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On the class of caustics by reflection of planar curves

ALFREDERIC JOSSE AND FRANÇOISE PÈNE

Abstract. Given any light position S 2 P2 and any algebraic curve C of P2
(with any kind of singularities), we consider the incident lines coming from S
(i.e. the lines containing S) and their reflected lines after reflection on the mirror
curve C. The caustic by reflection 6S(C) is the Zariski closure of the envelope of
these reflected lines. We introduce the notion of reflected polar curve and express
the class of 6S(C) in terms of intersection numbers of C with the reflected polar
curve, thanks to a fundamental lemma established in [16]. This approach enables
us to state an explicit formula for the class of 6S(C) in every case in terms of
intersection numbers of the initial curve C.

Mathematics Subject Classification (2010): 14H50 (primary); 14E05, 14N05,
14N10 (secondary).

Introduction

Let V be a three dimensional complex vector space endowed with some fixed basis.
We consider a light point S[x0 : y0 : z0] 2 P2 := P(V) and a mirror given by an
irreducible algebraic curve C = V (F) of P2, with F 2 Symd(V_) (F corresponds
to a polynomial of degree d in C[x, y, z]). We denote by d_ the class of C. We
consider the caustic by reflection 6S(C) of the mirror curve C with source point
S. Recall that 6S(C) is the Zariski closure of the envelope of the reflected lines
associated to the incident lines coming from S after reflection off C. When S is not
at infinity, Quetelet and Dandelin [9,18] proved that the caustic by reflection6S(C)
is the evolute of the S-centered homothety (with ratio 2) of the pedal of C from S
(i.e. the evolute of the orthotomic of C with respect to S). This decomposition has
also been used in a modern approach by [2–4] to study the source genericity (in the
real case). In [16] we proved formulas for the degree of the caustic by reflection
of planar algebraic curves. For a presentation of the classical notions of envelope,
evolute, pedal, contrapedal, orthotomic, we refer to [4, 8, 10, 20, 23].

In [7], Chasles proved that the class of 6S(C) is equal to 2d_
+ d for a generic

(C, S). In [1], Brocard and Lemoyne gave (without any proof) a more general
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formula only when S is not at infinity. The Brocard and Lemoyne formula appears
to be the direct composition of formulas got by Salmon and Cayley in [19, page 137,
154] for some geometric characteristics of evolute and pedal curves. The formula
given by Brocard and Lemoyne is not satisfactory for the following reasons. The
results of Salmon and Cayley apply only to curves having no singularities other
than ordinary nodes and cusps [19, page 92], but the pedal of such a curve is not
necessarily a curve satisfying the same properties. For example, the pedal curve of
the rational cubic V (y2z � x3) from [4 : 0 : 1] is a quartic curve with an ordinary
triple point. Therefore it is not correct to compose directly the formulas got by
Salmon and Cayley as Brocard and Lemoyne apparently did (see also Section 5 for
a counterexample of the Brocard and Lemoyne formula for the class of the caustic
by reflection).

Let us mention some works on the evolute and on its generalization in higher
dimension [6, 11, 21]. In [11], Fantechi gave a necessary and sufficient condition
for the birationality of the evolute of a curve and studied the number and type of
the singularities of the general evolute. Let us insist on the fact that there exist
irreducible algebraic curves (other than lines and circles) for which the evolute map
is not birational. This study of evolute is generalized in higher dimension by Trifogli
in [21] and by Catanese and Trifogli [6].

The aim of the present paper is to give a formula for the class (with multiplic-
ity) of the caustic by reflection for any algebraic curve C (without any restriction
neither on the singularity points nor on the flex points) and for any light posi-
tion S (including the case when S is at infinity or when S is on the curve C).

In Section 1, we define the reflected lines Rm at a generic m 2 C and the
(rational) “reflected map” RC,S : P2 99K P2 mapping a generic m 2 C to the
equation ofRm .

In Section 2, we define the caustic by reflection 6S(C), we give conditions
ensuring that 6S(C) is an irreducible curve and we prove that its class is the degree
of the image of C by RC,S .

In Section 3, we give formulas for the class of caustics by reflection valid for
any (C, S). These formulas describe precisely how the class of the caustic depends
on geometric invariants of C and also on the relative positions of S and of the two
cyclic points I, J with respect to C. As a consequence of this result, we obtain the
following formula for the class of 6S(C) valid for any C of degree d � 2 and for a
generic source position S:

class
�
6S(C)

�
= 2d_

+ d � �
�
C, `1

�
� µI (C) � µJ (C),

where �(C, `1) is the contact number of C with the line at infinity `1 and where
µI (C) and µJ (C) denote the multiplicity numbers of respectively I and J on C.

In Section 4, our formulas are illustrated on two examples of curves (the lem-
niscate of Bernoulli and the quintic considered in [16]).

In Section 5, we compare our formula with the one given by Brocard and
Lemoyne for a light position not at infinity. We also give an explicit counter-
example to their formula.
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In Section 6, we prove our main theorem. First we give a formula for the class
of the caustic in terms of intersection numbers of C with a generic “reflected polar”
at the base points of RC,S . We then compute these intersection numbers in terms of
the degree d and of the class d_ of C but also in terms of intersection numbers of C
with each line of the triangle I J S.

In appendix A, we prove a useful formula expressing the classical intersection
number in terms of probranches.

ACKNOWLEDGEMENTS. The authors thank Jean Marot for stimulating discussions
and for having indicated them the formula of Brocard and Lemoyne.

1. Reflected linesRm and rational map RC,S

Recall that we consider a light position S[x0 : y0 : z0] 2 P2 and an irreducible
algebraic (mirror) curve C = V (F) of P2 given by a homogeneous polynomial
F 2 Symd(V) with d � 2. We write Sing(C) for the set of singular points of C.
For any non singular point m, we write TmC for the tangent line to C at m. We set
S(x0, y0, z0) 2 V \ {0}. For any m[x : y : z] 2 P2, we write m(x, y, z) 2 V \ {0}.
We write as usual `1 = V (z) ⇢ P2 for the line at infinity. For any P(x1, y1, z1) 2

V \ {0}, we define

1PF := x1Fx + y1Fy + z1Fz 2 Symd�1 �V_
�
.

Recall that V (1PF) is the polar curve of C with respect to P[x1 : y1 : z1] 2 P2.
Since the initial problem is euclidean, we endow P2 with an angular structure

for which I [1 : i : 0] 2 P2 and J [1 : �i : 0] 2 P2 play a particular role. To
this end, let us recall the definition of the cross-ratio � of 4 points of `1. Given
four points (Pi [ai : bi : 0])i=1,...,4 such that each point appears at most 2 times, we
define the cross-ratio �(P1, P2, P3, P4) of these four points as follows:

�
�
P1, P2, P3, P4

�
=

�
b3a1 � b1a3

��
b4a2 � b2a4

�
�
b3a2 � b2a3

��
b4a1 � b1a4

� ,

with convention 1
0 = 1. For any distinct lines A1 and A2 not equal to `1, con-

taining neither I nor J , we define the oriented angular measure betweenA1 andA2
by ✓ (modulo ⇡Z) such that

e�2i✓ = �
�
P1, P2, I, J

�
=

�
a1 + ib1

��
a2 � ib2

�
�
a1 � ib1

��
a2 + ib2

�

(where Pi [ai : bi : 0] is the point at infinity of Ai ). Let Q 2 Sym2(V_) be
defined by Q(x, y, z) := x2 + y2. It will be worth noting that Q(rF) = F2x +
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F2y = 1I F1J F . For every non singular point m of C \ `1, we recall that tm[Fy :

�Fx : 0] 2 P2 is the point at infinity of TmC and so tm 62 {I, J } is equivalent to
m 62 V (Q(rF)).

Now, for anym2C\(`1[Q(rF)) and any incident line ` containingm, we de-
fine as follows the associated reflected lineRm(`) (for the reflexion on C at m with
respect to the Snell-Descartes reflection law Angle(`,TmC)=Angle(TmC,Rm(`))).

Definition 1.1. For every m 2 C \ (`1 [ V (Q(rF))), we define rm : `1 ! `1

mapping P 2 `1 to the unique rm(P) such that �(P, tm, I, J )=�(tm, rm(P),I,J ).
We defineRm : Fm ! Fm with Fm := {` 2 G(1, P2), m 2 `} byRm(`) =

(m rm(P`)) if P` is the point at infinity of `.

