�3
=

Z
B3(1/2)

ddcu",k ^

�
ddcu",k

�2

=

Z
@B3(1/2)

dcu",k ^

�
ddcu",k

�2
=

Z
@B3(1/2)

dcũ",k ^

�
ddcũ",k

�2

=

Z
B3(1/2)

�
ddcũ",k

�3
= MAB3(1/2)

�
ũ",k

�
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because u",k = ũ",k on the sphere S5(1/2). Since ũ",k converge uniformly to ũk =

max{ln(2|z1|2+|z2|2+|z3|k), sk} as " & 0 andMAB3(1/2)(ũk) = MAB3(1/2)(uk) =

4k, where uk = ln(2|z1|2 + |z2|2 + |z3|k), we shall have that for "k small enough
MAB3(1/2)(u"k ,k) � k. This finishes the proof.
Remark 6.2. Examples of psh functions with polar singularities and unbounded
non-polar MA mass where constructed first by Shiffman and Taylor, see [39], and
especially simple one by Kiselman, see [27]: u(z1,. . .,zn)=(1�|zn|2)(� ln kz0k2)1/2
for z0 = (z1, . . . , zn�1). Taking any of these examples and smoothing it by con-
volutions one gets a decreasing sequences of psh functions converging outside of
an analytic set (on any codimension) to a psh function, smooth outside of this
set with unbounded non-polar MA mass. The remarkable feature of the example
of Rashkovskii, just described, is that functions in this example have a geometric
meaning, their ddc-s are pullbacks of Fubini-Study form by a meromorphic map-
pings to the complex projective space, i.e., the sum of their non-polar MA masses
are the volumes of the corresponding graphs.

6.2. Case of dimensions one and two

If { fk} is a 0-converging sequence of meromorphic mappings with values in one
dimensional complex manifold then it is easy to see that the volumes of graphs of
fk-s are locally bounded over compacts in the source. Indeed, a one dimensional
manifold X either properly imbeds to Cn (when X is noncompact) or is projective
and therefore imbeds to Pn . In both cases by Theorem 1.3 we have convergence
of reduced representations to a, may be nonreduced representation of the limit.
Inequality (5.5) implies that in an appropriately chosen local coordinates (z0, zn)
one has

Vol(0 fk |1n ) =

Z
1n

⇣
ddc||z||2

⌘n
+

Z
1n

⇣
ddc||z||2

⌘n�1
^ f ⇤

k !FS



Z
1n

⇣
ddc||z||2

⌘n
+

Z
1n�1

⇣
ddc||z||2

⌘n�1Z
@1z0

dc ln kFkk2 const.

Next, if the dimension n of the sourceU is 2 the boundedness of volumes of graphs
of a weakly converging sequence is automatic. This can be seen at least in two
ways. First, in projective case this readily follows from the following formula of
King, see [25]:

d
h
dc ln

⇣
k f k2

⌘
^ ddc ln

⇣
k f k2

⌘i
=�U\I f

⇣
ddc ln

⇣
k f k2

⌘⌘2�
�

X
j
n j
⇥
Z j
⇤
, (6.6)

provided I f has pure codimension two. Z j are irreducible components (branches)
of the indeterminacy set I f of f . If it has branches of higher codimension then
around these branches a higher order non-pluripolar masses can be expressed in a
similar way. Now if fk weakly converge to f formula (6.6) immediately gives a
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uniform bound of corresponding MA masses (even together with that concentrated
on pluripolar sets I fk ). If n = 2 then that’s all we need.

Second, using Skoda potentials, or Green functions, as it was done in [18,
Theorem 2], one can bound non-pluripolar Monge-Ampère masses of order two
also in the case of weakly converging sequence with values in disk-convex Kähler
X . This observation implies that if X is disk-convex Kähler and dimU = 2 then
the volumes of graphs of weakly converging sequences of meromorphic mappings
U ! X are uniformly bounded over compacts in U .

Moreover, it was proved in [32] that volumes of weakly converging sequence
are bounded also in the case when X is any compact complex surface. The proof
uses Kaähler case separately and then the fact that a non-Kähler surface has only
finitely many rational curves.
Remark 6.3. Let us remark that there is one more important case when the vol-
umes of graphs of weakly (even 0) converging sequence necessarily stay bounded:
namely when { fk} is a 0-converging sequence of meromorphic mappings between
projective manifolds X and Y . Indeed the volumes of graphs 0 fk are uniformly
bounded as it is straightforward from Besout theorem.

