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BV minimizers of the area functional in the Heisenberg group
under the bounded slope condition
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Abstract. We consider the area functional for t-graphs in the sub-Riemannian
Heisenberg group and study minimizers of the associated Dirichlet problem. We
prove that, under a bounded slope condition on the boundary datum, there exists
a unique minimizer and that this minimizer is Lipschitz continuous. We also pro-
vide an example showing that, in the first Heisenberg group, Lipschitz regularity
is sharp even under the bounded slope condition.
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1. Introduction

The area functional for the t-graph of a function u 2 W 1,1(�) in the sub-Riemannian
Heisenberg group Hn

⌘ Rn
x ⇥ Rn

y ⇥ Rt is

A(u) :=

Z
�

��
ru + X⇤

�� dL2n ,

where � ⇢ Rn
x ⇥ Rn

y is an open set and X⇤ is the vector field

X⇤(x, y) := 2(�y, x),

see [13, 46, 52] for more details. It was shown in [52] that the natural variational
setting for this functional is the space BV(�) of functions with bounded variation in
�; more precisely, it was proved that the relaxed functional ofA in the L1-topology
is

A(u) :=

Z
�

��
ru + X⇤

�� dL2n +

��Dsu
��(�), u 2 BV(�),

where |Dsu|(�) is the total variation in � of the singular part of the distributional
derivative of u.
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In this paper, we study the minimizers of A under Dirichlet boundary condi-
tions

min
�
A(u) : u 2 BV(�), u|@� = '

 
,

where � is assumed to have Lipschitz regular boundary, u|@� is the trace of u on
@�, ' 2 L1(@�,H2n�1) is a fixed boundary datum andH2n�1 denotes the classical
Hausdorff measure of dimension (2n � 1). In our main result, Theorem 1.1 below,
we prove existence, uniqueness and Lipschitz regularity of minimizers assuming
that ' satisfies the so-called bounded slope condition (see e.g. [27] or Section 6).
We also point out that Lipschitz regularity is sharp at least in the first Heisenberg
group H1, see Example 6.6.

Our interest in this problem is twofold. On the one side, it fits in a well-
established research stream about minimal-surfaces type problems (isoperimetric
problem, existence and regularity of H-perimeter minimizing sets, Bernstein prob-
lem, etc.) in the Heisenberg group, for which we refer to [6,7,20–22,34–36,44,45,
49–52]. On the other side, we attack the problem with typical tools from the Cal-
culus of Variations, using the so called Hilbert-Haar (or “Semi-classical” in [27])
approach. This approach has been recently developed and renewed to study the
regularity of minimizers of functionals starting from the regularity of the boundary
datum, without assuming either ellipticity or growth conditions on the lagrangian;
see e.g. [2, 4, 5, 8, 19, 23, 38–41].

Area minimizers have been widely studied in functional spaces with more reg-
ularity than BV. The functionalA has good variational properties such as convexity
and lower semicontinuity with respect to the L1 topology. On the other hand, it is
neither coercive nor differentiable. The lack of differentiability is due to the pres-
ence of the so called characteristic points, i.e. the set of points on the graph of u
where the tangent plane to the graph coincides with the horizontal plane. Equiva-
lently, the set whose projection on R2n is

Char(u) :=

�
(x, y) 2 � : ru(x, y) + X⇤(x, y) = 0

 
.

Notice that, formally, the Euler equation associated withA is

div
ru + X⇤��
ru + X⇤

�� = 0 in �,

which degenerates at points in Char(u). Clearly, the set Char(u) has a prominent
role in studying minimizers’ regularity. Several examples of minimizers with at
most Lipschitz regularity have been provided in H1, see e.g. [14, 47, 48]; more
recently, a non-continuous minimizer was exhibited in [52]. A variety of very in-
teresting results can be found in [12,13,25,46,51,53] (where a priori C2 regularity
is assumed for minimizers) and in [15, 17] (for C1 minimizers), also in connection
with the Bernstein problem for t-graphs. The much more delicate case of mini-
mizers in Sobolev spaces was attacked in [14], where interesting uniqueness and
comparison theorems for minimizers in the space W 1,2 were proved. Uniqueness
results for Sobolev minimizers are proved also in [18].
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Concerning the existence issue, the existence of Lipschitz minimizers for the
Dirichlet problem forA was established in [14], by utilizing an elliptic approxima-
tion argument, for C2,↵-smooth boundary data on C2,↵-smooth and “parabolically-
convex” domains. We have also to mention the papers [46] and [16], about which
we will say a few words below. Notice that the existence of minimizers is in general
not guaranteed even for smooth boundary data on smooth domains, see [52, Exam-
ple 3.6]. Nevertheless, an existence result (in BV and for any datum ') was proved
in [52] for a penalized functional, see also Section 3.

In this paper, we consider the Dirichlet problem for the functional A in the
space of functions with bounded variation and we study minimizers under the as-
sumption that the boundary datum ' satisfies a bounded slope condition with con-
stant Q (Q-B.S.C. for short). This approach is inspired by some classical and well-
known results in the Calculus of Variations that go back to Hilbert and Haar ([33]
and [28] respectively) and has been used by Hartman, Nirenberg and Stampac-
chia [29–32, 54]. The main classical result in this framework (see e.g. [27, Chap-
ter 1] or, for minimal surfaces, [43]) states that, given a strictly convex integral
functional depending only on the gradient and a boundary datum satisfying the Q-
B.S.C., there exists a unique minimizer in the class of Lipschitz functions and its
Lipschitz constant is not greater than Q. We stress that, in the general statement
in [27], neither growth assumptions nor ellipticity conditions are required whereas
these hypotheses usually play a crucial role for existence and regularity results. In
the same setting, it has been recently proved in [8] that any continuous minimizer in
the Sobolev space W 1,1 is Lipschitz continuous with Lipschitz constant not greater
than Q.

The main tools used to prove these results are: the validity of comparison
principles between minimizers, the invariance of minimizers under translations of
the domain, and a Haar-Radò type theorem stating that the maximum among the
difference quotients of the minimizer is attained at the boundary. Subsequent pa-
pers [39, 40] addressed the problem of considering functionals that are not strictly
convex. The main difficulty, in this case, is that comparison principles do not hold
in their generality (an example can be found in [9] or in [42]) and it is overcome
by detecting special minimizers which instead satisfy them, see [9–11, 42]. It is
worth remarking that, in all these papers, there are assumptions guaranteeing the
boundedness of the faces of the epigraph of the lagrangian. Concerning functionals
depending also on lower order terms, this approach works for lagrangians of sum
type as f (⇠) + g(z, u), see [3, 4, 10, 23].

In the present paper we use some of the techniques described above but we
encounter new difficulties that we briefly sketch here and will be discussed in details
in the following sections. First of all, we deal with functions of bounded variation
and we use ideas of [24], where functionals depending only on the gradient are
considered. The second point is the dependance of our functional on points of
� encoded in the vector field X⇤. Moreover, the epigraph of our lagrangian has
unbounded faces. All these peculiarities led us to face many new technical problems
that will be considered in Sections 4 and 5.
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In the framework of the first Heisenberg groupH1, the bounded slope condition
was already considered in [46] by S. D. Pauls. Using an approximation scheme by
means of minimal surfaces in the Riemannian approximations ofHn , he showed the
existence in W 1,p(�) \ C0(�) of weak solutions to the Euler equation associated
withA .

Before stating our main result let us underline some peculiarities about the
bounded slope condition. On the one hand, it is a quite restrictive assumption be-
cause it implies that, unless ' is affine, � is convex. On the other hand, the class
of functions satisfying it is quite large, since M. Miranda [43] proved that, if � is
uniformly convex, then any ' 2 C1,1 satisfies the Q-B.S.C. for some Q.

