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Symmetrization of Poisson’s equation
with Neumann boundary conditions

JEFFREY J. LANGFORD

Abstract. In this paper, we compare the solutions of two PDEs with Neumann
boundary conditions, one with given initial data and one with cap symmetrized
data. We show that the solution with cap symmetrized data is itself cap sym-
metrized and exhibits larger convex means. As corollaries, we prove comparison
results on spheres and hemispheres, and prove a conjecture of B. Kawohl.

Mathematics Subject Classification (2010): 35J05 (primary); 35B05 (sec-
ondary).

1. Overview of results

The history of comparison theorems in elliptic partial differential equations dates
to the mid 1970s, when G. Talenti proved his now famous result known as Talenti’s
theorem [24]. Talenti compared the solutions of two PDEs that impose homoge-
neous Dirichlet boundary conditions. To be precise, let 0  f 2 L2(�) where
� ⇢ Rn is a bounded domain, and consider the solution u to the Poisson PDE

�1u = f in �,

u = 0 on @�,

where 1 is the standard Laplacian operator. Talenti then considered a second PDE
defined on a ball �# with the same volume as �. In this second PDE, the input
data is obtained by “rearranging” f ’s values into a radial function f #, called the
Schwarz rearrangement or symmetric decreasing rearrangement, that decreases as
the radial variable r increases. After solving the PDE

�1v = f # in �#,

v = 0 on @�#,

Talenti found that the two solutions u and v are comparable through their decreas-
ing rearrangements, a finding with consequences about L p norms: kukL p(�) 
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kvkL p(�#), 1  p  1, and oscillation: osc� u = max� u  max�# v = osc�# v.
Although Talenti considered more general elliptic operators for the “initial” PDE,
we will concentrate on the Laplace operator.

The work of Talenti sparked a study of comparison theorems using different
rearrangements and/or different boundary conditions. In each of the works [1, 14],
and [12] the authors compare the solutions of two PDEs with homogeneous Dirich-
let boundary conditions, one with initial data f , and the other with data f # obtained
from f by performing a Steiner symmetrization. Under Steiner symmetrization, f #
is obtained by performing a Schwarz rearrangement on slice functions of f . In each
of those papers, the conclusions are not as strong as Talenti’s, but they still deduce
the same L p norm and oscillation inequalities as in Talenti’s theorem.

Theorems also appear in the literature comparing the solution of an initial
PDE imposing homogeneous Neumann boundary conditions to a coupled system
of PDEs taking various forms: in [22], the coupled system of PDEs imposes homo-
geneous Dirichlet boundary conditions; in [2], the coupled system of PDEs imposes
inhomogeneous Neumann and Dirichlet boundary conditions; and in [16], the cou-
pled system of PDEs imposes mixed boundary conditions.

Also relevant are comparison theorems where rearrangements are taken with
respect to measures other than Lebesgue measure. For example, in [9] and [13],
the authors obtain comparison results by rearranging with respect to Gauss mea-
sure. See also [11] and [8]; in the latter, the authors obtain comparison results by
rearranging with respect to certain radial functions living in a particular class.

But what appears missing from the literature are comparison theorems impos-
ing Neumann boundary conditions on the first and second PDE, following in the
true spirit of Talenti’s theorem. In this paper we prove several such results, and our
methods are strikingly different from those used in the above literature. Those pa-
pers, in general, use methods adapted from Talenti [24] and involve a detailed anal-
ysis of a function’s level sets together with tools such as the coarea formula. For
those papers that involve Neumann boundary conditions, the relative isoperimetric
inequality often plays a crucial role. Our methods, on the other hand, heavily rely
on the subharmonicity results of A. Baernstein and the maximum principle, and the
relative isoperimetric inequality never arises.

In general, we will begin with a PDE of the form

�1u = f in �,

@u
@n

= 0 on @�,

where � is either a spherical shell, a ball, a sphere, a hemisphere, or a rectangle.
Our rearranged PDE will be defined on the same space, with

�1v = f # in �,

@v

@n
= 0 on @�,
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where f # is some rearrangement of f . We identify spaces and rearrangements that
yield comparison theorems with the same L p norm and oscillation consequences as
Talenti’s theorem, namely, that kukL p(�)  kvkL p(�), 1  p  1, and osc� u 

osc� v.
Section 2 presents a dictionary of the various rearrangements, star functions,

and subharmonicity results that will be used throughout the paper. The heart of
this paper is the main results in Section 3 about cap symmetrization, appearing as
Theorem 3.1 and Corollary 3.4. Recall the cap symmetrization of a function f
defined on a spherical shell is obtained by fixing an “origin” on the sphere and
taking a symmetric decreasing rearrangement on f ’s radial slice functions. We
shall use the “east pole” e1 as the sphere’s origin. A precise definition of the cap
symmetrization can be found in Section 2. The results of Section 3 combine to give
the following theorem.

Theorem (Comparison theorem in spherical shells). Let A = {x 2 Rn
: a <

|x | < b} be a spherical shell with 0 < a < b < 1 and let f 2 L2(A) withR
A f dx = 0. Assume u and v are weak solutions to

�1u = f in A, �1v = f # in A,

@u
@n

= 0 on @A,
@v

@n
= 0 on @A,Z

A
u dx = 0,

Z
A

v dx = 0,

where f # is the cap symmetrization of f .
Then for almost every r 2 (a, b) and each convex function � : R ! R we

have Z
Sn�1

�(u(r⇠)) d�n�1(⇠) 

Z
Sn�1

�(v(r⇠)) d�n�1(⇠).

Consequently,

kukL p(A)  kvkL p(A), 1  p  1,

and

osc
A
u  osc

A
v.

Once the above theorem is proved, we can, with a little more work, prove an anal-
ogous result in balls (Theorem 3.3). While this ball result is interesting in its own
right, the remainder of the paper deals solely with consequences of the shell re-
sults. Section 4 is devoted to consequences of the main results and is divided into
two parts. The first part gives comparison results on spheres (Corollary 4.1) and
hemispheres (Corollary 4.4) that follow from Theorem 3.1. The spherical compar-
ison result follows from the shell comparison result by a homogeneity extension
argument and has the following statement.
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Corollary (Spherical comparison theorem). Let F 2 L2(Sn) with
R
Sn F d�n= 0.

Assume U and V are weak solutions to

�1SU = F in Sn, �1SV = F# in Sn,

where F# is the spherical rearrangement of F . Additionally assume U and V are
additively normalized so that

R
Sn U d�n =

R
Sn V d�n = 0. Then for every convex

function � : R ! R,
Z

Sn
�(U) d�n 

Z
Sn
�(V ) d�n.

Consequently,

kUkL p(Sn)  kVkL p(Sn), 1  p  1,

ess sup
Sn

U  ess sup
Sn

V,

ess inf
Sn

U � ess inf
Sn

V,

osc
Sn

U  osc
Sn

V .

Working on manifolds, A. Cianchi [15] obtains a very similar result to the one
above, imposing a different normalization on the solutions U and V . In Remark
4.2, we show how to obtain Cianchi’s result using our methods. The first part of
Section 4 ends with a hemispherical comparison result that follows from the spher-
ical result by a reflection, or “gluing”, argument. The statement of the hemisphere
result is analogous to the spherical one, except that it additionally imposes Neu-
mann boundary conditions on the hemisphere boundary.

The second part of Section 4 contains a proof of a conjecture raised by
B. Kawohl [19, page 61]. Kawohl considered a rearrangement called the monotone
decreasing rearrangement in the direction y for functions defined in a rectangle.
That rearrangement is obtained by holding the first variable fixed and taking the de-
creasing rearrangement with respect to the second variable. Here is the conjecture.

Conjecture (Kawohl’s conjecture). Let R be the unit square (0, 1) ⇥ (0, 1) in R2
and f : R ! R a sufficiently smooth function with mean value zero. Consider the
problems:

�1u = f in R, �1v = f # in R,

@u
@n

= 0 on @R,
@v

@n
= 0 on @R,

where f # is the monotone decreasing rearrangement of f in the direction y.
Then the oscillation of u over R should be dominated by the oscillation of v.
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In 1986, Baernstein wrote Kawohl with a solution (unpublished) containing
three components:

1) an annular comparison result (a two-dimensional version of Theorem 3.1),
2) a rectangular comparison result, and
3) a rephrasing of the rectangular comparison result in terms of convex means.

The third component was then used to prove Kawohl’s conjecture. In Section 4,
we will follow the same basic structure as Baernstein, but provide different (and
simpler) proofs for each step.

The theory of the star function has been further developed since the correspon-
dence, and so the proof of Kawohl’s conjecture we present differs from the one
originally sent by Baernstein. In Section 4, we show how to obtain a rectangular
comparison result from the two-dimensional version of Theorem 3.1. Baernstein
indicated to Kawohl that this rectangular comparison result was the key to the con-
jecture. However, Baernstein did not provide the details of how this rectangular
comparison result is obtained, and so we provide them in Section 4 before clos-
ing with a proof of Kawohl’s conjecture that differs from the one originally sent
by Baernstein. Our proof of Kawohl’s conjecture does not rely on rephrasing the
rectangular comparison result in terms of convex means. Instead, we use the rect-
angular comparison result directly.

The proof of Kawohl’s conjecture presented here is not the first to appear in
print. In [10], F. Brock proves Kawohl’s conjecture using Green’s function rep-
resentations of the solutions together with a Hardy-Littlewood-type rearrangement
inequality. In fact, Brock proves a bit more than Kawohl’s conjecture. As men-
tioned above, we prove Kawohl’s conjecture from a rectangular comparison result,
which also gives the additional conclusions obtained by Brock, at least in Kawohl’s
setting.