7. Rational connectivity of the exceptional components of the limit

7.1. Chains of rational curves

Recall that a rational curve C in a complex manifold X is an image of P1 in X
under a non-constant holomorphic map h : P1 ! X . A chain of rational curves is
a connected union C =

S
j C j of finitely many rational curves.

Definition 7.1. A closed subset 0 ⇢ X we call rationally connected if for very two
points p 6= q in 0 there exists a chain of rational curves C ⇢ 0 such that p, q 2 C .

One says also that C connects p with q. If 0 is a complex manifold then this
property is equivalent to the either of the following two ones:

• Every two points in X can be connected by a single rational curve.
• For any finite set of points F ⇢ X there exists a rational curve C � F .

We refer to [1] for these facts. Now let us turn to the proof of Theorem 1.9 from
the Introduction. It consists from the two following lemmas. Let fk be a weakly or,
gamma-converging sequence of meromorphic mappings and f denotes their limit.
Let 0̂ be the Hausdorff limit of the graphs, 0 = 0̂ \ 0 f the corresponding bubble.
Set � := pr1(0). It is at most a divisor in 0-case and has codimension � 2 in
the weak case. Let V ⇠

= 1n�1
⇥ 1 be a scale adapted to � in the sense that

(1̄n�1
⇥1) \ � = ;.

Lemma 7.2. Suppose that there exists a dense subset S ⇢ 1n�1 such that the areas
of the analytic disks 0 fk |1z0

are uniformly bounded in z0 2 S and k 2 N, then for
every point a 2 � the fiber 0a := pr2(pr

�1
1 (a)) is rationally connected.
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Proof. Here writing fk |1z0 wemean the restriction of fk to the disk1z0 := {z0}⇥1.
Fix a point a 2 � and some a1, a2 2 0a . Suppose a1 6= a2, otherwise there is
nothing to prove. We need to prove that there exists a chain of rational curves in
0a connecting a1 with a2. Since 0 fk converge to 0̂ � 0a there exist a1k ! a and
a2k ! a such that fk(a1k ) ! a1 and fk(a2k ) ! a2. Perturbing slightly we can
take such aik to be regular (i.e., not indeterminacy) points of fk for i = 1, 2. Take
a scale adapted to � near a in the sense that � \ (1n�1

⇥ @1) = ;. Denote by
(z0, zn) = (z1, ..., zn�1, zn) the corresponding coordinates and assume without loss
of generality that a = 0.

Let b1k ! 00 and b2k ! 00 in1n�1 be such that a1k 2 1b1k
and a2k 2 1b2k

. Taking
again aik sufficiently general we can arrange that b

i
k 2 S and disks 1b1k

and 1b2k
converge to the disk100 . After taking a subsequence we get that graphs in question
converge to the graph 0 f |100

[ Ci , where Ci
⇢ {a} ⇥ X are chains of rational

curves. Both these chains contain the point f |100 (a). Therefore C := C1 [ C2 is
connected. At the same time by construction Ci

3 ai .

7.2. Proof of Theorem 1.9

Let us first consider the case of 0-converging sequence of meromorphic mappings
with values in projective X . Corollary 5.6 gives us the required boundedness of
ares of analytic disks which makes possible to apply Lemma 7.2 just proved. This
gives us the statement of Theorem 1.9 for 0-converging sequences of meromorphic
mappings with values in projective manifolds.

To treat the case of Gauduchon target manifolds we shall need one more
lemma.

Lemma 7.3. LetF be a family of meromorphic mappings from1n to a disk-convex
manifold X, which admits a pluriclosed metric form. Suppose that for some 0 <
✏ < 1, the family F is holomorphic and equicontinuous on the Hartogs figure Hn

" .
Then for every 0 < r < 1 the areas of graphs 0 fz0 of restrictions fz0 := f |1z0 (r) of
f 2 F to the disks 1z0(r) := {z0} ⇥ 1r are uniformly bounded in z0 2 1n�1

r and
f 2 F .