Theorem 1.1. Let � ⇢ R2n be open, bounded and with Lipschitz regular bound-
ary, and let ' : @� ! R satisfy the Q-B.S.C. for some Q > 0. Then, the minimiza-
tion problem

min
�
A(u) : u 2 BV(�), u|@� = '

 
(1.1)

admits a unique solution û. Moreover, û is Lipschitz continuous and Lip(û) 

Q + 4 supz2� |z|.

Notice that, if ' satisfies the B.S.C., then it is Lipschitz continuous on @�:
in this sense, our assumptions on the boundary datum are stronger than those in
[16, Theorem A], where the authors prove the existence and the continuity of BV
minimizers on C2,↵ parabolically convex domains assuming only the continuity of
the boundary datum. Nevertheless, we are able to obtain stronger results (namely:
uniqueness and Lipschitz regularity of the minimizer) on (possibly) less regular
domains. In fact our result applies, in particular, when � is uniformly convex and
' is (the restriction to @� of) a function of class C1,1: in this case, as previously
mentioned, ' automatically satisfies the B.S.C.

We conjecture that, as [16, Theorem A], our main result holds as well for more
general functionals.

We also want to stress a couple of interesting points concerning Theorem 1.1.
First, in contrast with the Semi-Classical Theory, the Lipschitz constant of the min-
imizer may a priori be greater than the constant Q given by the bounded slope
condition. Second, Theorem 1.1 is sharp at least in H1 in the sense that, even un-
der the bounded slope condition, a minimizer might not be better than Lipschitz
continuous, see Example 6.6.

The proof of Theorem 1.1 is based on several intermediate results which have
an independent interest. We mention, for instance, a Comparison Principle for min-
imizers, Theorem 4.5, which in turn is based on the existence of the (pointwise
a.e.) “maximum” and “minimum” in the family of minimizers, see Proposition 4.4.
The uniqueness in Theorem 1.1 is based on a criterion stated in Proposition 5.1 (for
which we have to credit [14]) and on the fact that affine functions are the unique
minimizers under their own boundary datum, see Theorem 5.5.

The structure of the paper is the following. Section 2 contains basic facts about
functions with bounded variation and their traces. In Section 3 we recall several
preliminary results about the functionalA . Section 4 is devoted to the study of the
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set of minimizers and its structure, with particular regard to comparison principles.
In Section 5 we prove the uniqueness results in Proposition 5.1 and Theorem 5.5.
Finally, Section 6 is devoted to the proof of Theorem 1.1.

2. Functions of bounded variation and traces

The aim of this section is to recall some basic properties of the space of functions of
bounded variation; we refer to the monographs [1,26] for a more extensive account
on the subject as well as for proofs of the results we are going to recall here.

Let � be an open set in Rn . We say that u 2 L1(�) has bounded variation in
� if

sup
⇢Z

�
u div' dLn : ' 2 C1c (�), k'k  1

�
< +1; (2.1)

equivalently, if there exist a Rn-valued Radon measure Du := (D1u, . . . , Dnu) in
� which represents the distributional derivative of u, i.e., ifZ

�
u
@'

@xi
dLn = �

Z
�
' dDiu 8' 2 C1c (�), 8i = 1, . . . , n.

The space of functions with bounded variation in � is denoted by BV(�). By
definition, W 1,1(�) ⇢ BV(�) and Du = ru Ln for any u 2 W 1,1(�).

We denote by |Du| the total variation of the measure Du; |Du| defines a finite
measure on� and the supremum in (2.1) coincides with |Du|(�). It is well-known
that BV(�) is a Banach space when endowed with the norm

kukBV := kukL1 + |Du|(�).

By the Radon-Nikodym Theorem, if u 2 BV(�) one can write Du = Dau + Dsu,
where Dau is the absolutely continuous part of Du with respect to Ln and Dsu is
the singular part of Du with respect to Ln . We denote by ru 2 L1(�) the density
of Dau with respect to Ln , so that Dau = ru Ln . It turns out that, if u 2 BV(�),
then u is approximately differentiable at a.e. x 2 � with approximate differential
ru(x), i.e.,

lim
⇢!0+

Z
B(x,⇢)

|u(y) � ũ(x) � hru(x), y � xi |

⇢
dLn = 0 for Ln-a.e. x 2 � .

We now recall a few basic facts about boundary trace properties for BV functions.
Assume that � ⇢ Rn is a bounded open set with Lipschitz regular boundary; the
spaces L p(@�), p 2 [1,+1], will be always understood with respect to the (fi-
nite) measureHn�1 @�, whereHn�1 denotes the (n� 1)-dimensional Hausdorff
measure on Rn (see again [1] or [26]). It is well-known that for any u 2 BV(�)
there exists a (unique) function u|@� 2 L1(@�) such that, forHn�1-a.e. x 2 @�,

lim
⇢!0+

⇢�n
Z
�\B(x,⇢)

��u � u|@�(x)
�� dLn = lim

⇢!0+

Z
�\B(x,⇢)

��u � u|@�(x)
�� dLn=0.
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The function u|@� is called the trace of u on @�. The trace operator u 7! u|@�

is linear and continuous between (BV(�), k·kBV) and L1(@�); actually, it is con-
tinuous also when BV(�) is endowed with the (weaker) topology induced by the
so-called strict convergence, see [1, Definition 3.14].
Remark 2.1. It is well-known that, if u1, u2 2 BV(�), then u := max{u1, u2} and
u := min{u1, u2} belong to BV(�); moreover, one can show that

u|@� = max
�
u1|@�, u2|@�

 
, u

|@� = min
�
u1|@�, u2|@�

 
.

The proof of this fact follows in a standard way from the very definition of traces.
Since Du ⌧ |Du| we can write Du = �u |Du| for a |Du|-measurable function

�u : � ! Sn�1. With this notation, one has also
Z
�
u div' dLn = �

Z
�
h�u,'i d|Du| +

Z
@�
u|@� h', ⌫�i dHn�1

8' 2 C1c
�
Rn, Rn� (2.2)

where ⌫� is the unit outer normal to @�.
Finally, we recall the following fact, whose proof stems from (2.2).

Proposition 2.2 ([26, Remark 2.13]). Assume that � and �0 are open subsets of
Rn with bounded Lipschitz boundary and such that � b �0. If u 2 BV(�) and
v 2 BV(�0 \�), then the function

f (x) :=

(
u(x) if x 2 �

v(x) if x 2 �0 \�

belongs to BV(�0) and

|Df |(@�) =

Z
@�

��u|@� � v|@�

�� dHn�1 ,

where we have used the notation v|@� to mean (v
|@(�0\�)) @�.

3. The area functional for t-graphs in the Heisenberg group

Before introducing the area functionalA with more details, we need some prelim-
inary notation. For z := (x, y) 2 Rn

⇥ Rn we define

z⇤ := (�y, x) 2 R2n .

Let us state some useful properties of the map z 7! z⇤; we denote by · ,r and div
the standard scalar product, gradient and divergence in R2n .
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Lemma 3.1. The following properties hold:

(i) if z1, z2 2 R2n are linearly dependent, then z1 · z⇤2 = 0;
(ii) z1 · z2 = z⇤1 · z⇤2 for each z1, z2 2 R2n;
(iii) if � ⇢ R2n is open and f 2 C1(�), then div (r f )⇤ = 0 on �.

Proof. The first two statements are straightforward. To prove (iii), observe that
(r f )⇤ = (�@n+1 f, . . . ,�@2n f, @1 f, . . . , @n f ), thus

div (r f )⇤ = �

nX
i=1

@i@n+i f +

nX
i=1

@n+i@i f = 0 .

