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A perturbation result for the Riesz transform

BAPTISTE DEVYVER

Abstract. We show a perturbation result for the Riesz transform: if M0 and
M1 are complete Riemannian manifolds which are isometric outside a compact
set, we give sufficient conditions so that the boundedness on L p of the Riesz
transform on M0 implies the boundedness on L p of the Riesz transform on M1.
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1. Introduction

Let (M, g) be a Riemannian manifold. The Riesz transform problem, namely giving
conditions on p and on the manifold such that the operator d1�1/2 – the so-called
Riesz transform – is bounded on L p, has recently undergone certain progress. A
pioneering result which goes back to 1985 is a theorem of D. Bakry [2] which
asserts that if the Ricci curvature of M is non-negative, then the Riesz transform
on M is bounded on L p for every 1 < p < 1. However, it is only recently that
some progresses have been made to understand the behaviour of the Riesz transform
if some amount of negative Ricci curvature is allowed. A general question is the
following:
Question 1.1. What is the analogue of Bakry’s result for manifolds with some
(small) amount of negative Ricci curvature?

Here, the smallest of the negative part of the Ricci curvature Ric� should be
understood in an integral sense, i.e. Ric� 2 Lr (dµ), for some value of r and some
measure dµ. A partial answer has been provided by T. Coulhon and Q. Zhang
in [11], where it is shown essentially that if the negative part of the Ricci curvature
is smaller in an integral sense than a constant " (depending on the geometry of the
manifold under consideration), then the Riesz transform is bounded on L p for every
1 < p < 1. However, this result is not entirely satisfying, since it does not say
what happens if the integral of the Ricci curvature is bigger than the threshold ":
thus, it does not cover the case of manifolds having non-negative Ricci curvature
outside a compact set. Unlike manifolds with non-negative Ricci curvature, man-
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ifolds with non-negative Ricci curvature outside a compact set can exhibit several
ends, as well as more complicated topology (although it is far from being clear
how to quantify this), and it has been known for already some time that Bakry’s
result stated as such cannot hold for manifolds with non-negative Ricci curvature
outside a compact set. Indeed, as is shown by G. Carron, T. Coulhon and A. Hassell
in [5], the Riesz transform on Rn#Rn , the connected sum of two Euclidean spaces,
is bounded on L p if and only if 1 < p < n (1 < p  2 if n = 2). In the same paper,
the authors also prove that if the manifold has only one end and is isometric outside
a compact set toRn , then the Riesz transform is bounded on L p for all 1 < p < 1.
The method of the proof – using the so-called b-calculus – was pushed further by C.
Guillarmou and A. Hassell in [17] in order to study the Riesz transform on asymp-
totically conical manifolds: (a particular case of) their result is that when we “glue”
(that is, perform a connected sum construction) together several conical manifolds
of dimension n, then if there is more than one end, the Riesz transform is bounded
on L p iff 1 < p < n; and if there is only one end and the manifold is isometric
outside a compact set to a conical manifold M0, then the range of boundedness of
the Riesz transform is the same as it is on M0. The results cited above are in fact
perturbation results for the Riesz transform, and one can reformulate them in the
following way:

Theorem 1.2 ([5], [17]). In the class of connected asymptotically Euclidean (or
more generally asymptotically conical) manifolds of dimension n, the boundedness
of the Riesz transform on L p is stable:

1. Under “gluing” (that is, connected sum construction), and change of both the
metric and the topology on a compact set, if 1 < p < n.

2. Under change of both the metric and the topology on a compact set, if p � n.

It is however a result very specific to the class of manifolds under consideration: the
proofs rely on a precise study of the kernel of d1�1/2, using the difficult techniques
of b-calculus, for which we need a precise description of the structure at infinity of
both the manifold and the metric. There is thus no hope to generalize these proofs
to general manifolds with non-negative Ricci curvature outside a compact set.

Then G. Carron proved in [4] a key perturbation result, which is more general.
For n > 2, let us say that a Sobolev inequality of dimension n holds on (M, g) if

|| f || 2n
n�2

 C||r f ||2, 8 f 2 C1

0 (M). (Sn)

Let us define:
Definition 1.3. The Sobolev dimension dS(M) is the supremum of the set of n such
that the Sobolev inequality (Sn) of dimension n is satisfied on M (in the case where
no Sobolev inequality is satisfied on M , we let by convention dS = �1).

The Sobolev dimension needs not be equal to the topological dimension of M ,
in fact if dS(M) 6= �1, one has only the inequality

dS � dim(M)
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(see [21]). For asymptotically conical manifolds, the Sobolev dimension and the
topological dimension coincide, but Hn , the hyperbolic space of dimension n, has
dS(Hn) = +1. Let us introduce the following definition:
Definition 1.4. Two manifolds M0 and M1 are said to be isometric at infinity if
there are two compact sets K0 and K1, of M0 and M1 respectively, such that M0\K0
is isometric to M1 \ K1.

Notice that by [3, Proposition 2.7], if M0 and M1 are isometric at infinity then
dS(M0) = dS(M1). Carron’s perturbation result [4] states as follows:

Theorem 1.5. Let M0 and M1 be complete Riemannian manifolds (not necessarily
connected), isometric at infinity, which satisfy dS > 3 and with Ricci curvature
bounded from below. Assume that the Riesz transform on M0 is bounded on L p for
some p 2

⇣
dS

dS�1 , dS
⌘
. Then the Riesz transform on M1 is bounded on L p.

The fact that the manifolds are not supposed to be connected in this result
allows one to get boundedness results for the Riesz transform when performing
connected-sum constructions: for example, as a corollary, Carron recovers the fact
that the Riesz transform on Rn#Rn , the connected sum of two copies of Rn , is
bounded on L p for 1 < p < n (under the limitation that n > 3). Theorem 1.5
extends (1) of Theorem 1.2 to a much more general class of manifolds, namely
to manifolds with Ricci curvature bounded from below, and satisfying a Sobolev
inequality – the dimension parameter up to which we can “glue” together two
such manifolds while preserving the boundedness of the Riesz transform being the
Sobolev dimension dS . Thus, we see that rather than the topological dimension, an
important quantity from the point of view of the perturbation theory for the Riesz
transform is the Sobolev dimension.

A way to rephrase Carron’s result is that for p < dS , the boundedness of the
Riesz transform on L p is preserved under gluing and perturbation of both the metric
and the topology on a compact set. Thus, for example, the boundedness of the Riesz
transform on L p for any 1 < p < 1 is preserved under gluing, perturbation of the
topology and of the metric in the class of manifolds whose ends are isometric to
Hn at infinity. However, when dS < 1, Carron’s result does not say anything
concerning the generalization of (2) of Theorem 1.2: explicitely, when p � dS ,
what happens for the boundedness of the Riesz transform on L p if we start with
a manifold with one end, and we change both the metric and the topology on a
compact set, without making any gluing, i.e. preserving the fact that the manifold
has only one end?

Let us mention at this point a perturbation result of Coulhon and Dungey [6]
which investigates what happens for the Riesz transform if we change the metric
and the Riemannian measure. Under quite mild conditions on the perturbation, they
show that the boundedness on L p of the Riesz transform is preserved under a change
of metric and of measure, for any 1 < p < 1. However, their main assumption is
that the underlying manifold is the same, that is they allow no change of topology
at all, and their method relies crucially on this assumption. As a consequence, it is
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not possible, using their result, to obtain either (1) or (2) of Theorem 1.2, even for
the case of the Euclidean space.