Proof. For f : 1n
�! X a meromorphic map, we denote by I f ⇢ 1n the set of

points of indeterminacy of f . Since we suppose that all f 2 F are holomorphic on
Hn
" the sets I f do not intersect 1n�1

⇥ A1�",1. Consider currents T f = f ⇤! on
1n , where ! is a pluriclosed metric form on X . Write

T f =

i
2
t↵�̄f dz↵ ^ dz̄�,

where t↵�̄f are distributions on 1n (in fact measures), smooth on 1n
\ I f � Hn

" .
Fix 1� " < r < r1 < 1 and consider on 1n�1

\ ⇡(I f ) (where ⇡ : 1n
! 1n�1 is
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the canonical projection onto the first factor) the area functions a f given by

a f (z0) = area fz0(1r1) =

Z
1z0 (r1)

T f =

i
2

Z
1z0 (r1)

tnn̄f dzn ^ dz̄n. (7.1)

Functions a f are well-defined and smooth on 1n�1
\ ⇡(I f ).

The proof of proposition will be done in two steps.
Step 1. Distributions tnn̄f are locally integrable in 1n . Note that forms T f are
smooth on Hn

" and the family {T f : f 2 F} is equicontinuous there. The condition
that ddcT f = 0 implies, in particular, that for all 1  k, l  n � 1 one has

@2tnn̄f
@zk@ z̄l

+

@2tkl̄f
@zn@ z̄n

�

@2tkn̄f
@zn@ z̄l

�

@2tnl̄f
@zk@ z̄n

= 0. (7.2)

From (7.2) we get that on 1n�1
\ ⇡(I f ):

ddca f =
✓
i
2

◆2 n�1X
k,l=1

 Z
1z0 (r1)

@2tnn̄f
@zk@ z̄l

dzn ^ dz̄n

!
dzk ^ dz̄l

=

✓
i
2

◆2 n�1X
k,l=1

Z
1z0 (r1)

0
@ @2tkn̄f
@zn@ z̄l

+

@2tnl̄f
@zk@ z̄n

�

@2tkl̄f
@zn@ z̄n

1
A dzn ^ dz̄n · dzk ^ dz̄l

=

✓
i
2

◆2 n�1X
k,l=1

0
@Z

@1z0 (r1)

@tkn̄f
@ z̄k

d z̄n+
Z
@1z0 (r1)

@tnl̄f
@zk

dzn�
Z
@1z0 (r1)

@tkl̄f
@ z̄n

d z̄n

1
A dzk^dz̄l

=: ' f .

(7.3)

Forms ' f are smooth in the whole unit polydisk 1n�1 and equicontinuous there
because forms T f are smooth in 1n�1

⇥ A1�",1 ⇢ Hn
" and equicontinuous there.

Let us find a smooth and equicontinuous family on 1n
r of solutions  f of

ddc f = ' f . (7.4)

Set
h f := a f �  f . (7.5)

Since a f is positive on 1n�1
\ ⇡(I f ) and  f is smooth on 1n�1 we see that h f

is bounded on 1n�1 from below. Also ddch f = 0 on 1n�1
\ ⇡(I f ) and therefore

h f extends to a plurisuperharmonic function on 1n�1. This implies that h f 2

L1loc(1
n�1) see [16]. It follows that a f and tnn̄f are locally integrable. Step 1 is

proved.
Step 2. Under the hypotheses of Lemma 7.3 functions a f defined by (7.1) are smooth
on1n�1 and for every fixed r < 1 the family

�
a f
 
f 2F is equicontinuous on 1̄n�1

r .
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Function h f given by (7.5) is plurisuperharmonic in 1n�1 and pluriharmonic on
1n�1

\ ⇡(I f ). Therefore by Siu’s lower semicontinuity of the level sets of Lelong
numbers we have

ddch f = �

X
A irr.comp. of ⇡(I f )

cA( f )[A], (7.6)

where cA( f ) � 0 and [A] denotes the current of integration over the irreducible
component A of ⇡(I f ) of codimension one.

Remark 7.4. Note that through components of higher codimension a plurihar-
monic function h f extends (as a pluriharmonic function). Therefore in (7.6) the
sum is taken over the components of codimension one only.