Given an open set � ⇢ R2n we define the convex functionalA� : BV(�) ! R

A�(u) :=

Z
�

��
ru + X⇤

�� dL2n +

��Dsu
�� (�) ,

where X(z) := 2z and, clearly, X⇤(z) = 2z⇤.
When the open set � is clear from the context, we will simply writeA instead

ofA�. Using the standard identification of the Heisenberg groupHn withR2nz ⇥Rt ,
there holds

A(u) =

��@Etu��H (�⇥ R) , (3.1)

where |@Etu |H(�⇥ R) denotes the H-perimeter in �⇥ R ⇢ Hn of the t-subgraph

Etu :=

�
(z, t) 2 Hn

: z 2 �, t < u(z)
 

of u. See [52] for more details. It was proved in [52] thatA is lower semicontinuous
with respect to the L1-convergence and

A(u)= inf
⇢
lim inf
j!1

Z
�

��
ru j + X⇤

�� dL2n : (u j ) j2N ⇢ C1(�), u j ! u in L1(�)

�
.

The following approximation result holds:

Proposition 3.2. Let� ⇢ R2n be a bounded open set with Lipschitz boundary. Let
u 2 BV(�) with u|@� = ' 2 L1(�); then there exists a sequence (uk)k ⇢ C1(�)

converging to u in L1(�) and such that

(uk)|@� = ' 8k 2 N, (3.2)

A�(u) = lim
k!1

Z
�

��
ruk + X⇤

�� dL2n. (3.3)
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Proof. The existence of a sequence (uk)k ⇢ C1(�) converging to u in L1(�)
and such that (3.3) holds was proved in [52, Theorem 3.2], see also [52, Corollary
3.3]. More precisely, this sequence was constructed in Step 4 of the proof of [52,
Theorem 3.2] by imposing certain conditions on suitably mollified functions, see
formulae (3.5)-(3.7) therein. Reasoning as in [26, Remark 1.18], it can be proved
that condition (3.5) of [52] implies that

lim
⇢!0+

⇢�n
Z
�\B(z,⇢)

|u � uk | dL2n = 0 forH2n�1-a.e. z 2 @�

and (3.2) follows from the definition of traces.

We are interested in the existence of minimizers forA under prescribed bound-
ary conditions. Assuming � to be a bounded domain with Lipschitz boundary, we
consider

M1 := inf
�
A(u) : u 2 BV(�), u|@� = '

 
. (3.4)

It is known that the infimum M1 might not be attained even for smooth � and ',
see [52, Example 3.6].

On the other hand, one can consider the functional

A',�(u) := A�(u) +

Z
@�

��u|@� � '
�� dH2n�1

where the integral on the right hand side can be seen as a penalization for u not
taking the boundary value '; this penalization is natural from the viewpoint of the
geometry of Hn as shown in [52, Remark 3.8]. Again, we will simply write A'

instead ofA',� when the open set � is clear from the context. By using the Direct
Method of the Calculus of Variations (see again [52]), it can be shown that the
problem

M2 := min
�
A'(u) : u 2 BV(�)

 
admits always a solution.

Let us show that the Lavrentiev phenomenon does not occur for our minimiza-
tion problem.

Proposition 3.3. Let� ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary and ' be in L1(@�); then, setting

M3 := inf
n
A(u) : u 2 C1(�) \ W 1,1(�), u|@� = '

o

we have M1 = M2 = M3, where M1 and M2 are defined above.

Proof. Clearly, one has M3 � M1 � M2 becausen
u 2 C1(�) \ W 1,1(�) : u|@� = '

o
⇢

�
u 2 BV(�) : u|@� = '

 
⇢ BV(�)
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and A' coincides with A on {u 2 BV(�) : u|@� = '}. Let u 2 BV(�) with
u|@� = ' and consider (uk)k ⇢ C1(�) as in Proposition 3.2. Then

M3  A(u) = lim
k!1

A(uk),

which implies M3  M1 and hence M3 = M1. Finally, the equality M1 = M2 has
been established in [52, Theorem 1.4], and the proof is accomplished.

Remark 3.4. One can easily show that, if the boundary datum ' is Lipschitz con-
tinuous on @�, then the equalities

M1 = M2 = M3 = inf
�
A(u) : u 2 Lip(�), u|@� = '

 
hold.

4. The set of minimizers and Comparison Principles

The aim of this section is to establish a Comparison Principle for minimizers of
the area functional with penalization on the boundary. It is well-known that Com-
parison Principles are strictly related to uniqueness of solutions and that function-
als defined in the BV space do not exhibit, in general, uniqueness of minimiz-
ers, even in the case of a strictly convex lagrangian. In our case, the lagrangian
f (z, ⇠) := |⇠ + X⇤(z)| is not even strictly convex. The validity of Comparison
Principles for non strictly convex functionals has been studied in [9, 11, 37, 40, 42]
in the case of superlinear growth, and it has been proved for special classes of min-
imizers. In this section we follow the same ideas, but we have to overcome some
new difficulties that are related both to the properties of BV and to the fact that the
lagrangian depends also on the variable z.

The main Comparison Principle is stated in Theorem 4.5. Its proof is based
on several steps and, in particular, it relies on some inequalities that, in our opin-
ion, have an interest on their own. For this reason, we enunciate them as separate
propositions. The proof of Theorem 4.5 will then follow in a few lines.

We remark that similar results for functionals with linear growth, depending
just on the gradient and defined in the space of function of bounded variation, have
been recently obtained in [24].

The next two propositions state two inequalities between the values of the area
functional at u1, u2, u1 _ u2 := sup{u1, u2} and u1 ^ u2 := inf{u1, u2}. The first
one is stated for the area functional and the second one is for the functional with
the penalization on the boundary. We observe that, when one deals with integral
functionals defined in Sobolev spaces, these inequalities turn out to be equalities,
whose proof is straightforward (see [42, Lemma 5.1]).

Proposition 4.1. Let� ⇢ R2n be a bounded open set with Lipschitz boundary. Let
u1, u2 2 BV(�) be fixed. Then

A(u1 _ u2) + A(u1 ^ u2)  A(u1) + A(u2) . (4.1)
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Proof. Recalling (3.1), inequality (4.1) is equivalent to��@Etu1_u2��H (�⇥R)+

��@Etu1^u2��H (�⇥R)
��@Etu1��H (�⇥R)+

��@Etu2��H (�⇥R)

which follows from [52, Proposition 2.3] on noticing that

Etu1_u2 = Etu1 [ Etu2, Etu1^u2 = Etu1 \ Etu2 .

The next proposition is the analogue of the previous one for the functional A'

where the boundary conditions are taken into account.
Proposition 4.2. Let� ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary. Then, for each u1, u2 2 BV(�) and '1,'2 2 L1(@�) we have

A'1_'2,�(u1 _ u2) + A'1^'2,�(u1 ^ u2)  A'1,�(u1) + A'2,�(u2) (4.2)

Proof. Let us fix a bounded open set �0 ⇢ R2n with Lipschitz boundary and such
that � b �0. By [26, Theorem 2.16] it is possible to find f1, f2 in W 1,1(�0 \ �)
such that

f1|@� = '1 and f2|@� = '2 .

Define
v1 :=

⇢
u1 in �
f1 in �0 \�,

v2 :=

⇢
u2 in �
f2 in �0 \�

so that

v1 _ v2 =

⇢
u1 _ u2 in �
f1 _ f2 in �0 \�,

v1 ^ v2 =

⇢
u1 ^ u2 in �
f1 ^ f2 in �0 \�.

