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An analytic approach to infinite-dimensional continuity
and Fokker—Planck—Kolmogorov equations
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Abstract. We prove a new uniqueness result for solutions to Fokker-Planck-
Kolmogorov (FPK) equations for probability measures on infinite-dimensional
spaces. We consider infinite-dimensional drifts that admit certain finite-dimensi-
onal approximations. In contrast to much of the previous work on FPK-equations
in infinite dimensions, we include cases with non-constant coefficients in the sec-
ond order part and also include degenerate cases where these coefficients can
even be zero. A new existence result is also proved. Some applications to FPK
equations associated with SPDE’s are presented.
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Introduction

In this paper we study the Cauchy problem for infinite-dimensional Fokker-Planck-
Kolmogorov equations of the form 9,4 = L*u for bounded Borel measures w on
the space R*® x (0, Tp), where R is the countable power of R with the product
topology, and second order operators

Ly = Zaijaxiaxjw + Z Biaxiw
iJ i

defined on smooth functions of finitely many variables. Then A = (a'/) is called the
diffusion matrix and B = (B?") is called the drift coefficient. Such equations arise in
many applications and have been intensively studied in the last decades. In partic-
ular, they are satisfied by transition probabilities of infinite-dimensional diffusions,
which is an important motivation for this paper. The finite-dimensional case has
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been studied in depth by many authors (see the recent surveys [11] and [13]); in par-
ticular, there is an extensive literature on regularity and uniqueness of solutions to
Fokker-Planck-Kolmogorov equations for measures on finite-dimensional spaces,
see [3,9-11,13,19,29,35], and the references there. The infinite-dimensional case
is considerably less studied, although there is also a vast literature devoted to this
case (see, e.g., [5,7,8,16,25,32], and the references there).

The organization of the paper is as follows. In Section 1 we introduce a gen-
eral class of Fokker-Planck-Kolmogorov equations in infinite dimensions and prove
some preliminary results. In Section 2 we prove uniqueness of probability solutions
for these equations under a certain approximative condition (which is a condition
on all components of the drift term in a certain uniform way), which considerably
generalizes our previous uniqueness results in [7] and [8]. The main difference with
the finite-dimensional case is that in the latter the global integrability of the coef-
ficients @/ and B with respect to the solution ensures its uniqueness, but there is
no infinite-dimensional analog of this simple sufficient condition. What we prove is
only a partial analog (Example 2.1(ii) formally gives a full analog, but the condition
on the norm of the whole drift is very restrictive in infinite dimensions). More pre-
cisely, we establish two uniqueness results: Theorem 2.3 (nondegenerate diffusion
matrices) and Theorem 2.5 that applies also to degenerate equations, in particu-
lar to fully degenerate transport (or continuity) equations including the continuity
equation associated to 2d-Navier-Stokes equation.

In Section 3 we address the question of existence of solutions to our general
FPK-equations and prove Theorem 3.1 which implies existence under quite broad
assumptions, in particular, for stochastic Navier-Stokes equations over domains in
R? for all dimensions d. In Section 2 and Section 3 we also consider examples that
include two other types of SPDEs, namely, stochastic reaction diffusion equations
on a bounded domain in R? (Example 2.10) and Burgers equation (Example 2.11)
on the interval (0, 1); their mixture is considered in Example 2.12. More precisely,
we consider the equation with a constant diagonal A and the drift B of the form
B(u) = D*u + Du™) — u?*!, where the last term produces some smoothing
effect, which enables us to cover the case of arbitrary m > 2.

The approach and assumptions in this work differ from those in our earlier
paper [5], where probabilistic tools were employed. Here we develop a purely
analytic approach without stochastic analysis and (for the first time in infinite di-
mension) also include the case of nonconstant diffusion matrices. The techniques
are also different from the ones in [5,7], and [17], where measures on Hilbert spaces
were considered, but the essential difference is not the type of infinite-dimensional
spaces, but rather the method of proof which could be called approximative Holm-
gren method, the idea of which is to multiply the original equation by a solution
of a certain equation approximating the adjoint equation (but not the exact adjoint
equation as in Holmgren’s method) and obtain after integration certain estimates
(which replace exact equalities in the classical Holmgren method).

Let us illustrate our approach by the one-dimensional case. Suppose that

Lu = aD*u + bDu,
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where a > 0 is a constant. We are going to establish the uniqueness of a probability
solution to the equation o, 0 = D)% (ap) — Dy (bw). Assume that one can approx-
imate b by a nice sequence of smooth vector fields b;. For any s € (0, Tp) and
Ve Cg° (R') we can solve the adjoint Cauchy problem

d fe +aD fu + by Dy fy =0,  filims =

By the maximum principle | fy| < max|y|. Let u = u! — 12 be the difference
of two different probability solutions 1! and 2. Multiplying the equation d;u =
D)% (ap)— Dy (bp) by the function fj and integrating by parts we obtain the equality

/‘Pdﬂs - /0 /(b—bk)Dxfkdut dar.

The main difficulty is to prove that the right-hand side tends to zero. We need some
estimates on | Dy fi|. There are two different cases.

(I) Let @ # 0. Then multiplying the equation for u! 4+ u? by the function sz,
integrating by parts and using the Cauchy inequality we have

S S
/O/ayz)xfkyzd(u} +;L,2)dt§max]1//|2<l+a_1/0/’b—bk|2d(u} +,u,2)dt>.
Assume that

. s 2
Jim [ [ b= b a(ul ) =0

According to the above estimate

/‘ﬁdus (//|b bel*d(w) + 12) dt>l/2(/ /\D Al d(,,Lt+Mt)dt>l/2

— 0 if k— oo
So we have
[ <o
for every ¥ € C°(R!), which gives the equality j; = pu) — n? =0.

(II) Let @ = 0. The required estimate can be obtained by the maximum principle.
Let us differentiate the equation 9; fy + by Dy fr = 0 in x and multiply the result by
the function D, f. We obtain

0k + b Dxvi +2Dybiv =0, v = |Dxfk}2/2'

The main difficulty is that in general the functions D, by are not bounded from
above uniformly in k. Assume that there exists a sequence of smooth functions
Vi > 1 on R! such that

LV = by Dy Vi < (C — 2D by) Vi
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for some number C and every k. Then the function wy = v/ Vi satisfies the
inequality
oywg + by Dywg + Cwy >0

and the maximum principle gives the estimate wy (x, t) < €€~ max wy (x,0). So
we have

IDy fi(x, )] < eCCD/2/V,(x) max |Dx1/f|.

Assume that

Tt
lim fo 0/|b—bk|\/7kd<u,l+ut2)dt20.

k— 00

Then, letting k — 00, we arrive at the inequality / Y dus < 0. Hence ug =0.

The same method works equally well also in the infinite-dimensional case, as
we shall see below; a more detailed study of the finite-dimensional case is presented
in our paper [6].

1. Framework and preliminaries

Let us describe our framework. Let B = (B’ ) be a sequence of Borel functions on
R>x (0, Tp), where Tp > 0 1is fixed, and let a'/ be Borel functions on R x (0, 7p).
Let A = (a"), B = (B"). Let us consider the Cauchy problem

o= L*u,
L 124 (1.1)
l‘l’|t=0 =V,

where L* is the formal adjoint operator for a differential operator L defined by

o (o.¢]
Lo(x,1) = Y a(x,030:,00c,10) + Y B (x, N3 0(x, 1)
i,j=1 i=1

for every smooth function ¢ depending on finitely many coordinates of x, 0y, ¢
denotes the partial derivative with respect to x;. Equations of this form are usually
called Fokker-Planck-Kolmogorov equations.

Throughout this paper “a measure” means a bounded signed measure (not nec-
essarily nonnegative, although our principal results will be concerned with proba-
bility measures). The total variation of a measure p is denoted by |u|. Let J be an
interval in [0, +-00). We use the standard notation C (R* x J) and C>!(R¥ x J) for
the class of real continuous functions on R¥ x J and its subclass consisting of all
functions f having continuous partial derivatives 9d; f', dy, f and 9y, dx; f (the latter

will be also denoted by dy,x, ). Let Cp(R¥ x J) and CE’I(R" x J) denote the
subclasses in these classes consisting of bounded functions and functions f with
bounded derivatives 0; f, dy, f and 9y, xj f, respectively, and CS’I(R" x J) is the



AN ANALYTIC APPROACH 987

subspace in Cg’l (R x J) consisting of functions with compact support in R x J.
For functions on R¥ we use the standard symbols Cg (RKy, le (R¥) and Cg° (RF)
for the classes of twice continuously differentiable functions with compact support,
functions with bounded continuous derivatives up to the second order, and infinitely
differentiable functions with compact support, respectively.

The inner product in R” will be denoted by (-, -); in the case of L2-spaces
we write (-, -)p for its inner product and the corresponding norm is denoted by
|l - ll2. The LP-norm will be denoted by || - || ,. The norm || - ||, x in the Sobolev
space HP*(U) of all functions on a domain U belonging to L?(U) along with their
generalized partial derivatives up to order k is defined as the sum of the L”-norms
of all partial derivatives up to order k (including k = 0).

Let Py: R® — RN, Pyx = (x1,...,xn). Given a function ¢ on R¥ we
denote by the same symbol the function on R*® defined by ¢ (x) := ¢ (Prx).

We shall consider Borel measures on R* x (0, Tp) of the form

n = ps(dx)dt,

where each 1, is a bounded Borel measure on R (possibly signed), which means
that for every Borel set B in R* the function ¢ — u,(B) is measurable, the function
t +— |||l is integrable on (0, Tp) and

To
/ fduzf / 1) () dt
R x (0, Tp) 0 Jre

for every bounded Borel function f on R* x (0, Tp); under the stated conditions
the latter integral exists.