We have (on coordinates)

rm
�⇥
x1 : y1 : 0

⇤�
=

⇥
x1
�
F2x � F2y

�
+ 2y1Fx Fy : �y1

�
F2x � F2y

�
+ 2x1Fx Fy : 0

⇤
.

Remark 1.2. Observe that rm is an involution on `1

⇠
= P1 with exactly two fixed

points tm and nm[Fx : Fy : 0]. As a consequence, Rm is an involution with two
fixed points Tm(C) andNm(C) := (mnm) the normal line to C at m.

Moreover rm(I ) = J and rm(J ) = I .

Definition 1.3. For any m[x : y : z] 2 C \ ({S} [ `1 [ V (Q(rF)) we define
the reflected line Rm on C at m (of the incident line coming from S) as the line
Rm := Rm((mS)).

For m[x : y : z] 2 C \ ({S} [ `1 [ V (Q(rF)), the point at infinity of
(Sm) is sm[x0z � z0x : y0z � z0y : 0]. Due to the Euler identity, on C, we have
xFx + yFy + zFz = 0 and so (x0z � z0x)Fx + (y0z � z0y)Fy = z1SF . Hence
r(sm) = [�vm : um : 0] and the reflected lineRm is the set of P[X : Y : Z ] 2 P2
such that umX + vmY + wmZ = 0, with

um :=

�
z0y � zy0

��
F2x + F2y

�
+ 2zFy1SF 2 Sym2d�1 �V_

�
vm :=

�
zx0 � z0x

��
F2x + F2y

�
� 2zFx1SF 2 Sym2d�1 �V_

�
wm :=

�xum � yvm
z

=

�
xy0 � yx0

��
F2x + F2y

�
� 21SF

�
xFy � yFx

�
2 Sym2d�1 �V_

�
.

Definition 1.4. We call reflected map of C from S the following rational map

RC,S :

P2 99K P2
m 7! [um : vm : wm]

.

We also define the rational map TC,S := (RC,S)|C : C 99K P2.



ON THE CLASS OF CAUSTICS BY REFLECTION OF PLANAR CURVES 885

For any m 2 V, it will be useful to define RF,S(m) := (um, vm, wm) 2 V and
to notice that

RF,S(m) = Q(rF(m)) · (m ^ S) � 21SF(m) · (m ^ nm) 2 V,

with1 nm(Fx (m), Fy(m), 0) 2 V.

Proposition 1.5. The base points of TC,S are the following: I , J , S (if these points
are in C), the singular points of C and the points of tangency of C with some line of
the triangle (I J S).

Proof. We have to prove that the set of base points of TC,S is the following set:
M :=C\({I,J,S}[V (1SF,Q(rF))[V (Fx ,Fy)). We just prove that Base(TC,S) ⇢

M, the converse being obvious (observe that if m 2 {I, J }, we automatically
have Q(rF(m)) = 0 and nm 2 Vect(m)). Let m[x; y; z] 2 C be such that
RF,S(m) = 0. Then m and Q(rF(m)) · S � 21SF(m) · nm are colinear. Due
to the Euler identity, we have 0 = DF(m) ·m (with DF(m) the differential of F
at m) and so 0 = �1SF(m) · Q(rF(m)) since DF(m) · S = 1SF(m) and since
DF(m) · nm = Q(rF(m)). Hence 1SF(m) = 0 or Q(rF(m)) = 0.

If 1SF(m) = 0, then either Q(rF(m)) = 0 or m = S.
If 1SF(m) 6= 0 and Q(rF(m)) = 0 , then Fx (m) = Fy(m) = 0 or m =

[Fx (m) : Fy(m) : 0]. Assume that m = [Fx (m) : Fy(m) : 0]. Then, since
Q(rF(m)) = 0, we conclude that m 2 {I, J }.

We recall the following result established at the same period in [17] and by
Catanese in [5], with two different proofs.

Proposition 1.6 ([5, 17]). Let C be an irreducible curve of degree d � 2. Then, for
a generic S 2 P3, the map TC,S is birational.

2. Caustic by reflection
Definition 2.1. The caustic by reflection 6S(C) is the Zariski closure of the enve-
lope of the reflected lines {Rm;m 2 C \ ({S} [ `1 [ V (Q(rF))}.

Recall that, in [16], we have defined a rational map 8F,S called caustic map
mapping a generic m 2 C to the point of tangency of 6S(C) with Rm and that
6S(C) is the Zariski closure of 8F,S(C).

In the present work, we will not consider the cases in which the caustic by
reflection6S(C) is a single point. We recall that these cases are easily characterized
as follows.

Proposition 2.2. Assume that

(i) S 62 {I, J },

1 With^ : V⇥V! V being given in coordinates by (x1, y1, z1)^(x2, y2, z2) =

✓ z2y1�z1y2
z1x2�z2x1
x1y2�y1x2

◆
.
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(ii) C is not a line (i.e. d 6= 1),
(iii) if d = 2, then S is not a focus of the conic C.

Then 6S(C) is not reduced to a point and is an irreducible curve.

Proof. Assume (i), (ii) and (iii) and that 6S(C) = {S0
} with S0

= [x1 : y1 : z1].
When S 62 `1, we will use the fact that 6S(C) is the evolute of the orthotomic

of C with respect to S. Since C is not a line, the orthotomic of C with respect to S is
not reduced to a point but its evolute is a point. This implies that the orthotomic of C
with respect to S is either a line (not equal to `1) or a circle. But C is the contrapedal
(or orthocaustic) curve (from S) of the image by the S-centered homothety (with
ratio 1/2) of the orthotomic of C. Therefore d = 2 and S is a focal point of C,
which contradicts (iii).

When S 2 `1 but S0
62 `1, then, for symmetry reasons, we also have

6S0(C) = {S} and we conclude analogously.
Suppose now that S, S0

2 `1. We have z0 = z1 = 0. For every m = [x : y :

1] 2 C \ (`1 [ V (Q(rF))), we have �(S, tm, I, J ) = �(tm, S0, I, J ). Therefore
we have �

i x0 � y0
��

� i Fy + Fx
�

�
i Fy + Fx

��
� i x0 � y0

� =

�
i Fy + Fx

��
� i x1 � y1

�
�
� i Fy + Fx

��
i x1 � y1

�
and so
�
i x0 � y0

��
i x1 � y1

��
� i Fy + Fx

�2
=

�
i Fy + Fx

�2�
� i x0 � y0

��
� i x1 � y1

�
.

Now, according to (i), i x0 � y0 6= 0, �i x0 � y0 6= 0, i x1 � y1 6= 0, �i x1 � y1 6= 0.
Hence (�i Fy + Fx )2 = a(i Fy + Fx )2 for some a 6= 0. So, there exists (↵,�) 2

C2 \ {(0, 0)} such that ↵Fx + �Fy = 0 (setting (↵,�) = (1 � a0,�i � ia0) for
some a0 2 C satisfying a20 = a). This implies that F(x, y, z) = G(�x � ↵y, z) for
some irreducible G 2 Symd((C2)_). We conclude that degG = 1 and so d = 1
which contradicts (ii).

Hence we proved that 6S(C) is not reduced to a point. Now the irreducibility
of 6S(C) comes from the fact that 6S(C) = 8F,S(C) and that C is an irreducible
curve.

Proposition 2.3. Assume that 6S(C) is not reduced to a point. Then we have

class
�
6S(C)

�
= deg

�
TC,S(C)

�
, (2.1)

where TC,S(C) stands for the Zariski closure of TC,S(C).

Proof. This comes from the fact that 6S(C) is the Zariski closure of the envelope
of {Rm, m 2 C \ (Sing(C) [ {S} [ `1 [ V (Q(rF))} and can be precised as
follows. For every algebraic curve 0 = V (G) (with G in Symk(V_) for some k),
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we consider the Gauss map �0 : P2 99K P2 defined on coordinates by �0([x : y :

z]) = [Gx : Gy : Gz], we obtain immediately the commutative diagram:

C //

TC,S
⌧⌧9

9
9

9
9

9
9

9
6S(C)

�6S (C)

✏✏
�6S(C)(6S(C)) ⇠

= (6S(C))_

(2.2)

with 8F,S the caustic map defined in [16] (see the begining of the present sec-
tion).