In the article [13], we used Carron’s perturbation result to answer Question 1.1
for the case p < dS: under the assumptions that M satisfies the Sobolev inequality
of dimension d > 3, that the negative part of the Ricci curvature is in L

d
2�"

\ L1,
and that the volume of balls of large radius R is comparable to Rd , we show that
the Riesz transform is bounded on L p for 1 < p < d. If in addition there are no
non-zero L2 harmonic 1-forms, we also prove that the Riesz transform is bounded
on L p for all 1 < p < 1. However, it is expected that this last assumption is too
strong to get the boundedness on the whole (1,1), more precisely in [13] we made
the following conjecture:
Conjecture 1.6. Let M satisfying the Sobolev inequality of dimension d, with
Ric� 2 L

d
2�"

\ L1 and such that the volume of balls of large radius R is compa-
rable to Rd . If M has only one end, then the Riesz transform on M is bounded on
L p for every 1 < p < 1.

In other words, is the presence of several ends the only obstruction in this class
of manifolds to the boundedness of the Riesz transform on L p for all 1 < p < 1?
Motivated by this conjecture, we generalize in this article both Theorem 1.2 and
Theorem 1.5. We will assume that the manifold satisfies a Sobolev inequality so that
dS , the Sobolev dimension, is greater than 2, and we will be interested in extending
the mentionned perturbation results Theorems 1.2 and 1.5 to the case where p � dS .
First, we define the hyperbolic dimension of M to be (see Section 1)
Definition 1.7. The hyperbolic dimension dH (M) of M is the supremum of the set
of p such that M is p-hyperbolic.

Our main result shows first that dH – and not dS as Carron’s result seems to
indicate – is the relevant quantity to be considered when gluing is performed; and
secondly, we are able to generalize (2) of Theorem 1.2 under much more general
assumptions. Our result writes:

Theorem 1.8. Let M0, M1 be two Riemannian manifolds (not necessarily connect-
ed), isometric at infinity, whose Ricci curvatures are bounded from below and which
satisfy dS > 2. We assume that the Riesz transform on M0 is bounded on L p for
p 2 [p0, p1) with

8<
:

dS
dS � 1

< p0  2 if dS > 3,

p0 = 2 if 2 < dS  3,

and p1 > dS
dS�2 . Then the Riesz transform on M1 is bounded on L p for p 2

[p0,min(dH (M), p1)). If furthermore M1 has only one end, then the Riesz trans-
form on M1 is bounded on L p for p 2 [p0, p1).

We now make a certain number of comments about this result:
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Remark 1.9.

1. We will prove in Section 1 (Proposition 2.11) that if the Riesz transform on M
is bounded on L p for p 2

⇣
dS

dS�1 , 2
i
, then

dS(M)  dH (M),

so that under this mild assumption our result indeed generalizes Carron’s result
(up to endpoints of the range of boundedness). Our result says that dH , and not
dS , is the relevant quantity to be considered when we perform a gluing. How-
ever, due to the fact that the behaviour of the Riesz transform is not known for
many examples, we do not know (although we think there exists) an example of
a manifold M on which the Riesz transform is bounded on L p for p 2 (p0, p1)
with p1 > dS and dH > dS . Nonetheless, we will see in Corollary 1.13 an
application using dH and not dS .

2. In the case where M1 has only one end, this result extends point (2) of Theorem
1.2 to the class of manifolds satisfying a Sobolev inequality. This provides evi-
dence in favour of Conjecture 1.6, and it could be also a necessary tool to prove
it, in the same way that we used Carron’s result [4] in [13] in order to prove
boundedness of the Riesz transform on L p for p < dS .

3. We expect that the hypothesis that M0 satisfies a Sobolev inequality is too strong.
A more reasonable hypothesis would be that M0 satisfies the relative Faber-
Krahn inequality, which is equivalent (see [15]) to the fact that M0 has the vol-
ume doubling property is doubling and that the heat kernel of the Laplacian
satisfies a Gaussian upper estimate.

4. We are not able to treat the upper endpoint of the range of boundedness. How-
ever, in all the known cases (except when the interval of boundedness of the
Riesz transform has 2 as an endpoint, for example (1, 2] in the case R2#R2), the
range of boundedness of the Riesz transform is an open interval, i.e. the Riesz
transform is not bounded at the endpoints, and thus our limitation is not so dis-
turbing. We also need to assume the technical condition p1 > dS

dS�2 , which is
satisfied in most cases, and in all the interesting cases covered by Carron’s result,
when dS � 4.

5. Recall that in Carron’s result, one needs to assume dS > 3. In our result, we can
allow dS = 3, but in this case we can conclude only for the p’s which are larger
that 2. Also, we need that p1 > dS

dS�2 = 3, thus Theorem 1.8 gives for example
that the Riesz transform on a manifold isometric at infinity to R3 is bounded on
L p for all 2 < p < 1, but does not tell us anything about the Riesz transform
on the connected sum of two copies of R3, although we know that it is bounded
on L p for 1 < p < 3 by [5].

Theorem 1.8 has a certain number of interesting corollaries, which we describe now.
The first three of them follow from Theorem (1.8) with the hypothesis “M1 has only
one end”, and the last one uses the hyperbolic dimension dH . First, we recover a
particular case of a result of C. Guillarmou and A. Hassell [17] on asymptotically
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conical manifolds, without using the heavy machinery of b-calculus – as in [17],
this uses H.Q. Li’s result [18] about the Riesz transform on conical manifolds.

Corollary 1.10. Let M1 be a complete Riemannian manifold, isometric at infinity
to a conical manifold M0 = R?

+
⇥ N , with (N , h) connected and compact of di-

mension n � 1 – that is, M0 is endowed with the metric g = dt2 + t2h. Let �1 be
the first non-zero eigenvalue of the Laplacian on N , and let

p0 :=

n

n
2

�

s
�1 +

✓
n � 2
2

◆2

(with p0 = 1 if �1 � n � 1 by convention). If n � 3, then the Riesz transform on
M1 is bounded on L p when 1 < p < p0, and is unbounded on L p when p > p0.

Furthermore, we also have the following two new results:

Corollary 1.11. Let M be a complete Riemannian manifold with one end, isometric
at infinity to a manifold with non-negative Ricci curvature. We assume that on M
the following volume estimate holds: there is o 2 M and ⌫ > 2 such that

V (o, R) � CR⌫, 8R � 1,

then the Riesz transform on M is bounded on L p for all 1 < p < 1.

Corollary 1.12. Let M be isometric at infinity to a connected, simply connected
nilpotent Lie group (endowed with a left-invariant Riemannian metric). Then the
Riesz transform on M is bounded on L p for every 1 < p < 1.

Finally, we have the following corollary, which is also new:

Corollary 1.13. Let n � 3, and let N be a manifold which is q-hyperbolic for
some q > n, and which has Ricci curvature bounded from below. Then the Riesz
transform on M = N#Rn , the connected sum of N and Rn , is not bounded on
L p for n < p < 1. In particular, the Riesz transform on the connected sum
Rn#Hn of an Euclidean space and a hyperbolic space is not bounded on L p for
any n < p < 1.