2. Background

2.1. Rearrangements and star functions for general measure spaces

Throughout this section, (X, µ) denotes a fixed measure space.
Definition 2.1 (Rearrangements). Given functions f 2 L1(X) and g 2 L1(Y )
defined on measure spaces (X, µ) and (Y, ⌫), we say f and g are rearrangements
of each other if

µ ({x 2 X : t < f (x)}) = ⌫ ({y 2 Y : t < g(y)})

for every t 2 R.
A good starting point for analysts who want to learn about rearrangement meth-

ods is the book by Lieb and Loss [20], which tackles a number of standard and not
so standard results in analysis using rearrangement methods.

We next define the decreasing rearrangement.
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Definition 2.2 (Decreasing rearrangement). Let f 2 L1(X) and define f ⇤
:

[0, µ(X)] ! [�1,1] by the formula

f ⇤(t) =

8>><
>>:
ess sup

X
f if t = 0,

inf{s : µ({x : s < f (x)})  t} if t 2 (0, µ(X)),

ess inf
X

f if t = µ(X).

We call f ⇤ the decreasing rearrangement of f .
Note that our definition of the decreasing rearrangement takes into account

f ’s positive and negative values. Many authors choose to define the decreasing
rearrangement as | f |⇤ in our notation.

We now define the notion of a “star function” for a general measure space.
Proposition 2.6 below establishes the connection between the star function and the
decreasing rearrangement.
Definition 2.3 (Star function for a general measure space). Let f 2 L1(X). The
star function of f will be denoted by fF and is defined on the interval [0, µ(X)]
by the formula

fF(t) = sup
µ(E)=t

Z
E
f dµ,

where the sup is taken over all measurable subsets E ✓ X with µ(E) = t .
We now proceed to define those measure spaces for which the sup defining

fF(t) is achieved.
Definition 2.4. Assume (X, µ) is a measure space and B ✓ X with 0 < µ(B). We
say B is an atom if for every subset A ✓ B, either µ(A) = µ(B) or µ(A) = 0. The
measure space (X, µ) is called non-atomic if it contains no atoms.

A result of W. Sierpiński says that a non-atomic measure space assumes a
continuum of values. Precisely, given a subset B ✓ X with 0 < µ(B), for any
a  µ(B) there exists a subset of A ✓ B with µ(A) = a. See [17, Theorem 13].

It is a result of Baernstein that for any t value, there exists a subset E ✓ X
for which the sup defining fF(t) is achieved [4, Proposition 1]. We record this
result below. Baernstein’s proof in [4] is for the case when X is an interval and
µ is Lebesgue measure, but his proof carries over for non-atomic measure spaces
without change. When we define star functions later on, we are thus justified using
max instead of sup.

Proposition 2.5. Assume f 2 L1(X) with (X, µ) a finite non-atomic measure
space. Given t 2 [0, µ(X)], there exists a subset E ✓ X such that

fF(t) =

Z
E
f dµ.

Thus, the sup defining fF is really a max.
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The set of length t on which the decreasing rearrangement f ⇤ is biggest is
the interval [0, t]. Since f ⇤ is a rearrangement of f , it follows that fF(t) =R t
0 f ⇤(x) dx . We record this fact as Proposition 2.6 below, which appears as [4,
Proposition 2] in the case where X is an interval and µ is Lebesgue measure; the
proof carries over without change for the case of a general non-atomic measure
space.

Proposition 2.6. Assume f 2 L1(X) with (X, µ) a finite non-atomic measure
space. Then for each t 2 [0, µ(X)],

fF(t) =

Z t

0
f ⇤(x) dx,

where f ⇤ is the decreasing rearrangement of f .

Star functions first appeared as a tool to prove Edrei’s spread conjecture [3]
about growth of meromorphic functions in the plane, and have since been used to
solve other extremal problems involving various norms of Schlicht functions and
Green’s functions [4, 5].

Star function inequalities define a type of majorization. Our next proposition
says that star function inequalities can be rephrased in terms of convex mean in-
equalities and appears as [4, Proposition 3]. The proof in [4, Proposition 3] is for
functions defined on an interval. By passing to decreasing rearrangements, the re-
sult also holds for functions defined on a general measure space.

Proposition 2.7 (Majorization). Let u, v 2 L1(X) where (X, µ) is a finite mea-
sure space. Then

uF
 vF

on [0, µ(X)] if and only if the inequality
Z
X
�(u) dµ 

Z
X
�(v) dµ

holds for every increasing convex function � : R ! R.
Moreover, if

R
X u dµ =

R
X v dµ, then the word “increasing” may be removed

from the previous statement.

Baernstein’s proof in [4, Proposition 3] only gives the first part of Proposition
2.7 above. We supply a proof of the second part below.

Proof. Under the assumptions of Proposition 2.7, assume that u and v share the
same mean, and that the inequality

Z
X
�(u) dµ 

Z
X
�(v) dµ
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holds whenever � is an increasing convex function. Let � : R ! R be a convex
function (not necessarily increasing). We verify that the above inequality still holds.

The one sided derivatives �0(x+) and �0(x�) exist at every x and are both
increasing functions of x . First assume that���0(x+)

��
 M

for some constant M and let x1 < x2. Then

�M  �0(x1+) 

�(x2) � �(x1)
x2 � x1

which implies that
�(x1) + Mx1  �(x2) + Mx2.

That is, �(x) + Mx is an increasing convex function. Thus,Z
X
(�(u) + Mu) dµ 

Z
X
(�(v) + Mv) dµ

holds, and since u and v have the same mean,
R
X �(u) dµ 

R
X �(v) dµ follows.

We next remove the assumption that �0(x+) is bounded.
Given �, define

�n(x) =

8><
>:
�0 ((�n)�) (x + n) + �(�n) if x  �n,
�(x) if � n < x < n,
�0(n+)(x � n) + �(n) if x � n,

where �0 ((�n)�) denotes the left sided derivative of � at �n. Then each �0

n(x+)
is bounded. Moreover, �n is convex, �n  �, and �n  �n+1 for every n. Let L be
a linear function where L  �1. ThenZ

X
(�n(u) � L(u)) dµ 

Z
X

(�n(v) � L(v)) dµ.

Letting n ! 1, applying the Monotone convergence theorem, and using the as-
sumption that u and v share the same mean gives the final result

R
X �(u) dµ R

X �(v) dµ.

Two remarks are in order concerning Proposition 2.7.
Remark 2.8. The above proposition does not assert that the phi integrals are finite.
Remark 2.9. Under the assumptions of Proposition 2.7, if u and v have the same
mean, then the star function inequality uF

 vF is equivalent to the star function
inequalities uF

+
 v

F
+
and uF

�
 v

F
�
for the positive and negative parts of u and v.

Hence, all of the comparison results in the sequel have analogous conclusions for
the positive and negative parts of the solutions.

Before proceeding we need the following definition.
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Definition 2.10 (Oscillation). If u : X ! R is measurable, we define the oscilla-
tion by

osc
X
u = ess sup

X
u � ess inf

X
u.

The next corollary gives two important consequences of majorization in the sense
of star functions.
Corollary 2.11. Let u, v 2 L1(X) where

R
X u dµ =

R
X v dµ and assume (X, µ)

is a finite measure space. If uF
 vF on [0, µ(X)], then

kukL p(X,dµ)  kvkL p(X,dµ), 1  p  1.

Moreover,
ess sup

X
u  ess sup

X
v,

ess inf
X

u � ess inf
X

v,

osc
X
u  osc

X
v.

Remark 2.12. It is not assumed that the L p norms, ess inf, ess sup, and osc above
are finite. Rather, if the L p norm of v is finite, then so is the L p norm of u. Likewise,
if the L p norm of u is infinite, then so is the L p norm of v. Similar considerations
apply to the other inequalities.

Proof. By Proposition 2.7, the inequalityZ
X
�(u) dµ 

Z
X
�(v) dµ

holds for each convex function � : R ! R. Taking �(x) = |x |p establishes the L p
norm inequality for 1  p < 1. Letting p ! 1 gives the case when p = 1.

To establish the ess sup inequality, we rewrite uF
 vF using Proposition 2.6

as Z t

0
u⇤(s) ds 

Z t

0
v⇤(s) ds

for every 0  t  µ(X). Multiplying the inequality above by 1t and taking the limit
as t ! 0, we obtain

ess sup
X

u = ess sup
[0,µ(X)]

u⇤

= lim
t!0

1
t

Z t

0
u⇤(s) ds

 lim
t!0

1
t

Z t

0
v⇤(s) ds

= ess sup
[0,µ(X)]

v⇤

= ess sup
X

v.
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Since
R
X u dµ =

R
X v dµ, we also have

R µ(X)
t v⇤(s) ds 

R µ(X)
t u⇤(s) ds for each

0  t  µ(X), and so an argument similar to the one above gives

ess inf
X

v  ess inf
X

u.

The osc inequality now follows by combining the ess sup and ess inf inequalities.

2.2. Rearrangements and star functions for spheres and spherical shells

Spheres. The spherical rearrangement gives an analogue of the Schwarz rear-
rangement, or symmetric decreasing rearrangement, for functions defined on
spheres. We write

Sn =

n
(⇠1, ⇠2, . . . , ⇠n+1) 2 Rn+1

: ⇠21 + ⇠22 + . . . + ⇠2n+1 = 1
o

for the unit n�sphere in Rn+1, and �n for surface measure on Sn . So, for example,
�1(S1) = 2⇡ . Let d denote the standard distance on Sn whereby the distance
between any two points is calculated by computing the length of the shorter arc of
the great circle that joins them. We write

K (✓) =

�
⇠ 2 Sn : d(⇠, e1) < ✓

 
for the open polar cap centered at the “east pole” e1 = (1, 0, . . . , 0) and of radius ✓
(in the spherical distance). For example, when n = 1, K (✓) = {ei� : �✓ < � < ✓}.
A function defined on the sphere can be rearranged into one that is constant on
boundaries of caps centered at the east pole, and that decreases on these cap bound-
aries as they sweep out the sphere from e1 to �e1. The spherical rearrangement
thus provides an analogue of the Schwarz rearrangement for the sphere.
Definition 2.13 (Spherical rearrangement). Given F 2 L1(Sn), we define F# :

Sn ! [�1,1] by the formula

F#(⇠) = F⇤ (�n (K (✓))) ,

where ✓ is the spherical distance between the point ⇠ and e1, and F⇤ is the decreas-
ing rearrangement of F . We call F# the spherical rearrangement of F .