We have v1, v2, v1 _ v2, v1 ^ v2 2 BV(�0) and Lemma 4.1 gives

A�0(v1 _ v2) + A�0(v1 ^ v2)  A�0(v1) + A�0(v2). (4.3)

Writing ( f1 _ f2)|@� for (( f1 _ f2)|@(�0\�)) @�, we have by Proposition 2.2 and
Remark 2.1

A�0(v1 _ v2)

=

Z
�0

��
r(v1 _ v2) + X⇤

�� dL2n +

��Ds(v1 _ v2)
�� (�0)

= A�(v1 _ v2) + A�0\�
(v1 _ v2) +

��Ds(v1 _ v2)
�� (@�)

= A�(u1 _ u2) + A�0\�
( f1 _ f2)

+

Z
@�

��(u1 _ u2)|@� � ( f1 _ f2)|@�
�� dH2n�1

= A�(u1 _ u2) +

Z
�0\�

��
r( f1 _ f2) + X⇤

�� dL2n
+

Z
@�

��(u1 _ u2)|@� � ('1 _ '2)
�� dH2n�1

= A'1_'2,�(u1 _ u2) +

Z
�0\�

��
r( f1 _ f2) + X⇤

�� dL2n

(4.4)
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where we also utilized Remark 2.1. In a similar way one obtains

A�0(v1 ^ v2) = A'1^'2,�((u1 ^ u2)) +

Z
�0\�

��
r( f1 ^ f2) + X⇤

�� dL2n

A�0(v1) = A'1,�(u1) +

Z
�0\�

��
r f1 + X⇤

�� dL2n

A�0(v2) = A'2,�(u2) +

Z
�0\�

��
r f2 + X⇤

�� dL2n .

(4.5)

Now, (4.2) will follow from (4.3), (4.4) and (4.5) provided we show thatZ
�0\�

��
r( f1 _ f2) + X⇤

�� dL2n +

Z
�0\�

��
r( f1 ^ f2) + X⇤

�� dL2n

=

Z
�0\�

��
r f1 + X⇤

�� dL2n +

Z
�0\�

��
r f2 + X⇤

�� dL2n .

This can be easily seen by using the well-known facts

r( f1 _ f2) = (r f1)�{ f1� f2} + (r f2)�{ f1< f2},

r( f1 ^ f2) = (r f2)�{ f1� f2} + (r f1)�{ f1< f2} .

The proof is accomplished.

Given a bounded open set � ⇢ R2n with Lipschitz regular boundary and a
function ' 2 L1(@�) we define

M' := argmin
u

A',�(u) = argmin
u

⇢
A�(u) +

Z
@�

|u � '| dH2n�1
�

.

The setM' ⇢ BV(�) is not empty by [52, Theorem 1.4].

Corollary 4.3. Let '1,'2 2 L1(@�) be such that '1  '2 H2n�1-a.e. on @� and
assume that u1 2 M'1 and u2 2 M'2 . Then (u1 _ u2) 2 M'2 and (u1 ^ u2) 2

M'1 .

Proof. The assumptions that u2 is a minimizer ofA'2,� and '1  '2 imply that

A'2,�(u1 _ u2) � A'2,�(u2) . (4.6)

Analogously we have

A'1,�(u1 ^ u2) � A'1,�(u1) . (4.7)

By Proposition 4.2 it follows that

A'1,�(u1 _ u2) + A'2,�(u1 ^ u2) = A'1,�(u1) + A'2,�(u2)

so that equality holds both in (4.6) and in (4.7).
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In [40] it has been proved that the set of minimizers of a superlinear convex
functional has a maximum u (respectively a minimum u) defined as the pointwise
supremum (infimum) of the minimizers. These special minimizers are then used to
prove one-sided Comparison Principles. Now, with a different technique required
by the use of functions of bounded variation, we prove a similar result.

Proposition 4.4. Let� ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary and let ' 2 L1(@�). Then, there exists u, u 2 M' such that the inequalities

u  u  u L2n-a.e. in � (4.8)

hold for any u 2 M' .

Proof. We start by proving that M' is bounded in BV(�). Given u 2 M' , we
define J := A',�(u) < 1; clearly, J depends only on ' and not on u. We have

|Du|(�) =

Z
�

|ru| dL2n +

��Dsu
��(�)



Z
�

��
ru + X⇤

�� dL2n
+

Z
�

��X⇤

�� dL2n +

��Dsu
��(�) +

Z
@�

|u � '| dH2n�1

=J +

Z
�

��X⇤

�� dL2n < 1 .

(4.9)

Moreover, by [26, Theorem 1.28 and Remark 2.14] there exists c = c(n) > 0 such
that

kukL1(�)  |�|
1/2n

kukL2n/(2n�1)(�)

 c |�|
1/2n

✓
|Du|(�) +

Z
@�

��u|@�

�� dH2n�1
◆

 c|�|
1/2n

✓
|Du|(�) +

Z
@�

��u|@� � '
�� dH2n�1

+

Z
@�

|'| dH2n�1
◆

= c|�|
1/2n

✓
J +

Z
@�

|'| dH2n�1
◆

where |�| := L2n(�). This, together with (4.9), implies that M' is bounded in
BV(�).

Therefore (see [1, Theorem 3.23]),M' is pre-compact in L1(�), i.e., for every
sequence (uh)h2N ⇢ M' there exist u 2 BV(�) and a subsequence (uhk )k2N such
that uhk ! u in L1(�). Since A',� is lower semicontinuous with respect to the
L1-convergence we have also

A',�(u)  lim inf
k!1

A',�(uhk ) = J.
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We deduce that u 2 M' , i.e., that M' is indeed compact in L1(�). Now, the
functional

BV(�) 3 u 7�! I (u) :=

Z
�
u dL2n

is continuous in L1(�), hence it admits maximum u and minimum u inM' : let us
prove that u, u satisfy (4.8) for any u 2 M' .

Assume by contradiction there exists u 2 M' such that �0
:= {z 2 � :

u(z) > u(z)} has strictly positive measure. Then, by Corollary 4.3, u _ u is inM' .
Moreover Z

�

�
u _ u

�
dL2n =

Z
�0

u dL2n +

Z
�\�0

u dL2n >

Z
�
u dL2n

yielding a contradiction. The fact that u � u follows in a similar way.

Now we can state a Comparison Principle inspired by the results obtained in
[40] for superlinear functionals in Sobolev spaces.

Theorem 4.5. Let � ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary; let ', 2 L1(@�) be such that '   H2n�1-a.e. on @�. Consider the
functions u, u 2 M' and w, w 2 M such that1

u  u  u L2n-a.e. in �, 8u 2 M'

w  w  w L2n-a.e. in �, 8w 2 M .
(4.10)

Then
u  w and u  w L2n-a.e. in � (4.11)

and, in particular,

u  w L2n-a.e. in �, 8u 2 M'

u  w L2n-a.e. in �, 8w 2 M .

Proof. We have proved in Corollary 4.3 that w _u is a minimizer ofA and w ^u
is a minimizer of A' . Assumption (4.10) then gives (4.11), which allows us to
conclude.

The next result is a consequence of the Comparison Principle. We state it here
explicitly since, in this formulation, it will be useful in the sequel.

Corollary 4.6. Let � ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary and ', 2 L1(@�); let u, u 2 M' and w,w 2 M be as in (4.10). Then,
for every ↵ 2 R, one has

u + ↵, u + ↵ 2 M'+↵

u + ↵  u  u + ↵ L2n-a.e. in �, 8u 2 M'+↵

(4.12)

1 The existence of u, u, w, w is guaranteed by Proposition 4.4.
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and

ku � wkL1(�)  k' �  kL1(@�)

ku � wkL1(�)  k' �  kL1(@�).
(4.13)

In particular, the implications

u|@� = ', w|@� =  ) ku � wkL1(�) = k' �  kL1(@�)

u
|@� = ', w

|@� =  ) ku � wkL1(�) = k' �  kL1(@�),
(4.14)

hold.