The organization of this article is as follows: in Section 2, we review classical
results concerning the notion of p-hyperbolicity, and prove some results concerning
the hyperbolic dimension. In Section 3, we prove Theorem 1.8 and its corollaries.

ACKNOWLEDGEMENTS. This article is part of the PhD thesis of the author. The
author would like to thank his advisor G. Carron, for inspiring discussions and
support.
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2. About p-hyperbolicity

In this section we recall some notions concerning p-hyperbolicity that will be needed
in the sequel. General references are [8] and [14]. We will assume that the mani-
fold is connected. We will also assume that it is smooth, so that local elliptic theory
applies. In particular, we will make use of the local Sobolev injections, of the trace
theorems and of Poincaré inequalities for bounded domains. For references on this,
see [21] and [23]. Let us fix 1 < p < 1.
Definition 2.1. We say that a Riemannian manifold (M, g) is p-hyperbolic if for
every non-empty, relatively compact open subset U of M , there exists a constant
CU such that Z

U
| f |p  CU

Z
M

|r f |p, f 2 C1

0 (M).

As in the case p = 2, we have the following:

Proposition 2.2. (M, g) is p-hyperbolic if and only if there exist some non-empty,
relatively compact open subset U of M and a constant CU such that

Z
U

| f |p  CU
Z
M

|r f |p, f 2 C1

0 (M).

We write the proof for the reader’s convenience.

Proof. It is enough to show that for every smooth connected open set W containing
U , there exists CW such that

Z
W

| f |p  CW
Z
M

|r f |p, f 2 C1

0 (M).

Let V be a non-empty, smooth open set such that V ⇢⇢ U and define � :=

W \ V̄ (V̄ being the closure of V ). Take V so that the boundary of every connected
component of � has non-empty intersection with V̄ . We will need the following:

Lemma 2.3. There exists a constant C� such that

|| f ||p  C�||r f ||p, 8 f 2 C1

D�N (�), (2.1)

where C1

D�N (�) is the set of smooth functions on � taking value 0 on @V (the
index D � N stands for “Dirichlet-Neumann”).

Let us assume for a moment the result of the lemma, and let us conclude the
proof of Proposition 2.2. Let ⇢ be a smooth function whose support is included in
U , such that ⇢ ⌘ 1 on V . Then

|| f ||L p(W )  ||⇢ f ||L p(W ) + ||(1� ⇢) f ||L p(W ).
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Since ||⇢ f ||L p(W ) = ||⇢ f ||L p(U), we have by hypothesis

||⇢ f ||L p(W )  CU ||r(⇢ f )||p  CU
�
|| fr⇢||p + ||⇢r f ||p

�
.

On the other hand, ||⇢r f ||p  ||⇢||1||r f ||p, and by hypothesis, since the support
of r⇢ is contained in U ,

|| fr⇢||p  ||r⇢||1|| f ||L p(U)  C||r f ||p.
It remains to treat the term ||(1� ⇢) f ||L p(W ). Thanks to Lemma 2.3, we obtain

||(1� ⇢) f ||L p(W )  C||r ((1� ⇢) f ) ||p  C
�
||r(⇢ f )||p + ||⇢||1||r f ||p

�
,

and we bound as before ||r(⇢ f )||p by C||r f ||p.

Proof of Lemma 2.3. Working separately with each connected component of�, we
assume without loss of generality that � is connected. By contradiction, suppose
there exists a sequence of functions fn 2 C1

D�N (�) such that || fn||L p = 1, and
||r fn||L p ! 0. Since W 1,p(�) is reflexive for 1 < p < 1, up to the extraction of
a subsequence we can assume that the sequence ( fn)n2N converges weakly to f in
W 1,p(�). But we have the compact Sobolev injection W 1,p(�) ,! L p, therefore
( fn)n2N converges strongly in L p, and as a consequence it converges strongly to
f in W 1,p(�). The function f then satisfies r f = 0 in the weak sense, and
this implies that r f = 0 strongly, hence f is constant since � is connected. In
addition, the trace theorem for W 1,p shows that f |@V = 0, and therefore f is zero.
This contradicts the fact that || f ||p = 1.

We will also use another characterisation of p-hyperbolicity. Let us define
first:
Definition 2.4. IfU is a non-empty, relatively compact open subset of M , we define
its p-capacity by

Capp(U) = inf
�R

M |ru|p : u 2 C1

0 (M) such that u|U � 1
 

= inf
�R

M |ru|p : u 2 C1

0 (M) such that u|U ⌘ 1
 
.

The last inequality in this definition follows from the fact that the “truncation” of a
function u up to height 1 onU decreases the energy

R
M |ru|p. For a detailed proof,

see [14, Corollary 7.5]. With this definition, we have the following characterisation
of the p-hyperbolicity:

Theorem 2.5. (M, g) is p-hyperbolic if and only if the p�capacity of some (all)
non-empty, relatively compact open set is non-zero.

For a proof, see [24, Proposition 2.1].
Remark 2.6. With the result of Theorem 2.5, it is easy to see that if M is p-
hyperbolic for some 1 < p < 1, then M has infinite volume.
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Corollary 2.7. A Riemannian manifold (M, g) is p-hyperbolic if and only if one of
its ends is p-hyperbolic.

Proof. It is enough to find a non-empty, relatively compact open subset � of M ,
whose p-capacity is non-zero. We take � such that M \ � = M1 \ B1 t . . . t Mk \

Bk , the Mi being the (closed) ends of M , and the Bi being non-empty, relatively
compact open subsets of Mi . Using the fact that the p�capacity of a non-empty,
relatively compact open subset U is equal to

inf
⇢Z

M\U
|ru|p : u 2 C1

0 such that u|U ⌘ 1
�

,

we see that

Capp(�) =

kX
i=1

CapMi
p (Bi ).

By hypothesis, one of the Mi is p-hyperbolic (M1 for example), which implies
CapM1p (B1) > 0, and therefore Capp(�) > 0.

The main result of this section is the following proposition concerning p-hyperboli-
city and the Riesz transform:

Proposition 2.8. Let (M, g) be a Riemannian manifold, which is p-hyperbolic for
a certain 1 < p < 1. We assume that the Riesz transform on M is bounded on L p.
Then 1�1/2

: L p ! L ploc is a bounded operator. Conversely, if the Riesz transform
is bounded on Lq , q being the dual exponent of p, and if

1�1/2
: L p ! L ploc,

is a bounded operator, then M is p-hyperbolic.

Proof. Recall that the domain L p of 11/2 is defined as the set of functions h in
L p such that e

�t
p

1h�h
t has a limit in L p when t tends to 0. We will first prove the

following:

Lemma 2.9. For 1 < p < 1, C1

0 (M) is contained in the domain L p of11/2, and
11/2C1

0 is dense in L p. Furthermore, if u 2 C1

0 (M), then 1�1/211/2u = u.