We shall say that a bounded Borel measure u = u,;(dx) dt on R* x (0, Tp),
where (1;)o<s<T, is a family of bounded Borel measures on R*, satisfies the equa-
tion

dp=L*n
if the functions @'/, B’ are integrable with respect to the variation || of  and for
every k > 1 and every function ¢ € Cg )1 (R* x (0, Ty)) we have

To oo . 0 .
f / [atw + Y a¥ 0,000+ ) B’Bxl.go:| du, dt = 0.
0 o ‘

i j=1 i=1

It is obvious that it is enough to have this identity for all ¢ € C§° (R¥ x (0, Tp)).
It will be convenient to assume in some results below that the functions ¢’/ and
B! are defined on R® x [0, Tp]. Due to the special form of © described above the
values of these functions at t = 0 and ¢ = Ty are not important for the equation.
Let v be a bounded Borel measure on R*°. We say that the measure u satisfies
the initial condition ;=9 = v if for every k > 1 and ¢ € C3(R¥) we have

1imf é“(X),uz(dX):/ ¢(x) v(dx).
t—0 Jroo R4



988 V.1. BOGACHEV, G. DA PRATO, M. ROCKNER AND S. V. SHAPOSHNIKOV

Clearly, if sup, [|i; || < oo, it suffices to have this equality for all ¢ € C§° (RKy.
We need the following auxiliary lemma.

Lemma 1.1. Let u = p,(dx) dt be a solution to (1.1) such that sup,co 1,y eIl <
00. Assume that B € L'(|u|) for every k € Nand letO0 < T < Ty. Then for every
number k > 1 and every function ¢ € C,(R* x [0, T]) ﬂCZ’l(]Rk x (0, T)) the
equality

t
/ <P(x,t)m(dX)=/ @(x,O)V(dX)Jr// [0s5¢ + Loldpsds  (12)
Ro® Ro® 0 JR®

holds for almost every t € [0, T]. Conversely, (1.2) implies (1.1).

Proof. 1t is enough to prove this equality in the case where ¢(z,t) =0if [z] > R >
0 for almost every ¢ € [0, T]. Letn € Cgo((O, T)). According to our definition we
have

T
/ / [0: (o) + L(¢m)] d s dt = 0.
0 R>®

Thus, we obtain

T T
- / 7 (1) / 0(x, 1) j14(dx) dt = / n() / [0:¢ + Lo] dyu, dt.
0 R 0 Roe
Hence the function
t+—>‘/R @(x, 1) ue(dx)

on (0, T') has an absolutely continuous version for which

d
dr Jus (x, 1) p(dx) = /}Rw [0 + Lo]du.

Therefore, for some constant C € R the equality

t
| eenman=c+ [ [ [op+relduas
Roe 0 o0

holds for almost every ¢ € [0, T']. Note that ¢ (x, t) converges uniformly to ¢(x, 0)
as t — 0. Moreover, we have

lim o(x,0) u(dx) = / o(x,0)v(dx).
R> R

t—0
It follows that
C=_/ @(x,0)v(dx),
RDC

which completes the proof of one implication. The converse is, however, obvi-
ous. O
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Remark 1.2. Letk € N. If o(-,1) = ¢ € CZ(R¥) foreveryt € [0,T1, T < T,
then by (1.2) we have

t
/ w(x)ut(dx):/ w(x)v(dx>+ff Ly (x,s) us(dx)ds — (1.3)
R R 0 JR®

for almost all ¢ € [0, T']. Moreover, if J$ denotes the set of all # € [0, T'] such that

equality (1.3) holds, then the closure of Jl’; coincides with [0, T'] and the restriction
of the mapping

s / V() ()
ROO

to Jl’; is continuous, since the right-hand side of (1.3) is continuous in ¢.

Remark 1.3. Let ¢ be as in Lemma 1.1. and assume that 7 € J;f(_ oL Then
equality (1.2) holds with r = T'. Indeed, ¢(x, t) converges uniformly to ¢(x, T) as
t — T. Let I be the set of all ¥ € [0, T] such that equality (1.2) holds. Let us take

1 : _
asequence t, € Jy,(. 1) () I such that nll)ngo t, = T. Then we have

lim o (x, ty) g, (dx) = /ROO ox, T) pur(dx)

n—oo Roo

and equality (1.2) holds for each #,. Letting n — 0o, we obtain equality (1.2) with
t=T.

2. Uniqueness of probability solutions

In this section we establish two different uniqueness results: first we consider non-
degenerate diffusion matrices and then turn to the general case that includes fully
degenerate equations. We start with stating our assumptions about A and B.

(A) @'/ =a’? each function a'/ depends only on the variables ¢, x1, x2, . .., Xmax{i, j}
and is continuous and for every natural number N the matrix Ay = (a")1<i j<n
satisfies the following condition:

e there exist positive numbers yy, Ay and By € (0, 1] such that for all x, y € RN
and ¢ € [0, Tp] one has

yw|y|P <A@, 0y ) < v Iy A ) — A, ] <an]x — ¥,

where || - || is the operator norm and | - | is the standard Euclidean norm.

Let v be a Borel probability measure on R* and let P, be some convex set of
probability solutions u = u,(dx)dt to (1.1), i.e., uy > 0 and u,;(R*) = 1 for
every t € (0, Tp), such that |B¥| € L*(u) for each k € N and the following
condition holds:
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(B) for every ¢ > 0 and every natural number d there exist a natural number N =
N(e,d) > dand a Ci’l-mapping (b"g),[{\/:1 : RN x [0, To] — RY such that

To
/ f |An (. 2By (e 1) = bear x| ey di <.
0 Ro®

where By = (B!, ..., BV). We do not indicate dependence on d where it is meant.
Let us illustrate condition (B) by several examples.
We shall use the following notation: given a sequence « = (kj),>1 of positive
numbers, the weighted Hilbert space

o.¢]
2 = {x = () IIxllp =) Kkaxy < 00
* n=1
will be equipped with the inner product (x, y), = ZZOZI KnXnYn -
Example 2.1.

(i) Let B¥ depend only on the variables ¢, x, x2, . .., x¢. Then in order to ensure
our condition (B) we need only the inclusion |Bk| € LZ(M) for all £k > 1.
Indeed, we set N = d and approximate each function B¥ separately.

(ii) Let o = (og)x>1, 2k > 0 foreachk € Nand 1/« := (ozk_l)kzl. Suppose that
a'l satisfy condition (A) and there exists a positive number C independent of
N such that
[AnCe, 07 2y] < Cllylle,

fq; all x,t and y = (1, y2,...,¥~,0,0,...). For example, this is true if
a’ =0fori # jand a" = «;.

Let (B¥(x, 1)) € zf/a for p-almost every (x, ) and let || B|| 2, € L%(1). For
every ¢ > 0 and every natural number d we pick a number M > d such that

00 T
Z /(;O/Ooakl|Bk|2du,dt<s/2.

k=M+1

Then for every B we find a smooth function b¥ depending on the first n
variables such that

To
/0 /ma,;1|3k — b dpedt <MY, k=1,..., M.

Set N =max{M,ni,ny,...,ny} andbif =0fork > N. Then

N T
Zf / a | B* — b2 dpy dr
k=170 *©
M Ty ) N To 2
:Z// ak_1|Bk—bif| du,dt+z // oek_l‘Bk’ du:dt <e.
= Jo Jre 0 Jrx

k=M+1
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(iii) Finally, for a' as in (ii), we can combine both examples. Let B = G + F,
where G¥, F¥ € L2(n), G*(x, 1) = GF(x1, x2, ..., xx, 1), F(x, 1) € zf/a and
IFll1/e € L*(n). Obviously, for given B¥ of this type the set of all prob-
ability solutions u = us(dx)dt to (1.1) satisfying the previous integrability
conditions is convex.

Remark 2.2.

(i) Condition (B) is equivalent to the following condition: there exist an increas-
ing sequence N; — o0 and CbZ’l—mappings bi: RM x [0, Ty] — RM such
that

Ty

lim / / |Any (2, )"V (By, (e, 1) = by (x1s, xig, )| me(dx) di = 0.

=00 Jg JR®

(i) Assume thata’/ = 8%/ Let Py (x,1) = (Pyx, 1) andletE,[-|Py = (x, )] be
the corresponding conditional expectation. Then condition (B) is equivalent
to the following condition: for every ¢ > 0 and every natural number d there
exists a natural number N > d such that

To N - 2
/ / 3 (Bk(x, 1) — Eu[BX Py = (x. 0| pui(dx)dr <e.
0 k=1

This condition is known in Euclidean quantum field theory as the Hgegh-
Krohn condition (see [1]) and has been used, e.g., to prove Markov uniqueness
for semigroups (see [33]).

Theorem 2.3. Assume that conditions (A) and (B) hold. Then the set P, contains
at most one element.

Proof. Assume that two measures 0! = o!dt and 02 = o2dt belong to P,. By
our assumption about P,, o = (6! +02)/2 € P,. Letd e N, ¢ € Cgo(Rd) and
[Y(x)] < 1forall x € R¢. By condition (B) for every ¢ > 0 there exist a natural
number N > d and a Ci’l-mapping (b’g),i\/:l on RV x [0, To] such that

To 2
/ / ‘A;,l/z(x,s)(BN(x,s)—bg(xl,...,xN,s))‘ og(dx)ds < e.
0 o0
Fixt € Jj 1 N Jf/jz N J;; N szi Let f be a solution to the finite-dimensional
Cauchy problem

N N
O f+ Y aV0gd, f+ Y. bidyf =0 onRY x (0,0,
i,j=1 i=1 2.

f, x) =9 x).
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It is known (see, e.g., [31, Theorem 1.3] and also [18,23], and [36]) that a solution
exists and belongs to the class C,(RY x [0, t]) N Ci’l(RN x (0, t)). Moreover,

according to the maximum principle | f (x, s)| < I for all (x, s) € RV x [0, ¢]. Set
n = o' — o2, The measure 1 solves the Cauchy problem (1.1) with zero initial
condition. Applying Lemma 1.1 and Remark 1.3 with ¢ = f, we obtain

t
/ f(x,tm(dx):f / {a F Y g, f+ZB ax,f} dpus ds.
R 0 JR*>

i,j=1

Therefore,
t
/ Vdu, = / / (B — b,V f) dpiy ds. 22)
Roe 0 JR>®

Let us estimate the following expression:

t 2
/ / (,/ANVf’ do, ds.
0 oo
Using (1.2) for o and ¢ = fz, taking into account that (05 + L)(fz) =2f(0 +