Let us notice that, according to the proof of Proposition 2.3, the rational map
TC,S has the same degree as the rational map (8F,S)|C (since 6S(C) is irreducible
and since the Gauss map (�6S(C))|6S(C) is birational [12]).

3. Formulas for the class of the caustic

Since the map TC,S may be non birational, we introduce the notion of class with
multiplicity of 6S(C):

mclass
�
6S(C)

�
= �1(S,C) ⇥mclass

�
6S(C)

�
where class(6S(C)) is the class of the algebraic curve 6S(C) and where �1(S,C)
is the degree of the rational map TC,S . We recall that �1(S,C) corresponds to the
number of preimages on C of a generic point of 6S(C) by TC,S .

Before stating our main result, let us introduce some notations. For every
m1 2 P2, we write µm1 = µm1(C) for the multiplicity of m1 on C and consider the
set Branchm1(C) of branches of C at m1. We denote by E the set of couples point-
branch (m1,B) of C withm1 2 C andB 2 Branchm1(C). For every (m1,B) 2 E , we
write eB for the multiplicity ofB and Tm1(B) the tangent line toB atm1; we observe
that µm1 =

P
B2Branchm1 (C) eB. We write im1(0,00) the intersection number of two

curves 0 and 00 at m1. For any algebraic curve C0 of P2, we also define the contact
number �m1(C,C0) of C and C0 at m1 2 P2 by

�m1
�
C,C0

�
:= im1

�
C,C0

�
� µm1(C)µm1

�
C0
�
if m1 2 C \ C0

and
�m1

�
C,C0

�
:= 0 if m1 62 C \ C0.

Recall that �m1(C,C0) = 0 means that m1 62 C \ C0 or that C and C0 intersect
transversally at m1.

Theorem 3.1. Assume that the hypotheses of Proposition 2.2 hold.
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(1) If S 62 `1, the class (with multiplicity) of 6S(C) is given by

mclass(6S(C)) = 2d_

+ d � 2 f 0

� g � f � g0

+ q 0, (3.1)

where
• g is the contact number of C with `1, i.e. g :=

P
m12C\`1

�m1(C, `1),
• f is the multiplicity number at a cyclic point of C with an isotropic line
from S, i.e.

f := i I (C, (I S)) + i J (C, (J S)),
• f 0 is the contact number of C with an isotropic line from S outside {I, J, S},
i.e.

f 0

:=

X
m12(C\(I S))\{I,S}

�m1(C, (I S)) +

X
m12(C\(J S))\{J,S}

�m1(C, (J S)),

• g0 given by g0
:= iS(C, (I S)) + iS(C, (J S)) � µS;

• q 0 is given by

q 0

:=

X
(m1,B)2E :m1 62{I,J,S},Tm1B=(I S)

or
Tm1B=(J S), im1 (B,Tm1 (B))�2eB

[im1(B,Tm1(B)) � 2eB].

(2) If S 2 `1, the class of 6S(C) is

mclass
�
6S(C)

�
= 2d_

+ d � 2g � µI � µJ � µS � c0(S), (3.2)

with

c0(S) :=

X
B2BranchS(C):iS(B,`1)=2eB

�
eB +

�
min(iS

�
B, OscS(B)

�
� 3eB, 0

��
,

where OscS(B) is any smooth algebraic osculating curve to B at S (i.e. any
smooth algebraic curve C0 such that iS(B,C0) > 2eB).

The notation introduced in this theorem is close to that of Salmon and Cayley [19]
(see Section 5 for further explanations). Let us point out that, in this article, g is not
the geometric genus of the curve.
Remark 3.2. Observe that we also have

c0(S) :=

X
B2BranchS(C):iS(B,`1)=2eB

(eB +min(�1(S,B) � 3eB, 0)),

where �1(S,B) is the first characteristic exponent of B which is not a multiple of
eB (see [25]).

Observe that, when iS(B,TS(B)) = 2eB, we have min(iS(B, OscS(B)) �

3eB, 0) = 0 except if S is a singular point and if the probranches of B are given by
Y � x�1

0 y0 = ↵Z2 + ↵1Z�1
+ · · · in the chart X = 1 if x0 6= 0 (or X � y�1

0 x0 =

↵Z2 + ↵1Z�1
+ · · · in the chart Y = 1 otherwise), with ↵ 6= 0, ↵1 6= 0 and

2 < �1 < 3. Hence c0(S) =

P
B2BranchS(C):iS(B,`1)=2eB eB when C admits no such

branch tangent at S to `1.
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Combining Proposition 1.6 and Theorem 3.1, we obtain:

Corollary 3.3 (A source-generic formula for the class). Let C ⇢ P2 be a fixed
curve of degree d � 2. For a generic source point S, we have �1(S,C) = 1 and
class(6S(C)) = 2d_

+ d � g � µI � µJ where g denotes the contact number of
C with `1.

Proof. Due to Proposition 1.6, �1(S,C)=1 for a generic S2P2. So class(6S(C))=
mclass(6S(C)).

Assume moreover, that S 62 `1 (so we apply the first formula of Theorem 3.1),
S 62 C (so g0

= 0), that (I S) and (J S) are not tangent to C (so f 0
= q 0

= 0 and
f = µI (C) + µJ (C)). We obtain the result.

4. Examples

Let us now illustrate our result for two particular mirror curves.

4.1. Example of the lemniscate of Bernoulli

We consider the case when C = V (F) is the lemniscate of Bernoulli given by
F(x, y, z) = (x2+ y2)2�2(x2� y2)z2 and when S 2 P2 \ {I, J }. The degree of C
is d = 4. The singular points of C are : I [1 : i : 0], J [1 : �i : 0] and O[0 : 0 : 1].
These three points are double points, each one having two different tangent lines.
Hence the class of C is given by d_

= d(d � 1) � 3⇥ 2 = 6 and so

2d_

+ d = 16.

The tangent lines to C at I are `1,I := V (y�i z�i x) and `2,I := V (y�i z+i x) (the
intersection number of C with `1,I or with `2,I at I is equal to 4). The tangent lines
to C at J are `1,J := V (y + i z � i x) and `2,J := V (y + i z + i x) (the intersection
number of C with `1,J or with `2,J at J is equal to 4). This ensures that we have

f = 2
�
2+ 1S2`1,I + 1S2`2,I + 1S2`1,J + 1S2`2,J

�
.

Observe that `1 is not tangent to C. Indeed I and J are the only points in C \ `1

and `1 is not tangent to C at these points. Therefore we have g = 0 and c0(S) = 0.
Since I and J are also the only points at which C is tangent to an isotropic line

(i.e. a line containing I or J ), we have f 0
= 0, g0

= µS , q 0
= 0. In this case, one

can check that �1(S,C) = 1. Finally, we get

if S 62 `1, class
�
6S(C)

�
= 12� 2

�
1S2`1,I[`2,I + 1S2`1,J[`2,J

�
� µS. (4.1)

Moreover we have

if S 2 `1 \ {I, J }, class
�
6S(C)

�
= 16� 2� 2 = 12, (4.2)

(since µI = µJ = 2 and since µS = 0). For example, for S[1 : 0 : 1], we get
class(6S(C)) = 8, since S is in `2,I \ `1,J but not in C (so µS = 0).
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4.2. Example of a quintic curve

As in [16], we consider the quintic curve C = V (F) with F(x, y, z) = y2z3 � x5.
We also consider a light point S[x0 : y0 : z0] 2 P2 \ {I, J }. This curve admits two
singular points: m1[0 : 0 : 1] and m2[0 : 1 : 0], we have d = 5.

We recall that C admits a single branch at m1, which has multiplicity 2 and
which is tangent to V (y). We observe that im1(C, V (y)) = 5.

Analogously, C admits a single branch at m2, which has multiplicity 3 and
which is tangent to `1. We observe that im2(C, `1) = 5.

We obtain that the class of C is d_
= 5 and that C has no inflexion point (these

two facts are proved in [16]). In particular, we get that 2d_
+ d = 15.

Since m2 is the only point of C \ `1, we get that g = �m2(C, `1) = 2 and
f = 0.