Proof. If u 2 C1

0 (M), we write

11/2u = 1�1/21u =

Z
1

0
e�t

p

11u dt,

and we separate the integral in
R 1
0 +

R
1

1 = I1 + I2. In order to bound the L p norm
of I1, we use the fact that 1u 2 L p and that ||e�t

p

1
||p,p  1, which yields

||I1||p  ||1u||p.
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For I2, we use the analyticity of e�t
p

1 on L p, which implies that
������1e�tp1

������
p,p



C
t2

.

Consequently, we obtain ||I2||p  C||u||p, which gives that 11/2u 2 L p.
Let us now show that 11/2C1

0 is dense in L p. First, (1 + 1)C1

0 is dense
in L p: indeed, if v 2 Lq is orthogonal to (1 + 1)C1

0 (where q is the conjugate
exponent of p), then we have in the weak sense (1 + 1)v = 0, and this implies by
a result of S.T. Yau (see [20, Theorem 4.1]) that v is constant, then that v is zero
since M is of infinite volume by Remark (2.6). So (1+1)C1

0 is dense in L p. Then,
11/2 (1 + 1)�1 is a bounded operator on L p: to see this, we write

11/2 (1 + 1)�1 =

Z
1

0
11/2e�t (1+1) dt,

and we use the analyticity of e�t1 to say that
������11/2e�t1

������
p,p



C
p

t
, 8t > 0.

Now, we write
11/2C1

0 = 11/2 (1 + 1)�1 (1 + 1)C1

0 ,

and since (1+1)C1

0 is dense in L p, and that11/2 (1 + 1)�1 is continuous on L p,
we have to see that the range of11/2 (1 + 1)�1 is dense in L p. But (1 + 1)�1 L p =

Dp(1), the domain L p of the Laplacian. So we have to see that 11/2Dp(1) is
dense in L p. But Dp(1) contains 11/2C1

0 by the first part of the lemma: indeed,
if g 2 C1

0 ,
1(11/2g) = 11/2(1g),

and this is in L p since 1g 2 L p. Therefore 11/2Dp(1) contains 11/211/2C1

0 =

1C1

0 , which is dense in L p again by Yau’s result.
It remains to show that when u 2 C1

0 , then 1�1/211/2u = u.We write

1�1/211/2u =

Z
1

0
e�t

p

111/2u dt

=

Z
1

0
�

d
dt

⇣
e�t

p

1u
⌘
dt

= u � lim
t!1

e�t
p

1u.

By the spectral theorem, limt!1 e�t
p

1u converges in L2 to the projection of u on
the L2�kernel of1. But by Yau’s above-mentionned result and the fact that M has
infinite volume, the L2�kernel of 1 is reduced to {0}, and therefore

1�1/211/2u = u.
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Now, we come back to the proof of Proposition 2.8. We consider the first part of
the proposition. Let � be a non-empty, open, relatively compact set in M . The fact
that the Riesz transform is bounded on L p is equivalent to the inequality

||ru||p  C||11/2u||p, 8u 2 C1

0 .

Since M is p-hyperbolic, we also have the inequality

||u||L p(�)  C||ru||p, 8u 2 C1

0 .

Combining these two inequalities, we obtain

||u||L p(�)  C||11/2u||p, 8u 2 C1

0 .

Fix u 2 C1

0 , and define v = 11/2u. Since u 2 C1

0 , by Lemma 2.9 we have

1�1/211/2u = u,

and thus v is in the L p domain of1�1/2, and moreover1�1/2v = u. Consequently,
we obtain

||1�1/2v||L p(�)  C||v||p.

This is true for every v 2 11/2C1

0 , but by Lemma 2.9, 1
1/2C1

0 is dense in L p,
and thus we obtain that

||1�1/2v||L p(�)  C||v||p, 8v 2 L p,

which is the result of the first part.
For the converse, we start with the assumption that there is a constant C and a

non-empty, open, relatively compact set � such that

||1�1/2v||L p(�)  C||v||p, 8v 2 L p.

Apply this to v := 11/2u for u 2 C1

0 (M) (which is licit by Lemma 2.9), and using
that 1�1/2v = u gives

||u||L p(�)  C||11/2u||p, 8u 2 C1

0 (M).

But it is well-known that the boundedness of the Riesz transform on Lq for 1q +
1
p =

1, implies the following dual inequality: there is a constant C such that

||11/2u||p  C||ru||p, 8u 2 C1

0 (M).

As a consequence, we get

||u||L p(�)  C||ru||p, 8u 2 C1

0 (M),

i.e. M is p-hyperbolic.
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To conclude this section, we prove an inequality, announced in the introduc-
tion, involving the hyperbolic dimension and the Sobolev dimension. First, recall
the definition given in the introduction:

Definition 2.10. The hyperbolic dimension dH of M is defined as the supremum of
the set of p such that M is p-hyperbolic.

By Corollary 2.7, the hyperbolic dimension is the supremum of the hyperbolic
dimension of the ends, and this implies that if M0 and M1 are isometric at infinity,
then

dH (M0) = dH (M1).

Notice that (to the author’s knowledge) it is not known in full generality that the set
of p such that M is p-hyperbolic is an interval; of course, by Proposition 2.8, this
is true if the Riesz transform on M is bounded on L p for 1 < p < 1. We have the
following consequence of Proposition 2.8, announced in the introduction:

Corollary 2.11. Let M satisfying dS > 2, and assume that the Riesz transform on
M is bounded on L p for p 2

⇣
dS

dS�1 , 2
i
. Then

dH � dS.

More precisely, M is p-hyperbolic for every 2  p < dS .

Proof. Denote d = dS , and let 2  p < d. By Varopoulos [25],

1�1/2
: L p ! L

dp
d�p ,

and in particular
1�1/2

: L p ! L ploc.

By hypothesis, the Riesz transform on M is bounded on Lq , q being the dual of p,
for every 2  p < d. The result follows now from Proposition 2.8.

3. Proof of the main results

This section is devoted to the proof of Theorem 1.8 and its corollaries, announced in
the introduction. We will extend the proof of [4, Theorem 1.5], in order to get rid of
the condition p < dS . For the convenience of the reader, we have divided the proof
in several subsections. First, in subsection 1, we introduce several definitions and
notations. In Subsection 2, we recall the construction of [4]. In Subsection 3, we
prove Theorem 1.8 in the case of several ends. In Subsection 4, we prove Theorem
1.8 in the case of one end. Finally, in Subsection 5, we prove the corollaries of
Theorem 1.8.
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3.1. Definitions and notation

Notation 3.1. we will write s( f ) for the support of f .
Let K1 be a compact set of M1 with smooth boundary, such that M1 \ K1 is

isometric to the complement of a compact set of M0, and K2, K3 compact sets of
M1 with smooth boundaries such that K1 ⇢ K2 ⇢ K3 and such that Ki is contained
in the interior of K j for i < j .

We define� := M1 \K1. Let (⇢0, ⇢1) be a partition of unity such that ⇢1|K1 ⌘

1, s(⇢0) ⇢ � and s(⇢1) ⇢ K2. We also take '0 and '1 two smooth functions, such
that s('0) ⇢ �, s('1) ⇢ K3 and such that 'i⇢i = ⇢i for i = 1, 2. Furthermore, we
assume that '1|K2 ⌘ 1.