L) f +2|/ANV f|?, and recalling that t € J ﬂ wz , we obtain from (2.1) (again
by Remark 1.3) that

¥ do, — f £2(x, 0) v(dx)

ROO

_2/ f [|\/ANVf| +fZ —bl) axlf} doy ds.
Therefore,
t 2
/ f ‘,/ANVf‘ doy ds
0 o0
To _1)2 2
< 2+/ / ‘AN (x,8)(Bn(x,8) — be(x1, ..., xn,5))| os(dx)ds.
0 JR®
Thus we obtain the estimate
t
/ / VANV | dogds <2 +-e. (23)
0 JRe
Applying (2.2) and (2.3) and the fact that || < o' + 02 =20 we have

/ Ydus <24/82+ ¢).
ROO
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Since ¢ > 0 was arbitrary, we obtain

Ydu, <0.
ROO

Replacing ¢ with —y» we arrive at the equality

Ydu, =0.
ROC
Therefore,
W do! = / v do?
R R
for every ¢ € J:;l N Jf;z N J:;zl N J:;Z, hence for almost every ¢ € [0, Tp]. Thus,
1 2
o =0°. O

We now consider a typical example to which the previous theorem applies,
namely, the Fokker-Planck-Kolmogorov equations associated with stochastic par-
tial differential equations of reaction diffusion type on a domain D C R?, i e.,

du(t) =o (), t)dW ) + B(u(t), t)dt, t € [0, To]l,

where 00* = A and u(r) € L?*(D). Furthermore, W(z),t > 0, is a cylindrical
Wiener process in L2(D) on a stochastic basis (2, F, (), P) and u(0) has the
law v. Below we denote by u generic elements of functional spaces such as L>(D)
which we embed into R* (e.g., by using a suitable orthonormal basis) to be able to
apply our framework above.

Example 2.4 (Reaction diffusion equations in dimension d with infinite trace).
Suppose that D C R is an open bounded set and {e;} is an eigenbasis of the Lapla-
cian on L2(D) with zero boundary condition, i.e., Aey = —Aker, Ax > 0. Let
f: D xR x[0, Th] - R be a Borel function. Set

B(u,t)(z) = Au(z) + f(z,u(2),t), z € D,
that is,
Bi(u,t) = —hjui + (f(-,u(), 1), ei)2, u € LX(D), u; = (u, ¢;)2.

Assume that the coefficients a'/ satisfy (A) with yy = y > 0 independent of N.
For instance, the last assumption is true if a = (Se;, e j)2 for some invertible
symmetric positive operator S on L2(D).
Assume also that there exist a Borel function C > 0 on [0, 7] and a number
m > 1 such that
|f(z,u, )] < C() + C(0)|u|™.
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Set
Ly = Za aelaewZB 0o,
i,j=1

where 9., denotes the partial derivative along e; (and corresponds to 9, if we embed
L?(D) into R® by the mapping u — ({(u, e;)2)). Then there is at most one proba-
bility solution u = u,(du) dt,i.e., u; > 0 and u,(R*) = 1 for every ¢t € (0, Tp),
to the Cauchy problem (1.1) such that

Tt
[ o) [ i < .
0 L%(D)

Proof. The mapping u + (u;) defines an embedding L*(D) — R*. Extending
B' and a'/ to all of R x [0, Tp] by zero we end up in the framework described
above. Set

Fi(l/l, t) = (f( ’ u(')7 t)’ €i>2.
Note that

SF @ =17 Cue). 012 < C0? + C@?uld
i=1

Thus we have B = A’ + F', where A'(u) = —X;u; and IFl,2 € L?(w), and
Example 2.1(iii) applies with o = 1. O

Letnowd =1,D = (0,1) and A = d—2 We recall that according to [7]
and [8] if '/ = «8"/ with & > 0 and if

fzou,t) = fi(z,u, t) + fa(z,u,t),

where (u,t) +— fi(z,u,t) are continuous for each z and for some nonnegative
functions c1, c3 € L2[0, Typ], c2 € L'[0, Tp] and all 7, z, u we have

() filz, u, 0] < cr@(1+ u™),
(i) (fi@ou. 1) = fi(z, v, 1))@ —v) < c2(0)|u — v|?,
(iii) | f2(z, u. )| < 31 + |ul),

then for every initial value v with ||u ||%% € L'(v) there exists a probability solution
w of the Cauchy problem (1.1) such that (1 4+ c{(¢) + ¢3 ()21 + ||u||%ﬁ) e L'(n).
It follows from the previous example that such a solution is unique, which improves
the uniqueness result from [7] and [8] (where the diffusion operator was invertible).

We now present another uniqueness condition that applies to degenerate (even
zero) diffusion matrices. Let us list our new assumptions (A’) and (B').

(A") A(x,t) = (a"(x, 1)), where each function ¢’/ is bounded and depends only
on the variables x1, X2, ..., Xmax(i, j}» ¢ and for every natural number N the matrix
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Ay is symmetric nonnegative and the elements a]l\{ of the matrix oy := /Ay are
in the class C® (RN x [0, Tp]).

Let v be a Borel probability measure on R and let P, be some convex set
of probability solutions u = u;(dx)dt of (1.1), i.e., u; > 0 and u,(R*) = 1
for every ¢t € (0, Tp), such that |B¥| € L'(u) for each k € N and the following
condition holds:
(B’) for every ¢ > 0 and every natural number d there exist a natural number
N = N(e,d) > d,a C*>-mapping b, = (b’g),ivzlz RY x [0, Ty] — RY, a function
6, on RV, a function V, € C2(RN) with V, > 1, and numbers C, > 0 and 8, > 0
such that

(i) V/Ve(Pyx), By (x,1) = be(Pyx, 1)|y/Ve(Pyx) € L' (1) and

To
/ / |Bn(x, 1) — be(Pyx, 1)|y/Ve(Pyx)e“T070/2 jy (dx) dt < e,
0 Roe

where By = (B!, .. - BN);
(ii) the matrix B = (dy,b;);i, j<n and the operator

Lay g 0) =Y @ (x,000:,00c,0) + Y bLx, )50 (x, 1)
i,j<N i<N
satisfy the estimates
(B(x,H)h, h) <0:(x)|h]*> Yh € RN, Layp,Ve(x, 1) <(Co — Alx, ) Ve(x),
where

A D=4 Y ‘axkajvf(x,t)( +298(x)+85(1+|x|2)_1|be(x,t)|2>
i, k<N

for every (x, 1) € RN x [0, To).

In the notation for N we omit indication of its dependence on d and ¢; in the nota-
tion for b,, 6,, V,, §. also the indication of dependence on d is omitted. Recall also
that | - | is the standard Euclidean norm.

Theorem 2.5. If (A') and (B') hold, then the set P, contains at most one element.

Remark 2.6. The above condition takes a simpler form in the special, but very
important case of A = 0.

In the case A = 0 the above assumptions (B’) can be reformulated in the
following way:

o there exist natural numbers Ny with Ny < Niy1, positive numbers §; and Cy, a
vector field by € C®(RM x [0, T]) and a positive function V; € C 2(RMx) such
that
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() Vi, |bx — B|v/Vi € L'(w) and

T
lim/ / ‘bk(Pka,t)—BNk(x,t)‘\/Vk(Pka eCeT=D/2  (dx) dt =0,

k—o0 Jo

(i1) Vi(x) > 1 and

(be (x, 1),V Vi (x)) < (Ck—Sk(1+|x|2)_l by (x, 1)[=2 max (B (x, t)h,h))Vk(x)

for every k and (x, 1) € RM x [0, T].
Note that in typical examples
Ne =k, br(x,t) = Be(Prx, 1), Vi(x) =V (Px),

where
V(x) = exp <K||x||122> or V(x)=exp (K||x||12%).

Remark 2.7.

(i) If A = (a'/) is a constant matrix and |b, (x, )| < C1(N) 4 C{(N)|x|, then the
estimate L4, p, V < (C. — A)V, in condition (B)(ii) is fulfilled if

Layp, Ve(x,1) < (Co —20:(x))Ve(x) V(x,1) € RY x [0, Tpl.

(i) If A = (a'/) is a constant matrix and |b(x, 7)| < C1(N) + C1(N)|x|?, then
the estimate L 4, 5,V < (C; — A)V, in condition (B')(ii) is fulfilled if

Lay b Ve(x, 1) < (Co — 2605 (x) — 8s|x|?) Ve (x)

for every (x, 1) € RV x [0, To] and some 8, > 0.

(iii) Leta’/ = 0ifi # j and all(x,1) = o' (x1, x2, ..., xi,1) > 0. Suppose also
that we have |b.(x,t)] < C1(N) + C1(N)|x|2. Then the estimate L 4y 5,V <
(Ce — M)V, in condition (B)(ii) is fulfilled if

LAN,bSVE(xvt) = (C - A(x t))Vg(X),

Ay =4 Y 8 2L |ax"“ (x t)| +20,(x) + 8. x|

i<N k<i

(iv) We note that (B’) is a substantial generalization of a corresponding condition
in [32] (see Section 4 there, where exponents of quadratic forms are used for V
along with some additional restrictions).
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Let us illustrate condition (B’). In (i)-(iii) in the next example we discuss condi-

tion (B/)(ii) assuming that (B’)(i) is already satisfied for some b, and only in (iv)

we discuss how both (i) and (ii) can be ensured. Moreover, we deal with V(x) =

exp(c||x[|%) or V(x) = exp(K||x||122) and bL(x) = —A;x; + f'(x, ). In particular,
A

such V actually does not depend on ¢ in the sense that, for any N, on RY we use
the restriction of a common function on R*.

Example 2.8. We assume here that A = (a¥ )i,j>11s a constant matrix, Ay :=
(a');, j<n is symmetric nonnegative.