Proof. The statements in (4.12) follow at once on noticing that

A'+↵,�(u + ↵) = A',�(u) 8 u 2 BV(�) .

Let ↵ := k' �  kL1(@�) 2 R, then

'   + ↵ H2n�1-a.e. in @�,

and, by (4.12) and Corollary 4.5, we get

u  w + ↵ and u  w + ↵ L2n-a.e. in �.

An analogous argument shows that

w  u + ↵ and w  u + ↵ L2n-a.e. in �,

whence (4.13).
If the assumptions in (4.14) are satisfied, classical properties of traces ensure

that the reverse inequalities in (4.13) holds, and this gives the validity of the impli-
cations in (4.14).

5. Uniqueness of special minimizers

This section is devoted to some uniqueness results for minimizers of the area func-
tional. We have already recalled that, in general, minimizers of functionals defined
in BV are not unique. Comparison principles are particularly interesting in this con-
text. If we consider the functional with the penalization on the boundary, whenever
we detect a special boundary datum yielding uniqueness of the minimizer we also
know that this minimizer satisfies the Comparison Principle, so that it can be used
as a ‘barrier’. We emphasize this fact in Corollary 5.6, that will be the key point in
the proof of the main result of this paper.

The following uniqueness result can be proved on combining Theorems 5.1,
5.2 and 5.3 in [14]. For the reader’s benefit, we give here a slightly simplified
proof.
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Proposition 5.1. Let� ⇢ R2n be a bounded open set with Lipschitz regular bound-
ary; fix p 2 [1, 2] and set p0

:=
p

p�1 2 [2,+1]. Let ' 2 W 1,p0

(�) be fixed and
consider the minimization problem

min
n
A(u) : u 2 ' + W 1,p

0 (�)
o

. (5.1)

If u 2 W 1,p0

(�) and v 2 W 1,p(�) are minimizers of (5.1), then

u = v L2n-a.e. in �.

Proof. Let us consider the function (u + v)/2 2 ' + W 1,p
0 (�); we claim that

A
�u+v
2

�
=

1
2 (A(u) + A(v)). (5.2)

Indeed, the convexity ofA gives

A
�u+v
2

�


1
2 (A(u) + A(v)),

while the reverse inequality follows from the fact that u and v are minimizers for
the problem (5.1). This proves (5.2), whence
Z
�

���12ru +
1
2rv + X⇤

��� dL2n =

1
2

Z
�

��
ru + X⇤

�� dL2n +

1
2

Z
�

��
rv + X⇤

�� dL2n.
This in turn implies that

���
ru + X⇤

�
+

�
rv + X⇤

���
=

��
ru + X⇤

��
+

��
rv + X⇤

�� a.e. in �,

i.e., ru + X⇤ and rv + X⇤ are parallel (and with the same direction) L2n-a.e. in
�. In particular, by Lemma 3.1 (i) we obtain

0 =

�
ru + X⇤

�
⇤

·

�
rv + X⇤

�
=

�
(ru)⇤ � X

�
·

�
rv + X⇤

�
a.e. in � .

Thus Z
�1

�
(ru)⇤ � X

�
·

�
rv + X⇤

�
dL2n = 0, (5.3)

where �1 := {z 2 � : u(z) > v(z)}. Let us expand (5.3) to get
Z
�1

(ru)⇤ · rv dL2n +

Z
�1

(ru)⇤ · X⇤ dL2n �

Z
�1

rv · X dL2n

�

Z
�1

X · X⇤ dL2n = 0 .

(5.4)
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Lemma 3.1 gives

(ru)⇤ · X⇤

= ru · X and X · X⇤

= 0,

so that (5.4) becomes

�

Z
�1

(ru)⇤ · (ru � rv) dL2n +

Z
�1

X · (ru � rv) dL2n = 0 (5.5)

where we also used the fact that (ru)⇤ · ru = 0. By the classical Stampacchia
theorem, we have (u � v)+ 2 W 1,p(�) and

r(u � v)+ = (r(u � v))��1 a.e. in �,

hence (5.5) can be written as

�

Z
�
(ru)⇤ · r(u � v)+ dL2n +

Z
�
X · r(u � v)+ dL2n = 0.

Integrating by parts and using the fact that (u�v)+
|@� = 0 because u|@� = v|@� = ',

we obtain

0 = �

Z
�
(ru)⇤ · r(u � v)+ dL2n +

Z
�
X · r(u � v)+ dL2n

= �

Z
�
(ru)⇤ · r(u � v)+ dL2n �

Z
�
(u � v)+ div X dL2n

= �

Z
�
(ru)⇤ · r(u � v)+ dL2n � 2n

Z
�
(u � v)+ dL2n.

(5.6)

We claim that Z
�
(ru)⇤ · r(u � v)+ dL2n = 0. (5.7)

To this end, consider a sequence (uk)k2N such that

uk 2 C1(�) \ W 1,p0

(�) and ruk
⇤

* ru in L p
0

(�) as k ! +1.

We have also (ruk)⇤
⇤

* ru⇤, thusZ
�
(ru)⇤ · r(u � v)+ dL2n = lim

k!1

Z
�

(ruk)⇤ · r(u � v)+ dL2n

=

Z
�
div

�
(ru)⇤

�
(u � v)+ dL2n

= 0

by Lemma 3.1 (iii). By (5.6) and (5.7) we deduce that (u � v)+ = 0 a.e. on �.
On considering �2 := {z 2 � : v(z) > u(z)} in place of �1, one can similarly

prove that (u � v)� = 0 a.e. on �. This completes the proof.
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We introduce now some notations that will be useful also in the proof of the
main theorem of the paper. Given a subset � ⇢ R2n , a function u : � ! R, a
vector ⌧ 2 R2n and ⇠ 2 R we set

�⌧ :=

n
z 2 R2n : z + ⌧ 2 �

o
u⌧ (z) := u(z + ⌧ ), z 2 �⌧

u⇤

⌧,⇠ (z) := u⌧ (z) + 2
⌦
⌧⇤, z

↵
+ ⇠, z 2 �⌧ .

It is easily seen that, given� open and u 2 BV(�), then both u⌧ and u⇤

⌧,⇠ belong to
BV(�⌧ ). Moreover, if � is bounded with Lipschitz regular boundary one has also�

u⇤

⌧,⇠

�
|@(�⌧ )

=

�
u|@�

�
⌧

+ 2
⌦
⌧⇤, ·

↵
+ ⇠ =

�
u|@�

�
⇤

⌧,⇠
. (5.8)

Remark 5.2. The family of functions u⇤

⌧,⇠ has a precise meaning from the view-
point of Heisenberg groups geometry. Indeed, it is a matter of computations to ob-
serve that the t-subgraph Etu⇤

⌧,⇠
of u⇤

⌧,⇠ coincides with the left translation (�⌧, ⇠)·Etu
(according to the group law) of the t-subgraph Etu of u by the element (�⌧, ⇠) 2

Hn .

Lemma 5.3. Let � ⇢ R2n be a bounded open set with Lipschitz regular boundary,
' 2 L1(@�), ⌧ 2 R2n and ⇠ 2 R. Then

A'⇤

⌧,⇠ ,�⌧

�
u⇤

⌧,⇠

�
= A',�(u) 8 u 2 BV(�) .