We denote by A the closure of a relatively compact, smooth open subset containing
s(d'0). We can arrange so that the distance between A and s(⇢0) is non-zero.
Moreover, we can arrange so that A is a disjoint union of connected “annuli” Ai ,
each annulus corresponding to an end of M0.

3.2. About Carron’s proof of Theorem 1.5

G. Carron’s proof of Theorem 1.5 consists in building a parametrix for the Riesz
transform: the idea is to build first a parametrix for e��

p

1; then by the formula

1�1/2
=

Z
1

0
e��

p

1 d�,

the parametrix for e��
p

1 integrated in time yields a parametrix for 1�1/2, and by
differentiation in space, for the Riesz transform d1�1/2. Therefore Carron’s proof
is in two steps: first, the construction of a good parametrix for e��

p

1, such that
when integrated in time and differentiated in space, it yields a parametrix bounded
on L p for the Riesz transform. And secondly, one needs to prove that the error term
between the parametrix and the Riesz transform is also bounded on L p.

Explicitly, Carron takes for the parametrix of e��
p

1:

E(�, u) = '0e��
p

10⇢0u + '1e��
p

11⇢1u, 8u 2 C1

0 (M),
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where 10 is the Laplacian on M0, and 11 is the Laplacian on K3 with Dirichlet
boundary conditions. Here, ⇢0u has been naturally identified to a function defined
on M0. Then we have the following formula:

e��
p

1u = E(�, u) � G
" 

�

@2

@� 2
+ 1

!
E(�, u)

#
, (3.1)

where G is the Green operator of
⇣
�

@2

@� 2
+ 1

⌘
onR+⇥M1 with Dirichlet boundary

conditions on the boundary {0} ⇥ M1. Indeed, both the right and the left hand side
are solutions of the Dirichlet problem

(
L'(t, x) = 0, 8(t, x) 2 R+ ⇥ M,

'|@R+⇥M = '(0, ·) = u

where L is the elliptic operator L := �
@

@t2 + 1 acting on functions on R+ ⇥ M ,
and formula (3.1) follows by a uniqueness result for the solution of the Dirichlet
problem (for more details, see the related proof of [13, Proposition 5.2.1 ]). The
term G

h⇣
�

@2

@� 2
+ 1

⌘
E(�, u)

i
is the error term in the parametrix of e��

p

1. When

integrated and differentiated, the above parametrix for e��
p

1 yields a parametrix
for the Riesz transform, which is explicitely

R :=

1X
i=0

'i d1
�1/2
i ⇢i + (d'i )1

�1/2
i ⇢i .

Let us explain why R is a good parametrix for p < dS , i.e. is bounded on L p

if p < dS . First, d1
�1/2
0 is the Riesz transform on M0, which is bounded by

hypothesis. Also, '1d1
�1/2
1 ⇢1 is a pseudo-differential operator with compact sup-

port, and hence is bounded on L p; (d'0)1
�1/2
0 ⇢0 is an operator with smooth kernel

and compact support, hence is bounded on L p. Finally, the operator (d'0)1
�1/2
0 ⇢0

is bounded on L p if p < dS , which comes from the facts that d'0 is compactly
supported and that for p < dS ,

1
�1/2
0 : L p ! L

np
n�p .

The second part of Carron’s proof is to show that the error term when we approxi-
mate d1�1/2 byR can be controled on L p if p < dS .

In order to improve Carron’s result, two things have to be done: first, to find a
parametrix for the Riesz transform which is bounded on L p for p � dS , and sec-
ondly, to improve the estimates of the error term in order to show that it is bounded
on L p for p � dS , and not only for p < dS .
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3.3. The case where M has several ends

In this subsection, we prove Theorem 1.8 in the case where M1 has several ends.
We first remark that under our hypotheses, the boundedness of the Riesz transform
of M1 on L p for p 2 [p0, 2] is a consequence of Carron’s work [4] and we do not
improve it. We will only prove boundedness in the range [2,min(dH , p1)). We take
the same parametrix for e��

p

1 as in Carron [4]:

E(�, u) = '0e��
p

10⇢0u + '1e��
p

11⇢1u.

The main observation is that when p 2 [2,min(p1, dH )), the corresponding para-
metrix for the Riesz transform R = d

R
1

0 E(�, ·) d� is bounded on L p. Let us
explain this now. We have seen in the previous paragraph that

R :=

1X
i=0

'i d1
�1/2
i ⇢i + (d'i )1

�1/2
i ⇢i ,

and that under the hypothesis of Theorem 1.8, the operators '0d1
�1/2
0 ⇢0,

'1d1
�1/2
1 ⇢1 and (d'1)1

�1/2
1 ⇢1 are bounded on L p for p 2 (p0, p1). It remains

the operator (d'0)1
�1/2
0 ⇢0. By the fact that M0 satisfies the Sobolev inequal-

ity, M0 is 2�hyperbolic. Thus by the result of Proposition 2.8 and interpolation,
(d'1)1

�1/2
1 ⇢1 is bounded on L p if p 2 [2, dH ). Therefore,R is bounded for every

p 2 [2,min(p1, dH )). All that remains to be done is to show that the corresponding
error term is bounded on L p when p 2 [2,min(p1, dH )), and for this we need to
improve the error estimates of [4].

Let p 2 [2,min(p1, dH )); we choose some fixed q > dS
dS�2 satisfying p <

q < min(p1, dH ). We will also take d close enough to dS , such that the Sobolev
inequality of dimension d is satisfied on M . We will choose d later, depending on
p. According to [4], the error term in the parametrix of the Riesz transform is dg,
where

g =

Z
1

0

Z
R+⇥R+⇥M

G(�, s, x, y)

" 
�

@2

@� 2
+ 1

!
E(·, u) (s, y)

#
d� ds dy,

G being the Green function of
⇣
�

@2

@t2 + 1
⌘
on M ⇥ R+ with Dirichlet boundary

conditions on M ⇥ {0}. We let 
�

@2

@� 2
+ 1

!
E(�, u) = f0(�, .) + f1(�, .),

where the functions fi are defined by

fi (�, .)=(1'i )
⇣
e��

p

1i⇢i u
⌘

� 2hd'i ,re��
p

1i⇢i ui.
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In [4], estimates on the fi are shown. However, since we do not assume p < dS , the
corresponding estimates for f0 will not hold in our case. Instead, we will estimate
a modified function f̃0, that we define by

f̃0(�, .)=

"X
j
1A j (1'0)

✓
e��

p

10⇢0u�

⇣
e��

p

10⇢0u
⌘
A j

◆#
�2hd'0,re��

p

10⇢0ui,

where A = t j A j , each A j being connected and smooth (see subsection 1 for the
definition of A), and

⇣
e��

p

10⇢0u
⌘
A j
denotes the average of e��

p

10⇢0u on A j .

We first show estimates on f1 and f̃0:

Lemma 3.2. If ↵ = d
⇣
1
p �

1
q

⌘
> 0, then there exists a constant C independent of

u such that

|| f̃0(�, .)||1 + || f̃0(�, .)||p 

C
(1+ � )1+↵

||u||p, 8� > 0 (3.2)

and
|| f1(�, .)||1 + || f1(�, .)||p 

C
(1+ � )1+↵

||u||p, 8� > 0. (3.3)

Proof of Lemma 3.2. We begin with f1. In [4], it is shown that for some constant
� > 0,

|| f1(�, .)||1 + || f1(�, .)||p  e���
||u||p, 8� > 0,

which of course implies

|| f1(�, .)||1 + || f1(�, .)||p 

C
(1+ � )1+↵

||u||p, 8� > 0.