(i) Let bk(x,1) = —aexx + f¥(x,1), x € RN. Then the estimate (Bh, h) <
0. (x)|h|%, x, h € RN, follows from the estimate

(F(x, )h, h) < 0.(x)|h]* + ||h||12%, xheRN, F= (051", oy

(i) Set V(x) = exp(k Y j, x7), where k > 0. Then the inequality L 4, p, Ve <
(Cy — AV, in (B)(ii) can be written as follows: for some numbers C, and

8 > 0 (dependent on ¢ and d) one has

O:(x) < Cy — K(trAN + 2k (Anx, x) + (be(x, 1), x))

24
= 2718, (1 + x ) be(x, )12, x e RV,

Let us consider a more specific case:

i, 1) = —hx + fR0, 0, faan = (FA@ )y, (f,),x) <0

and | f*(x, )| < Ci + Calx|?, where x € RV . Assume that for some gy > 0
and every N > 1 one has

eo({Anx, x) +1x?) < llxll,  x € RY.

Then condition (B)(ii) can be rewritten in the following form:

(F e, 0h, h) < 6cChP + 1Al xh e RY,  F = (05, f); ;_y,

O:.(x) < Cy — ktrAy + 271K(80 — K)||x||122, x e RV,
A

Note that in this case we take V with k¥ < go/4.
This assertion follows from (2.4) if we choose 8, > 0 such that

8e(1+ 1x12) ™ |be(x, 0|7 < gorclx> + 1.
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Let V(x) = exp(/c||x||12§> = exp(/c p )»,pc,%). Then the inequality

Lay.b. Ve < (Ce — A)V, in (B)(ii) can be written as follows: for some con-
stants C, and 8, > 0 one has

N N
O.(x)<C, —«k (Zaiiki + 2« Z aij)»,-)»jx,-xj —}—Z)»,-bi(x, t)x,-) 25

i=1 i,j<N i=1
2
’

— 2715 (14 1x1) ' [bex, 0], x e RV

Let us consider again a more specific case:

bECe, 1) = —daxi + R0, 0), e = (A D).

N
(Fr 0 x)p =) aif (x.0xi <0
i=1

and | fX(x, )| < Ci + Calx|?, where x € RY. Assume that for some gy > 0
and every N > 1 one has

2 Z arinxix;j + eolx|? < Z A2x?.
i,j<N i<N

Then condition (B")(ii) can be rewritten in the following form:

N
(F.0Oh h) <0k + Y nhi, x heRN, F= (o f")
i=1

Lj<=N’

N N
O:(x) <Cy —«k Za”ki + 27 k(e — K) Z)szz x e RV,

[ g A
i=1 i=1

Note that in this case we take V (x) with k < g9/4.
This assertion follows from (2.5) if we choose 8, > 0 such that

Se (14 1x12) " be(x, > < soxlx P +1, x e RV,

Let consider a yet more special case, which, however, will be useful below.
Namely, suppose that a’/ = 0if i # j, a'’ = ; > 0 are constant and the
restrictions of the functions B* to the spaces R” are infinitely differentiable.
Let |BX| € L?(p) for all k € N. Suppose also that there are a u-integrable
function V > 1 on R* with smooth restrictions to R” and a number Cy > 0
such that, for every ¢ > 0 and d € N one can find numbers N > d and §; > 0
such that

Ty
/0 /Rm |By(x,1) — By (Pnx,t)|V(Pyx) wi(dx)dt <e,  (2.6)
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where By = (B!, ..., BV), i.e. we take for b, the restriction of By to RN
with a sufficiently large N, and, in addition, the matrix B = (9, ; B'); j<n and
the operator

Lyp(x, 1) =Y [eidyde,0(x, 1) + B (x, )ye(x, )], x e RV,
i<N
satisfy the estimate
LyV(x,t) < (Co— Alx,D)V(x), (x,1) € RN x [0, To],
where

Ax, 1) == 8:(1+ [x|) 7By (x, 1)|> + 2 sup (B(x, 1)h, h).
|h|<1
Then condition (B')(ii) is fulfilled. We shall apply this case with the function
Vix) = exp(;c Yo )\,,x,%) . Finally, in order to ensure also (i) in (B’), it suffices to
have an integrable majorant for the functions |By(x,?) — By (Pyx,1)|/V(PyX)
and convergence | By (x,t) — By (Pnyx,t)] — 0 almost everywhere.

For the proof of Theorem 2.5 we need the following lemma. In its formulation
and proof for notational simplicity we omit indication of ¢ for b, 6 and §.

Letn € Cgo(Rl) be such that n(x) = 1if |[x] < 1 and n(x) = 0 if |x| > 2,
0 < n < 1 and there exists a number C;, > 0 such that ' )y~ (x) < C, for
every x.

Lemma 2.9. Let b € C®° RN, RN). Assume that there exist a function 6 on RN | a
function V € C 2(RN)Y with V > 1, and numbers Cy > 0 and 8 > 0 such that for
all (x,t) e RN x [0, Ty], h € RN one has

(Bx.0h.h) <62, B = (dy,b):j=n.
LaysV(x.1) < (Co— Alx, )V (x),

A, =4 Y [dgoy 0 +2000 +8(1 + 1x?) " 1bGx, )%
i,j,k<N

Then there exists a number k > 0 dependent on §,tr A, C, such that for every
M > 0 and every s € (0, Tp) the Cauchy problem

Of +imLaypf =0, fli=s =1,

where ¥ € CgO(RN), ty(x) = n((l + |x|2)"/M), has a smooth solution f such
that

|f(x, 0] <max [y (x)], [Vfx, ) < eV (x) max [V (x)]?/2.
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Proof. The existence of a smooth bounded (with bounded derivatives) solution f
is well known (see [30, Theorem 2], [36, Theorem 3.2.4, Theorem 3.2.6]). The
maximum principle implies that | f (x, #)| < max, | (x)]|. Set

N
u=2""3" o fI
k=1

Differentiating the equation 0; f + ¢y L ay,» f = 0 with respect to x; and multiply-
ing by dy, f, we obtain

du+CmLaypu + BV, V) +(Viu, V), VL)
+ tn0 @ sy, f O, f 2.7)
+ aijax,-xj'faxk faxk im — ;Maijaxkxifaxkx]-f =0.

Note that
(BVf.Vf)=20u, (Viu, V)b, V[f)<2IViullblu.
Let us consider the expression
Em0n @ i, fOu f + @ By, £ O fOx i — S Dy fOxx, /o (28)

Recall that Ay = 01%,. We have

Z axkaijax,-xjfaxkf:2 Z GXkG;;/meJSXinfSka

i,j.k i,j,mk
N\ 12 12
=< 22(2 axkali\/m‘ ) (Z |3x1<f|2)
i,m k k

El

mj
Z oy’ xpx; [
J

which is estimated by

2

4u Z

i,m,k

.2 .
ol 44 Y o, g
iim | j

Note that
2

2

i,m

= Z aijaxkxj'faxkx.,' f,

i,j.k

mj
20w B, f
J
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which is the square of the Hilbert-Schmidt norm of the operator oy D? f (recall
again that Ay = 01%,). Thus,

;Maxka ax,x]faxkf < 4lypu Z anO_lm‘ +4- §M Zajaxkx]faxkxlf

im.k i, jk
We now estimate the term
a'l e, f O f O S
Applying the inequality xy < (4 4+ 4trA)~'x? 4 (1 + trA)y? we obtain
IVoml?

. .. 2
a'l axixjfaxk Jfoxim < 2u (I +trA) + ¢4+ 4tI‘A)_1 (al] axix_/' f) .

Note also that the following inequality is true:
2
(Z a'l ax,.x‘,f) < (Z a""> (Z a0y O f) :
ivJ i i, jk
This follows by the inequality
ltr (AB)|* < tr A tr (AB?)

valid for symmetric matrices A and B, where A is nonnegative. The latter is due to
the Cauchy inequality applied to the inner product (X, Y) = tr (XY™) on the space
of N x N-matrices and the matrices X = A2, Y = BAY2, for which

tr(YY*) = tr (BAY?A'?B) = tr (AB?).
Therefore, we have the estimate

IVeul®

(1 +trA) +471§M Zaijaxkx/-faxuif-
i,j,k

atjax,-xj-faxkfaxk;M <2u

Applying the above inequalities we estimate (2.8) by

(4§MZ|axk m|? 42 ;Ml (1+trA)>.

i,m,k
Therefore, using (2.7) we arrive at the estimate
du+EmLaypu+ Qu >0,
where
| tml?

-
0 =2 (14 ) + [Veulbl + 266 + 46w 3 [oy[”
i,j.k<N
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We have
1/2

IV ()] < dic(1+ [x17) ™| ((1+ [x1H* /M)

Hence
Q§8K2C,7(1 +trA)+16xCy +§M<4 Z |8xk01’;{|2+29 + 2K(1 + |x|2)_1|b|2)~
i,j k<N
Let us choose ¥ > 0 such that
0<1+¢n (4 3 logon [P +20+6(1+ |x|2)_1|b|2) :
i, jk<N
Let us set u = wV . Then w satisfies the inequality
dw+mLy, jw+ Qw >0,

where
LAN bV
\%

By our assumptions we have é < Cop + 1. Since u(x,s) = |Vf(x,s)|2/2 =
|V (x)|?/2, we have

3y,

=2 5= 04eu
= o

w(x,s) = V) Ve @22 < [V )] /2.

Applying the maximum principle (see [36, Theorem 3.1.1]) we obtain
max |w(x, 1) < eCotDE= max \V¢(x)|2/2,
X X

which completes the proof. 0
We can now prove Theorem 2.5.

Proof. Assume that 0! = Utldt and 02 = =0 2dt belong to P,. By our assumption
about P, wehave o = (0! +02)/2 € P,. Letd € N,y € CP(RY) and |V (x)| +
|¥(x)| <1 forall x € RY. For every ¢ > 0 and every natural number d we find
a natural number N > d, a C*°-mapping b, = (bX)N_: RV x [0, T)] > RV, a
function 6, on R¥, a function V, € C2(RV), V > 1, and numbers C, > 0 and
8¢ > 0 such that (i) and (ii) in condition (B’) are fulfilled.