With the spherical rearrangement in hand, we have the following star function
definition.
Definition 2.14 (Star functions on spheres). Given F 2 L1(Sn), we define FF

:

(0,⇡) ! R by the formula

FF(✓) = max
�n(E)=�n(K (✓))

Z
E
F d�n,

where the max is taken over all measurable subsets E of Sn with the same surface
measure as the open cap K (✓).
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Observe the definition above agrees with Definition 2.3 after making the
change of variable t = �n(K (✓)). Just as in Proposition 2.5, the max defining
FF is achieved for some subset E , which explains our use of max instead of sup.

The set of surface measure �n(K (✓)) on which F# is biggest is the polar cap
K (✓). Since F and F# are rearrangements, it follows just as in Proposition 2.6 that

FF(✓) =

Z
K (✓)

F# d�n.

Thus, when n = 1, we have

FF(✓) =

Z ✓

�✓
F#(ei�) d�.

Spherical shells. Throughout this subsection, A ⇢ Rn denotes a spherical shell
A = A(a, b) = {x 2 Rn

: a < |x | < b} for real numbers 0  a < b < 1.
Given a function f : A ! R, we can spherically rearrange f on each concentric
(n � 1)�sphere. Doing so gives the cap symmetrization.
Definition 2.15 (Cap symmetrization). Given f 2 L1(A), we define f # : A !

[�1,1] as follows. By Fubini’s theorem, the slice function f r : Sn ! R defined
by f r (⇠) = f (r⇠) belongs to L1(Sn�1) for almost every r 2 (a, b). For such r , we
define the cap symmetrization of f on {|x | = r} by

f #(r⇠) = ( f r )#(⇠),

where ( f r )# denotes the spherical rearrangement of the slice function f r . We leave
f # undefined on those spheres {|x | = r} when f r 62 L1(Sn�1).

Star functions corresponding to cap symmetrization will be defined in a polar
rectangle. Write

AF
=

n
(r, ✓) 2 R2 : a < r < b and 0 < ✓ < ⇡

o
.

The idea is to take a spherical star function on each slice function f r . Since cap
symmetrization is a partial symmetrization, meaning rearrangement takes place in-
side subsets of codimension one, the corresponding star function will be of two
variables, r and ✓ .
Definition 2.16 (Star functions on spherical shells). If f 2 L1(A), define fF

:

AF
! R a.e. by the formula

fF(r, ✓) = max
�n�1(E)=�n�1(K (✓))

Z
E
f (r⇠) d�n�1(⇠) =

Z
K (✓)

f #(r⇠) d�n�1(⇠),

where the max is taken over all measurable subsets E of Sn�1 with the same surface
measure as K (✓) and f # denotes the cap symmetrization of f .
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Note that fF(r, ✓) is defined for every ✓ when the slice function f r2L1(Sn�1).
Just as in Proposition 2.5, the max defining fF is achieved for some subset E ,
which explains our use of max rather than sup.

The following result will come in handy later. It says that if a sequence of func-
tions converges in L1, then by passing to a subsequence we have almost everywhere
pointwise convergence for the star functions involved.
Proposition 2.17 (Convergence of star functions). Assume u, uk 2 L1(A) and
uk ! u in L1(A). Then for some subsequence and for almost every r 2 (a, b), we
have Z

Sn�1

��uk j (r⇠) � u(r⇠)
�� d�n�1(⇠) ! 0

and consequently

uF
k j (r, ✓) ! uF(r, ✓)

for every ✓ 2 (0,⇡). In particular, uF
k j ! uF a.e. in AF.

Proof. Define 9k : (a, b) ! R by the formula

9k(r) =

Z
Sn�1

��uk(r⇠) � u(r⇠)
�� d�n�1(⇠).

By assumption, uk ! u in L1(A). That is,Z b

a

Z
Sn�1

��uk(r⇠) � u(r⇠)
�� d�n�1(⇠) rn�1dr ! 0,

which implies that 9k ! 0 in L1((a, b), rn�1dr). Thus, we can pass to a subse-
quence where 9k j ! 0 a.e. in (a, b). By the very definition of 9k j , this impliesZ

Sn�1

��uk j (r⇠) � u(r⇠)
�� d�n�1(⇠) ! 0

for almost every r 2 (a, b), which gives the first conclusion. Fix an r so that
convergence holds above. Then for any ✓ 2 (0,⇡) we have���uF

k j (r, ✓) � uF(r, ✓)
��� =

����
Z
K (✓)

u#k j (r⇠) � u#(r⇠) d�n�1(⇠)
����



Z
Sn�1

���u#k j (r⇠) � u#(r⇠)
��� d�n�1(⇠)



Z
Sn�1

��uk j (r⇠) � u(r⇠)
�� d�n�1(⇠),

where the last inequality holds because the spherical rearrangement is a contraction
in the L1 distance (see [6, Theorem 3], for example). Letting j ! 1, we conclude

uF
k j (r, ✓) ! uF(r, ✓).
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2.3. Commutativity and subharmonicity results in shells

We now state “commutativity” and “subharmonicity” results for cap symmetriza-
tion that require some notation. Let A = A(a, b) = {x 2 Rn

: a < |x | < b} denote
a spherical shell as before with inner radius 0  a and outer radius b < 1 and re-
call the notation AF

= (a, b)⇥(0,⇡). Given u 2 L1(A), we define Ju : AF
! R

a.e. by
Ju(r, ✓) =

Z
K (✓)

u(r⇠) d�n�1(⇠).

With this notation, we have

uF(r, ✓) =

Z
K (✓)

u#(r⇠) d�n�1(⇠) = Ju#(r, ✓),

where u# denotes the cap symmetrization of u.
We let 1 denote the standard Laplacian operator in Rn and define new opera-

tors 1F and 1Ft which act on functions F 2 C2(AF) as follows:

1FF = @rr F +

n � 1
r

@r F + r�2⇥@✓✓ F � (n � 2)(cot ✓)@✓ F
⇤
, (2.1)

1Ft F = @rr F �

n � 1
r

@r F + r�2(n � 1)F

+ r�2⇥@✓✓ F + (n � 2)(cot ✓)@✓ F � (n � 2)(csc2 ✓)F
⇤
.

(2.2)

The 1Ft operator is the formal adjoint of 1F with respect to the standard inner
product on L2(AF, dr d✓).

Theorem 2.18 and 2.20 below appear as equation (5.9) and [6, Theorem 5],
respectively.

Theorem 2.18 (Commutativity relation for cap symmetrization). If u 2C2(A),
then

J1u = 1FJu

on AF.

Theorem 2.18 is proved by using polar coordinates together with the decom-
position 1 =

@2

@r2 +
n�1
r

@
@r +

1
r21S, where 1S is the spherical Laplacian.

Before proceeding, we make the following definition.
Definition 2.19. For u 2 C2(A) and f 2 L1loc(A), we say that �1FuF

 fF in
the weak sense provided the inequality

�

Z
AF

uF1FtG dr d✓ 

Z
AF

fFG dr d✓

holds for every nonnegative G 2 C2c (AF).
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Theorem 2.20 (Subharmonicity for cap symmetrization). Suppose u 2 C2(A)
satisfies �1u = f . Then

�1FuF
 fF

in the weak sense.

A new proof of Theorem 2.20 appears in the Appendix. The proof is due to
Baernstein and is much simpler than the proof of a more general result (Theorem
5) that appears in [6].
The two-dimensional case. In dimension n = 2 it is helpful to use complex no-
tation. In this case, A = A(a, b) = {z 2 C : a < |z| < b} and we will write
AF

= {z 2 A : Im(z) > 0}. So if u 2 L1(A),

Ju(rei✓ ) =

Z ✓

�✓
u(rei�) d�,

and for the star function uF
: AF

! R we write

uF(rei✓ ) = max
|E |=2✓

Z
E
u(rei�) d�.

Then uF
= Ju# where u# is the cap symmetrization of u. The following commu-

tativity result, which appears as [7, Proposition 3.1], is a special case of Theorem
2.18. Note that in dimension n = 2, the star operator1F equals the standard planar
Laplacian 1 expressed in polar coordinates.

Theorem 2.21 (Commutativity relation for cap symmetrization). Let u2C2(A).
Then

1Ju = J1u

on AF.

The following subharmonicity result is a special case of Theorem 2.20.

Theorem 2.22 (Subharmonicity for cap symmetrization). Suppose u 2 C2(A)
with �1u = f in A. Then

�1uF
 fF

in the weak sense.

Theorems 2.21 and 2.22 explain the reason for the labels “commutativity” and
“subharmonicity”. When the dimension n = 2, the J operator commutes with the
Laplacian. Additionally, if u is harmonic in an annulus, then the star function uF

is subharmonic in the upper annulus AF.
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3. Main results

In this section we present the main results of this paper. In Theorems 3.1 and 3.3,
we compare the solutions of two PDEs, one with given initial data and one with cap
symmetrized data. We see that the solution with cap symmetrized data has a larger
star function. As a corollary, the solution with cap symmetrized data has larger
L p norms and oscillation (Corollary 3.4). Additionally, when the input data is cap
symmetrized, so is the solution (Corollary 3.5).