Now we turn to f̃0. Since d1
�1/2
0 is bounded on Lq(M0), and e��

p

10 is analytic
on Lr for 1 < r < 1 (see [22] or [10], this comes from the subordination identity),
we have

||re��
p

10
||q,q 

C
�

, 8� > 0.

Also,
||e��

p

10
||p,q 

C

�
d
⇣
1
p�

1
q

⌘ =

C
�↵

, 8� > 0.

We get in particular

||re��
p

10
||p,q  ||re�

�
2
p

10
||q,q ||e�

�
2
p

10
||p,q 

C
� 1+↵

, 8� � 1.

We also have (cf. [4])

||re��
p

10
||L p(U)!Lq (F)  C, 8�  1,
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if U is an open subset and F a compact set at positive distance from U . Therefore
we get

||re��
p

10
||L p(U)!Lq (F) 

C
(1+ � )1+↵

, 8� > 0. (3.4)

Using the fact that for every compact F , Lq(F) ,! L1(F) and Lq(F) ,! L p(F),
and given that the support of ⇢0 and A are disjoint, we obtain

||hd'0,re��
p

10⇢0ui||L1 + ||hd'0,re��
p

10⇢0ui||L p 

C
(1+ � )1+↵

||u||p,

8� > 0.

It remains the term
P

j 1A j (1'0)

✓
e��

p

10⇢0u �

⇣
e��

p

10⇢0u
⌘
A j

◆�
. We have,

by the Lq�Poincaré inequality on each A j :�����
�����
X
j
1A j (1'0)

✓
e��

p

10⇢0u�

⇣
e��

p

10⇢0u
⌘
A j

◆�����
�����
Lq (A j )

C||re��
p

10⇢0u||Lq (A j )



C
(1+ � )1+↵

||u||p.

Hence the estimates for f̃0.

Now, we decompose g into g1 + g2, with

g1(x) =

Z
R+⇥R+⇥M

G(�, s, x, y) f̃0(s, y) d� ds dy

+

Z
R+⇥R+⇥M

G(�, s, x, y) f1(s, y) d� ds dy,

and

g2(x) =

X
j

Z
R+⇥R+⇥M

G(�, s, x, y)1A j (y)(1'0)(y)
⇣
e�s

p

10⇢0u
⌘
A j
d� ds dy.

We have, in an equivalent way (cf. [4]),

g1 =

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0
e�t1

⇣
f̃0(s, .) + f1(s, .)

⌘
dt

1
A dr ds,

and

g2 =

X
j

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0
e�t1

✓
1A j (1'0)

⇣
e�s

p

10⇢0u
⌘
A j

◆
dt

1
A dr ds.
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In order to conclude the proof of Theorem 1.8 in the case of several ends, we have to
show that ||dg1||p + ||dg2||p  C||u||p. This will be done in the next two lemmas.
Let us begin with:

Lemma 3.3. There exists a constant C such that for every u 2 L p,

||dg1||p  C||u||p.

Proof. According to [4, Proposition 2.1], it is enough to show that ||g1||p+||1g1||p 

C||u||p. The term ||1g1||p is the easiest: defining h := f̃0 + f1, we have

1g1 =

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0
1
�
e�t1h(s, .)

�
dt

1
A dr ds

= �

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0

d
dt

(e�t1h(s, .)) dt

1
A dr ds

=

2
p

⇡

Z
R+⇥R+

e�r
2
✓
h(s, .) � e�

s2
4r2

1h(s, .)
◆
dr ds.

Hence, by (3.2) and (3.3),

||1g1||p 

4
p

⇡

Z
R+⇥R+

e�r
2
||h(s, .)||p dr ds



4
p

⇡

✓Z
R+⇥R+

e�r
2 C
(1+ s)1+↵

dr ds
◆

||u||p

 C||u||p.

For ||g1||p, using

||e�t1||1,p 

C

t
d
2

⇣
1� 1

p

⌘ ,

and (3.2), (3.3), we have

||g1||p

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0
||e�t1h(s, .)||p dt

1
A ds dr



2
p

⇡

0
B@
Z

R+⇥R+

e�r
2

0
B@
Z s2

4r2

0

C

max
⇣
1, t

d
2 (1� 1

p )
⌘

(1+ s)1+↵
dt

1
CA ds dr

1
CA ||u||p

C

0
B@
Z

R+⇥R+

e�r
2 1

max
⇣
1, t

d
2 (1� 1

p )
⌘

(1+ 2r
p

t)↵
dt dr

1
CA ||u||p.
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We separate the integral in
R
tr�2 +

R
t�r�2 = I1+ I2. The integral I1 is finite if and

only if

(�2)
✓
d
2

✓
1�

1
p

◆
� 1

◆
< 1,

which is equivalent to

p >
d

d � 1
.

Since p > p0 > dS
dS�1 , we can choose d close enough to dS so that the inequality

p > d
d�1 is satisfied. For I2,

I2 

Z
1

0
e�r

2
 Z

1

r�2

1

t
d
2 (1� 1

p )

1
(r

p

t)↵
dt

!
dr



Z
1

0
e�r

2 1
r↵

 Z
1

r�2

1

t
d
2 (1� 1

p )

1
(
p

t)↵
dt

!
dr.

The integral in t is finite if and only if

d
2

✓
1�

1
p

◆
+

↵

2
> 1,

and recalling that ↵ = d
⇣
1
p �

1
q

⌘
, we find that it is equivalent to

q >
d

d � 2
.

Once again, since we assumed q > dS
dS�2 , we can choose d close enough to dS so

that q > d
d�2 is satisfied. The integral in r is then

Z
1

0
e�r

2 1

r↵�2
⇣
d
2

�
1� 1

p

�
+

↵
2�1

⌘ dr,

which is finite if and only if

↵ � d
✓
1�

1
p

◆
� ↵ + 2 < 1,

which is equivalent to

p >
d

d � 1
,

which is satisfied by one of our previous assumptions on d.
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Now we turn to estimate dg2, which will conclude the proof of Theorem 1.8 in
the case of several ends.
Lemma 3.4.

||dg2||p  C||u||p.
Proof. According to [4, Proposition 2.1], it is enough to show that ||g2||p+
||1g2||p  C||u||p. We begin to show that ||g2||p  C||u||p. We have

g2(x)x=

X
j

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0
e�t1

✓
1A j (1'0)

⇣
e�s

p

10⇢0u
⌘
A j

◆
(x)dt

1
Adr ds

=

X
j

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0

⇣
e�s

p

10⇢0u
⌘
A j
e�t1

�
1A j1'0

�
(x) dt

1
Adr ds,

therefore

||g2||p

X
j

2
p

⇡

Z
R+⇥R+

e�r
2

0
@Z s2

4r2

0

 
1

|A j |

Z
A j

e�s
p

10
|⇢0u|

!
||e�t1� ||p dt

1
A dr ds,

where we have defined � := 1'0 = 1('0 � 1). Using the fact that ||e�t1||1,p 

C

t
d
2
⇣
1� 1

p
⌘ , the analyticity of e�t1 on L p, and the fact that '0 � 1 is smooth with

compact support,

||e�t1� ||p 

C

max
✓
1, t1+

d
2

⇣
1� 1

p

⌘◆ , 8t > 0.