The curve C admits six (pairwise distinct) isotropic tangent lines other than
`1: `1, `2 and `3 containing I defined by

`k = V
✓
i x � y +

3i
25

↵k
3p20z

◆
, where ↵ := e

2i⇡
3

for k = 1, 2, 3 and `4, `5 and `6 containing J defined by

`3+k = V
✓
i x + y +

3i
25

↵k
3p20z

◆

for k = 1, 2, 3. For every i 2 {1, 2, 3, 4, 5, 6}, we write ai the point at which C is
tangent to `i (the points ai correspond to the points of C\V (F2x + F2y )\ {m1,m2}).
Since C contains no inflexion point and sincem1 andm2 are the only singular points
of C, we get that,

f 0

= #{i 2 {1, 2, 3, 4, 5, 6} : S 2 `i \ {ai }} and q 0

= 0

when S 62 `1.
Now recall that g0

= iS(C, (I S)) + iS(C, (J S)) � µS . Again, in this case, one
can check that �1(S,C) = 1. If S 62 `1, we have

class
�
6S(C)

�
= 13� 2⇥ #{i 2 {1, 2, 3, 4, 5, 6} : S 2 `i \ {ai }} � g0 (4.3)

and if S 2 `1 \ {I, J }, we have

class
�
6S(C)

�
= 11� 3⇥ 1S=m2 . (4.4)

We observe that the points of P2 \ {I, J } belonging to two dictinct `k are outside C.
The set of these points is

E :=

3[
k=1

⇢
�

3
25

3p20↵k : 0 : 1
�

,


3
50

3p20↵k :

3
50

p

3 3p20↵k : 1
�

,


3
50

3p20↵k : �

3
50

p

3 3p20↵k : 1
��
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with ↵ = e
2i⇡
3 . Finally, the class of the caustic in the different cases is summarized

in the following table.

Condition on S 2 P2 \ {I, J} class(6S(C)) =

S = m2 8
S 2 E 9

S 2 C \

6S
k=1

�
`k \

�
ak
 �

10

S 2

�
`1 \

�
m2
 �

[

 
6S

k=1
`k \ (E [ C)

!
[

�
m1
 

[

�
a1, . . . , a6

 
11

S 2 C \

 
`1 [ {m1} [

6S
k=1

`k

!
12

otherwise 13

5. On the formulas by Brocard and Lemoyne and by Salmon and Cayley

5.1. Formulas given by Brocard and Lemoyne

Recall that, when S 62 `1, 6S(C) is the evolute of an homothetic of the pedal of C
from S.

The work of Salmon and Cayley is under ordinary Plücker conditions (no
worse multiple tangents than ordinary double tangents, no singularities other than
ordinary cusps and ordinary nodes). In [19, page 137], Salmon and Cayley gave the
following formula for the class of the evolute :

n0

= m + n � f � g.

Replace nowm, n, f and g by M , N , F andG (respectively) given in [19, page 154]
for the pedal. Doing so, one gets precisely (with the same notations) the formula of
the class of caustics by reflection given by Brocard and Lemoyne in [1, page 114].

As explained in introduction, this composition of formulas of Salmon and Cay-
ley is incorrect because of the non-conservation of the Plücker conditions by the
pedal transformation. Nevertheless, for completeness sake, let us present the Bro-
card and Lemoyne formula and compare it with our formula. Brocard and Lemoyne
gave the following formula for the class of the caustic by reflection 6S(C) when
S 62 `1:

BL = d + 2
�
d_

� f̂ 0
�
� ĝ � f̂ � ĝ0

+ q̂ 0, (5.1)

for an algebraic curve C of degree d, of class d_, ĝ times tangent to `1, passing
f̂ times through a cyclic point, f̂ 0 times tangent to an isotropic line of S, passing
ĝ0 times through S, q̂ 0 being the coincidence number of contact points when an
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isotropic line is multiply tangent. In [19], q̂ 0 is defined as the coincidence number
of tangents at points ◆1, ◆2 of P2_ (corresponding to (I S) and (J S)) if these points
are multiple points of the image of C by the polar reciprocal transformation with
center S; i.e. q̂ 0 represents the number of ordinary flexes of C.

When S 62 `1, let us compare terms appearing in our formula (3.1) with terms
of (5.1) :

• ĝ seems to be equal to g;
• it seems that f̂ = µI + µJ and so f = f̂ + �I (C, (I S)) + �J (C, (J S));
• it seems that f̂ 0

=

P
m12C\(I S) �m1(C, (I S)) +

P
m12C\(J S) �m1(C, (J S)) and

so

f 0

= f̂ 0

� �I (C, (I S)) � �J (C, (J S)) � �S(C, (I S)) � �S(C, (J S));

• it seems that ĝ0
= µS , therefore g0

= ĝ0
+ �S(C, (I S)) + �S(C, (J S));

• our definition of q 0 appears as an extension of q̂ 0 (except that we exclude the
points m1 2 {I, J, S}).

Observe that these terms coincide with the definition of Brocard and Lemoyne if
(I S) and (J S) are not tangent to C at S, I , J . In particular, the first item of Theorem
3.1 states that, when S is not at infinity we have

mclass(6S(C)) = BL+�I (C, (I S))+�J (C, (J S))+�S(C, (I S))+�S(C, (J S)),

with BL the Brocard and Lemoyne formula recalled in (5.1). This last formula point
out the error in the Brocard and Lemoyne formula.

5.2. A counterexample to the formula of Brocard and Lemoyne

We consider an example in which �I (C, (I S)) = �J (C, (J S)) = 1, which means
that (I S) is tangent to C at I and (J S) is tangent to C at J . Let us consider the non-
singular quartic curve C = V (2yz3+2z2y2+2zy3+2y4�2z3x+2zyx2+5y2x2+
3x4) and S[0 : 0 : 1]. This curve C has degree d = 4 and class d_

= 4⇥ 3 = 12,
is not tangent to `1, is tangent to (SI ) at I and nowhere else, is tangent to (SJ ) at
J and nowhere else; these tangent points are ordinary. S is a non singular point of
C. Therefore, with our definitions, we have g = 0, f = 2 + 2 = 4, f 0

= 0, g0
=

1+1�1 = 1, q 0
= 0, which gives class(6S(C)) = 4+2(12�0)�0�4�1�0 = 23,

since in this case �1(S,C) = 1. In comparison, the Brocard and Lemoyne formula
would give ĝ = 0, f̂ = 1 + 1 = 2, f̂ 0

= 1 + 1 = 2, ĝ0
= 1, q̂ 0

= 0 and so their
formula gives BL = 4+2(12�2)�0�2�1�0 = 21 which is not class(6S(C)).

6. Proof of Theorem 3.1

To compute the degree of TC,S(C), we will use the Fundamental Lemma given in
[16]. Let us first recall the definition of '-polar introduced in [16] and extending
the notion of polar.
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Definition 6.1. Let p � 1, q � 1 and let W be a complex vector space of di-
mension p + 1. Given ' : Pp

:= P(W) 99K Pq a rational map defined by
' = ['0 : · · · : 'q ] (with '0, . . . ,'q 2 Symd(W_)) and a = [a0 : · · · : aq ] 2 Pq ,
we define the '-polar at a, denoted by P',a , the hypersurface of degree d given by
P',a := V

⇣Pq
j=0 a j' j

⌘
✓ Pp.

With this definition, the “classical” polar of a curve C = V (F) of P2 (for some
homogeneous polynomial F 2 C[x, y, z]) at a is the �C-polar curve at a, where
�C : [x : y : z] 7! [Fx : Fy : Fz].
Definition 6.2. We call reflected polar (or r-polar) of the plane curve C with
respect to S at a the RC,S-polar at a, i.e. the curve P(r)

S,a(C) := PRC,S,a .

From a geometric point of view, P(r)
S,a(C) is an algebraic curve such that, for

every m 2 C \P(r)
S,a(C),Rm contains a (ifRm is well defined), this means that line

(am) is tangent to 6S(C) at the point m0
= 8F,S(m) 2 6S(C) associated to m (see

picture).

Let us now recall the statement of the fundamental lemma proved in [16].