We need to prove that cA( f ) = 0. From (7.5) we get

ddca f = ddc f �

X
A irr.comp. of ⇡(I f )

cA( f )[A], (7.7)

where ddc from a f is taken in the sense of distributions (as from L1loc-function).
Let {hA} be equations of A. By Poincaré formula, see [12], [A] = ddc ln |hA|2 and
therefore (7.7) writes as

ddca f = ddc f �

X
A irr.comp. of ⇡(I f )

cA( f )ddc ln |hA|2 (7.8)

Take an one dimensional disk 1 in 1n�1 which intersects ⇡(I f ) transversely at
points {z j }. Then (7.7) gives for restrictions of a f and � f to 1 (and we shall
denote them by the same letters) the following

1a f = 1 f �

X
z j2⇡(A f )

c j ( f )�z j ( f ). (7.9)

Fix � > 0 such that 1(�, z j ) are pairwise disjoint. Let � be a test function on 1
with support in 1(�, z j ) for some fixed j . The coordinate on 1 denote as z1.

Set

a✏f (z1) =

i
2

Z
1z1 (r1)

tnn̄f,✏dzn ^ dz̄n,

where tnn̄f,✏ is the smoothing of t
nn̄
f by convolution. Since tnn̄f,✏ ! tnn̄f in L1loc we get

by Fubini Theorem that a✏f ! a f in L1loc. Therefore using (7.3) for dimension two
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we obtain

D
1a✏f ,�

E
=

i
2

Z
1(�,z j )

�(z1)

 Z
1z1 (r1)

@2tnn̄f,✏
@z1@ z̄1

dzn ^ dz̄n

!
dz1 ^ dz̄1

=

i
2

Z
1(�,z j )

�(z1)

0
@i
2

Z
@1z1 (r1)

@t1¯2f,✏
@ z̄1

dz̄2+
i
2

Z
@1z1 (r1)

@t2¯1f,✏
@z1

dz2

1
A dz1 ^ dz̄1

�

i
2

Z
1(�,z j )

�(z1)

0
@Z

@1z1 (r1)

@t1¯1f,✏
@ z̄2

dz̄2

1
A dz1 ^ dz̄1 �!< ' f ,� >

as ✏ �! 0. Therefore, 1a f = ' f in 1 in the sense of distributions. By regularity
of the Laplacian a f 2 C1 on1 and therefore cA( f ) = 0 for all A and all f . There-
fore a f are smooth on1n�1 and a f =  f +h f there.  f -s are equicontinuous and
h f are pluriharmonic everywhere and uniformly bounded from below. Moreover a f
are equicontinuous on 1n�1

" by assumption. Therefore h f are equicontinuous on
1n�1
" . This implies equicontinuity of h f on compacts of 1n�1, and therefore the

equicontinuity of a f . Step 2 and therefore our Lemma are proved.

Lemmas 7.2 and 7.3 obviously imply the Theorem 1.9 from the Introduction
for the case of weakly converging sequences of meromorphic mappings with values
in disk-convex Gauduchon manifolds.

8. Fatou components

8.1. Case of dimension two and Fatou sets

First let us prove two lemmas.

Lemma 8.1. Suppose that a weakly converging sequence { fk} of meromorphic
mappings from a two-dimensional domain U to a compact complex surface X does
not converge strongly. Then X is bimeromorphic to P2.

Proof. Indeed, in that case there exists a point a 2 U and a neighborhood V 3 a
such that fk converge uniformly on compacts of V \ {a} but 0 fk do not converge to
0 f , where f : U ! X is the limit map. Vol(0 fk ) are uniformly bounded. Indeed,
for Kähler X it was proved in [18] using Skoda’s potentials. In [32] its was proved
for non-Kähler X using that fact that such X can contain only finitely many rational
curves as well as existence of certain ddc-exact (2, 2)-forms.

Therefore we see that the limit 0̂ = lim0 fk contains 0 f plus {a} ⇥ X (with
some multiplicity). But this is a bubble and therefore X is rationally connected by
Theorem 1.9. From the classification of surfaces, see [3], we know that such X
must be bimeromorphic to P2.
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For a meromorphic map f : U ! X denote by

D f := pr1
⇣n

(z, x) 2 U ⇥ X : dim(z,x) pr�12 (x) � 1
o⌘

the set of degeneration of f . f : U ! X is degenerate if D f = U .