Proof. Using, e.g., [1, Remark 3.18], it is not difficult to prove that Du⌧ = `⌧#(Du),
where `⌧ is the translation z 7! z�⌧ and `⌧# denotes the push-forward of measures
via `⌧ . In particular

ru⌧ = (ru)⌧ = ru � `�1⌧ and Dsu⌧ = `⌧#
�
Dsu

�
,

hence
Du⇤

⌧,⇠ =

�
ru � `�1⌧ + 2⌧⇤

�
L2n + `⌧#

�
Dsu

�
.

Therefore

A'⇤

⌧,⇠ ,�⌧

�
u⇤

⌧,⇠

�
=

Z
�⌧

���⇣ru � `�1⌧

⌘
+ 2⌧⇤

+ X⇤

��� dL2n +

��`⌧#(Dsu)
�� (�⌧ )

+

Z
@�⌧

����u⇤

⌧,⇠

�
|@(�⌧ )

� '⇤

⌧,⇠

��� dH2n�1.

We now use (5.8) and the equality

2⌧⇤

+ X⇤(z) = 2(⌧ + z)⇤ =

⇣
X⇤

� `�1⌧

⌘
(z) 8z 2 R2n
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to get, with a change of variable,

A'⇤

⌧,⇠ ,�⌧

�
u⇤

⌧,⇠

�
=

Z
�⌧

��
ru + X⇤

��
� `�1⌧ dL2n +

��`⌧#(Dsu)
��(`⌧ (�))

+

Z
@�⌧

���u|@� � '
�
⌧

�� dH2n�1

=

Z
�

��
ru + X⇤

�� dL2n +

��Dsu
��(�) +

Z
@�

��u|@� � '
�� dH2n�1

= A',�(u) .

Corollary 5.4. Under the same assumptions of Lemma 5.3: if u and u are as in
Proposition 4.4, then (u)⇤⌧,⇠ , (u)

⇤

⌧,⇠ 2 M'⇤

⌧,⇠
and

�
u
�
⇤

⌧,⇠
 u 

�
u
�
⇤

⌧,⇠
L2n-a.e. in �⌧ ,8u 2 M'⇤

⌧,⇠
.

The next theorem states that, whenever we fix an affine boundary datum, the func-
tional with the penalization on the boundary has a unique minimizer that is the
affine function itself. This is one of the main tools in the proof of Theorem 1.1.

Theorem 5.5. Let� ⇢ R2n be a bounded open set with Lipschitz regular boundary
and let L : R2n ! R be an affine function, i.e., L(z) = ha, zi + b for some
a 2 R2n, b 2 R. Then L is the unique solution of

min
�
AL ,�(u) : u 2 BV(�)

 
. (5.9)

Proof. We divide the proof into several steps.
Step 1. reduction to the case L = 0.

Setting ⌧ := a⇤/2 2 R2n and ⇠ = �b, one has L⇤

⌧,⇠ ⌘ 0. By Lemma 5.3 and
Corollary 5.4, the fact that L is the unique solution of (5.9) is equivalent to the fact
that 0 is the unique minimizer of the problem

min
�
A0,�⌧ (u) : u 2 BV(�⌧ )

 
.

In view of this, we can henceforth assume that L = 0.
Step 2. L = 0 is a minimizer for (5.9).

Let u 2 BV(�); by the dominated convergence theorem we haveZ
�

D
�u,

X⇤

|X⇤
|

E
d|Du| = lim

✏!0

Z
�

D
�u,

X⇤

|X⇤
|+✏

E
d|Du|

= lim
✏!0


�

Z
�
u div

⇣
X⇤

|X⇤
|+✏

⌘
dL2n +

Z
@�
u|@�

D
⌫�, X⇤

|X⇤
|+✏

E
dH2n�1

�

=

Z
@�
u|@�

D
⌫�, X⇤

|X⇤
|

E
dH2n�1 ,
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where we have used the fact that div
� X⇤

|X⇤
|+✏

�
= 0. Thus

A0,�(u) =

Z
�

��
ru + X⇤

�� dL2n +

��Dsu
��(�) +

Z
@�

��u|@�

�� dH2n�1

�

Z
�

D
ru + X⇤, X⇤

|X⇤
|

E
dL2n +

Z
�

D
�u,

X⇤

|X⇤
|

E
d
��Dsu

��
+

Z
@�

��u|@�

�� dH2n�1

=

Z
�

D
�u,

X⇤

|X⇤
|

E
d|Du| +

Z
�

D
X⇤, X⇤

|X⇤
|

E
dL2n +

Z
@�

��u|@�

�� dH2n�1

=

Z
�

��X⇤

��L2n +

Z
@�

��u|@�

�� ⇣1+ sgn
�
u|@�

� D
⌫�, X⇤

|X⇤
|

E⌘
dH2n�1

�

Z
�

��X⇤

��L2n = A0,�(0) ,

(5.10)

which proves that L = 0 is a minimizer of (5.9).

Step 3. if � = B(0, R) for some R > 0, then L = 0 is the unique minimizer of
(5.9).

Since� is a ball centered at the origin, we have
D
⌫�, X⇤

|X⇤
|

E
= 0 and, discarding

its third line, (5.10) can be rewritten as

A0,�(u) =

Z
�

��
ru + X⇤

�� dL2n +

��Dsu
��(�) +

Z
@�

��u|@�

�� dH2n�1

�

Z
�

D
ru + X⇤, X⇤

|X⇤
|

E
dL2n +

Z
�

D
�u,

X⇤

|X⇤
|

E
d
��Dsu

��
+

Z
@�

��u|@�

�� dH2n�1

=

Z
�

��X⇤

��L2n +

Z
@�

��u|@�

�� dH2n�1

�

Z
�

��X⇤

��L2n = A0,�(0) .

(5.11)

Let u 2 BV(�) be a minimizer for (5.9); then (by Step 2)A0,�(u) = A0,�(0) and
the two inequalities in (5.11) must be equalities. In particular, one has u|@� = 0
and

Z
�

��
ru + X⇤

�� dL2n =

Z
�

D
ru + X⇤, X⇤

|X⇤
|

E
dL2n ,

��Dsu
��(�) =

Z
�

h�u, �ui d
��Dsu

��
=

Z
�

D
�u,

X⇤

|X⇤
|

E
d
��Dsu

�� ,
so that �u =

X⇤

|X⇤
|

|Dsu|-a.e. and there exists a measurable function � : � !

[0,+1) such that

�u |ru| + X⇤

= ru + X⇤

= � X⇤

|X⇤
|
L2n-a.e on � .
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All in all, there exists a |Du|-measurable function �̃ : � ! R such that

�u = �̃X⇤

|Du|-a.e. in �. (5.12)

We claim that, up to the choice of a representative, any function u satisfying (5.12)
is 0-homogeneous, i.e., it satisfies u(z) = u(t z) for any z 2 B(0, R) and t 2

(0, 1); roughly speaking, (5.12) says indeed that u has null radial derivative, which
suggests its 0-homogeneity. Recalling that u|@� = 0, this would be enough to
conclude that u ⌘ 0.

Consider the map

F : [0, R) ⇥ S2n�1 ! � = B(0, R)

(⇢, ✓) 7�! ⇢✓ .

The claimed 0-homogeneity of u is clearly equivalent to the fact that u0 := u � F :

[0, R] ⇥ S2n�1 ! R admits a representative which does not depend on ⇢. Thus, it
will be enough to prove that for any f0 2 C1

c ((0, R) ⇥ S2n�1) there holds
Z

(0,R)⇥S2n�1
u0
@ f0
@⇢

d
�
L1 ⌦ µ

�
= 0 , (5.13)

where µ is the Haar measure on S2n�1. Define f 2 C1

c (B(0, R) \ {0}) by f (z) :=

( f0 � F�1)(z) = f0(|z|, z
|z| ) for any z 2 B(0, R) \ {0}; notice that

✓✓
@ f0
@⇢

◆
� F�1

◆
(z) =

@ f0
@⇢

✓
|z|,

z
|z|

◆
=

⌧
r f (z),

z
|z|

�
.