Theorem 3.1 (Comparison theorem in spherical shells). Let A = A(a, b) ⇢ Rn

be a spherical shell with 0 < a < b < 1 and let f 2 L2(A) with
R
A f dx = 0.

Assume u and v are weak solutions to

�1u = f in A, �1v = f # in A,

@u
@n

= 0 on @A,
@v

@n
= 0 on @A,

where f # denotes the cap symmetrization of f .
If the solutions u and v are additively normalized so that

R
A u dx =

R
A v dx =

0, then for almost every r 2 (a, b),
Z

Sn�1
u(r⇠) d�n�1(⇠) =

Z
Sn�1

v(r⇠) d�n�1(⇠)

and the inequality

uF(r, ✓)  vF(r, ✓)

holds for every ✓ 2 (0,⇡). In particular, uF
 vF a.e. in AF.

Proof. First suppose that f is Lipschitz continuous on A. Since cap symmetrization
decreases the modulus of continuity, f # is also Lipschitz continuous on A (this
follows from [6, proof of Theorem 3]). Consequently, u and v belong to C2(A) [23,
Theorem 3.2].

Step 1: maximum principle. Let

Q(r, ✓) = (r � a)(r � b) + C✓(⇡ � ✓), for (r, ✓) 2 AF,

where C is chosen sufficiently large so that

1FQ = 2+

n � 1
r

(2r � a � b) �

C
r2

(2+ (n � 2) cot ✓(⇡ � 2✓))  0.

Note that
Qr (r, ✓) = 2

✓
r �

a + b
2

◆
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and so it follows that

0 <
@Q
@n

on ({a} ⇥ (0,⇡)) [ ({b} ⇥ (0,⇡)) . (3.1)

Multiplying Q by a suitable positive constant, we may assume that

kQkL1(AF)  1.

Define

w✏ = uF
� Jv � ✏Q for (r, ✓) 2 AF.

In the distributional sense, we compute

�1Fw✏ = �1FuF
+1FJv + ✏1FQ

 fF
+ J1v + 0

= fF
� fF

= 0,

where the inequality follows from the subharmonicity and commutativity prop-
erties (Theorems 2.18 and 2.20). By the maximum principle applied to 1F

[21, Theorem 3]),

sup
AF

w✏  max
@AF

w✏ . (3.2)

Step 2: Boundary analysis. We claim that the max over the boundary cannot be
attained at a point of

�
{a} ⇥ (0,⇡)

�
[

�
{b} ⇥ (0,⇡)

�
. We prove this by cases.

Case 1: Fix (a, ✓1) with ✓1 2 (0,⇡) and let E(a, K (✓1)) denote a subset of Sn�1
with the same surface measure as K (✓1) for which the max defining uF(a, ✓1) is
achieved. We compute for h > 0

w✏(a + h, ✓1) � w✏(a, ✓1)
h

�

Z
E(a,K (✓1))

u((a + h)⇠) � u(a⇠)
h

d�n�1(⇠)

�

Z
K (✓1)

[v((a + h)⇠) � v(a⇠)]
h

d�n�1(⇠)

�✏
[Q(a + h, ✓1) � Q(a, ✓1)]

h
.

Taking the lim infh!0 and using that @u@n and
@v
@n vanish, we get

lim inf
h!0

w✏(a + h, ✓1) � w✏(a, ✓1)
h

� ✏,
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where  =
@Q
@n (a, ✓1) is some positive number by (3.1). Hence, for all h > 0

sufficiently small, we have

w✏(a + h, ✓1) > w✏(a, ✓1) + h
✏

2


> w✏(a, ✓1).

Thus, the maximum of w✏ over @AF does not occur at (a, ✓1), since otherwise the
maximum principle (3.2) would be violated.
Case 2: Similar to Case 1, we find the maximum of w✏ over @AF does not occur at
(b, ✓2) with ✓2 2 (0,⇡).

Our casework above shows that the portion
�
{a} ⇥ (0,⇡)

�
[

�
{b} ⇥ (0,⇡)

�
of

@AF may be removed in inequality (3.2). If we write T =

�
[a, b]⇥ {0}

�
[

�
[a, b]⇥

{⇡}

�
then inequality (3.2) becomes

sup
AF

w✏  max
T

w✏,

from which we deduce

�✏ + sup
AF

⇣
uF

� Jv
⌘

 sup
AF

w✏

 max
T

w✏

 max
T

⇣
uF

� Jv
⌘

+ ✏,

where the first and last inequalities hold because |Q|  1. Letting ✏ ! 0 we
conclude

sup
AF

⇣
uF

� Jv
⌘

 max
T

⇣
uF

� Jv
⌘

. (3.3)

By definition, uF
� Jv = 0 on [a, b] ⇥ {0}, that is, when ✓ = 0. We claim uF

�

Jv = 0 on [a, b] ⇥ {⇡} too. In other words, we claim that u and v have the same
integral over each sphere of radius r 2 (a, b). Let 8(r) = rn�1 @@r

� R
Sn�1

�
u(r⇠) �

v(r⇠)
�
d�n�1(⇠)

�
=

R
{|x |=r}(ur � vr ) dS. Then since @u

@n and
@v
@n are zero when

r = a, we compute from Green’s theorem that

8(r) =

Z
A(a,r)

(1u �1v) dx

=

Z
A(a,r)

⇣
� f + f #

⌘
dx

= 0.

Thus, 8 ⌘ 0 on [a, b]. By the definition of 8, this implies that
R
Sn�1(u(r⇠) �

v(r⇠)) d�n�1(⇠) = c is constant on [a, b].
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And since
R b
a
R
Sn�1

�
u(r⇠) � v(r⇠)

�
d�n�1(⇠) rn�1dr =

R
A(u � v) dx = 0

we conclude c = 0. Hence max@AF(uF
� Jv) = 0 so that uF

� Jv  0 by
(3.2). Thus, uF

 Jv  vF, giving the theorem in the case where f is Lipschitz
continuous on A.
Step 3: Approximation argument for general f . Now let f 2 L2(A) be a gen-
eral function with mean zero. Choose a sequence of compactly supported smooth
functions fk 2 C1

c (A) each with mean zero and where fk ! f in L2(A). Assume
uk and vk solve

�1uk = fk in A, �1vk = f #k in A,

@uk
@n

= 0 on @A,
@vk
@n

= 0 on @A,

where the uk and vk are normalized so that
R
A uk dx =

R
A vk dx = 0. Since each

fk is Lipschitz continuous on A, our work above showsZ
Sn�1

uk(r⇠) d�n�1(⇠) =

Z
Sn�1

vk(r⇠) d�n�1(⇠) (3.4)

for every r 2 (a, b) and

uF
k  v

F
k (3.5)

in AF for every k. Since cap symmetrization is a contraction in the L2 distance [6,
Theorem 3], f #k ! f # in L2(A) since fk ! f in L2(A). Consequently, uk ! u
and vk ! v in L2(A), essentially a consequence of the Poincaré inequality and
Riesz representation theorem. By Proposition 2.17, we can pass to a subsequence
of the original fk and assume that for almost every r 2 (a, b),Z

Sn�1
uk(r⇠) d�n�1(⇠) !

Z
Sn�1

u(r⇠) d�n�1(⇠)

and that

uF
k (r, ✓) ! uF(r, ✓)

for every ✓ 2 (0,⇡). By another application of Proposition 2.17 and passing to yet
another subsequence of the fk , we may additionally assume that for almost every
r 2 (a, b), Z

Sn�1
vk(r⇠) d�n�1(⇠) !

Z
Sn�1

v(r⇠) d�n�1(⇠)

and that

v
F
k (r, ✓) ! vF(r, ✓)
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for every ✓ 2 (0,⇡). Letting k ! 1 in (3.4) and (3.5), we therefore conclude that
for almost every r 2 (a, b),Z

Sn�1
u(r⇠) d�n�1(⇠) =

Z
Sn�1

v(r⇠) d�n�1(⇠)

and

uF(r, ✓)  vF(r, ✓)

for every ✓ 2 (0,⇡).

Remark 3.2. We obtain the same conclusion uF
 vF in Theorem 3.1 if we make

the weaker assumption that u and v have the same mean over the shell A, not nec-
essarily that they both have zero mean. Moreover, the slice functions of u and v still
have the same mean almost everywhere under this weaker assumption.

The analogue of Theorem 3.1 also holds in balls, as we proceed to discuss.
Given a ball B = {x 2 Rn

: |x | < b} with 0 < b < 1, we define the cap
symmetrization of a function f 2 L1(B) as follows. When 0 < r < b and the slice
function f r : Sn�1 ! R belongs to L1(Sn�1), we define

f #(r⇠) = ( f r )#(⇠),

where ( f r )# is the spherical rearrangement of the slice function f r . We leave f #
undefined on the sphere {|x | = r} when f r /2 L1(Sn�1). If f (0) is defined, we
define f #(0) = f (0). And if f (0) is not defined, f #(0) is also left undefined. The
star function fF will be defined on BF

= (0, b)⇥(0,⇡) and will follow Definition
2.16 with a = 0.

Theorem 3.3 (Comparison theorem balls). Let B = {x 2 Rn
: |x | < b} where

0 < b < 1 and say f 2 L2(B) with
R
B f dx = 0. Assume u and v are weak

solutions to
�1u = f in B, �1v = f # in B,

@u
@n

= 0 on @B,
@v

@n
= 0 on @B,

where f # denotes the cap symmetrization of f .
If the solutions u and v are additively normalized so that

R
B u dx =

R
B v dx =

0, then for almost every r 2 (0, b),Z
Sn�1

u(r⇠) d�n�1(⇠) =

Z
Sn�1

v(r⇠) d�n�1(⇠)

and the inequality

uF(r, ✓)  vF(r, ✓)

holds for every ✓ 2 (0,⇡). In particular, uF
 vF a.e. in BF

= (0, b) ⇥ (0,⇡).
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Proof.