Lemma 8.2. Let f : X ! X be a non-degenerate meromorphic self-map of a
compact complex surface X and let z 2 8s (respectively8w). Then for every l � 1
one has

f l [z] \ f l |D f l
(D f l ) ⇢ 8s (respectively 8w). (8.1)

Proof. Take some a 2 f l [z] \ f l |D f l
(D f l ). Since f l does not contract any curve to

a there exist neighborhoods V 3 z and U 3 a such that pr2 : (V ⇥U) \ 0 f l ! U
is proper. That means that ( f l)�1 : U ! V is well defined as a multivalued holo-
morphic map. Now let { f nk } ⇢ { f n} be a subsequence. By assumption from the
sequence { f nk+l} we can subtract a strongly/weakly converging on V subsequence
{ f nk j+l}. That means that { f nk j = f nk j+l � f �l

} will converge in an appropriate
sense on U .

Let us turn to the proof of Corollary 1.10 from the Introduction. Since every
compact complex surface admits a ddc-closed metric form Theorem 1.5 applies in
our case and gives local pseudoconvexity of the weak Fatou set 8w. Suppose now
that 8s 6= 8w.
a) By Lemma 8.1 X w P2.
b) There exist a point p 2 X , a ball B centered at p, a subsequence of iterates
{ f nk }, which uniformly converges on compacts of B̄ \ {p} to a meromorphic map
f1 : B̄ ! X , holomorphic on B \ {p}, but not converges strongly on any neigh-
borhood of p. In particular this means that p 2 I ( f1) by Rouché Principle of [18]
and, moreover, C = f1[p] is a chain of rational curves

SN
i=1 Ci . As it was said

Vol(0 f nk ) are uniformly bounded on B̄. So 0 f nk converge (after going to a subse-
quence) in cycle topology to 0 f1 [d({p}⇥X) for some integer d � 1. In particular
f cannot be degenerated in this case. Take a point q 2 X \ C . Then for k � 1
we have that q 2 f nk (B \ {p}). If moreover q 62 f nk (D( f nk )) then q 2 8w. ButS

k f nk (D( f nk )) is at most countable set of points and 8w is Levi-pseudoconvex.
So8w � X \C . Again from pseudoconvexity of8w it follows that if8w intersects
some irreducible component of C then it contains this component minus the rest of
C . I.e., 8w = P2 \ {some components of C}.
c) Take a point (p, x) 2 {p} ⇥ X such that x 2 C . Suppose that 0 f1 \ (X ⇥ {x})
has (p, x) as isolated point. Then we can find neighborhoods W 3 p and V 3 x
such that (@W ⇥ V̄ )\0 f1 = ;. Therefore (@W ⇥ V̄ )\0 f nk = ; for k big enough.
This means that 8w � V as before and, moreover, 8w contains the component of
C passing through x minus the rest of C .

To finish the proof let us distinguish two cases.
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Case 1. Every component of C contains such a point. In this case our sequence
{ f nk } strongly converges on X \ { finite set }. Furthermore, Vol(0 f nk ) are uni-
formly bounded. Since they can’t be less than (deg f )nk · Vol(X), we see that f
has degree one, and f1 is a degenerate map to C because 0 f1 has zero volume
in this case. Moreover f1 cannot be holomorphic near p, otherwise f nk would
converge strongly in a neighborhood of p. C in this case should consist only from
one component as a meromorphic image of an irreducible variety.
Case 2. There exists a component C1 of C such that for all points x 2 C1 \ [i 6=1Ci
dim(p,x) 0 f1 \ (X ⇥ {x}) > 0. Then f1 is a degenerate mapping of X onto this C1
and therefore again C1 is a single component of C . Indeed, any other component
C2 of C should contain a point x as above, because the image of f1 should be
irreducible. I.e., in both cases C consists from one rational curve only.

The following simple example shows that the situation described in part (b) of
this Corollary can really happen. Let X = P2 and f : [z0 : z1 : z2] ! [z0 : 2z1 :

2z2]. Then for this f we have the phenomena described above with p = [1 : 0 : 0]
and C = {z0 = 0}.

