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Interior partial regularity for minimal
Lp-vector fields with integer fluxes

MIRCEA PETRACHE

Abstract. We use a new combinatorial technique to prove the optimal interior
partial regularity result for L p-vector fields with integer fluxes that minimize the
L p-energy. More precisely, we prove that the minimizing vector fields are Hölder
continuous outside a set that is locally finite inside the domain. The results con-
tinue the program started in [25], but this paper is self-contained.
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1. Introduction

1.1. The result

In this work we consider vector fields X 2 L p(B3, R3) such that for every a 2 B3
and for almost every r < dist(a, @B3),

Z
@B3r (a)

X · ⌫ 2 Z, (1.1)

where ⌫ : @B3r (a) ! S2 is the outward unit normal vector. We call vector fields
satisfying such flux conditions vector fields with integer fluxes.

We observe that for p � 3/2 this class reduces to the divergence-free vector
fields, and therefore we just look at the “interesting” range p 2 [1, 3/2[. It is clear
that this class of vector fields is closed under L p-convergence. The compactness
result for weak convergence holds only for p > 1 and is the main result of our
recent work with Tristan Rivière [25], and is based upon the introduction of a good
distance between slices.

Here we concentrate on the interior regularity of X 2 L pZ(B3, R3) that are min-
ima of the L p-energy ||X ||L p(B3). Let � be an L p-function defined on the boundary
of B3 and having integer degree, i.e.

R
@B3 � 2 Z. We say that X is a minimizer if it
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achieves the minimum in the following problem.

inf
⇢Z

B3
|X |

p
: X 2 L pZ

�
B3, R3

�
, ⌫B3 · X |@B3 = �

�
. (1.2)

Note that without the constraint (1.1) the minimization in (1.2) yields the minimum
X ⌘ 0 regardless of the choice of �. We recall that the trace condition ⌫B3 · X |@B3
is defined by requiring that slices of X converge with respect to a suitable slice
distance introduced in [25]. For the precise statement see Definition 1.4.

We show the existence of a minimizer for (1.2) in Lemma 1.6. This existence
result depends on [25]. The fact that the minimizer is nontrivial is implied by the
properties of the trace present in [23]. The main result of the present work is the
following:

Theorem 1.1. Let p 2]1, 3/2[, and let X 2 L p(B3, R3) be a minimizer. Then X is
locally Hölder-continuous away from a locally finite set 6 ⇢ B3.

In the future work [24] we will address the regularity up to the boundary.

1.2. Using calculus of variations to construct U(1)-bundles

In [25] a first step was achieved towards the study of weak bundles with topologi-
cally nontrivial singularities. We recall here the main ideas of that approach.
First of all, recall that U(1)-line bundles over 2-dimensional surfaces are classified
up to smooth isomorphism by their first Chern class c1, which for an U(1)-bundle
P over a compact surface 6 is expressible via Chern-Weil theory as

c1(P) =

Z
6
FA 2 2⇡Z ⌘ H2(6, Z),

where FA is the curvature of any connection A on P (see [35]). By identifying the
Lie algebra u(1) with R, we can identify FA with an R-valued 2-form on 6. In the
“supercritical” dimension 3, a 2-form corresponds to a curvature if it assings integer
volume to each closed surface (that integer corresponds to the c1 of a line bundle
restricted to the surface). By identifying 2-forms with 1-vectors in 3 dimensions,
we arrive back at our definition of vector fields with integer fluxes.

The idea started by [20] was to study an energy minimization problem on bun-
dles defined weakly as sketched above. The hope was that the minimizers would
conserve some nontrivial information expressible in terms of c1.
Definition 1.2 ([20]). Let � ⇢ R3 be an open domain. We say that an L p-integra-
ble 2-form F on � a curvature of a weak line bundle with group U(1), if for all
x 2 � and for almost all r > 0 such that B(x, r) ⇢ �, there holdsZ

@B(x,r)
i⇤F 2 Z,

where i : @B(x, r) ! R3 is the inclusion map. We denote by F p
Z (�) the class of

such F .
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The above definition furnishes a definition of bundles in terms of slices on
spheres, and a suggestive parallel can be made with the theory of scans as in [14,
15]. A first consequence of this parallel is the idea leading to the proof of weak
compactness in [25].

The main novelty of the above kind of definition, in comparison with previous
contributions, is that no assumption is made a priori regarding the existence of an
underlying topological bundle structure, and one only assumes the existence of a
curvature form respecting the Chern class constraint. This is the natural setting
in which to study regularity problems, and in which to construct new bundles by
minimizing the energy. In such way we “leave the minimizer free” to find the “most
competitive” singularities, instead of forcing them on it at the beginning.

Given an L p-integrable form � on @�, consider the following minimization
problem which is just the translation of (1.2) into the language of differential forms:

inf
⇢Z

�
|F |

pdH3
: F 2 F p

Z (�), i⇤@�F = �

�
. (1.3)

The first positive result obtained in [25] was the fact that F p
Z (�) is closed under

weak convergence. The precise statement of the result is as follows.