Lemma 6.3 (Fundamental lemma [16]). LetW be a complex vector space of di-
mension p + 1, let C be an irreducible algebraic curve of Pp

:= P(W) and
' : Pp 99K Pq be a rational map given by ' = ['0 : · · · : 'q ] with '0, . . . ,'q 2

Sym�(W_). Assume that C 6✓ Base(') and that '|C has degree �1 2 N [ {1}.
Then, for generic a = [a0 : · · · : aq ] 2 Pq , the following formula holds

�1. deg
⇣
'(C)

⌘
= �. deg(C) �

X
p2Base('|C)

i p
�
C,P',a

�
,

with convention 0.1 = 0 and deg('(C)) = 0 if #'(C) < 1.
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Due to this lemma and to Proposition 2.3, we have

mclass
�
6S(C)

�
= d(2d � 1) �

X
m12Base(TC,S)

im1
⇣
C,P(r)

S,a(C)
⌘

. (6.1)

Now, we enter in the most technical stuff which is the computation of the inter-
section numbers im1(C,P(r)

S,a(C)) of C with its reflected polar at the base points of
RC,S . To compute these intersection numbers, it will be useful to observe the form
of the image of RC,S by linear changes of variable. It is worth noting that RF,S can
be rewritten

RF,S = id ^

⇥
1IF1JF · S� 1SF1IF · J� 1SF1JF · I

⇤
.

Proposition 6.4. Let M 2 GL(V). We have

RF,S � M = Com(M) · R(M�1(I),M�1(J))
F�M,M�1(S) ,

with Com(M) := det (M) ·
t M�1 and

R(A,B)
G,S0

:= id ^

⇥
1AG1BG · S0

� 1S0G1AG · B� 1S0G1BG · A
⇤
.

Proof. We use M(u)^M(v) = (Com(M))(u^v) and1M(u)(F)(M(P)) = 1u(F�

M)(P).

We write 5 : V \ {0} ! P2 for the canonical projection, P0[0 : 0 : 1] 2 P2
and P0(0, 0, 1) 2 V. Let m1 be a base point of C and M 2 GL(V) be such that
5(M(P0)) = m1 and such that the tangent cone of V (F �M) at P0 does not contain
V (x). Let µm1 be the multiplicity of m1 in C (m1 is a singular point of C if and only
if µm1 > 1). Then, for every a 2 P2, writing a0

:= M�1(a), we have

im1
�
C,P(r)

S,a(C)
�

= im1
�
C, V

�⌦
a,RF,S(·)

↵��
= iP0

�
V (F � M), V

�⌦
a,RF,S � M(·)

↵��
= iP0

⇣
V (F � M), V

⇣D
a0,R(M�1(I),M�1(J))

F�M,M�1(S) (·)
E⌘⌘

=

X
B2BranchP0 (V (F�M))

iP0
⇣
B, V

⇣D
a0,R(M�1(I),M�1(J))

F�M,M�1(S) (·)
E⌘⌘

,

where BranchP0(V (F � M)) is the set of branches of V (F � M) at P0. The last
equality comes from Proposition A.1 proved in appendix (see formula (A.1)). Let b
be the number of such branches. Of course, b = 1 for non-singular points. Writing
eB for the multiplicity of the branch B, we have µm1 =

P
B2BranchP0 (V (F�M)) eB.

Let us writeChx
1
N i andChx

1
N , yi for the rings of convergent power series of x

1
N , y.
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Let Chx⇤
i :=

S
N�1Chx

1
N i and Chx⇤, yi :=

S
N�1Chx

1
N , yi. For every h =P

q2Q+

aqxq 2 Chx⇤
i, we define the valuation of h as follows:

val(h) := valx (h(x)) := min{q 2 Q+, aq 6= 0}.

Let B be a branch of V (F � M) at P0. Observe that B0 = M(B) ⇢ P2 is a
branch of C at m1. Let A(xA, yA, zA) := M�1(I), B(xB, yB, zB) := M�1(J) and
S0

:= M�1(S). Let TB be the tangent line to B at P0. The branch B can be split in
eB pro-branches with equations y = gi,B(x) in the chart z = 1 (for i 2 {1, . . . , eB})
with gi 2 Chx⇤

i having (rational) valuation larger than or equal to 1 (so g0

i (0) = 0).
For j 2 {1, . . . , eB0}, consider also the equations y = g j,B0(x) (in the chart z = 1)
of the pro-branches V j,B0 for each branch B0

2 BranchP0(V (F � M)). This notion
of pro-branches comes from the combination of the Weierstrass and the Puiseux
theorems. It has been used namely by Halphen in [14] and by Wall in [24]. One
can also see [16]. There exists a unit U in Chx, yi such that the following equality
holds in Chx⇤, yi

F(M(x, y, 1)) = U(x, y)
Y

B0
2BranchP0 (V (F�M))

eB0Y
j=1

(y � g j,B0(x)).

For a generic a (with a0
:= M�1(a)), using (A.2)), we obtain

iP0
⇣
B, V

⇣D
a0,R(A,B)

F�M,S0
(·)
E⌘⌘

=

X
i
valx

⇣D
a0,R(A,B)

F�M,S0

�
x, gi,B(x), 1

�E⌘

=

X
i

min
j=1,2,3

valx
✓h
R(A,B)
F�M,S0

�
x, gi,B(x), 1

�i
j

◆
.

Hence formula (6.1) becomes

mclass(6S(C)) := d(2d � 1)

�

X
m12C

X
B

eBX
i=1

min
j=1,2,3

valx
✓h
R(A,B)
F�M,S0

�
x, gi,B(x), 1

�i
j

◆
,
(6.2)

where, for every m1 2 C, M depends on m1 and is as above, where the sum is over
B 2 BranchP0(V (F � M)). Due to Lemma 33 of [16], for every P(xP , yP , zP) 2

V \ {0}, we have�
1M(P)F

�
� M

�
x, gi,B(x), 1

�
= 1P(F � M)

�
x, gi,B(x), 1

�
= Di,B(x)WP,i,B(x),

with
WP,i,B(x) := yP � g0

i,B(x)xP + zP
�
xg0

i,B(x) � gi,B(x)
�

and with

Di,B(x) := U(x, gi,B(x))
Y

B0
2BranchP0 (V (F�M))

Y
j=1,...,eB0 :(B0, j)6=(B,i)

(gi,B(x)�g j,B0(x)).
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Hence we have

R(A,B)
F�M,S0

�
x, gi,B(x), 1

�
:=

�
Di,B

�2
· R̂i,B(x) (6.3)

with

R̂i,B(x) :=

0
@ x
gi,B(x)
1

1
A ^

h
WA,i,B(x)WB,i,B(x) · S0

� WS0,i,B(x)WA,i,B(x) · B

� WS0,i,B(x)WB,i,B(x) · A
i
.

First, with the notations of [16] (since U(0, 0) 6= 0), we have

X
B2BranchP0 (V (F�M))

eBX
i=1

val(Di,B) = Vm1,

(which is zero if m1 is a nonsingular point of C). Second, writing hm1,i,B :=

min(val([R̂i,B] j ), j = 1, 2, 3), we observe that, due to Proposition 29 and to Re-
mark 34 of [16], the quantity

PeB
i=1 hm1,i,B only depends on m1 and on the branch

B0 = M(B) of C at m1 (it does not depend on the choice of M 2 GL(V) such that
5(M(P0)) = m1 and such that V (x) is not tangent to M�1(B0)). Hence we write

hm1,B0 :=

eBX
i=1

hm1,i,B.

With these notations, due to (6.3), formula (6.2) becomes

mclass(6S(C)) = 2d(d � 1) + d � 2
X

m12Sing(C)

Vm1 �

X
m12C

X
B02Branchm1 (C)

hm1,B0 .

Moreover, as noticed in [16], we have d(d � 1) �

P
m12Sing(C) Vm1 = d_, where

d_ is the class of C. Therefore, we get

mclass(6S(C)) = 2d_

+ d �

X
m12C

X
B02Branchm1 (C)

hm1,B0 . (6.4)

Theorem 3.1 will come directly from the computation of hm1,i,B given in the fol-
lowing result.

Lemma 6.5. Let m1 2 C and B0 2 Branchm1(C). Writing Tm1B0 for the tangent
line to B0 at m1, im1(B0,Tm1B0) for the intersection number of B0 with Tm1B0 at
m1 and eB0 for the multiplicity of B0, we have

(1) hm1,B0 = 0 if I, J, S 62 Tm1B0.
(2) hm1,B0 = 0 if #(Tm1B0 \ {I, J, S}) = 1 and m1 62 {I, J, S}.
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(3) hm1,B0 = eB0 if #(Tm1B0 \ {I, J, S}) = 1 and m1 2 {I, J, S}.
(4) hm1,B0 = im1(B0,Tm1B0) +min(im1(B0,Tm1B0) � 2eB0, 0) if Tm1B0 = (I S),

J 62 Tm1B0 and m1 62 {I, S}.
hm1,B0 = im1(B0,Tm1B0)+min(im1(B0,Tm1B0)�2eB0, 0) if Tm1B0 = (J S),
I 62 Tm1B0 and m1 62 {J, S}.