8.2. Example

Let us give one more example relevant to the Fatou sets.
Example 8.3. Consider the following rational self-map of P2:

f : [z0 : z1 : z2] !

h
z20z1 : z31 : z20z2

i
. (8.2)

By induction one easily checks that

f k : [z0 : z1 : z2] !

h
z2

k
0 z

2k�1
1 : z2

k+1
�1

1 : z2
k+1

�2
0 z2

i
. (8.3)

p

q

r*

*

l
l

l

1

2

0

1
\
1

6
*

Figure 8.1. Mapping f contracts the line l1 := {z1 = 0} to the first of its points of
indeterminacy q = [0 : 0 : 1], line at infinity l0 := {z0 = 0} to the regular point
r = [0 : 1 : 0] and do not contract anything to its second point of indeterminacy
p = [1 : 0 : 0]. Levi flat cone = Julia set for f is marked by two punctured lines.



WEAK NORMALITY 875

Cover P2 by three standard affine charts Ui = {zi 6= 0} with coordinates u1 =

z1
z0 , u2 =

z2
z0 , v1 = z0/z1, v2 = z2/z1 and w1 = z0/z2, w2 = z1/z2 respectively.

Mapping f : U0 ! U0 writes as

f : (u1, u2) !

⇣
u21, u2/u1

⌘
. (8.4)

We see from here that f has degree 2. Furthermore f k writes as

f k : (u1, u2) !

⇣
u2

k
1 , u2/u2

k
�1

1

⌘
. (8.5)

In the charts f : U1 ! U1 our iterate writes as

f k : (v1, v2) !

⇣
v2

k
1 , v2

k+1
�2

1 v2
⌘

! (0, 0) = r on {|v1| < 1} . (8.6)

I.e., we see that 81 = {|v1| < 1} = {|u1| > 1} is a component of the Fatou set of
f , in all senses, because all f k are holomorphic there and converge uniformly on
compacts to a constant map to r = [0 : 1 : 0].

Levi flat cone L := {|z0| = |z1|} is a Julia set of f . It contains one of two
indeterminacy points of f , namely q = [0 : 0 : 1]. A connected component � of
P2 \ L different from8 carries a more interesting information about f k . First of all
remark that as a mapping from U2 to U2 our iterate writes as

f k : (w1, w2) !

 
w2

k
�1

2

w2
k
�2

1

,
w2

k+1
�1

2

w2
k+1

�2
1

!
! (0, 0) = q

on {|w2| < |w1|} = {|u1| < 1, u2 6= 0} .

(8.7)

Therefore the second component 82s of the strong Fatou set contains the domain
� \ {u2 = 0}. Since it is easy from (8.5) to see that f k on compacts in� \ {u2 = 0}
converge to q, and on the punctured disk 1⇤ := {u2 = 0, 0 < |u1| < 1} to p, we
conclude that 82s = 82w = � \ {u2 = 0}. Remark that the second component 82
of f in the sense of [8] is smaller, namely it is equal to � \ ({u2 = 0} [ {u1 = 0}),
because the projective line l1 := {z1 = 0} is the preimage of I f (and of all I f k )
under f . Now let us turn to the second component 820 of the 0-Fatou set of f .

Lemma 8.4. For a fixed 0 < " < 1 the volumes of graphs of fk over the bidisk
12" ⇢ U0 centered at p are uniformly bounded. In particular 820 = �.

Proof. To estimate the volume of 0 fk over a neighborhood of p we use coordinates
u1, u2 and representation (8.5). In these coordinates 12" = {u : kuk < "}. Since
f k preserves the vertical lines {u1 = const} we can simplify our computations
assuming that f takes values in1⇥P1, the last being equipped with the Hermitian
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metric form ! = !1 + !2 =
i
2dz1 ^ dz̄1 +

i
2
dz2^dz̄2

(1+|z2|2)2
. Now we get

( f k)⇤! =

i
2

"
22k
��u1��2k+1�2 +

(1� 2k)2|u1|2
k+1

�4

(|u1|2k+1�2 +

��u2��2)2
#
du1 ^ dū1

+

i
2
��u1��2k+1�2 du2 ^ dū2

(|u1|2k+1�2 + |u2|2)2

+

i
2

⇣
1� 2k

⌘
ū�2k
1 |u1|2

k+2
�4 du2 ^ dū1

(|u1|2k+1�2 + |u2|2)2

+

i
2

⇣
1� 2k

⌘
u�2k
1
��u1��2k+2�4 du1 ^ dū2

(|u1|2k+1�2 + |u2|2)2
.