Step 1: Maximum principle. As before, we assume that f is Lipschitz continuous
on B, which guarantees u and v belong to C2(B). Let w✏ and Q be as in the proof
of Theorem 3.1 with a = 0. If we fix ✏ > 0, then �1u = f and �1v = f # in
A(✏, b). Write AF

✏ = (✏, b) ⇥ (0,⇡). Then, as before, we have �1Fw✏  0 in
AF
✏ . Since the operator 1F is uniformly elliptic in AF

✏ , we can apply Littman’s
maximum principle of [21, Theorem 3]) to conclude

sup
AF
✏

w✏  max
@AF

✏

w✏ .

Since |Q|  1, the above inequality implies

�✏ + sup
AF
✏

⇣
uF

� Jv
⌘

 max
@AF

✏

⇣
uF

� Jv
⌘

+ ✏

and letting ✏ ! 0, we get

sup
BF

⇣
uF

� Jv
⌘

 max
@BF

⇣
uF

� Jv
⌘

, (3.6)

where BF
= (0, b) ⇥ (0,⇡).

Step 2: Boundary analysis. As in the proof of Theorem 3.1, we show uF
� Jv  0

on @BF. By definition, uF
� Jv = 0 on (0, b) ⇥ {0}. The work at the end of Step

2 in the proof of Theorem 3.1 shows that u and v have the same mean over each
sphere {|x | = r}. Hence uF

� Jv = 0 on (0, b) ⇥ {⇡}, and u and v have the
same mean over each ball {|x | < r} for 0 < r < b. Letting r ! 0, we conclude
u(0) = v(0) so that uF(0, ✓) � Jv(0, ✓) = (u(0) � v(0))�n�1(K (✓)) = 0. Hence
uF

� Jv vanishes on {0} ⇥ (0,⇡). Since @u@n and
@v
@n vanish on {|x | = b}, Case 2 of

Step 2 in the proof of Theorem 3.1 carries through without change, and shows that
max@BF (uF

�Jv) cannot be attained by a point on {b}⇥(0,⇡). Thus, uF
�Jv  0

on @BF so that uF
 Jv  vF by (3.6).

Step 3: Approximation argument for general f . The approximation argument
used in the proof of Theorem 3.1 carries over without change to give the result for
general f 2 L2(B).

The corollary below restates the conclusion of Theorem 3.1 in terms of convex
means. This characterization goes all the way back to Hardy, Littlewood, and Pólya
[18]. Consequently, we obtain L p and oscillation estimates.

Corollary 3.4. Let f , u, and v be as in Theorem 3.1. Then for almost every r 2

(a, b) and each convex function � : R ! R we haveZ
Sn�1

�(u(r⇠)) d�n�1(⇠) 

Z
Sn�1

�(v(r⇠)) d�n�1(⇠).
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Hence,

ku(r ·)kL p(Sn�1)  kv(r ·)kL p(Sn�1), 1  p  1,

ess sup
|x |=r

u  ess sup
|x |=r

v,

ess inf
|x |=r

u � ess inf
|x |=r

v,

osc
|x |=r

u  osc
|x |=r

v.

Consequently, for each convex function � : R ! R,Z
A
�(u) dx 

Z
A
�(v) dx .

Moreover,

kukL p(A)  kvkL p(A), 1  p  1,

ess sup
A

u  ess sup
A

v,

ess inf
A

u � ess inf
A

v,

osc
A
u  osc

A
v.

Proof. By Theorem 3.1, for almost every r 2 (a, b), u and v have the same mean
over the sphere {|x | = r} and the inequality uF(r, ✓)  vF(r, ✓) holds for every
✓ 2 (0,⇡). Hence, Proposition 2.7 givesZ

Sn�1
�(u(r⇠)) d�n�1(⇠) 

Z
Sn�1

�(v(r⇠)) d�n�1(⇠)

for each convex function � : R ! R. The remaining spherical inequalities now fol-
low from Corollary 2.11. The spherical shell inequalities follow from the spherical
ones in obvious fashion.

The next corollary tells us that the solution v to the symmetrized problem is
cap symmetrized.

Corollary 3.5. If f and v are as in Theorem 3.1, then v = v# a.e.

Proof. First assume f is Lipschitz continuous on A. Taking v = u, Step 2 in the
proof of Theorem 3.1 shows vF

 Jv. Since Jv  vF by definition, we have
vF

= Jv on AF. Fix r 2 (a, b). To show v = v#, we first claim that the slice
function vr is constant on @K (✓) for each ✓ 2 (0,⇡). Assume that claim is false.
Choose ✓0 2 (0,⇡) with vr non-constant on @K (✓0). Let ⇠1, ⇠2 2 @K (✓0) be such
that

min
@K (✓0)

vr = vr (⇠1),

max
@K (✓0)

vr = vr (⇠2).
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Let ✏1, ✏2 > 0 be small enough so that the spherical balls B(⇠1, ✏1) and B(⇠2, ✏2)
are disjoint and

sup
B(⇠1,✏1)

vr < inf
B(⇠2,✏2)

vr .

Additionally, assume ✏1 and ✏2 are such that
�
K (✓0) [ B(⇠2, ✏2)

�
\B(⇠1, ✏1) has the

same surface measure as K (✓0). Geometrically,
�
K (✓0) [ B(⇠2, ✏2)

�
\B(⇠1, ✏1) is

constructed from K (✓0) by replacing the portion of B(⇠1, ✏1) contained in K (✓0)
by the portion of B(⇠2, ✏2) contained inside Sn�1\K (✓0). Since vF

= Jv, we have
by definition Z

E
vr d�n�1  vF(r, ✓0) =

Z
K (✓0)

vr d�n�1 (3.7)

for all measurable subsets E ✓ Sn�1 with the same surface measure as K (✓0). Take
E =

�
K (✓0) [ B(⇠2, ✏2)

�
\B(⇠1, ✏1). We computeZ

E
vr d�n�1 =

Z
K (✓0)

vr d�n�1+
Z
B(⇠2,✏2)\K (✓0)

vr d�n�1�
Z
B(⇠1,✏1)\K (✓0)

vr d�n�1

>

Z
K (✓0)

vr d�n�1,

which contradicts the equation (3.7). The claim is therefore proved.
By the claim, vr is constant on @K (✓) for each ✓ . Write vr (✓) for that value.

Additionally,
�
v#

�r is constant on @K (✓) for each ✓ by definition, so write
�
v#

�r
(✓)

for that value. Since Jv = Jv#, we haveZ
K (✓)

vr d�n�1 =

Z
K (✓)

�
v#

�r d�n�1.
Using spherical coordinates, the above integral becomes

�n�2

Z ✓

0
vr (✓) sinn�2 ✓ d✓ = �n�2

Z ✓

0

�
v#

�r
(✓) sinn�2 ✓ d✓,

where �n�2 = �n�2(Sn�2). Differentiating the above equation with respect to ✓
implies vr (✓) =

�
v#

�r
(✓). That is, v = v#.

Now let f 2 L2(A) be a general function with mean zero and let fk and vk be
as in Step 3 in the proof of Theorem 3.1. By the above, vk = v#k on A. By passing
to a subsequence of the original fk we may assume that vk ! v and v#k ! v# a.e.
Hence v = v# a.e.

Remark 3.6. Corollaries 3.4 and 3.5 have analogous statements on balls. However,
since the remainder of this paper deals only with consequences of the shell results,
we omit the statements of those results.
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4. Consequences of main results

4.1. Comparison results on spheres and hemispheres

In this section we develop consequences of Theorem 3.1 on spheres and hemi-
spheres. Theorem 3.1 concerns cap symmetrization, a partial symmetrization. The
corollaries below, on the other hand, deal with total symmetrizations, meaning the
rearrangement takes place on the whole space rather than on submanifolds.
Spheres. We write 1S and rS for the spherical Laplacian and spherical gradient
on Sn . We write W 1,2(Sn) for the Sobolev space of functions in L2(Sn) that, once
expressed in spherical coordinates, have weak partial derivatives in L2(Sn).

Given F 2 L2(Sn), we say that U 2 W 1,2(Sn) is a weak solution to

�1SU = F

provided
Z

Sn
rSU · rSG d�n =

Z
Sn
FG d�n

for every G 2 W 1,2(Sn).
We now have the following corollary to Theorem 3.1.

Corollary 4.1 (Spherical comparison theorem). Let F 2L2(Sn)with
R
Sn Fd�n=

0. Assume U and V are weak solutions to

�1SU = F in Sn, �1SV = F# in Sn,

where F# is the spherical rearrangement of F . Additionally assume U and V are
additively normalized so that

R
Sn U d�n =

R
Sn V d�n = 0. Then

UF
 VF

on (0,⇡). Thus for every convex function � : R ! R,
Z

Sn
�(U) d�n 

Z
Sn
�(V ) d�n.

Consequently,

kUkL p(Sn)  kVkL p(Sn), 1  p  1,

ess sup
Sn

U  ess sup
Sn

V,

ess inf
Sn

U � ess inf
Sn

V,

osc
Sn

U  osc
Sn

V .
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Proof. The idea is to extend from the sphere to a spherical shell by homogeneity.
Fix any 0 < a < 1 < b < 1 and let A = A(a, b) be the spherical shell in Rn+1

with inner radius a and outer radius b. Define functions f, u : A ! R by the
homogeneity formulas

f (r⇠) =

1
r2
F(⇠),

u(r⇠) = U(⇠),

for r 2 (a, b) and ⇠ 2 Sn .
We first observe that u solves

�1u = f in A ⇢ Rn+1,

@u
@n

= 0 on @A,

because 1 = @rr + nr�1@r + r�21S. The normalization
R
A u dx = 0 follows

immediately from the definition of u, since
R
Sn U d�n = 0.