Let a function n € C(‘)’O(Rl) be such that n(x) = 1 if |[x| < 1 and n(x) = 0 if
|x] > 2,0 < n < 1 and there exists a number C;, > 0 such that I )2~ x) <
C, for every x. Let k > 0 be as in Lemma 2.9. Set ¢k (x) = n(lx|?/K) and
e () = (1 + |x1%)*/M) on RN,
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For each K € N we find a number M = M(K) such that ¢y (x) = 1 if
Ix|? < 2K.

Fix 1 € mKeN(Jf/;:pK N lefp,()’ where the sets J&f are defined in Remark 1.2.
Let f be a smooth bounded solution to the finite-dimensional Cauchy problem

N N
O f+Cm Y a0y 0., f +im Y. bidy f =0 onRY x(0,1),
i,j=1 i=1

f, x) =9 (x).

Set u = o' — . The measure u solves the Cauchy problem (1.1) with zero initial

condition. Recall that ¢y;(x) = 1 if pg (x) # 0. Therefore,

t
/R o / /R [0k (B — be, Vi f) + Lok +2(AV, . Vek)] dius ds.
o0 O o0
Applying Lemma 2.9 we have the estimate
2 e
1FC, 9l <1, |[Vef(x,s)|” < eCtDT9y )2,
Hence
t
/ Ydu < 2/ / [IB — b |V /2 CAVT0=/2 4 Lo
Roe 0 JR>®
42| AV |e(CetDTo=9)/2 V;/z] do, ds.

Letting K — +o00 we find that
t
Ydu, < 2/ / |B — be| V26 CcADT0=9/2 4o ds < 2e.
R 0 JrR®

Since ¢ > 0 was arbitrary, we obtain

/ Vdu, <0,

Replacing ¢ by —y we arrive at the equality
Ydu, =0.
ROC
Therefore,

detl :Awwdgtz

Ro©

for almost every 7. Thus, 0! = 2. g
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Example 2.10 (Reaction diffusion equations). Let us return to the situation of
Example 2.4, but now we assume that there exists a sequence of smooth bounded
functions f;(z, u, t) such that lim,_, » f,,(z,u,t) = f(z, u,t) forevery u, t, z and

|fn(z9 u, t)' S Cl + C1|u|m» (fl’l(zv u, t) - fn(Za v, t))(l/t - U) S C2|M - U|2,

where C| and C> do not depend on n. Assume also that all = (Se;, ej)> for some
symmetric nonnegative operator S on L2[0, 1], which can be degenerate (unlike the
case of Example 2.4). Then there exists at most one probability solution w of the
Cauchy problem for the Fokker-Planck-Kolmogorov equation 9,4 = L*u such that

To
/ / lull3, 12 (du) dt < oo.
0 L2[0,1]

The same conclusion is true if A = (a%/) is a nonconstant matrix satisfying condi-
tion (A’) and there exists a constant Cy such that for every natural number N and
every (x,t) € RN x [0, To] we have

3 Jonoy . n? < Ci.
i, j k<N

Prqof: Set Fi(ua t) = <f(a I/l('), t)a ei>2a Fyl;(ui t) = (fi’l('? M(), t)a ei)z’ Fn(ua t) =
(Fy;(u,1))72,, and extend all these maps to all of R> x [0, Tp] by zero. According
to our assumptions and the dominated convergence theorem we have

n—oo

Ty
lim / | Fu,t)— Fy(u, )2 pi(du)dt = 0.
0 L2[0,1]

Let Pyu :=uje; + ...+ uyeyn. The above equality shows that for each ¢ > 0 and
d > 1 there exist numbers n and N > d such that

To
/0 /LZ[O 1 | £, 0) = Fu(Pyu, t)||12 wue(du) dt < e.

Note that the condition

(fa(zou,t) = fu(z,v,0)) (@ —v) < Calu — v|?

implies that

> o Fi (Pyut)hihy < Colh?, b= (h;) € RV,
i,j<N

Hence Theorem 2.5 with V = 1 implies uniqueness. U

Below for simplicity the integral of the product of an integrable function fi
and a bounded function f; is denoted by (f1, f2)2.
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Example 2.11 (Stochastic Burgers equation). Suppose that {ex} is an eigenbasis

of the Laplacian on L?[0, 1] with zero boundary condition, i.e., D?e;, = —Arex,
M > 0. Set
B(u)(z) = D*u(z) + D(u*(2)),
that is, '
B'(u) = —Aju; — (u?, De;),, u € L*[0, 1], u; = (u, ¢;)2.
Assume that a”/ = (Se;, e j)2 for some symmetric nonnegative operator S on

L2[0, 1] with finite trace (trS < 00). Set
Oo ' OO .
Ly = Z al'laeiaej(ﬂ + ZBlaeig)a

where 9,, is the partial derivative along the vector ¢;. Let HO1 be the space of
all absolutely continuous functions # on [0, 1] such that #(0) = u(1) = 0 and
lull )= lu'|l2 < oo. Then there exists at most one probability solution w of the

Cauchy problem for the Fokker-Planck-Kolmogorov equation d; 4 = L*p such that

& 2 8lul3
/ /2 ||M||H01€ 12 e (du) dt < 00
0 L-[0,1]

for some § > 0 (which may depend on w).

Proof. We apply Example 2.8(ii). Recall that the matrix (a'/) has to satisfy the
following condition for some g9 > 0:

eo({Anx, x) + |x|?) < IIXIllzi, x e RV,

This is equivalent to

2

eo((Su, u)a + lull3) < llully,,

u=xye+---+xyen,
which is true for sufficiently small 9. We fix g9 € (0, §). Set
F! (u) := (uz, De;)y foru e L?

and extend F' by zero to all other u = (uz) in R®. Let

Fu) = (F"(u))?il, Pyu :=uie; + ... +uney,
bk(ul,...,uN) = —Aup + Fk(PNu), k<N.
Note that
|WWW#=Wf”b=ﬂWWMSmW%{
Hence

To
lim / f | Fw) = F(Pyw)] e’ 115 iy (duy di = 0.
0 L2[0,1]

N—o0
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It is easy to see that |b¥(u)| < C1(N) + CZ(N)IIPNull% and (F (Pyu), Pyu)y <0.
Moreover, for every y € (0, 1) we have the inequalities

> 0 F*(Pyu)hihe < Al + (y | a3 + cy)|h|2, h=(h)eRY.
i,k<N

Set 0

(Pyu) = )/||P1vu||i,Ol + Cy and Cy = C,, + trS (we recall that trS < o0). In

order to apply Example 2.8(ii) we choose y < 27 18(eg — §). O

Example 2.12 (Mixed Burgers/reaction diffusion type equations).

®

(ii)

In the situation of the previous example we consider the operator L with the
drift coefficient of the form

B(u)(z) = D*u(z) + D(u*(2)) —u™*'(z), meN,

that is, .

B'(u) = —\ju; — (uz, Dei>2 - <u2’"+1, ei>2-
Assume that a'/ satisfies the assumptions in the previous example. Then
there exists at most one probability solution u of the Cauchy problem for the
Fokker-Planck-Kolmogorov equation 9, = L*u such that

Ty )
a3 s + el €145 pus(@uy di < o0
/0 /;2[0’1][ 4m+-2 H,

for some 6 > 0 (which may depend on p). Note that the measure w, is con-
centrated on HO1 fora.e.z.

In the situation of Example 2.11 we consider the operator L with the drift
coefficient of the form

Bw)(z) = D*u(z) + D(u™ (@) —u’*'(2), 2<m<i+1, mleN

that is, ‘

B'(u) = —Aju; — (um, Dei>2 — (u%“, ei>2.
Assume also that ¢’/ = 0if i # j and that Zloil a'l < oco. Then there exists at
most one probability solution p of the Cauchy problem for the Fokker-Planck-
Kolmogorov equation d; 4 = L*u such that

To
L e g Jexo e (e 3 1) s (o< o
0 JL2((0.1)) 0 0

for some ¥’ > 0 (which may depend on ). As above, the measure u, is
concentrated on HO1 for a.e.t. This partially improves the results in [26] (where
the last term in the equation is of linear growth).
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Proof. (i) We apply Example 2.8(ii). Note that as in the above example the ma-
trix (a'/) satisfies all conditions in Example 2.8(ii). Let ¥y € C®[RY), ¥ (s) =
- (=$),0 <y <1, ¢yy(s)=sif|s| <M —1and ¥y (s) = Mifs > M + 1.
Set

Fl(u):=—(u?, Dej)y— (™t e;)2, Fi(u):=—(u®, De;)r—(Yra)* !, e},
Pyu:=uje1 +---+uney, bk(ul, Lo UN) =AU + F/lf,[(PNu).
As above, we define all these functions by zero if « is not in L2[0, 1]. Note that

2 2m+1
IE@)llp2 < 2”””1_101 + llullgnia

and the same is true for Fjs(«) in place of F(u). Hence

To
lim ( lim / / IF (u) — Fag(Pyu)pe 2 ,u,(du)dt) =0.
0 L2[0,1]

N—oo \M—o00

It is easy to see that [bK(u)| < C1(N) + C2(N)||Pyul3. Recall that v}, > 0 and
Yum(s) = =Yy (—s). Hence (Fy (Pyu), Pyu)> < 0. Forevery y € (0, 1) we have

> du Fly(Pywhii < Ikl + (vIPyullyy + Cy )P, b= (hi) € RY.
i,k<N

Set 6(Pyu) = V||PN”||§11 + Cy and Cy = C), + trS (we recall that trS < o0). In
0

order to apply Example 2.8(ii) we choose y < 27 !'8(gg — §).
(i) We check condition (B'). Let ¢ € C°(R), ¢(x) = 1if [x] < 1,¢(x) =0
if x| 20,0 <¢ < 1,]¢'] < 1. Set