Therefore
Z
12"

( f k)⇤! ^ ddc kuk2

=4⇡2
Z "

0

Z "

0

"
22kr2

k+1
�1

1 +(1�2k)2
r2

k+1
�3

1

(r2k+1�21 + r22 )2
+

r2
k+1

�1
1

(r2k+1�21 + r22 )2

#
dr1r2dr2



4⇡2"2k+1

22k+1�2k
+2⇡222k

Z "

0

Z "2

0

r2
k+1

�3
1 t

(r2k+1�21 +t)2
dtdr1+2⇡222k

Z "

0

Z "2

0

r2
k+1

�1
1

(r2k+1�21 +t)2
dtdr1

2⇡222k
Z "

0

Z "2

0

r2
k+1

�3
1

r2k+1�21 + t
dtdr1 + 2⇡2

Z "

0

 
�1

r2k+1�21 + t

���"2
0
r2

k+1
�1

1

!
dr1

⇡223k+1
Z "

0
r2

k+1
�3

1 ln
1
r1
dr1 + 2⇡2

Z "

0
r1dr1.

The second term is bounded and does not tend to zero as k ! +1. The first for
0 < " < 1 can be obviously bounded by

⇡223k+1
Z "

0
r2

k+1
�4dr =

⇡223k+1

2k+1 � 3
"2

k+1
�3

! 0
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as k ! +1. And finally

Z
12"

( f k)⇤! =

Z
12"

22k |u1|2
k+2

�4

(|u1|2k+1�2 + |u2|2)2
+

(2k � 1)2|u1|2
k+2

�6
|u2|2

(|u1|2k+1�2 + |u2|2)4

+

2(2k � 1)2|u1|2
k+3

�8
|u2|2

|u1|2k+1(|u1|2k+1�2 + |u2|2)4
d4m(u)



Z
12"

22k+2|u1|2
k+2

�6

(|u1|2k+1�2 + |u2|2)2
d4m(u)

⇡ 22k+2
Z "

0

Z "2

0

r2
k+2

�5
1

(r2k+1�21 + t)2
dtdr1

 22k+2
Z "

0
r2

k+1
�3dr =

22k+2

2k+1 � 2
"2

k+1
�2

! 0

as k ! +1. Therefore the lemma is proved.

Remark that the integral of ( f k)⇤!2 degenerates, as it should be, because f k
0-converge on � to a constant map. And to the contrary the integral of ( f k)⇤!
does not degenerate, moreover has order "2. That means that bubbling takes place
over all points of the disk 1⇤

= {u2 = 0, 0 < |u1| < 1}. We see that for our map
one has

8 ⇢ 8w = 8s ⇢ 80,

and inclusions are strict.
Finally let us see what is going on over the indeterminacy point p = (0, 0)

in coordinates (u1, u2). Blowing up 2k � 1 times at zero we see that f k stays
degenerate on all exceptional curves except for the last one, which it send onto
l1 = {u1 = 0}. In appropriate coordinates v1, v2 on the last blow up f k writes as

(
u1 = v2

k
1

u2 = v2.

Therefore the dynamical picture over p can be described as follows. Let �̂ be an
infinite blow up of � over p and let C =

S
1

i=1 Ci be the Nori string of rational
curves on �̂ over p. Then every f k lifts to a holomorphic map f̂ k : �̂ ! P2
which is constantly equal to q on every Ci except C2k�1. The last curve sends
bijectively onto the line l1. At the same time in the sense of divisors (currents)
f k(C2k�1) = 2kl1.
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Remark 8.5. a) One can in the same way produce mappings of any given degree
with the same properties as in Example 8.3. It is sufficient to take

f : [z0 : z1 : z2] !

h
zd0 z1 : zd+1

1 : zd0 z2
i
. (8.8)

b) Let us quote the result of Maegava, see [30], which shows that under an addi-
tional assumption of “algebraic stability” of the dominant rational self-map f the
Fatou set of [8] coincides with 8s and 8w.
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