Furthermore, we have for every p > 1,

1+

d
2

✓
1�

1
p

◆
> 1,

and consequently Z
1

0
||e�t1� ||p dt < 1.

So

||g2||p  C
X
j

Z
R+⇥R+

e�r
2
 Z

A j

e�s
p

10
|⇢0u|

!
dr ds

 C
X
j

Z
A j

✓Z
1

0
e�s

p

10
|⇢0u| ds

◆

 C
X
j

Z
A j

1
�1/2
0 |⇢0u|.
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According to Proposition 2.8, 1�1/2
0 : L p ! L ploc ,! L1loc, which implies that

||g2||p  C||u||p.

Let us turn now to 1g2: as for g1, we have

||g2||p 

X
j

4
⇡

Z
R2

+

e�r
2
����
⇣
e�s

p

10⇢0u
⌘
A j

(1'0)

����
p
dr ds

 C
X
j

Z
1

0

����
⇣
e�s

p

10⇢0u
⌘
A j

���� ds,

and by the argument already used,

X
j

Z
1

0

����
⇣
e�s

p

10⇢0u
⌘
A j

���� ds  C||u||p,

which concludes the proof.

3.4. The case where M has one end

In this subsection, we prove Theorem 1.8 in the case where M1 has only one end. As
we have already explained, the parametrix R for the Riesz transform constructed
by Carron has a term which is unbounded on L p when p > dH : more precisely, the
term (d')1

�1/2
0 ⇢0 is unbounded on L p if p > dH . Hence, we have to modify the

parametrix. The main idea is the following: notice that since M1 has only one end,
d' is the supported in A which is a connected annulus. Since A is connected and
smooth, the L p Poincaré inequality in A holds, i.e. there is a constant C such that

����
����v �

1
|A|

Z
A

v

����
����
L p(A)

 C||rv||p, 8v 2 C1(A).

Applying this to 1
�1/2
0 ⇢0u for u 2 C1

0 (M), we get for p 2 [2, p1)
����
����1�1/2

0 ⇢0u �

1
|A|

Z
A

1
1/2
0 ⇢0u

����
����
L p(A)

 C||r1
�1/2
0 ⇢0u||p  C||u||p,

where in the last inequality we have used the fact that the Riesz transform on M0 is
bounded on L p if p 2 [2, , p1). This implies that the modified parametrix

Fu=

1X
i=0

'i d1
�1/2
i ⇢i u+(d'1)1

�1/2
1 ⇢1u+(d'0)

✓
1�1/2⇢0u�

✓
1

|A|

Z
A
1

�1/2
0 ⇢0u

◆◆
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is bounded on L p for every p 2 [2, p1). The corresponding parametrix for e��
p

1

is given by

S(�, u) = E(�, u) � ('0 � 1)
✓
1

|A|

Z
A
e��

p

10⇢0u
◆

,

i.e., there holds
Fu = d

Z
1

0
S(�, u) d�.

The supplementary term that we have added to the parametrix of e��
p

1 is

�('0 � 1)
✓
1

|A|

Z
A
e��

p

10⇢0u
◆

,

which vanishes when � = 0, since A and the support of ⇢0 are disjoint by hypoth-
esis. So we have, as should be,

S(0, u) = u.

Notice also that since '0 � 1 is compactly supported, the integral with respect to �
of this supplementary term is analogous to the term G3 in the parametrix of 1�1/2

constructed by Carron-Coulhon-Hassell in [5]: its kernel k(x, y) is non-zero only
if x is in K3 and y is in M1 \ K1.

Thus, we have constructed a parametrix F for the Riesz transform, which is
bounded on L p for p 2 [2, p1). As in the proof of Theorem 1.8 in the case where
M1 has several ends, it remains to show that the error term is also bounded on L p.

We will use the calculations made in the previous subsection. This time, we
have (with f1 and f̃0 defined as in the previous subsection) 

�

@2

@� 2
+ 1

!
S(�, u) = f1(�, .)+ f̃0(�, ·)� ('0� 1)

✓
1

|A|

Z
A

10 e��
p

10⇢0u
◆

.

Define
f̄0(�, .) = ('0 � 1)

✓
1

|A|

Z
A

10 e��
p

10⇢0u
◆

.

We have the following estimates on f1, f̃0 and f̄0:

Lemma 3.5. If ↵ = d
⇣
1
p �

1
q

⌘
, then for all � > 0,

|| f1(�, ·)||1 + || f1(�, ·)||p 

C
(1+ � )1+↵

||u||p,

|| f̃0(�, ·)||1 + || f̃0(�, ·)||p 

C
(1+ � )1+↵

||u||p,
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and

|| f̄0(�, ·)||1 + || f̄0(�, ·)||p 

C
(1+ � )2

||u||p.

Once this lemma is established, the estimate of the error term proceeds as in the
proof of Theorem 1.8 in the case where M has more than one end. All we have to
do is thus to prove the above estimates.

Proof of Lemma 3.5. We already proved the estimates on f1 and f̃0 in Lemma 3.2.
It remains to treat f̄0. First, by analyticity of e��

p

10 ,

������10 e��
p

10
������
p,p



C
� 2

, (3.5)

and therefore, using the fact that f̄0(�, ·) has compact support independent of u,

|| f̄0(�, ·)||1,1 + || f̄0(�, ·)||p,p 

C
� 2

.

The proof will be complete once we show that 10 e��
p

10 is bounded L p(M0 \

A�) ! L1(A) when � ! 0 (where � is a strictly positive constant, and where
A� is the set of points whose distance to A is less than �). For this, we use the
subordination identity:

e��
p

10
=

�

2
p

⇡

Z
1

0
e�

�2
4t e�t10

dt
t3/2

,

so that

10 e��
p

10
= �

�

2
p

⇡

Z
1

0
e�

�2
4t

✓
@

@t
e�t10

◆
dt
t3/2

. (3.6)

According to [12, Corollary 5] (see also [21, Theorem 5.2.15]), the Sobolev in-
equality of dimension d on M0 implies

�����
@p0t (x, y)

@t

����� 

C

t
d
2+1

e�c
d2(x,y)

t , 8(x, y) 2 M0 ⇥ M0, 8t > 0, (3.7)

where p0t (x, y) is the heat kernel on M0. So, if � is an open set and F a compact
set such that d(F,�) � " > 0, then

�����
@p0t (x, y)

@t

����� 

C

t
d
2+1

exp

 
�c

"2

t

!
, 8t > 0, 8x 2 F, 8y 2 �. (3.8)
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We claim that the estimates (3.7) and (3.8) imply the existence of a constant (de-
pending on the lower bound on the Ricci curvature of M and of �) such that, if
t  1, ����

���� @

@t
e�t10

����
����
L p(M0\A�)!L1(A)

 C. (3.9)

Indeed, denoting kt (x, y) =
1

t
d
2+1

exp
⇣
�c d

2(x,y)
t

⌘
, and Kt the operator with kernel

kt , then
Kt : L1(�) ! L1(F) (3.10)

is uniformly bounded when t ! 0: this comes from the fact that for t  1,

||Kt ||L1(�)!L1(F) = sup
x2F, y2�

kt (x, y)



1

t
d
2+1

exp

 
�c

"2

t

!