X
w0 =6/ w0 = [ g,
We observe that vj(x) = x if [x| < j, [¥;0)] < Ixl, ¥}l < 1, [P/ ()] <
I{j<|x|<2j}(x)/j- Set
FYu) = —(y;@)", Dex)y — (™™ ex)a,  Pyu=uier + -+ uyen,
BX(ui, up, ..., un) = —igug + FJIF(PNM).
Since

2
dx

(0" )

1 2 1 )
/ dx < C/ ’(um_l)
0 0

with some C independent of j, it is easy to see that for every y € (0, 1) there exists
anumber C,, > 0 (independent of N) such that

> o PN it < y Il (v P 3 4+C )P, k= () € RY.
i,k<N
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We shall now construct a suitable Lyapunov function V of the form V = exp(a¢G),

where 1 1
1 M
G(u) = —/ Wt dx + —/ u*dx,
21 4+2 Jo 2 Jo

and o and M will be picked below. We have
1 1
3, G (u) = / u?tle;dx + M/ ue; dx,
0 | 0
D86, G(u) = (2 + 1)/ ueje;dx + Ms;;.
: 0
Taking into account that e/ = —A.Zei, we obtain

LG = Z (a"9; G +b'd,,G) Za”(Zl—l—l)/ u2’e2dx+MZa”

i=1
/ ue! dx (/ uttle, dx—l—M/ ue; dx)
0

1 1
+m Z W )"y () e dx utleidx + M | ueidx
i=170 ! / 0 0

n 1 1 1
—Z/ e dx / u?tle, dx-l—M/ ue;dx | .
= Jo 0 0

Therefore, since [ (u)| < |u| and |1ﬁ}| < 1, we have

00 1
LG < Za” <M+(21+ 1)/ u2’dx)
0

i=l1

1 1
—(21+1)/ u2’|u/|2dx—M/ lu'|> dx
0 0

2
1 n 1
m 2m—2y, /12 mo 20+1
+ — dx + — E i d
/0 u lu'|” dx ' (/0 u="e x)

i=1

1 n 1 2
— M/ w2 dx — Z / u21+le,~ dx | .
0 i=1 \’0

Note that u?"~2 < C(8) 4 u®, since 2m — 2 < 2I. Taking § small enough and M

large enough we obtain
LG <C; —CyW,

where C;, C, > 0 are constants and

2
1 1
W:/ |u/|2dx+/ u21|u/|2dx+/ 2l+2dx+2(/ A+, x> .
0 0
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Hence
Lexp(@G) <aLG +2* ) " a" Z(/ u21+]e,~dx> + Mul3
i=1 i=1 \”0

For o small enough we obtain
Lexp(@G) < (C3 — C4W) exp(aG), (||u||iji; + ||u’"||H01) exp(@G) € L' ().

Note that [|u” ="l 1 < C(llu | 1 + llull 1), where C depends on [ and . Let
us also observe that

|b|2 Z|bl <2Z<u e// w](u)m ) < 2[+1 €i>2)
n 1 2
<C(N) ||M||2+||Mm||2+z<f wtle; dx)
0

i=1

Taking 8y sufficiently small we obtain Sy |b(Pyu)|*(1 + [|Pyull3)~! < C4W/2.
Choosing y small enough we have

LaysV Py = (Co = y I Py 12, s 6Py (L + | Pyal3) ™) V (P

for some number Cy > 0. Note that Cy does not depend on N and we can omit the
term ¢€0T=1/2 in condition (B')(i).

Finally, we have to verify that for any given ¢ > 0 and any d € N there are j
and N > d such that

Ty
/ sz[O | IEi(Pra) = F @)z exp(@G(Pyu) (o) di < .

By a classical result (see [27, page 59]), for each p > 1 there is a number C(p) such
that || Pyull, < C(p)llullp and limy oo [|Pyu — u||, = 0. Therefore, making o
smaller, it is enough to get the above estimate for G in place of G o Py . Furthermore,
we have

I1F@le < [u" | g+ Nely e [ Fi@]p < o™+ lelii

and || Fj(u) — F(u)|l2 — Oas j — oo forany u € HOl such that u™ € HOI, so by
the Lebesgue dominated convergence theorem

To
lim/ [ |Fj@) — Fw)]|2 exp(@G) p; (du) dt = 0.
L2[0,1]

Jj—00 Jo
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For fixed j we have
IEj Pyl =C (G m) | Prull g =<C Gy m)llull gy, 1 @)l =CGm)llul g

hence

Ty
lim /2 |Fj(Pyu) — Fj(u) |2 exp(aG) p;(du) dt = 0.
L4[0,1]

N—o0 Jo

Therefore, given ¢ > 0, we can find j such that

To
/ / |Fju) — Fu)|  exp(@G) i (du) dt < ¢/2,
0 L2[0,1]

next we take N such that

To
[ [ AEen = Fwls exp@6) wtan) < /2,
L2[0,1]

so that .
0
/ / |Fj(Pyu) — F(u)| 2 exp(@G) s (du) dt < .
0 JL2[0.1]

Hence Theorem 2.5 implies uniqueness of a solution. O

It should be noted that such “mixed” equations have been considered in [26]
and [34]; the example above shows that the explained method covers both types of
equations simultaneously.

Example 2.13 (Stochastic 2d-Navier-Stokes equation). Let us consider the space
V> of R2-valued mappings u = (u', u?) such that u/ € HOZ’I(D) and divu = 0,

where D C R? is a bounded domain with smooth boundary. The space V5 is
equipped with its natural Hilbert norm ||u||y, defined by

2
lul}, =Y [ Vel |5
i=1

Let H be the closure of V5 in L?(D, R?) and let Py denote the orthogonal projector
on H in L%(D, R?). It is known (see [28]) that there exists an orthonormal basis
{n,} in H formed by eigenfunctions of A with eigenvalues —X, < 0 such that
Ny € Va. Recall that (Pyw, n,)2 = (w, n,)2 forany w € L?*(D,RY). Set

2 2
B"(u, 1) = (u, Any), Z Pru? 9 ;u, m)y = (1, Anp), Z 3z, ulny),
j=1 j=1
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whenever u € V, and B"(u, t) = 0 otherwise. These functions are continuous on
balls in V5, with respect to the topology of L?(D, R?), which easily follows from the
compactness of the Sobolev embedding H 21(D) — L3(D). Consider the operator

00 o0
LoGu, 1) =) a" 8,8y, 0(u.0) + ) B"(u. )3y, 0(u, 1).
i,j n=1

Assume that '/ = (Sn;, n;)2 for some symmetric nonnegative bounded operator

S on H. Suppose also that ) _; a''}; < oco. Then there exists at most one probabil-
ity solution u of the Cauchy problem for the Fokker-Planck-Kolmogorov equation
0 = L*u such that for some § > 0

To 2
/ / (1+ laul3)e™ ¥ puy(duy dr < oo,
0 H

where we set ||Aullr = oo if u’ ¢ H>%(D).

Proof. We apply Example 2.8(iii). Recall that the matrix (a'/) has to satisfy the
following condition for some g9 > 0:

£0 Z a’]Aiijixj -|-80|)C|2 < E )»l-zxiz
i,j<N i<N

that is equivalent to the estimate
2 2
eo({SAu, Auyz + |lullz) < llAull3,

which is true for sufficiently small gg. Set
2
F'(u) = Za u, u’ nn uev,.

Note that |[F"(u)| < Ci1(n) + Cg(n)||u||%, since F"(u) = Zj:u(u, ujazj Nn)2 due
to the condition that divu = 0. It is well-known that there exists a constant C; > 0
such that for every function g € HO2 /1 (D) N H*>2(D) we have

llgll2,2 < CillAgll2.

Moreover, for every g € H>?(D) and some constant C, > 0 (since we deal with
d = 2) we have
lglls < C2ligl2,1-

Hence

) 12 1/2
||F(u)||fzs/D|vzu(z>| (o) dz < (/Dwzu(z)r‘dz) (/Dm(z)r‘dz)

< CICH (1 + [[Aull3) [lull3,-
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Let Pyu =uin; +--- +unny. We have

[T il /2
lim |F ) — F(Pyw)l|,,e”"""2"" pi(du) dt = 0.
N—o0 Jo H
It is known (see, e.g., [15, Proposition 6.3]) that in the considered case d = 2 we
have the inequality

(F(Pyu), APyu), =0

which gives the condition ZINZ] rif i(x,)xi =0 required in Example 2.8(iii) (now
F' plays the role of 7). In addition, for every y € (0, 1) we have

D I (Pywhihj < (Cy + v I APNUIR)IAP + 101G, = (hi).
i,j<N

Set 6(Pyu) = Cy + y[|APyul}, and Co = C, + Y72 a'; (we recall that

P a''x; < o0). In order to apply Example 2.8(iii) we choose y < 27 18(gg — ).
In Example 3.5 we consider a more general equation. O

It is worth noting that the last example applies to degenerate coefficients A, in
particular, to A identically zero, which gives uniqueness for the so-called continuity
equation corresponding to 2d-Navier-Stokes equation.

In the next section we show that the considered classes of uniqueness are not
empty.

3. Existence of solutions

First we would like to mention that if the stochastic equation associated to our
Fokker-Planck-Kolmogorov equation has a solution in the sense of Stroock-Varad-
han’s martingale problem, then one immediately gets a solution to the FPK-equation.
But uniqueness of solutions for a martingale problem does not imply uniqueness for
the corresponding FPK-equation.

In this section we purely analytically prove the following existence result gen-
eralizing a result from [4] (where only a sketch of the proof of a weaker result was
given, namely, V was the square of the norm).

Let {e,} be an orthonormal basis in I2. The linear spanof ey, ..., e, is denoted
by H,.