Define v on A by

v(r⇠) = V (⇠)

and observe that the cap symmetrization of f is

f #(r⇠) =

1
r2
F#(⇠).

Hence v solves
�1v = f # in A,

@v

@n
= 0 on @A,

and
R
A v dx = 0. Theorem 3.1 implies that for almost every r 2 (a, b) the inequal-

ity

uF(r, ✓)  vF(r, ✓)

holds for every ✓ 2 (0,⇡). Pick any r so that the above inequality holds. The
definitions of u and v imply

UF(✓) = uF(r, ✓)  vF(r, ✓) = VF(✓)

for every ✓ 2 (0,⇡) which gives the main conclusion of the corollary. The conclu-
sions about convex means and so on now follow from Proposition 2.7 and Corol-
lary 2.11.
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Remark 4.2. In [15, Theorem 4.1], Cianchi obtains a similar comparison result to
Corollary 4.1. Indeed, let F , U , and V satisfy all the hypothesis of Corollary 4.1,
but do not assume U and V have zero mean. Instead assume that the decreasing
rearrangements U⇤(t) and V ⇤(t) simultaneously vanish at some value of t (in [15],
t = �n({⇠ 2 Sn : F(⇠) � 0})). Cianchi then obtains the inequalities U⇤

+
 V ⇤

+
and

U⇤

�
 V ⇤

�
for the decreasing rearrangements of the positive and negative parts of U

and V . Cianchi’s conclusion is stronger than that of Corollary 4.1, and the reason
for that is the different normalization on the solutions U and V . One can give a
direct proof of Cianchi’s result using the star function method as we now show.

Write
1

F
S =

d2

d✓2
� (n � 1) cot ✓

d
d✓

and
1

Ft
S =

d2

d✓2
� (n � 1) cot ✓

d
d✓

� (n � 1) csc2 ✓ · I,

where I is the identity. The operators 1F
S and 1Ft

S act on functions that belong to
C2((0,⇡)). By [6, Theorem 5 and formula (5.9)], it follows that

�1
F
S

⇣
UF

� VF
⌘

 FF
� FF

= 0

in the distributional sense. Spelled out, the above inequality reads

�

Z ⇡

0

⇣
UF(✓) � VF(✓)

⌘
1

Ft
S G(✓) d✓  0 (4.1)

for all nonnegative test functions G 2 C1

c ((0,⇡)). Now U# and V # are constant
on cap boundaries @K (✓) for 0 < ✓ < ⇡ . Write U#(✓) and V #(✓) for those values.
Integrating by parts, (4.1) becomesZ ⇡

0

⇣
U#(✓) � V #(✓)

⌘ d
d✓

⇣
sinn�1 ✓G(✓)

⌘
d✓  0

which implies Z ⇡

0

⇣
U#(✓) � V #(✓)

⌘
G 0(✓) d✓  0

for all nonnegative test functions G 2 C1

c ((0,⇡)). An easy argument then gives
U#(✓) � V #(✓) is increasing in ✓ , which implies U⇤(t) � V ⇤(t) is increasing in
t . Hence, if U⇤(t) and V ⇤(t) simultaneously vanish at some value of t , Cianchi’s
conclusion U⇤

+
 V ⇤

+
and U⇤

�
 V ⇤

�
then follows.

The following corollary tells us that the solution V to the symmetrized problem
of Corollary 4.1 is spherically rearranged.
Corollary 4.3. If F and V are as in Corollary 4.1, then V = V # a.e.

Proof. Let f and v be obtained by homogeneity as in the proof of Corollary 4.1.
By Corollary 3.5, v = v# a.e. which implies V = V # a.e.
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Hemispheres. We write Sn
+

= {(⇠1, ⇠2, . . . , ⇠n+1) 2 Sn : ⇠n+1 > 0} for the upper
hemisphere of Sn . For a function F 2 L1(Sn

+
), we extend F to Sn by even reflection

through the plane (xn+1 = 0). That is, we define F̃ : Sn ! R a.e. by

F̃(⇠1, ⇠2, . . . , ⇠n+1) =

(
F(⇠1, ⇠2, . . . , ⇠n+1) if ⇠n+1 > 0,
F(⇠1, ⇠2, . . . ,�⇠n+1) if ⇠n+1 < 0.

(4.2)

We define the hemispherical rearrangement F# : Sn
+

! R of the function F by the
formula

F#(⇠1, ⇠2, . . . , ⇠n+1) = (F̃)#(⇠1, ⇠2, . . . , ⇠n+1),

where (F̃)# denotes the spherical rearrangement of F̃ . A cautionary note: the above
equation contains two # symbols, but those symbols stand for different things. The
# on the left side is used to define the hemispherical rearrangement, whereas the #
on the right side means spherical rearrangement.

WritefF# for the even reflection of the hemispherical rearrangement F# through
the plane (xn+1 = 0). We claim that

fF# = (F̃)# (4.3)

a.e. If ⇠ 2 Sn
+
, then fF#(⇠) = F#(⇠) = (F̃)#(⇠),

where the first equality holds by the definition of even reflection, and the second
equality holds by the definition of F#. On the other hand, if (⇠1, ⇠2, . . . , ⇠n+1) 2 Sn
and ⇠n+1 < 0, then

fF#(⇠1, ⇠2, . . . , ⇠n+1) = F#(⇠1, ⇠2, . . . ,�⇠n+1)
= (F̃)#(⇠1, ⇠2, . . . ,�⇠n+1) = (F̃)#(⇠1, ⇠2, . . . , ⇠n+1),

where the first equality again holds by definition of even reflection and the sec-
ond equality holds by the definition of F#. The third equality holds because
(⇠1, ⇠2, . . . , ⇠n+1) and (⇠1, ⇠2, . . . ,�⇠n+1) have the same distance from e1. Thus
we have verified equation (4.3) for ⇠ = (⇠1, ⇠2, . . . , ⇠n+1) so long as ⇠n+1 6= 0.

The star function of F , denoted by FF, is defined on the interval (0,⇡) by the
formula

FF(✓) = max
�n(E)=�n(K (✓)+)

Z
E
F(⇠) d�n(⇠),

where the max is taken over all subsets E ⇢ Sn
+
with the same surface measure as

K (✓)+; we have written K (✓)+ = {(⇠1, ⇠2, . . . , ⇠n+1) 2 K (✓) : ⇠n+1 > 0}. As
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in Proposition 2.5, the max defining FF is achieved for some subset E , explaining
our use of max rather than sup. As in Proposition 2.6, it follows that

FF(✓) =

Z
K (✓)+

F#(⇠) d�n(⇠).

Before we state the next corollary, we need to discuss what it means to solve Pois-
son’s equation on a hemisphere with Neumann boundary conditions.

We write W 1,2(Sn
+
) for the Sobolev space of functions in L2(Sn

+
) that, once

expressed in spherical coordinates, have weak partial derivatives that also belong to
L2(Sn

+
). Given F 2 L2(Sn

+
) we say a function U 2 W 1,2(Sn

+
) is a weak solution to

�1SU = F in Sn
+
,

@U
@n

= 0 on @Sn
+
,

provided Z
Sn

+

rSU · rSG d�n =

Z
Sn

+

FG d�n (4.4)

for each G 2 W 1,2(Sn
+
).

We can now state and prove the hemispherical comparison result.
Corollary 4.4 (Hemisphere comparison theorem). Let F 2 L2 (Sn

+
) withR

Sn
+

F d�n = 0. Assume U and V are weak solutions to

�1SU = F in Sn
+
, �1SV = F# in Sn

+
,

@U
@n

= 0 on @Sn
+
,

@V
@n

= 0 on @Sn
+
.

Additionally assume U and V are additively normalized so that
R
Sn

+

U d�n =R
Sn

+

V d�n = 0. Then

UF
 VF

in (0,⇡). Consequently, for every convex function � : R ! R we haveZ
Sn

+

�(U) d�n 

Z
Sn

+

�(V ) d�n.

Additionally,

kUkL p(Sn
+

)  kVkL p(Sn
+

), 1  p  1,

ess sup
Sn

+

U  ess sup
Sn

+

V,

ess inf
Sn

+

U � ess inf
Sn

+

V,

osc
Sn

+

U  osc
Sn

+

V .
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Proof. First assume F is Lipschitz continuous on Sn
+
. Then F# is also Lipschitz

continuous on Sn
+
(this follows from [6, proof of Theorem 3]). The solutions U

and V then belong to C2(Sn
+
) by [23, Theorem 3.2]. Extend U , V , and F to Sn by

reflection through the plane (xn+1 = 0) just as we did in equation (4.2) and denote
these extensions by Ũ , Ṽ , and F̃ respectively. Then Ũ and Ṽ belong to W 1,2(Sn)
since they have classically vanishing outer normals along the equator (xn+1 = 0).

We first claim that Ũ and Ṽ solve

�1SŨ = F̃ in Sn, �1SṼ = (F̃)# in Sn, (4.5)

together with the normalizations
R
Sn Ũ d�n =

R
Sn Ṽ d�n = 0.

The normalization follows immediately from the definition of Ũ and Ṽ and
since

R
Sn

+

U d�n =

R
Sn

+

V d�n = 0.
To show (4.5) we appeal directly to the definition in equation (4.4). Let G 2

W 1,2(Sn) and define G̃(⇠1, . . . , ⇠n+1) = G(⇠1, . . . ,�⇠n+1) for (⇠1, . . . , ⇠n+1) 2

Sn . We computeZ
Sn

rSŨ · rSG d�n =

Z
Sn

+

rSU · rSG d�n +

Z
Sn

+

rSU · rSG̃ d�n

=

Z
Sn

+

FG d�n +

Z
Sn

+

FG̃ d�n

=

Z
Sn
F̃G d�n.