Theorem 1.3 ([25], Main theorem). Suppose Fn 2 F p
Z (�) converge weakly to a

2-form F . Then F 2 F p
Z (�).

The definition of the boundary value i⇤@�F = � is given in [23, Section 5]:

Definition 1.4 ([23]). Suppose F 2 F p
Z (B3), and suppose that � is a 2-form in

L p(@B3) with
R
@B3 � 2 Z. Define the 2-forms F(⇢) := T ⇤

⇢ F , where T⇢ : @B3 !

B3 is given by T⇢(� ) = (1 � ⇢)� for ⇢ 2]0, 1[. We say that F 2 F p
Z,�(B

3) if
lim⇢!0+ d(F(⇢),�) = 0, where the distance d is as in [23,25].

It was shown in [23] that:

Proposition 1.5. Fn 2 F p
Z,'n

and Fn
L p
* F implies that 'n

d
! � for some L p-form

� of integer degree, and that F 2 F p
Z,� .

We also recall that forms F correspond to vector fields X via the point-wise
formula

Fp(U, V ) = X p · (U ⇥ V ) for all U, V 2 R3.

The above results imply the existence of minimizers:

Lemma 1.6. If � is a 2-form in L p [respectively, up to Hodge star duality with re-
spect to the standard metric, an L p-function] on @B3 having integer degree and the
Definition 1.4 [respectively, its translation for vector fields] is used for the boundary
value, then the minimum is achieved in Problem (1.3) [respectively (1.2)].
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Proof. We give the proof in the language of forms. Consider a minimizing sequence
Fi 2 F p

Z,�(B
3) and extract a weakly convergent subsequence, which we label in

the same way, abusing notation. We denote by F1 the limiting L p-form. From
Theorem 1.3 we know that F1 2 F p

Z (B3). Using Proposition 1.5 we deduce that
F1 2 F p

Z,�(B
3). Thus F1 is the desired minimizer.

Our Main Theorem 1.1 implies that a minimizer for the above problem, whose
existence is proved above, actually gives a usual bundle (defined outside isolated
points) locally inside the domain. Therefore the program of constructing weak
bundles by variational methods works in the abelian case.

1.3. Future steps: nonabelian bundles

The broader motivation for our work with abelian bundles is that they show some
of the features of nonabelian (e.g. SU(2)-) bundles, without the complications due
to the nonabelianity of the group. The next step after the proof of regularity present
here, is indeed to attack the case SU(2), that is the prototype of nonabelian bundles.
In this case the classifying invariant is the second Chern class c2 2 H4(M), defined
for a 4-dimensional surface, again expressible in terms of curvatures, as

c2(P) =

Z
M
tr(FA ^ FA) 2 8⇡2Z.

The above invariant is still present and significant for weak bundles, as shown in
[34]. The definition of weak bundles in a supercritical dimension (which in this case
would be 5) by slicing [20] can be stated also in this case (see also the treatment
of [16,17]):
Definition 1.7. Let � ⇢ R5 be a domain. We call an L2-form F on � with
values in su(2) a representative of a weak SU(2)-bundle, if for all x 2 � and
for almost all r > 0 such that B(x, r) ⇢ �, there exists a gauge transformation
g 2 L1(S4, SU(2)) and a W 1,2-connection A of an SU(2)-bundle over S4, such
that the restriction FB(r,x) of F to @B(x, r) ' S4 satisfies

g�1FB(r,x)g = d A + A ^ A.

We call F p
Z (�) the class of such F .

The idea is to look at the Yang-Mills energy
R
� |F |

2dH5 in the above class,
and the expectation is to obtain also in that case some analogy with the results for
the U(1)-case considered here. Definitions 1.2 and 1.7 coincide after replacing
U(1), u(1), p by SU(2), su(2), 2, because in the abelian case g�1Fg = F and
A ^ A = 0, while in F = d A the regularity of such A directly follows from that of
F after applying Fubini’s theorem.

Regularity results analogous to ours are not proved in the SU(2)-case, but
a hint that they might be true comes from the singularity removal result of [30].
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Regarding the study of nonabelian bundles supercritical dimension, see also the
more general works [29] and [7, 8].

The lack of an a priori given smooth structure will make the analogue of our
result in the nonabelian case much different from previous works. The interest of
the abelian case treated here is that it gives a new hint that the regularity result could
be achievable.

1.4. Relation to the regularity theory for harmonic maps and outline
of the paper

Our regularity result parallels the following result of Schoen and Uhlenbeck (case
p = 2), later extended by Hardt and Lin (for general p 2]1,1[) regarding min-
imizing harmonic maps. The result was proved for more general manifolds, but
the special case stated here already presents the main difficulties. The more precise
description the singularities is due to Brezis, Coron and Lieb.

Theorem 1.8 ([4, 13, 28]). Suppose u : B3 ! S2 is a map in W 1,2(B3, S2) min-
imizing the L2-norm of its differential. Then u has Hölder-continuous derivative
outside a locally finite set6 ⇢ B3. Moreover, u realizes a nontrivial degree around
small spheres centered at each point in 6.