Let Ty > 0 and let ¢’/ : R*® x [0, Ty] — R! and B': R*® x (0, Tp) — R!
be Borel functions. Suppose that the matrices (a'/);. j<n are symmetric nonnegative
for all n. Set

Lo(x,1):=) " (x,1)8,00,0(x, )+ _B'(x,1)de0(x, 1), (x,1)€R®x (0, Tp)

n
ij=1 i=1

for functions ¢ that are smooth functions of the variables xy, ..., x,, t.
Let B, ;= (B',...,B") and P,x = (x1,...,%x,).
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A Borel function ®: R*® — [0, +00] such that the sublevel sets {® < R},

where R < oo, are compact is called a compact function. For example, one can
take any numbers o; > 0 and set ® (x) = Zloil al.zxiz.
Theorem 3.1. Suppose that there exists a compact function ®: R* — [0, +o0],
finite on each H, and such that the functions a'/ and B' are continuous in x on
all the sets {® < R}, and there exist numbers My, Co > 0 and a Borel function
Vi R® — [1, +o0] whose sublevel sets {V < R} are compact and whose restric-
tions to H, are of class C? and such that for all x € H,,n > 1,1t € (0, Tp) one
has

D a(x, 100,V (x)0,;V(x) < MoV (x)%, LV (x,1) < CoV(x)—O(x). (3.1)
i,j=1

Assume also that there exist constants C; > 0 and k; > 0 such that for all i and
Jj <i one has

| (x, ) B (x, )| <C; V()N (1+8(O(x)O(x)), (x,1) € R®x (0, Tp), (3.2)

where § is a bounded nonnegative Borel function on [0, +00) with limg_, » 8(s) =
0. Then, for every Borel probability measure v on R* such that

Wi :=sup [V o P, <00 VkeN,
n

|| L'(v)

the Cauchy problem (1.1) with initial distribution v has a solution of the form yu =
s dt with Borel probability measures j1; on R such that

t
/ V"du,Jrkf/ VElOdusds < NyWy Yk eN, t € (0, Ty), (3.3)
ROO 0 o0

where Ny := MyeMk +1, My = k(Co + (k — D)Mo). In particular, u;(V <
o0) = 1 forallt and i (® < oo) =1 for almost all t.

Proof. For every fixed n let a;] denote the restriction of @/ to H, x (0, Tp) and
set A, = (ay] )i, j<n- Denote by v, the projection of v on H,. We show that there
exist Borel probability measures (i; , on H, such that the measure u, = pu; , dt
solves the Cauchy problem with coefficients A, and B,, on H, x (0, Tp) and initial
distribution v,. To this end we consider the Lyapunov function V,,(x) = V (x)" on
H, ,where m > 1. Letting M,,, := m(Co + (m — 1) Mp), we obtain

n
LV, =mV™! (LV +m—-1nv! Z a' 9., Ve, V)
ij=1

<mV" N CoV = O+ (m — YMV) < My V" —mV"™'0.
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Since the function V,, is v,-integrable, we can apply the existence result from [3]
and obtain the desired probability measures (i, , on H, (with po , = v,) such that
the function

= ¢ (x) pr n(dx)
H,
is continuous on [0, Tp) for every ¢ € C{°(H,). Moreover, by [4, Lemma 1] (see
also [3, Lemma 2.2]), for each m > 1 and

Ny = MpeM +1, M, = m(Co + (m — 1)My)

the following estimate holds for almost all # € (0, Tp):

t
/ Vi () g0 () + f / Vo 1 (DO ) fs.n(dx) ds
H, 0 H,
34
< Nm/ Vm(x) Vn(dx) < Ny + NpuWy.

Therefore, by Fatou’s theorem and the above stated continuity of # — u; , it fol-
lows that (3.4) holds for all # € [0, Tp). Indeed, we replace V,,, and ®V,,_; in the
left-hand side by min(k, V;;,) and min(k, ®V,,_;), obtain the desired estimate for
all t € [0, Tp) keeping k fixed and then let k — oo.

Suppose now that ¢ € Cgo(Rd). Let us identify H, with R". If n >
then ¢ regarded as a function on R" belongs to the class C;°(R"). Let m
max(ky, ..., kg). Then we have the estimate

d’

|ILE(x, 1) < K+ KV (x) + KV (x)8(O(x)O(x), (x,1) € R" x (0, Tp), (3.5)

where K is some number which depends on ¢ (but is independent of n since ¢
is a function of xp, ..., xy). Therefore, by approximation, inequality (3.4) and
Lebesgue’s dominated convergence theorem we have

/{(X)Mz,n(dx)Z// LC(X,S)Ms,n(dx)dS+/ $(x)vp(dx), (3.6
H, 0 H, H,

because, according to [3], this identity holds for all ¢ € C{°(IR"), hence in our
situation it remains valid also for all ¢ € C;°(R"). Letting

@n(t) = /H ¢(x) pen(dx), t € [0, To),

we see from (3.4), (3.6) that the function ¢, is Lipschitzian (one can also show that
it is everywhere differentiable in (0, 7p)) and (3.5) yields that

o] < /H LG D) rn(d) < Ko /H [1 4 Voot O] a1 ()
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with some number K, that does not depend on n (but only on ¢). Therefore, by
(3.4) the functions ¢, possess uniformly bounded variations, hence there is a subse-
quence in {¢,} convergent pointwise on [0, 7). We may assume that this is true for
the whole sequence. Moreover, we can do this in a such a way that this pointwise
convergence holds for every function ¢ from a fixed countable family JF with the
following property: the weak convergence of a uniformly tight sequence of proba-
bility measures on R* follows from convergence of their integrals of every function
in F.

It follows from (3.4) and the compactness of the sets {V,, < R} and {® < R}
that, for every fixed ¢ € (0, Tp), the sequence of measures ji; , is uniformly tight
on R* (see [2, Example 8.6.5]). Hence we can find a subsequence, denoted for
simplicity by the same indices n, such that {u; ,} converges weakly on R* for
every rational ¢t € (0, Tp). However, since we have ensured convergence of ¢, (¢)
at every t € [0, Tp) for every ¢ € F, we see that {u; ,} converges weakly for
every t € [0, Tp).

Estimate (3.3) follows from (3.4) taking into account that V > 1 and ® > 0
are lower semicontinuous, hence V¥ and V¥~1© are lower continuous as well.

The family of measures p; obtained in this way is the desired solution. Indeed,
let us fix ¢ € C§° (R%). We have to show that the integrals of L (x, 1) over R® x
(0,T), T < Ty, with respect to wu, converge to the integral with respect to u =
i dt. This amounts to establishing such convergence for all functions f = d,¢ B
and f = a, ;0x;¢. Suppose we are able to show this for the functions fy =
max(min( f, N), —N). Then (3.2) and (3.4) enable us to extend the same to the
original function f, because for every ¢ > 0 these estimates give a number N
such that the integral of | /|1 |~y With respect to u;,, dt is less than ¢. Indeed, it
suffices to show that the integral of G := VE(1 + §(©)®) over the set {G > N}
with respect to u; , dt does not exceed ¢ for N sufficiently large. Take n; such that
1/n1 + 8(s) < ce forall s > ny, where ¢ > 0 is so small that c Ny Wiy < 1/2.
We may assume that § < 1. We have

To To
/ / Gduy,dt = / / O~ '+ s50)Vedu, , dt
0 {©>n} 0 {©>n}

Ty
508/ / VkOdu, ,dt < ¢/2.
0 n

Forany N > n and ¢t < Ty we have
f Gdprn < (1 +n1)f VEdpsn < N7' A+ n0) >N W,
{G=N,0<n;} {(VE=N/(1+n1)}

which can be made smaller than /2 uniformly in # < T for all N sufficiently large.

Thus, it remains to justify the desired convergence in the case of fx, which will
be now denoted by f. We recall that the restriction of such a function f to every
set {® < R} x (0, Tp) is continuous in the first variable. Dividing by N we assume
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that | f| < 1. If f were continuous in x on the whole space, this would follow at
once from the weak convergence of u; , for every fixed ¢. Our situation reduces to
this one in the standard way: given ¢ > 0, we find R so large that the set {® >
R} x (0, Tp) has measure less than e with respect to all measures ; , dt and p; dt.
By our assumption the set Q = {® < R} is compact in R>°. The mapping ¢ —
f (-, 1) from (0, Tp) to C(£2) is Borel measurable. By Dugundji’s theorem (see [14,
Chapter III, Section 7]), there is a linear extension operator E: C(2) — Cp(R™)
such that Ep(x) = ¢(x) forall ¢ € C(R2),x € Qand |E¢|lco = |l¢lleo- Letting
g(x,t) = Ef(-,t)(x),we obtain a Borel function (since it is Borel measurable in ¢
and continuous in x, see [2, Lemma 6.4.6]) such that |g| < 1 and g(¢, x) = f(¢, x)
for all x € Q. The integral of g with respect to i, , dt converges to the integral of
g with respect to u; dt and the integrals of | f — g| with respect to these measures
do not exceed . Therefore, the measure ; = p; dt satisfies our parabolic equation
with initial distribution v. O

The condition that V' > 1 is taken just for simplicity of estimates: it can be
replaced by V > 0 if we add constants in the right sides of (3.1) and (3.2).

In typical examples V and ® are quadratic functions (with added constants).
For example, we shall use V(x) = Y 7%, Bix? + 1 and ©(x) = 372 a;x?. There
is also a version of this theorem applicable to exponents of quadratic functions (the
first inequality in (3.1) is not suitable for such functions).

Theorem 3.2. Suppose that in Theorem 3.1 condition (3.1) is replaced by
LV(x,t) <V(x)—Vx)O(x) (3.7)
and (3.2) is replaced by

" (x, )| + |B'(x, )| < Ci(1 +8(V(x)O()V (x)O(x)),

(3.8)
(x,1) € R® x (0, Tp).

Then, for every Borel probability measure v on R with

Wii=sup ||V o Pyllpi) <00
n

the Cauchy problem (1.1) with initial distribution v has a solution of the form yp =
Wy dt with Borel probability measures j1; on R such that for t € (0, Tp)

t
/ Vdu,+// VOdu,ds < 4W. (3.9)
Roe 0 &

Proof. The reasoning is much the same as in the previous theorem, but we use only
one Lyapunov function V and use (3.7) in place of (3.4) to obtain the estimate

t
/ V() pr () + / / V(0O ) iy n(d) ds
H, 0 JH,

<(e+ 1)/ V(x) po,n(dx) < 4W.
Hy
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Another place where some difference arises is the estimate of the integral of 1) >y,
where | f| is estimated by C(1 + §(V®)V®), but this is easily done by using the
previous inequality and the condition that §(s) — 0 as s — oo. O

Let us apply the last theorem to the Fokker-Planck-Kolmogorov equation as-
sociated with the stochastic Burgers type equations (see Example 2.11).