Similarly, �1SṼ =
fF# = (F̃)# in Sn by (4.3). By Corollary 4.1, ŨF

 ṼF

on (0,⇡) which immediately implies UF
 VF on (0,⇡). This gives the first

conclusion of the theorem in the case where F is Lipschitz continuous on Sn
+
.

Now let F 2 L2(Sn
+
) be a general function of mean zero and choose a sequence

of test functions Fk 2 C1

c (Sn
+
) with Fk ! F in L2(Sn

+
). Let Uk and Vk solve

�1SUk = Fk in Sn
+
, �1SVk = F#k in Sn

+
,

@Uk
@n

= 0 on @Sn
+
,

@Vk
@n

= 0 on @Sn
+
,

and assume theUk and Vk are normalized to have mean zero. The work above gives

UF
k  VF

k

on (0,⇡) for every k.
As in the proof of Theorem 3.1, Uk ! U and Vk ! V in L2(Sn

+
). Since

the spherical rearrangement is a contraction in the L1 distance, UF
k ! UF and

VF
k ! VF on (0,⇡). Hence, letting k ! 1 inUF

k  VF
k , we obtainU

F
 VF.

The remaining inequalities about L p norms and so on follow from Proposition 2.7
and Corollary 2.11.
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The following corollary tells us that the solution V to the rearranged problem
is hemispherically rearranged.

Corollary 4.5. Let F and V be as in Corollary 4.4. Then V = V # a.e.

Proof. Let F̃ and Ṽ be as in the proof of Corollary 4.4. By Corollary 4.3, Ṽ = Ṽ #
a.e. which implies V = V # a.e.

4.2. Kawohl’s conjecture

Kawohl raises the following conjecture in [19, page 61].
Conjecture 4.6 (Kawohl’s conjecture). Let R be the unit square (0, 1) ⇥ (0, 1) in
R2 and f : R ! R a sufficiently smooth function with mean value zero. Consider
the problems:

�1u = f in R, �1v = f # in R,

@u
@n

= 0 on @R,
@v

@n
= 0 on @R,

where f # is the monotone decreasing rearrangement of f in the direction y.
Then the oscillation of u over R should be dominated by the oscillation of v.
To be precise, the monotone decreasing rearrangement of f in the direction y

is defined in the following manner. Fix x 2 (0, 1) and let f x : (0, 1) ! R denote
the slice function f x (y) = f (x, y). Then f #(x, y) = ( f x )⇤(y) where ( f x )⇤ is the
decreasing rearrangement of the slice function f x .

There are two keys to our proof of Kawohl’s conjecture. The first of these is
the two-dimensional version of Theorem 3.1. Now we discuss the second key, a
rectangular comparison result obtained from Theorem 3.1 by a conformal mapping.
A Jacobian factor is introduced from the conformal change of variables. We will
see that this Jacobian factor interacts well with each of the rearrangements involved.

Before we prove an analogue of Theorem 3.1 in a square, we need to de-
fine the notion of a star function using the rearrangement Kawohl considered. Let
R = (0, 1) ⇥ (0, 1). For f 2 L1(R), we let f # denote the monotone decreasing
rearrangement of f in the direction y. Let fF

: R ! R be the star function defined
by the formula

fF(s, t) = max
|E |=t

Z
E
f (s, ⌧ ) d⌧,

where s 2 (0, 1) and the max is taken over all measurable subsets E ✓ (0, 1) of
one-dimensional Lebesgue measure t 2 (0, 1). Just as in Proposition 2.5, the max
is achieved for some subset E , which explains our use of max instead of sup.

We now state the rectangular comparison result. We compare the solutions of
two PDEs, one with given data and one with data rearranged monotonically in the
y direction. We see that the solution with rearranged data has a larger star function.

In the following result and in the remainder of the paper, we use dx and dm
interchangeably for two-dimensional Lebesgue measure.
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Theorem 4.7 (Rectangular comparison theorem). Let f 2 L2(R) whereR
R f dm = 0 and suppose u and v are weak solutions to

�1u = f in R, �1v = f # in R,

@u
@n

= 0 on @R,
@v

@n
= 0 on @R,

where f # denotes the monotone decreasing rearrangement of f in the direction y.
If u and v are additively normalized so that

R
R u dm =

R
R v dm = 0, then for

almost every s 2 (0, 1),
Z 1

0
u(s, t) dt =

Z 1

0
v(s, t) dt

and the inequality

uF(s, t)  vF(s, t)

holds for every t 2 (0, 1). In particular, uF
 vF a.e. in R.

Proof.

Step 1: Conformally convert data f and f # on R into data g and g# on an an-
nulus A. First assume f is Lipschitz continuous in R and let A = A(1, e⇡ ) = {z 2

C : 1 < |z| < e⇡ }. The exponential function T (⇣ ) = e⇡⇣ maps R conformally
onto AF. Define

g(z) = f
⇣
T�1(z)

⌘ ����
⇣
T�1

⌘
0

(z)
����
2

=

f
�
T�1(z)

�
|⇡z|2

for z 2 AF,

where we choose the branch cut of T�1(z) =
1
⇡ log z to lie along the negative

imaginary axis. Notice g is Lipschitz continuous on AF. Extend g to all of A by
reflection across the real axis, that is, g(z) = g(z̄). This extended function g is
Lipschitz continuous on A. Since cap symmetrization is performed on circles and
|⇡z|2 is positive and constant on circles, it follows that

g#(z) =

f #
�
T�1(z)

�
|⇡z|2

(4.6)

for z 2 AF. A cautionary note regarding the above equation: g# denotes the cap
symmetrization of g whereas f # is the monotone decreasing rearrangement of f in
the y direction.

The normalization of f implies that

0 =

Z
R
f (⇣ ) dm(⇣ ) =

Z
AF

f
⇣
T�1(z)

⌘ ����
⇣
T�1

⌘
0

(z)
����
2
dm(z)
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by a change of variable. Hence

0 = 2
Z
AF

g(z) dm(z) =

Z
A
g(z) dm(z).

This computation shows that g satisfies the admissibility condition for input data
into a Poisson equation with Neumann boundary conditions. It also explains why g
must include the Jacobian factor in its definition.

Let U and V solve
�1U = g in A, �1V = g# in A,

@U
@n

= 0 on @A,
@V
@n

= 0 on @A,

whereU and V are normalized so that
R
A U dm =

R
A V dm = 0. By [23, Theorem

3.2], U and V belong to C2(A).
Step 2: Obtain potential solutions u and v for the original problem. Define
u, v 2 C2(R) \ C1(R̄) by

u = U � T,

v = V � T .

We calculate

�1u(⇣ ) = �1U(T (⇣ ))
��T 0(⇣ )

��2
= g(T (⇣ ))

��T 0(⇣ )
��2

= f (⇣ ).

Similarly,

�1v(⇣ ) = �1V (T (⇣ ))
��T 0(⇣ )

��2
= g#(T (⇣ ))

��T 0(⇣ )
��2

= f #(⇣ ),

where the last equality follows from equality (4.6).
T is conformal, hence takes arcs that are perpendicular to @R into arcs that

are perpendicular to @AF. Moreover, T maps @R onto @AF. It follows that @u@n =

@v
@n = 0 on @R.

We next show that u and v have the same mean over any vertical strip through
R. To see this, we fix an s 2 (0, 1) and compute the integralZ 1

0
u(s, t) dt =

Z 1

0
U
�
e⇡sei⇡ t

�
dt

=

1
2

Z 1

�1
U
�
e⇡sei⇡ t

�
dt

=

1
2⇡

Z ⇡

�⇡
U
�
e⇡seit

�
dt

=

1
2⇡

Z ⇡

�⇡
V
�
e⇡seit

�
dt

=

Z 1

0
v(s, t) dt,
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where the second to last equality follows from the first conclusion of Theorem 3.1.
Now Theorem 3.1 implies UF

 VF on AF and writing ⇣ = (s, t) we then
calculate

uF(⇣ ) =

Z t

0
u#(s, ⌧ ) d⌧ =

1
2⇡

Z ⇡ t

�⇡ t
U#

�
e⇡sei⌧

�
d⌧ =

1
2⇡

UF(T (⇣ ))



1
2⇡

VF(T (⇣ )) = vF(⇣ ).

One last issue to resolve is that the hypothesis of Theorem 4.7 require that u and v
have mean zero. Since u and v above have the same mean over each vertical seg-
ment, they certainly have the same mean over the rectangle R. Hence by subtracting
that constant from u and v we can assume that both u and v have mean zero, and
the conclusion uF

 vF will still hold.

Step 3: Approximation argument for arbitrary input data f . To complete the
proof, one uses an approximation argument similar to the one used in the proof of
Proposition 2.20. We omit the details.

Remark 4.8. We can reach the same conclusion in Theorem 4.7 if we only assume
u and v have the same mean over the rectangle R, rather than assuming they both
have mean zero.

We now prove Kawohl’s conjecture.

Corollary 4.9 (Kawohl’s conjecture). If f , u, and v are as in Theorem 4.7, then

osc
R
u  osc

R
v.

Proof. By Theorem 4.7, for almost every s 2 (0, 1), we have
Z t

0
u#(s, ⌧ ) d⌧ 

Z t

0
v#(s, ⌧ ) d⌧

for every t 2 (0, 1). Additionally, u and v have the same mean over almost every
vertical segment of R, hence Corollary 2.11 gives

ess sup
t2(0,1)

u(s, t)  ess sup
t2(0,1)

v(s, t)

and
ess inf
t2(0,1)

v(s, t)  ess inf
t2(0,1)

u(s, t).

Taking the ess sup over s 2 (0, 1) in the first inequality and the ess inf over s 2

(0, 1) in the second inequality, we have

ess sup
R

u  ess sup
R

v
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and

ess inf
R

v  ess inf u
R

.