(5) hm1,B0 = im1(B0,Tm1B0) if Tm1B0 = (I S), J 62 Tm1B0 and m1 2 {I, S}.
hm1,B0 = im1(B0,Tm1B0) if Tm1B0 = (J S), I 62 Tm1B0 and m1 2 {J, S}.

(6) hm1,B0 = im1(B0,Tm1B0) � eB0 if Tm1B0 = (I J ), that S 62 Tm1B0 and m1 62

{I, J }.
(7) hm1,B0 = im1(B0,Tm1B0) if Tm1B0 = (I J ), that S 62 Tm1B0 and m1 2 {I, J }.
(8) hm1,B0 = 2im1(B0,Tm1B0) � 2eB0 if I, J, S 2 Tm1B0 and m1 62 {I, J, S}.
(9) hm1,B0 = 2im1(B0,Tm1B0) � eB0 if I, J, S 2 Tm1B0 and m1 2 {I, J }.
(10) hm1,B0 =2im1(B0,Tm1B0)�eB0 if I,J,S2Tm1B0,m1= Sand im1(B0,Tm1B0) 6=

2eB0 .
(11) hm1,B0 = eB0(1+min(�1, 3)) if I,J,S2Tm1B0, m1= S and im1(B0,Tm1B0) =

2eB0 , eB0�1 = im1(B0, Oscm1(B0)), where Oscm1(B0) is any osculating
smooth algebraic curve to B0 at m1 (the last formula of hm1,B0 holds if we
replace eB0�1 by the first characteristic exponent of B0 non multiple of eB0 ,
see [25]).

Proof. We take M such that TB = V (y) (with B = M�1(B0)). To simplify nota-
tions, we omit indices B in WP,i,B and consider i 2 {1, . . . , eB}.

• Suppose that I, J, S 62 Tm1B0. Then WB,i (0) = yB 6= 0, WA,i (0) = yA 6= 0
and WS0,i (0) = yS0 6= 0 so

R̂i (0) =

0
@ 00
1

1
A ^

⇥
yAyB · S0

� yAyS0 · B� yB yS0 · A
⇤

=

0
@ yAyB yS0

yAyBxS0 � yAyS0xB � yB yS0xA
0

1
A .

Hence hm1,i,B = 0 and the sum over i = 1, . . . , eB of these quantities is equal
to 0.

• Suppose I 2 Tm1B0, J,S 62 Tm1B0 and m1 6= I . Take M such that S0(0, 1, 0),
A(1, 0, 0), yB 6= 0. We have WB,i (0) = yB , WA,i (0) = 0 and WS0,i (0) = 1 and

so R̂i (0) =

0
@ 00
1

1
A ^

0
@�yB

0
0

1
A =

0
@ 0

�yB
0

1
A . Hence hm1,i,B = 0 and the sum

over i = 1, . . . , eB of these quantities is equal to 0.
• Suppose I 2 Tm1B0, J, S 62 Tm1B0 and m1 = I . Take M such that S0(0, 1, 0),
A(0, 0, 1), yB 6= 0. We have WB,i (x) = yB � g0

i (x)xB + zB(xg0

i (x) � gi (x)),
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WA,i (x) = xg0

i (x) � gi (x) and WS0,i (x) = 1 and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ �(xg0

i (x) � gi )xB
(xg0

i (x) � gi )(�g0

i (x)xB + zB(xg0

i (x) � gi (x)))
�yB + g0

i (x)xB � 2zB(xg0

i (x) � gi (x))

1
A

=

0
@ �yBgi (x) + x(g0

i (x))
2xB � zB((xg0

i (x))
2
� (gi (x))2)

�xB(2xg0

i (x) � gi (x)) + xyB + 2xzB(xg0

i (x) � gi (x))
�xB(xg0

i (x) � gi (x))2 + zB(xg0

i (x) � gi (x))

1
A ,

the valuation of the coordinates of which are larger than or equal to 1 and the
valuation of the second coordinate is 1. Hence hm1,i,B = 1 and the sum over
i = 1, . . . , eB = eB0 of these quantities is equal to eB0 .

• Suppose S 2 Tm1B0, I, J 62 Tm1B0 and m1 6= S. Take M such that A(0, 1, 0),
S0(1, 0, 0), yB 6= 0. We have WB,i (0) = yB 6= 0, WS0,i (0) = 0 and WA,i (0) = 1

and so R̂i (0) =

0
@ 00
1

1
A ^

0
@ yB
0
0

1
A =

0
@ 0
yB
0

1
A . Hence hm1,i,B = 0 and the sum

over i = 1, . . . , eB of these quantities is equal to 0.
• Suppose m1 = S and I, J 62 Tm1B0. Take M such that S0(0, 0, 1), A(0, 1, 0),
yB 6= 0. We have WB,i (x) = yB � g0

i (x)xB + zB(xg0

i (x) � gi (x)), WS0,i (x) =

xg0

i (x) � gi (x) and WA,i (x) = 1 and so

R̂i (x)=

0
@ x
gi (x)
1

1
A ^

0
@ �(xg0

i (x) � gi )xB
�(xg0

i (x) � gi (x))(2yB � g0

i (x)xB + zB(xg0

i (x) � gi (x)))
yB � g0

i (x)xB

1
A

=

0
@ gi (x)(yB�g0

i (x)xB)+(xg0

i (x)�gi (x))(2yB � g0

i (x)xB+zB(xg0

i (x)�gi (x)))
�(xg0

i (x) � gi (x))xB � x(yB � g0

i (x)xB)

�(xg0

i(x)�gi (x))(2xyB�g0

i (x)xxB+zBx(xg0

i (x)�gi (x))+gi (x)(xg0

i (x)�gi (x))xB)

1
A,

the valuation of the coordinates of which are larger than or equal to 1 and the
valuation of the second coordinate is 1. Hence hm1,i,B = 1 and the sum over
i = 1, . . . , eB of these quantities is equal to eB0 .

• Suppose Tm1B0 = (I S), J 62 Tm1B0 and m1 62 {I, S}. Take M such that
S0(1, 0, 0), B(0, 1, 0), yA = 0, xA 6= 0, zA 6= 0. We have WS0,i (x) = �g0

i (x),
WA,i (x) = �g0

i (x)xA + zA(xg0

i (x) � gi (x)) and WB,i (x) = 1 and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ zA(xg0

i (x) � gi (x))
�(g0

i (x))
2xA + g0

i (x)(xg
0

i (x) � gi (x))zA
g0

i (x)zA

1
A

=

0
@ gi (x)g0

i (x)zA + (g0

i (x))
2xA � g0

i (x)(xg
0

i (x) � gi (x))zA
�gi (x)zA

�x(g0

i (x))
2xA + (xg0

i (x) � gi (x))2zA

1
A ,

the valuation of the coordinates of which are respectively 2val(gi ) � 2, val(gi )
and 2val(gi ) � 1. Hence hm1,i,B = val(gi ) + min(val(gi ) � 2, 0) and the
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sum over i = 1, . . . , eB of these quantities is equal to im1(B0,Tm1B0) +

min(im1(B0,Tm1B0) � 2eB0, 0).
• Suppose Tm1B0 = (I S), J 62 Tm1B0 and m1 = I . Take M such that S0(1, 0, 0),
B(0, 1, 0), A(0, 0, 1). We have WS0,i (x) = �g0

i (x), WA,i (x) = xg0

i (x) � gi (x)
and WB,i (x) = 1 and so

R̂i (x)=

0
@ x
gi (x)
1

1
A ^

0
@ xg0

i (x) � gi (x)
g0

i (x)(xg
0

i (x) � gi (x))
g0

i (x)

1
A=

0
@g

0

i (x)(2gi (x) � xg0

i (x))
�gi (x)

(xg0

i (x) � gi (x))2

1
A ,

the valuation of the coordinates of which are larger than or equal to val(gi ), the
second coordinate has valuation val(gi ). Hence hm1,i,B = val(gi ) and the sum
over i = 1, . . . , eB of these quantities is equal to im1(B0,Tm1B0).