Example 3.3 (Stochastic Burgers equation). Let us return to the situation of Ex-
ample 2.11. Let u belong to the linear span of {e}. Note that

(B(u), u) = —|ull7, -
Let V(u) = exp(8]|ul|3). We have
LV@u) < 28(trS +25(Su, u)y — ||u||§11)V(u).
0

Taking § < £9/4 we obtain

LVu)<=(1-0w)Vm), Owum)=1-2tcs +8||u||§1].
0

In addition, |B*(u)|] < C(k) + C (k)||u||%. According to Theorem 3.2 for every
initial condition v with exp(6||u||%) € L'(v) there exists a probability solution y of
the Cauchy problem o, = L*u, i|;=0 = v such that

To
/ / luell?,, exp(8l1ul13) i (du) dt < oo
0 L2[0,1] 0

According to Example 2.11 this p is the unique probability solution with this prop-
erty.

Example 3.4. Let us return to the situation of Example 2.12, where we deal only
with the more general case (ii). Assume that ¢’/ = 0ifi # j and that D a' < oo.
Let u belong to the linear span of {e;}. Using the same Lyapunov function V =
exp(eG) as in that example, we obtain LV < (C3 — C4W,)V, where

2
1 1 1 n 1
W,,(u):/ |u/|2dx—|-/ u2’|u/|2dx+/ u2l+2dx+Z(/ uleeidx)
0 0 0 = \Jo

for all u € H,, with m > n. According to Theorem 3.2 for every initial condition v
with

Vel
there exists a probability solution u of the Cauchy problem d;u = L*u, ptl;=0 = v
such that

To
/ / Wo(u)V (u) i (du) dt < C,
0 L2[0,1]
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where C is independent of n. By Fatou’s theorem

To
/0 / oy VO [1 4 a  4 u B  sy a <
L=[0,

We want to apply Example 2.12(ii) to show that this u is the unique probability
solution with this property. To this end it suffices to note that [[u" || X <Cllu IIiI +
0

Cllut u’||%, since 2 < m < [ 4 1. This partially generalizes a result in [32] (where
restrictions on m and / are imposed, see [32, Condition (F1)] for details).

Let us apply the existence theorems to the Fokker-Planck-Kolmogorov equa-

tion associated with the stochastic Navier-Stokes equation in any dimension (a spe-
cial case has been considered in Example 2.13).
Example 3.5. The stochastic equation of Navier-Stokes type is considered in the
space V5 of R?-valued mappings u = (u!, ..., u?) such that u/ € HOZ’I(D) and
divu = 0, where D C R is a bounded domain with smooth boundary. The space
V2 is equipped with its natural Hilbert norm |||y, defined by

d in2
lully, = [ Ve |-
j=I1

Let H be the closure of V» in L%(D, Rd) and let Py denote the orthogonal projec-
tion on H in L*>(D, R?). The stochastic Navier-Stokes equation is formally written
as

d
du(z,t) =\/§dW(z, t)+ Py |:Azu(z, 1) —Z ul (z, t)azju(z, 1)+ F(z, u(z,t),t)j|dt,
j=1

where W is a Wiener process of the form W (z, t) = ZZO:1 Vo, wy, (t)n,(z), where

o0
a}’l Z 0’ § a}’l < OO,
n=1

wy, are independent Wiener processes, and {1, } is an orthonormal basis in H, and
F: DxRYx (0, Ty) > R?

is a bounded continuous mapping. No interpretation of this equation is needed
for the sequel, it should be regarded only as a heuristic expression leading to a
specific form of the corresponding elliptic operator. The case F = 0 is the classical
stochastic Navier-Stokes equation. Note that the action of Pg in the right-hand side
is defined in the natural way: Py A,u(z,t) := PgA;u(-,t)(z) and similarly for
the other terms. Since the Laplacian A is not defined on all of V;, this equation
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requires some interpretation. Our approach suggests the following procedure. It
is known (see [28]) that there exists an orthonormal basis {n,} in H formed by
eigenfunctions of A with eigenvalues —X,, < O such that n, € V,. Employing
the fact that (Prw, n,)2 = (w, n,)2 for any w € L3(D,RY), we introduce the
“coordinate” functions

M&

B"(u,t)Z(M,Annh— (P (/0 ,u), ma)2 + (PuF (-, u(-,1),0), )2

~.
Il
-

M&

= (u’ Ann>2 - (8 Lt u ﬂn)2+< ('7”('at)at)a 7]n>2

~.
I
—

These functions are defined by the last line on all of V,. They are continuous on
balls in V5 with respect to the topology of L2(D, R?), which follows by the com-
pactness of the embedding of H>!(D) — L?(D). Choosing a Wiener process of
the above form, we arrive at the operator

[e.0] o0
Lo(u.t) =Y andy o, 1) + Y B"(u, )00, 1).
n=1 n=1

Since for every u from the linear span of {,} one has

. d . 1
(1, )0z, )y =), w7 0j00)y = =5 /D ju(2)Pdivu(z) dz =0

NgE
M&

n=1 j=1 j=1 2
and (Au, u), = —||u||22, we have the estimate
N
> G, 2B, 1) < C1 = Cillully,
n=1
for all u in the linear span of 5y, ..., ny, where C| is a constant independent of N.

Clearly, we have also
|B"(u, 1)| < Ca(n) + C2(n)[lull3.

Therefore, by Theorem 3.1 applied with (1) = C1||u|| and V(u) = ||u||2 +1
(the above estimates along with convergence of the series of o, mean that we have
(3.1)) there is a probability measure &t = w; dt on Vo x [0, Tp), such that u;,(H) = 1
for all # and u; (V) = 1 for almost all ¢, and solving the Cauchy problem (1.1) with
any initial distribution v for which ||u||’§ € L'(v) for all k. This settles the easier
problem of existence.

It should be also noted that Flandoli and Gatarek [21] proved (under the stated
assumptions) the existence of a solution to the martingale problem associated with
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the operator L such that this solution possesses all moments in H. One can show
that the measure generated by this solution satisfies the Fokker-Planck-Kolmogorov
equation in our sense.

Let us consider the 2d-Navier-Stokes equation, i.e.,d = 2 and F = 0, where
we are able to establish also uniqueness. Recall that for every u from the linear span

of {n,} one has
oo 2
ZZ u, Ann szu u 77,1> =0.
n=1 j=1

Set V(1) = exp(d]ju ||%,2). Let u be from the linear span of {1, }. We have

LV(u) =25 (Zankn +28) anhpun — foluﬁ) V().
n n n

Assume that ) 72 @k, < 00. Hence for sufficiently small § > 0

LV@) < (1=0w)V®), Ow) =1-38) ah,+8]Auls3,

n=1

where © (1) = +o0 if u' ¢ H 22(D). According to Theorem 3.2 for every initial
condition v with exp(8|lu||7,) € L'(v) there exists a probability solution  of the
Cauchy problem 9,4 = L*u, t|;=0 = v such that

To 2
/ fU+MmWWmemm<w
0 H

According to Example 2.13 this measure u is the unique probability solution with
this property.

Finally, we formulate one more existence and uniqueness result which is a
combination of Theorem 3.1 and Theorem 2.3.

Corollary 3.6. Leta'’ =0ifi # jand a'’ = «; > 0. Suppose that the hypotheses
of Theorem 3.1 are fulfilled with certain functions V and ©. If there exists a Borel
mapping F = (F,): R® x (0, Tp) - R* and numbers p > 0, C > 0 such that

IF, DI < CV0PO )

and for each natural number n the difference B" (x,t) — F"(x,t) depends only on
t and x1, x2, ..., Xy, then, for every initial condition v with V € LK (v) for every
k > 1, the class P, (see Theorem 2.3) consists of exactly one element.

Example 3.7. Leta”/ = 0if i # j and a’’ = o; > 0. Suppose that

B"(x,t) = —Buxy, + F"(x,t), where B, > 0.
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Let y, € (0, +00) be such that

00
Zanyn < 0.
n=1

Let
o0 o
V@) =1+ yxs. Ox) =Y Buvax,.

n=1 n=1
Let coo denote the subspace of all vectors x € R* with at most finitely many
nonzero coordinates.

Suppose that a Borel mapping F(-, -): R® x (0, Tp) — R satisfies the
following conditions: for each 7 it is continuous in x on every set {® < R} and
there are numbers ¢ € (0,1), C; > 0, Cy > 0, and p > O such that for all
t € (0, Tp) and x € coo one has

Y vF (6, 0)x, <O +C1V(x), Y oy IF" (1,07 <C2 (14 O(x) V(x)P.

n=1 n=1

Then, for every initial condition v with V € L¥(v) for every k > 1, the class P,
consists of exactly one element.

Remark 3.8. As already noted, if the infinite-dimensional stochastic differential
equation (SDE) associated to our Fokker-Planck-Kolmogorov equation has a solu-
tion in the sense of Stroock-Varadhan, then one gets a solution to the FPK-equation
(but not vice versa). In contrast to that, uniqueness of solutions to the martingale
problem does not imply the uniqueness of solutions to the FPK-equation, here the
converse is true. Therefore, the existence parts in our Examples 3.3-3.5 can partly
also be derived by probabilistic methods. It should also be pointed out that in these
examples we always assume that (a'/) is trace class. For existence results by prob-
abilistic means in case of Example 3.3 and the first part of Example 3.4 without
this condition we refer to [24] and its recent improvement [34]. Furthermore, we
believe that by a similar method as in [16] one can also prove uniqueness for the
FPK-equation in the Burgers case (see Example 3.3) without the trace class con-
dition. Finally, we point out that here we consider the Burgers case only on the
bounded domain D = (0, 1) C R. If D = R, existence, however, also holds. This
follows from the probabilistic results in [25].
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