Finally, if we combine the above ess sup and ess inf inequalities, we conclude

osc
R
u  osc

R
v

as desired.

Appendix

A. Star function inequalities

In this appendix, we give a proof Baernstein’s subharmonicity result, Theorem 2.20,
the key tool in proving Theorem 3.1. All proofs in this appendix are those of Baern-
stein, and he has generously allowed me to present them here. This appendix has
two sections. Section 1 contains a formula for the Laplacian used to establish the
presubharmonicity and subharmonicity results in Section 2.

A.1. A formula for the Laplacian

Let K : Rn
! R be a nonnegative radially decreasing smooth function supported in

the unit ball satisfying the normalization
R
Rn K dx = 1. Set K✏(x) = ✏�nK (✏�1x)

and let ⇤ denote standard convolution in Rn . Given a function f 2 L1loc(�) with
� ✓ Rn a domain, the convolution f ⇤K✏ is defined on the set {x 2 � : d(x, @�) >
✏}.

Proposition A.1 (A formula for the Laplacian). For u2C2(�) and K✏ as above,

lim
✏!0

(K✏ ⇤ u) (x) � u(x)
CK ✏2

= 1u(x), x 2 �,

where CK =
1
2n

R
Bn |x |2K (x) dx . Moreover, convergence above holds locally uni-

formly in �.

The above proposition is proved by examining the Taylor expansion of u about
the point x .

A.2. Commutativity, presubharmonicity, and subharmonicity theorems
in shells

Let A = A(a, b) = {x 2 Rn
: a < |x | < b} be a spherical shell in Rn with inner

radius 0  a and outer radius b < 1.
Our next theorem employs the following consequence of Baernstein’s “Master

inequality,” and appears as [6, Corollary 4].
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Theorem A.2 (Master inequality for cap symmetrization). Let f, g : A ! R
and K : [0,1) ! [0,1) be decreasing where f (r⇠1)g(r⇠2)K (d(⇠1, ⇠2)) 2

L1(Sn�1 ⇥ Sn�1) for every a < r < b. Then,Z
A⇥A

f (x)g(y)K (|x � y|) dx dy 

Z
A⇥A

f #(x)g#(y)K (|x � y|) dx dy,

where f # and g# denote the cap symmetrizations of f and g respectively.

The following presubharmonicity result states that when �1u = f , then in a
very weak sense, �1u#  f #.

Theorem A.3 (Presubharmonicity in Shells). Assume u 2 C2(A) with �1u =

f . Then the following inequality holds

�

Z
A
u#1g dx 

Z
A
f #g dx

for each g 2 C2c (A) nonnegative with g = g#, where # denotes the cap symmetriza-
tion of g.

Proof.

Step 1: Construction of T r and h. Writing A = A(a, b), fix a < r < b. Define
T r : Sn�1 ! [0, �n�1(Sn�1)] by

T r (⇠) = �n�1
⇣n
⇣ 2 Sn�1 : ur (⇠) < ur (⇣ )

o⌘

+ �n�1
⇣n
⇣ 2 Sn�1 : ur (⇠) = ur (⇣ ) and  (⇠) <  (⇣ )

o⌘
,

where  : Sn�1 ! R denotes projection onto the first coordinate  (⇠1, . . . , ⇠n) =

⇠1, and we have written ur for the slice function ur (⇠) = u(r⇠). Then T r is a
measure-preserving transformation with

ur =

�
ur

�
⇤

� T r .

Let T : Sn�1 ! [0, �n�1(Sn�1)] be the measure preserving transformation that
takes a point ⇠ 2 Sn�1 to �n�1 (K (✓)) where ✓ is the angle ⇠ makes with e1.
Then T is the measure preserving transformation for which F⇤

� T equals F#, the
spherical rearrangement of F , for functions F defined on Sn�1. Since the functions
gr are spherically rearranged, we have

⇣
g#

⌘r
= gr =

�
gr
�
⇤

� T .

Define a function h on A by

hr =

�
gr
�
⇤

� T r , a < r < b.
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Then
h# = g# = g.

In particular, h is compactly supported and bounded because g has both of these
properties. For fixed a < r < b, we have

Z
Sn�1

urhr d�n�1 =

Z
Sn�1

��
ur

�
⇤

� T r
� �

(gr )⇤ � T r
�
d�n�1

=

Z �n�1(Sn�1)

0

�
ur

�
⇤
�
gr
�
⇤ dt

=

Z
Sn�1

��
ur

�
⇤

� T
� ��

gr
�
⇤

� T
�
d�n�1

=

Z
Sn�1

�
ur

�# �gr �# d�n�1
=

Z
Sn�1

�
ur

�# gr d�n�1.
Multiplying the above equality through by rn�1 and integrating from r = a to r = b
gives Z

A
uh dx =

Z
A
u#g dx . (A.1)

Step 2: Convolution inequalities. We write (·, ·) for the standard L2 inner product
on A. Step 1 then shows

(u, h) =

�
u#, g

�
.

Let K be a nonnegative symmetric bump function as in Section A.1. Then,

(u, K✏ ⇤ h) =

Z
A⇥A

✏�nK0
⇣
✏�1|y � x |

⌘
u(x)h(y) dx dy,

where we have written K0(r) = K (re1). Theorem A.2 gives

(u, K✏ ⇤ h) 

⇣
u#, K✏ ⇤ h#

⌘
=

⇣
u#, K✏ ⇤ g

⌘
.

Thus,
(K✏ ⇤ u � u, h) = (u, K✏ ⇤ h) � (u, h) 

⇣
u#, K✏ ⇤ g � g

⌘
,

where the first equality holds because K is radial. Dividing the above inequality
through by ✏2 and letting ✏ ! 0, we conclude

�

⇣
f #, g

⌘
 �( f, h) 

⇣
u#,1g

⌘
,

where the first inequality follows from Hardy-Littlewood.
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We define a new domain AF
⇢ R2 to be the polar rectangle

AF
=

n
(r, ✓) 2 R2 : a < r < b, 0 < ✓ < ⇡

o
.

Given u 2 L1loc(A), define a star function uF
: AF

! R by

uF(r, ✓) = sup
E

Z
E
u(r⇠) d�n�1(⇠),

where the sup is taken over all measurable subsets E ✓ Sn�1 with surface measure
� (E) = � (K (✓)); we have written K (✓) for the spherical cap on Sn�1 with center
e1 and spherical radius ✓ . We then have

uF(r, ✓) =

Z
K (✓)

u#(r⇠) d�n�1(⇠),

where u# is the cap symmetrization of u. Define an operator J : L1loc(A, dx) !

L1loc(A
F, dr d✓) by

Ju(r, ✓) =

Z
K (✓)

u(r⇠) d�n�1(⇠).

Then
uF

= Ju# on AF.

We write (·, ·) for the standard inner product on L2(A, dx) and (·, ·)F for the stan-
dard inner product on L2(AF, dr d✓). Define an operator J t : L1loc(A

F, dr d✓) !

L1loc(A, dx) by

J t F(r⇠) = r1�n
Z ⇡

✓
F(r, t) dt, a < r < b, ⇠ 2 Sn�1,

where ✓ is the angle that ⇠ makes with e1. One calculates that

(Ju,G)F =

�
u, J tG

�
,

when say u 2 L1loc(A) and G 2 L1(AF) with compact support.
We define new operators 1F and 1Ft which act on C2(AF) as follows:

1FF = @rr F +

n � 1
r

@r F + r�2⇥@✓✓ F � (n � 2)(cot ✓)@✓ F
⇤
, (A.2)

1Ft F = @rr F �

n � 1
r

@r F + r�2(n � 1)F

+r�2⇥@✓✓ F + (n � 2)(cot ✓)@✓ F � (n � 2)
�
csc2 ✓

�
F
⇤
. (A.3)

Theorem A.4 below appears as in [6, equation (5.9)].
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Theorem A.4 (Commutativity relation for cap symmetrization). If u 2 C2(A),
then

J1u = 1FJu

on AF.

Before proceeding, we prove an adjoint version of the above result.

Theorem A.5 (Adjoint commutativity relation for cap symmetrization). If G2

C2c (AF), then
J t1FtG = 1J tG.

Proof. Given any u 2 C2(A), we compute
⇣
u, J t1FtG

⌘
=

⇣
Ju,1FtG

⌘
F

=

⇣
1FJu,G

⌘
F

= (J1u,G)F =

�
1u, J tG

�
=

�
u,1J tG

�
,

where the third equality follows from Theorem A.4 and the fourth equality fol-
lows from Green’s theorem. One then has via approximation that (u, J t1FtG) =

(u,1J tG) for every function u 2 L2(A), which gives the result.

Before proceeding, we make the following definition.
Definition A.6. For u 2 C2(A) and f 2 L1loc(A), we say that �1FuF

 fF in
the weak sense provided the inequality

�

Z
AF

uF1FtG dr d✓ 

Z
AF

fFG dr d✓

holds for every nonnegative G 2 C2c (AF).

Theorem A.7 (Subharmonicity for cap symmetrization). Suppose u 2 C2(A)
satisfies �1u = f . Then

�1FuF
 fF

in the weak sense.

Proof. Letting G 2 C2c (AF) be nonnegative, we write g = J tG and compute

⇣
uF,1FtG

⌘
F

=

⇣
Ju#,1FtG

⌘
F

=

⇣
u#, J t1FtG

⌘

=

⇣
u#,1J tG

⌘
=

⇣
u#,1g

⌘
,
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with the third equality following from Theorem A.5. Since g = g# is nonnegative,
Theorem A.3 gives

�

⇣
u#,1g

⌘


⇣
f #, g

⌘
.

Thus,
�

⇣
uF,1FtG

⌘
F



⇣
f #, g

⌘
=

⇣
J f #,G

⌘
F

=

⇣
fF,G

⌘
F

.
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