• Suppose Tm1B0 = (I S), J 62 Tm1B0 and m1 = S. Take M such that A(1, 0, 0),
B(0, 1, 0), S0(0, 0, 1). We have WS0,i (x) = xg0

i (x) � gi (x), WA,i (x) = �g0

i (x)
and WB,i (x) = 1 and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@�(xg0

i (x) � gi (x))
g0

i (xg
0

i (x) � gi (x))
�g0

i (x)

1
A =

0
@ �x(g0

i (x))
2

gi (x)
(xg0

i (x))
2
� (gi (x))2

1
A ,

the valuation of the coordinates of which being larger than or equal to
val(gi ) and the valuation of the second coordinate is equal to val(gi ). Hence
hm1,i,B = val(gi ) and the sum over i = 1, . . . , eB of these quantities is equal to
im1(B0,Tm1B0).

• Suppose Tm1B0 = (I J ), S 62 Tm1B0 and m1 62 {I, J }. Take M such that
S0(0, 1, 0), B(1, 0, 0), yA = 0, xA 6= 0, zA 6= 0. We have WB,i (x) = �g0

i (x),
WA,i (x) = �g0

i (x)xA + zA(xg0

i (x) � gi (x)) and WS0,i (x) = 1 and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ 2g0

i (x)xA � zA(xg0

i (x) � gi (x))
(g0

i (x))
2xA � g0

i (x)(xg
0

i (x) � gi (x))zA
g0

i (x)zA

1
A

=

0
@ (g0

i (x))
2(xzA � xA)

2g0

i (x)xA � zA(2xg0

i (x) � gi (x))
�zA(xg0

i (x) � gi (x))2 + xAg0

i (x)(xg
0

i (x) � 2gi (x))

1
A ,

the valuation of the coordinates of which are respectively 2val(gi )�2, val(gi )�1
and larger than val(gi ). Hence hm1,i,B = val(gi ) � 1 and the sum over i =

1, . . . , eB of these quantities is equal to im1(B0,Tm1B0) � eB0 .
• Suppose that Tm1B0 = (I J ), that S 62 Tm1B0 and m1 = I . Take M such
that S0(0, 1, 0), B(1, 0, 0), A(0, 0, 1). We have WB,i (x) = �g0

i (x), WA,i (x) =

xg0

i (x) � gi (x) and WS0,i (x) = 1 and so

R̂i (x) =

0
@ x
gi (x)
1

1
A^

0
@ �(xg0

i (x) � gi (x))
�g0

i (x)(xg
0

i (x) � gi (x))
g0

i (x)

1
A=

0
@ x(g0

i (x))
2

�(2xg0

i (x) � gi (x))
�(xg0

i (x) � gi (x))2

1
A ,
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the valuation of the coordinates of which being larger than or equal to
val(gi ) and the valuation of the second coordinate is equal to val(gi ). Hence
hm1,i,B = val(gi ) and the sum over i = 1, . . . , eB of these quantities is equal to
im1(B0,Tm1B0).

• Suppose that I, J, S 2 Tm1B0 and m1 62 {I, J, S}. Take M such that S0(1, 0, 0),
yA = yB = 0, xA 6= 0, zA 6= 0, xB 6= 0, zB 6= 0, xAzB 6= xBzA. We have
WS0,i (x) = �g0

i (x), WA,i (x) = �g0

i (x)xA + zA(xg0

i (x)� gi (x)) and WB,i (x) =

�g0

i (x)xB + zB(xg0

i (x) � gi (x)) and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ �xA(g0

i (x))
2xB + zAzB(xg0

i (x) � gi (x))2
0

�(g0

i (x))
2(xzB + xBzA)A + 2zAzBg0

i (x)(xg
0

i (x) � gi (x))

1
A

=

0
B@

�gi (x)(g0

i (x))
2(xzB + xBzA)A + 2zAzBgi (x)g0

i (x)(xg
0

i (x) � gi (x))
�xA(g0

i (x))
2xB + zAzB(xg0

i (x) � gi (x))2 � x[. . . .]
xAgi (x)(g0

i (x))
2xB � zAzBgi (x)(xg0

i (x) � gi (x))2

1
CA ,

the valuation of the coordinates of which are larger than or equal to 2val(gi ) �

2, the valuation of the second coodinate is 2val(gi ) � 2. Hence hm1,i,B =

2val(gi ) � 2 and the sum over i = 1, . . . , eB of these quantities is equal to
2im1(B0,Tm1B0) � 2eB0 .

• Suppose that I, J, S 2 Tm1B0 and m1 = J . Take M such that B(0, 0, 1),
S0(1, 0, 0), yA = 0, xA 6= 0 and zA 6= 0. We have WS0,i (x) = �g0

i (x),
WA,i (x) = �g0

i (x)xA + zA(xg0

i (x) � gi (x)) and WB,i (x) = xg0

i (x) � gi (x)
and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ zA(xg0

i (x) � gi (x))2
0

�xA(g0

i (x))
2
+ 2zA(xg0

i (x) � gi (x))g0

i (x)

1
A

=

0
@ gi (x)g0

i (x)(�g
0

i (x)xA + 2zA(xg0

i (x) � gi (x)))
zA(xg0

i (x) � gi (x))2 � xg0

i (x)(�g
0

i (x)xA + 2zA(xg0

i (x) � gi (x)))
�gi (x)zA(xg0

i (x) � gi (x))2

1
A ,

the valuation of the coordinates of which are larger than or equal to 2val(gi )� 1
and the valuation of the second coordinate is 2val(gi ) � 1. Hence hm1,i,B =

2val(gi ) � 1 and the sum over i = 1, . . . , eB of these quantities is equal to
2im1(B0,Tm1B0) � eB0 .

• Suppose that I, J, S 2 Tm1B0 and m1 = S. Take M such that S0(0, 0, 1),
B(1, 0, 0), yA = 0, xA 6= 0 and zA 6= 0. We have WB,i (x) = �g0

i (x),
WA,i (x) = �g0

i (x)xA + zA(xg0

i (x) � gi (x)) and WS0,i (x) = xg0

i (x) � gi (x)
and so

R̂i (x) =

0
@ x
gi (x)
1

1
A ^

0
@ 2xAg

0

i (x)(xg
0

i (x) � gi (x)) � zA(xg0

i (x) � gi (x))2
0

(g0

i (x))
2xA

1
A

=

0
@ gi (x)(g0

i (x))
2xA

xAg0

i (x)(xg
0

i (x) � 2gi (x)) � zA(xg0

i (x) � gi (x))2
�2xAgi (x)g0

i (x)(xg
0

i (x) � gi (x)) + zAgi (x)(xg0

i (x) � gi (x))2

1
A .
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The valuation of the first coordinate is 3val(gi ) � 2 is smaller than or equal to
the valuation of the third coordinate.
If val(gi ) 6= 2, the valuation of the second coordinate is 2val(gi ) � 1; hence
hm1,i,B = 2val(gi ) � 1 and the sum over i = 1, . . . , eB of these quantities is
equal to 2im1(B0,Tm1B0) � eB0 .
Suppose now that val(gi ) = 2, then 3val(gi ) � 2 = 4 and there exist ↵,↵1 2 C
and �1 > 2 such that gi (x) = ↵x2 + ↵1x�1

+ . . .. Then, the second coordinate
has the following form (xA2↵(�1�2)x�1+1

+. . .)+x4(. . .). Therefore hm1,i,B =

min(�1 + 1, 4) and the sum over i = 1, . . . , eB of these quantities is equal to
eB0(1+min(�1, 3)).

Proof of Theorem 3.1. Recall that (6.4) says

mclass(6S(C)) = 2d_

+ d �

X
m12C

X
B02Branchm1 (C)

hm1,B0

and that the values of hm1,B0 have been given in Lemma 6.5.