 C.

Furthermore,
Kt : L1(�) ! L1(F) (3.11)

is uniformly bounded when t ! 0. This is equivalent to the following estimate, for
all t small enough:

sup
x2F

Z
�
kt (x, y)  C.

But for t  1 and x 2 F , y 2 �, there holds

kt (x, y)  C1 exp

 
�

c
2
d2(x, y)

t

!
. (3.12)

We then use the fact that the volume of balls of radius r is bounded by ear for a
certain constant a, since the Ricci curvature is bounded from below on M; therefore,
we deduce that if t is small enough so that for every x 2 F , y 2 �,

c
2

"

t
> a,

then by (3.12),
sup
x2F

Z
�
kt (x, y)  C2.

Finally, (3.9) is obtained by interpolation from (3.10) and (3.11). Using in addition
the analyticity of e�t10 and the fact that e�

1
210

: L p ! L1, we obtain that����
���� @

@t
e�t10

����
����
L p(M0\A�)!L1(A)

=

����10 e�t10
����
L p(M0\A�)!L1(A)



C
1+ t

, 8t > 0.
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In particular,
����
���� @

@t
e�t10

����
����
L p(M0\A�)!L1(A)

 C, 8t > 0.

Using (3.6), we then obtain
������10 e��

p

10
������
L p(M0\A�)!L1(A)

 C, 8� > 0,

and reminding of (3.5), we have
������10 e��

p

10
������
L p(M0\A�)!L p(A)

+

������10 e��
p

10
������
L p(M0\A�)!L1(A)



C
(1+ � )2

,

8� > 0.

Using the fact that the support of f̄0(�, ·) is compact and independent of u, we get

|| f̄0(�, ·)||1 + || f̄0(�, ·)||p 

C
(1+ � )2

||u||p, 8� > 0.

3.5. Proof of the corollaries to Theorem 1.8

In this final subsection, we give the proofs of Corollaries 1.10, 1.11, 1.12 and 1.13.

Proof of Corollary 1.10. Using the result of H.Q. Li [18] and noticing that the conic
manifold M0 satisfies dS =dim(M0) > 2 and that p0 > dS , we can apply Theorem
1.8 to get that the Riesz transform on M1 is bounded on 2  p < p0. The bound-
edness on L p of the Riesz transform on M1 for 1 < p < 2 follows from Coulhon-
Duong’s result [7] and the fact that M1 satisfies a Sobolev inequality. Now, if the
Riesz transform on M1 were bounded on L p for p > p0, then applying Theorem
1.8 reversing the roles of M0 and M1, we would get that the Riesz transform on M0
is bounded on Lq for every q 2 (1, p), which is false by H.Q. Li’s result. Therefore,
the Riesz transform on M1 cannot be bounded on L p for any p > p0.

Proof of Corollary 1.11. According to [19], a complete manifold with non-negative
Ricci curvature satisfies the parabolic Harnack inequality; the parabolic Harnack
inequality being stable under rough isometries (see for example [16, Remark 5.5 ]
and [9, Theorem 7.1]), M also satisfies it. This implies in particular (see [16, The-
orem 2.7]) that M satisfies the volume doubling property, as well as the Gaussian
upper estimate of the heat kernel pt (x, y): there are two positive constants C and c
such that for every t > 0,

pt (x, y) 

C
V (x,

p

t)
exp

 
�c

d2(x, y)
t

!
.
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Given our hypothesis on the volume of geodesic balls, we get for every compact F ,
there is a constant C(F) such that

pt (x, y) 

C(F)

t
⌫
2
exp

 
�c

d2(x, y)
t

!
, 8x 2 F, 8y 2 M, 8t � 1.

Also, for small time, if n denotes the dimension of M , we have

pt (x, y) 

C(F)

t
n
2
exp

 
�c

d2(x, y)
t

!
, 8x 2 F, 8y 2 M, 8t  1.

In [12, Theorem 3] implies that for every x 2 F, y 2 M and t � 1,
����@pt (x, y)@t

���� 

C(F)

t
⌫
4+1V (y,

p

t)
1
2
exp

 
�c

d2(x, y)
t

!



C(F)

t
⌫
4+1

�p
t + d(x, y)

� ⌫
2
exp

 
�c

d2(x, y)
t

!



C(F)

t
⌫
2+1

exp

 
�

c
2
d2(x, y)

t

!
.

For small time, we get by the same argument that
����@pt (x, y)@t

���� 

C(F)

t
n
2+1 exp

 
�

c
2
d2(x, y)

t

!
, 8x 2 F, 8y 2 M, 8t  1.

Thus, as in the proof of Theorem 1.8 for one end, we get estimate (3.9), i.e. for
every t > 0, ����

���� @

@t
e�t10

����
����
L p(M0\A�)!L1(A)

 C.

Also, the hypothesis on the volume of balls implies (see [4]) that for every compact
set F in M , for all 1  p  q  1, and for every t � 1,

����e�t1����L p(F)!Lq (M)


CK

t⌫
⇣
1
p�

1
q

⌘ .

Finally, we see that the proof of Theorem 1.8 applies, which, together with Bakry’s
result asserting that the Riesz transform on a manifold with non-negative Ricci cur-
vature is bounded on L p for every 1 < p < 1, gives that the Riesz transform on
M is bounded on L p for every 2  p < 1. As previously explained, M satisfies
the doubling property, as well as a Gaussian upper-bound for the heat kernel, and
therefore, according to [7] , the Riesz transform on M is bounded on L p for every
1 < p < 2.



A PERTURBATION RESULT FOR THE RIESZ TRANSFORM 963

Proof of Corollary 1.12. It is known by [1] that the Riesz transform on a simply-
connected nilpotent Lie group is bounded on L p for every 1 < p < 1. Also,
a simply-connected nilpotent Lie group has only one end. The Sobolev inequal-
ity on a simply connected, nilpotent Lie group is proved in [10, page 56]. The
boundedness on L p of the Riesz transform on M for 1 < p < 2 follows from
Coulhon-Duong’s result [7] and the fact that M satisfies a Sobolev inequality. Fi-
nally, we can apply Theorem 1.8 to get that the Riesz transform on M is bounded
on L p for 2  p < 1.

Proof of Corollary 1.13. By an interpolation argument, it is enough to prove that
the Riesz transform on M is not bounded on L p for n < p < q. We proceed by
contradiction: let us assume that the Riesz transform on M is bounded on L p for
a certain n < p < q. Then, since M is q�hyperbolic according to Corollary 2.7,
by applying Theorem 1.8 we find that the Riesz transform on M#M is bounded on
Lr , for some n < r < p. But M#M = (Rn#Rn)#(N#N ), and since M#M is also
q�hyperbolic, Theorem 1.8 implies that the Riesz transform on the disjoint union
of Rn#Rn and of N#N is bounded on Ls , for some n < s < r . But we know,
according to [5] that the Riesz transform on Rn#Rn is not bounded on Ls if s � n;
hence a contradiction.
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