By a change of variable we get
Z

(0,R)⇥S2n�1
u0
@ f0
@⇢

d
�
L1 ⌦ µ

�

=

Z
(0,R)⇥S2n�1

u(F(⇢, ✓))

✓✓
@ f0
@⇢

◆
�F�1

◆
(F(⇢, ✓))

1
⇢2n�1

⇢2n�1 d
�
L1 ⌦ µ

�
(⇢, ✓)

=

Z
B(0,R)

u(z)
⌧
r f (z),

z
|z|

�
1

|z|2n�1
dL2n(z)

=

2nX
i=1

Z
B(0,R)

u(z)
zi

|z|2n
@ f
@zi

(z) dL2n(z)

= �

Z
B(0,R)

u(z) f (z)

"
2nX
i=1

@

@zi

✓
zi

|z|2n

◆#
dL2n(z)

�

Z
B(0,R)

f (z)h�u(z), zi
1

|z|2n
d|Du| .
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Our claim (5.13) is then a consequence of the equality

2nX
i=1

@

@zi

✓
zi

|z|2n

◆
= 0

and the fact that �u(z) = (�̃X⇤)(z) is |Du|-a.e. orthogonal to z.
Step 4. L = 0 is the unique minimizer of (5.9) for general �.

Let u 2 BV(�) be a minimizer of (5.9) and let R > 0 be such that � b
B(0, R). Let us define

u0(z) :=

⇢
u(z) if z 2 �

0 if z 2 B(0, R) \� .

By Step 2, also L = 0 is a minimizer, i.e.,A0,�(u) = A�(0); thus

A0,B(0,R)(u0) =

Z
�

��
ru

+ X⇤

�� dL2n +

��Dsu
��(�) +

Z
B(0,R)\�

��X⇤

�� dL2 +

��Dsu0
��(@�)

= A�(u) + AB(0,R)\�(0) +

Z
@�

��u|@�

�� dH2n�1

= A0,�(u) + AB(0,R)\�(0)
= A�(0) + AB(0,R)\�(0) = AB(0,R)(0) = A0,B(0,R)(0) .

Therefore, u0 is a minimizer of A0,B(0,R); by Step 3, this implies that u0 = 0, i.e.,
that u = 0 L2n-a.e. on �, as desired.

The next corollary is a special comparison principle for affine functions, and
in particular shows that affine functions satisfy a comparison principle both from
above and from below.

Corollary 5.6. Let � ⇢ R2n be a bounded open set with Lipschitz boundary, ' 2

L1(@�) and L : R2n ! R be an affine function, i.e., L(z) = ha, zi + b for some
a 2 R2n, b 2 R.

i) Assume that '  L H2n�1-a.e. on @�. Then, for any minimizer u 2 M' of
A' , we have u  L L2n-a.e. in �.

ii) Assume that that ' � L H2n�1-a.e. on @�. Then, for any minimizer u 2 M' of
A' , we have u � L L2n-a.e. in �.

Proof. Both claims follow immediately from Theorem 4.5 when we observe that the
setML consists of just one element that is L itself, so that, following the notations
of Proposition 4.4, L = L = L .
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6. The Bounded Slope Condition

We recall the well-known definition of Bounded Slope Condition (see [32]) for
boundary data. In particular we refer to [27] also for some classical results that we
will summarize next.

Definition 6.1. We say that a function ' : @� ! R satisfies the bounded slope
condition with constant Q > 0 (Q-B.S.C. for short, or simply B.S.C. when the
constant Q does not play any role) if for every z0 2 @� there exist two affine
functions w+

z0 and w�

z0 such that

w�

z0(z)  '(z)  w+

z0(z) 8z 2 @�,

w�

z0(z0) = '(z0) = w+

z0(z0)
Lip

�
w�

z0
�

 Q and Lip
�
w+

z0
�

 Q,

(6.1)

where Lip(w) denotes the Lipschitz constant of w.

We also recall that a set � ⇢ R2n is said to be uniformly convex if there exists
a positive constant C = C(�) and, for each z0 2 @�, a hyperplane 5z0 passing
through z0 such that

|z � z0|2  C dist
�
z,5z0

�
8z 2 @�,

where dist(z,�) := inf{|z� w| | w 2 �}. It is worth noticing that, if @� is of class
C2, this condition holds if and only if all principal curvatures of @� are strictly
positive, see [27] for details.

Remark 6.2. We collect here some facts on the B.S.C.

a) If ' : @� ! R satisfies the B.S.C. and is not affine, then � has to be convex
(see [27, page 20]) and ' is Lipschitz continuous on @�. Moreover, if @� has
flat faces, then ' has to be affine on them.

This property seems to say that the B.S.C. is a quite restrictive assumption. Anyhow
the following one, due to M. Miranda [43] (see also [27, Theorem 1.1]), shows that
the class of functions satisfying the B.S.C. on a uniformly convex set is quite large.

b) Let � ⇢ Rn be open, bounded and uniformly convex; then every ' 2 C1,1(Rn)
satisfies the B.S.C. on @�.

We denote by f, g the functions defined, respectively, by f (z) := supz02@�w�

z0(z)
and g(z) := infz02@�w+

z0(z). We underline that f is a convex function, g is a
concave function and both are Lipschitz with Lipschitz constant not greater than Q.
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Lemma 6.3. Let � ⇢ R2n be an open bounded set with Lipschitz regular bound-
ary; assume that ' 2 L1(@�) satisfies the Q-B.S.C. Then, for any u 2 M' there
holds

i) u|@� = ';

ii) f  u  g L2n-a.e. in �;

iii) u is also a minimizer of A� in BV(�) with u|@� = '.

Proof. i) For every z0 2 @�, let w+

z0 and w�

z0 be as in Definition 6.1. By Corollary
5.6, we have that w�

z0  u  w+

z0 L2n-a.e. in �. Recalling (6.1) we obtain

|u(z) � '(z0)|  Q|z � z0| L2n-a.e. z 2 �,8z0 2 @�. (6.2)

Therefore,

1
⇢2n

Z
�\B(z0,⇢)

|u � '(z0)| dL2n 

Q
⇢2n

Z
�\B(z0,⇢)

|z � z0| dL2n(z)  Q⇢ (6.3)

and letting ⇢ ! 0+ in (6.3) we conclude that u|@� = '.
ii) Fix a Lebsgue point z̄ 2 � of u. Since f is a convex function, there exists

⇠ 2 R2n such that f (z) � f (z̄) + ⇠ · (z� z̄) := h(z) for every z 2 �. The function
h is affine and h  ' on @�; then Corollary 5.6 implies that u � h L2n-a.e. in �.
Considering the mean integral on a ball centered at z̄ we obtain

Z
B(z̄,⇢)

u(z)dL2n �

Z
B(z̄,⇢)

h(z)dL2n

and, passing to the limit as ⇢ ! 0+, we get u(z̄) � f (z̄). One can argue in a
similar way to prove that u  g L2n-a.e. in �.

Finally, the proof of iii) is straightforward.

Remark 6.4. If �0
⇢ � are open bounded domains with Lipschitz regular bound-

ary and u 2 BV(�), we use the notation Au,�0 to denote the functional Au
|@�0 ,�0 .

Let us prove that, if u is a minimizer of A',� with ' = u|@�, then u is also a
minimizer ofAu,�0 .