• Assume first S 62 `1. Then we have to sum the hm1,B0 coming from Items 3, 4,
5, 6 and 7 of Lemma 6.5.
The sum of the hm1,B0 coming from Items 3 and 5 applied with m1 = S gives
directly g0.
The sum of the hm1,B0 coming from Items 3, 5 and 7 applied with m1 2 {I, J }
gives f + �I (C, `1) + �J (C, `1).
The sum of the hm1,B0 coming from Item 6 gives g � �I (C, `1) � �J (C, `1).
The sum of the hm1,B0 coming from Item 4 gives 2 f 0

� q 0 (notice that hm1,B0 =

2(im1(B0,Tm1B0) � eB0) � (im1(B0,Tm1B0) � 2eB0)1im1 (B0,Tm1B0)�2eB0 ).
• Assume first S 62 `1. Then we have to sum the hm1,B0 coming from Items 3, 8,
9, 10 and 11 of Lemma 6.5.
The sum of the hm1,B0 coming from Items 3 (with m1 = S), 10 and 11 gives
2�S(C, `1) + µS + c0(S).
The sum of the hm1,B0 coming from Items 3 and 9 applied with m1 2 {I, J }
gives 2(�I (C, `1) + �J (C, `1)) + µI + µJ .
The sum of the hm1,B0 coming from Item 8 gives 2(g��I (C,`1)��J (C,`1)�
�S(C,`1)).

Appendix

A. Intersection numbers of curves and pro-branches

The following result expresses the classical intersection number im1(C,C0) defined
in [15, page 54] thanks to the use of probranches.

Proposition A.1. Let m 2 P2. Let C = V (F) and C0
= V (F 0) be two algebraic

plane curves containing m, with homogeneous polynomials F, F 0
2 C[X,Y, Z ].
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Let M 2 GL(C3) be such that 5(M(P0)) = m and such that the tangent cones of
V (F � M) and of V (F 0

� M) do not contain V (X).
Assume that V (F � M) admits b branches at P0 and that its �-th branch B�

has multiplicity e� . Assume that V (F 0
� M) admits b0 branches at P0 and that its

� 0-th branch B0

� 0
has multiplicity e0� 0

.
Then we have

im(C,C0) =

bX
�=1

e��1X
j=0

b0X
� 0

=1

e0
�0

�1X
j 0=0

valx

"
h�

✓
⇣ j x

1
e�

◆
� h0

� 0

 
⇣ 0 j 0x

1
e0
�0

!#
,

with y = h�(⇣ j x
1
e� ) 2 Chx⇤

i an equation of the j-th probranch of B� at P0,

y = h0

� 0
(⇣ 0 j 0x

1
e0
�0 ) 2 Chx⇤

i an equation of the k0-th probranch of B0

� 0
at P0, with

⇣ := e
2i⇡
e� and ⇣ 0

:= e
2i⇡
e0
�0 .

With the notations of Proposition A.1, we get

im(C,C0) =

bX
�=1

iP0
�
B�, V (F 0)

�
, (A.1)

with the usual definition given in [24] of intersection number of a branch with a
curve

iP0
�
B�, V (F 0

� M)
�

=

e��1X
j=0

valx
✓
F 0

� M
✓
x, h j,�

✓
⇣ j x

1
e�

◆◆◆
. (A.2)

Proof of Proposition A.1. By definition, the intersection number is defined by

im(C,C0) = iP0(V (F � M, F 0

� M) = length

 ✓ C[X,Y, Z ]

(F � M, F 0
� M)

◆
(X,Y,Z)

!

where ( C[X,Y,Z ]

(F�M,F 0
�M) )(X,Y,Z) is the local ring in the maximal ideal (X,Y, Z) of P0

[15, page 53]. According to [13], we have

im(C,C0) = dimC

 ✓ C[X,Y, Z ]

(F � M, F 0
� M)

◆
(X,Y,Z)

!
.

Let f, f 0 be defined by f (x, y) = F � M(x, y, 1), f 0(x, y) = F 0
� M(x, y, 1). We

get

im(C,C0) = dimC

 ✓C[x, y]
( f, f 0)

◆
(x,y)

!
= dimC

Chx, yi
( f, f 0)

.
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Recall that, according to the Weierstrass preparation theorem, there exist two units
U andU 0 of Chx, yi and f1, . . . , fb, f 0

1, . . . , f
0

b0
2 Chxi[y]monic irreducible such

that

f = U
bY

�=1
f� and f 0

= U 0

b0Y
� 0

=1
f 0

� 0,

f� = 0 being an equation of B� and f 0

� 0
= 0 being an equation of B0

� 0
. According

to the Puiseux theorem, B� (respectively B0

� 0
) admits a parametrization

⇢
x = te�

x = h�(t) 2 Chti

 
respectively

(
x = te

0

�0

x = h0

� 0
(t) 2 Chti

!
.

We know that, for every � 2 {1, .., b} and every j 2 {0, .., e�}, h�(⇣ j x
1
e� ) 2

Chx
1
e�

i are the y-roots of f� (respectively h� 0(⇣ 0 j 0x
1
e0
�0 ) 2 Chx

1
e0
�0

i are the y-roots
of f 0

� 0
). In particular, we have

f�(x, y)=
e��1Y
j=0

✓
y � h�

✓
⇣ j x

1
e�

◆◆
and f 0

� 0(x, y) =

e0
�0

�1Y
j 0=0

 
y � h0

� 0

 
⇣ 0 j 0x

1
e0
�0

!!
.

Therefore we have the following sequence of C-algebra-isomorphisms:

Chx, yi
( f, f 0)

=

Chx, yi 
bQ

�=1
f�(x, y), f 0(x, y)

! ⇠
=

bY
�=1

A�,

where A� :=
Chx,yi

( f� (x,y), f 0(x,y)) . Let � 2 {1, . . . , b}. We observe that we have

A� =

e��1Y
j=0

Chxi✓
f 0

✓
x, h�

✓
⇠ j x

1
e �

◆◆◆ .

On another hand, we have

D� :=

C
⌧
x
1
e� , y

�
�
f�(x, y), f 0(x, y)

� =

C
⌧
x
1
e� , y

�
 
e��1Q
j=0

✓
y � h�

✓
⇣ j x

1
e�

◆◆
, f 0(x, y)

!

⇠
=

e��1Y
j=0

C
⌧
x
1
e� , y

�
✓
y � h�

✓
⇣ j x

1
e�

◆
, f 0(x, y)

◆ ⇠
=

e��1Y
j=0

D�, j
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with

D�, j :=

C
⌧
x
1
e�

�
✓
f 0

✓
x, h�

✓
⇣ j x

1
e�

◆◆◆ .

We consider now the natural extension of rings i� : A�, j ,! D�, j such that

8g 2 A�, valx1/e�
��
i�(g)

�
(x)
�

= e�valx (g(x)).

We have

D�
⇠
=

e��1Y
j=0

C
⌧
x
1
e�

�
�
xv�
� ,

where v� is the valuation in x
1
e� of ( f 0(x, h�(⇣ j x

1
e� ))), i.e.

v� := valt
�
f 0
�
te� , h�

�
⇣ j t
���

= e� valx
�
f 0
�
x, h�

�
⇣ j x

1
e�
���

.

We get

im(C,C0) =

bX
�=1

dimC A� =

bX
�=1

e��1X
j=0

1
e�
valt

�
f 0
�
te� , h�

�
⇣ j t
���

=

bX
�=1

e��1X
j=0

valx
✓
f 0

✓
x, h�

✓
⇣ j x

1
e�

◆◆◆

=

bX
�=1

e��1X
j=0

b0X
� 0

=1
valx

✓
f 0

� 0

✓
x, h�

✓
⇣ j x

1
e�

◆◆◆
.

Observe now that

valx
✓
f 0

� 0

✓
x, h�

✓
⇣ j x

1
e�

◆◆◆
2

1
e�

N

and that

f 0

� 0

✓
x, h�

✓
⇣ j x

1
e�

◆◆
⌘Res

�
f 0

� 0, f�; y
�
⌘

e0
�0

�1Y
j 0=0

 
h0

� 0

 
⇣ 0 j 0x

1
e0
�0

!
� h�

✓
⇣ j x

1
e�

◆!
,

where Res denotes the resultant and where ⌘ means “up to a non zero scalar”.
Finally, we get

im(C,C0) =

bX
�=1

e��1X
j=0

b0X
� 0

=1

e0
�0

�1X
j 0=0

valx

"
h0

� 0

 
⇣ 0 j 0x

1
e0
�0

!
� h�

✓
⇣ j x

1
e�

◆#
.
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