Let us write 0 := @�0
\� and @� = 11 [12, where

11 := @� \ @�0 and 12 := @� \ @�0 .
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Notice that @�0
= 0 [ 11. We also denote by ui , uo : 0 ! R the “inner” and

“outer” (with respect to �0) traces of u on 0, i.e.,

ui :=

�
u

|@�0

�
0 and uo :=

⇣
u

|@(�\�0)

⌘
0 .

Assume by contradiction that u is not a minimizer of Au,�0 ; then, there exists
v 2 BV(�0) such that

0 < Au,�0(u) � Au,�0(v)

= A�0(u) � A�0(v) �

Z
@�0

��v
|@�0 � u

|@�0

�� dH2n�1

= A�0(u) � A�0(v) �

Z
0

��v
|@�0 � ui

�� dH2n�1

�

Z
11

��v
|@�0 � '

�� dH2n�1 .

(6.4)

We will reach a contradiction if we show that the function w 2 BV(�) defined by

w := v on �0, w := u on � \�0

satisfiesA',�(u) � A',�(w) > 0.
Let us compute

A',�(u) = A�(u) = A�0(u) + A�\�0(u) + |Dsu|(0)

= A�0(u) + A�\�0(u) +

Z
0

|uo � ui | dH2n�1

(we have used the assumption ' = u|@�) and

A',�(v) = A�0(v) + A�\�0(u) +

��Dsw
��(0) +

Z
@�

��w|@� � '
�� dH2n�1

= A�0(v) + A�\�0(u) +

Z
0

��v
|@�0 � uo

�� dH2n�1

+

Z
11

��v|@� � '
�� dH2n�1 .

Therefore
A',�(u) � A',�(v)

=A�0(u)�A�0(v)+

Z
0

⇣
|uo � ui | � |v

|@�0 �uo|
⌘
dH2n�1

�

Z
11

|v|@��'|dH2n�1

� A�0(u) � A�0(v) �

Z
0

|v
|@�0 � ui | dH2n�1

�

Z
11

|v
|@�0 � '| dH2n�1

> 0

by (6.4), as desired.
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We are now in position to prove our main result.

Proof of Theorem 1.1. We divide the proof into several steps.
Step 1. We denote by u the (pointwise a.e.) maximum of the minimizers of A',�

in BV (see Theorem 4.3). Lemma 6.3 implies that f  u  g L2n-a.e. in � and
u = ' = f = g on @�; in particular, u is also a minimizer for (1.1).

Let ⌧ 2 R2n be such that � \ �⌧ 6= ;; following the notations introduced in
Section 5, we consider the function u⇤

⌧,0, which we denote by u
⇤

⌧ to simplify the
notation. Let us consider the set � \ �⌧ . By Remark 6.4, u is a minimizer of
Au,�\�⌧ and, by Corollary 5.4 and Remark 6.4, u

⇤

⌧ is a minimizer of Au⇤

⌧ ,�\�⌧ .
Let z 2 @(� \�⌧ ), then either z 2 @� or z 2 @�⌧ .

If z 2 @�, then z + ⌧ 2 � and the inequality (6.2) in Lemma 6.3 implies that

u(z) � Q|⌧ |  u(z + ⌧ )  u(z) + Q|⌧ | . (6.5)

Otherwise, z 2 @�⌧ and z = (z + ⌧ ) � ⌧ 2 �, and Lemma 6.3 implies again (6.5).
So we have proved that (6.5) holds for any z 2 @(� \�⌧ ), hence

u(z) � Q|⌧ | + 2h⌧⇤, zi  u(z + ⌧ ) + 2h⌧⇤, zi  u(z) + Q|⌧ | + 2h⌧⇤, zi .

Setting M := Q + 2 supz2� |z|, one has

u(z) � M|⌧ |  u⇤

⌧ (z)  u(z) + M|⌧ | for any z 2 @(� \�⌧ )

and, by Corollary 4.6,

u(z) � M|⌧ |  u⇤

⌧ (z)  u(z) + M|⌧ | for L2n-a.e. z 2 � \�⌧ .

This is equivalent to

u(z)�M|⌧ |�2h⌧⇤, ziu(z+⌧ )  u(z)+M|⌧ |�2h⌧⇤, zi for L2n-a.e. z 2 �\�⌧

and, setting K := M + 2 supz2� |z|,

u(z) � K |⌧ |  u(z + ⌧ )  u(z) + K |⌧ | for L2n-a.e. z 2 � \�⌧ .

Step 2.We claim that the inequality |u(z)�u(z̄)|  K |z� z̄| holds for any Lebesgue
points z, z̄ of u. We define ⌧ := z̄ � z; then � \�⌧ 6= ; and, arguing as in Step 1,
we obtain ��u(z0 + ⌧ ) � u(z0)

��
 K |⌧ | for L2n-a.e. z0 2 � \�⌧ .

Let ⇢ > 0 be such that B(z, ⇢) ⇢ � \�⌧ and B(z̄, ⇢) ⇢ � \�⌧ ; then

��u(z) � u(z̄)
��
=

���� lim⇢!0

✓Z
B(z,⇢)

u(z0)dz0 �
Z

B(z̄,⇢)
u(z0)dz0

◆����
 lim
⇢!0

Z
B(z,⇢)

��u(z0) � u(z0 + ⌧ )
�� dz0  K |z � z̄|.
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Step 3. We have proved that u, the maximum of the minimizer of A' , has a repre-
sentative that is Lipschitz continuous on�, with Lipschitz constant not greater than
K = Q + 4 supz2� |z|. The same argument leads to prove that u, the minimum of
the minimizers of A' , has a representative that is Lipschitz continuous on �, with
Lipschitz constant not greater than K . The uniqueness criterion in Proposition 5.1
(with p = 1) implies that u = u L2n-a.e. on �. If u is another minimizer of A' ,
we have by Proposition 4.4 that u  u  u L2n-a.e. on �. This concludes the
proof.

Remark 6.5. The bound Q + 4 supz2� |z| on the Lipschitz constant of the mini-
mizer might not be optimal. Actually, we do not even know whether, in contrast
with the classical case (see [27, Theorem 1.2]), there are examples of minimizers
ofA satisfying the Q-B.S.C. whose Lipschitz constant is larger than Q.

The following examples show that, at least in the case n = 1, Theorem 1.1 is
sharp, in the sense that minimizers might not be better than Lipschitz regular.
Example 6.6. It was proved2 in [14, Example 7.2] that the Lipschitz function

u(x, y) :=

⇢
2xy if y > 0
0 if y  0

is a minimizer ofAu|@�,� on any bounded open set�with Lipschitz regular bound-
ary. Let us prove that u|@� satisfies the B.S.C. on the open set

� :=

n
(x, y) 2 R2 : x2 � 1 < y < 1� x2

o
.

Upon setting '(x, y) := x(y� x2+1), one can easily check that u(x, y) = '(x, y)
for any (x, y) 2 @�; moreover, � is uniformly convex and ' 2 C1(R2), thus
u|@� satisfies the B.S.C. on � because of Remark 6.2 (b). By Theorem 1.1, u is
the unique minimizer ofA',� on BV(�); notice that u is not better than Lipschitz
continuous on �.
Example 6.7. The previous example provides a nonsmooth minimizer of A on a
nonsmooth domain; it is anyway possible to exhibit nonsmooth minimizers also on
smooth domain. Indeed, it was proved in [48, Example 3.4] that the C1,1 function
u(x, y) := �2xy+ y|y|minimizesA (under boundary conditions given by u itself)
on any bounded domain � ⇢ R2 with Lipschitz regular boundary. Notice that, by
Remark 6.2 (b), u satisfies a B.S.C. on any smooth and uniformly convex domain.
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