The analogy of our problem with the one of harmonic maps is also reflected
by the fact that in our case the singularities also encode some topology, i.e. they
all have a nontrivial degree. We decided however to prove such description of
the singularities in a future work, in order not to make the present article too
heavy.

The careful reader might be tempted to conjecture that our formulation of a
minimization problem in terms of vector fields with integer fluxes can be refor-
mulated in terms of harmonic maps. One could for example consider the mini-
mization problem for the pullback u⇤!S2 of the volume 2-form on S2, via a map
u 2 W 1,q(B3, S2). Since we are dealing with a 2-form !, the natural regular-
ity requirement for u corresponding to u⇤! 2 L p would then be u 2 W 1,2p.
This is encouraged by the observation that the range of exponents corresponding
to p 2]1, 3/2[ is q = 2p 2 [2, 3[ and gives precisely the Sobolev spaces for which
the weak Jacobian d(u⇤!) of u is assured to be rectifiable and nontrivial.

While at the level of function spaces there is no complication in sight, the
problem is that the operation u 7! u⇤! is nonlinear in du, since ! is a 2-form.
Therefore there is no reason to think that the minimizing u should give a minimizing
u⇤!, or vice versa. In general it is also not clear that L pZ-vector fields are in bijective
correspondence with forms u⇤! obtained as above from Sobolev functions u 2

W 1,2p(B3, S2). In the (linear in du) case of 1-forms, such representation is proved
in [22].

Our approach roughly follows the strategy of the regularity theory for harmonic
maps. As in the harmonic map regularity proof, we derive and make use of a mono-
tonicity formula and a stationarity formula (cf. [13] and [26] with our Section 5). In
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Section 2 we prove an ✏-regularity result, in Section 3.1 we describe an analogous
of the Luckhaus lemma [19], which helps showing the sequential compactness of
minimizers. Then we proceed to the study of tangent maps and to the dimension
reduction in Section 4.

The techniques and results of sections Sections 2 and 3.1 are quite different
from the approaches that we found in the literature, and might shed a different per-
spective also on the theory of harmonic map regularity. The main new observation
is that the ✏-regularity can be studied on a simple model if we use the fact that the
singularities come with an associated integer (the degree, or flux, of our vector field
on small spheres surrounding the singularity).

The structure that naturally arises is a weighted graph, having vertices that rep-
resent the singularities and edges representing the vector field’s flow lines. Reduc-
ing to this model is allowed by the strong density result of Kessel, proved in [18]
and summarized in [20]. Its proof follows the strategy used by Bethuel to prove
similar results for Sobolev maps into manifolds [5, 6]. The precise result is the
following:

Theorem 1.9 ([18,20]). Suppose that � ⇢ R3 is an open set. Call R1

Z (�) the
class of vector fields defined and smooth outside a finite set6 = {a1, . . . , an} ⇢ �,
and having integer fluxes. Then R1

Z (�) is dense in L pZ(�) with respect to the
L p-topology.

The approximants to a minimizer (as given by Theorem 1.9) correspond then to
normal 1-dimensional currents. We are able to associate a weighted graph to vector
fields in R1

Z , by applying a decomposition result of Smirnov [27] for normal 1-
dimensional currents (see Theorem 2.6).

The ✏-regularity theorem is then obtained by a combinatorial reasoning on
these graphs. It relies on an elementary minimax result (the famous “maxflow-
mincut” theorem, [10]). See the scheme (2.3) in the next section for a more precise
overview of the proof. The same discretization method is the critical step also in
the Luckhaus lemma, in Section 3.

ACKNOWLEDGEMENTS. I wish to thank Tristan Rivière for introducing me to the
subject, for his encouragement, and for his many helpful comments and sugges-
tions. I also thank Luca Martinazzi for some questions which helped clarifying the
initial version of the paper. I wish to thank the anonymous referee for comments
leading to an improvement of the paper.

2. The ✏-regularity theorem

In this section our goal is to prove a so-called ✏-regularity theorem. This result
states that if, for an energy minimizer X on a ball B the energy happens to be small
enough, then X has no charges inside a smaller ball:
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Theorem 2.1 (✏-regularity). There exists ✏p > 0 such that for any minimizer X 2

L pZ of the L
p-energy if B3r (x0) ⇢ B3 and

r2p�3
Z
Br (x0)

|X |
p dH3 < ✏p, (2.1)

then

divX = 0 on Br/2(x0). (2.2)

The main steps of the proof can be summarized as follows (see the scheme 2.3
below).

• We first approximate our vector field X 2 L pZ strongly in L
p-norm by some

smoother vector field X̃ as in Theorem 1.9.
• To X̃ we associate a 1-current TX̃ in a classical way, and we apply to TX̃ a de-
composition result due to Smirnov [27] (see also the recent development [21]).
This result says that a normal current like TX̃ can be decomposed via a measure
(on Borel sets for the weak topology) µX̃ into a superposition of rectifiable inte-
gral currents supported on Lipschitz paths starting and ending on the boundary
of TX̃ . This result is described in Section 2.1.

• Smirnov’s decomposition µX̃ in our case (since the boundary @TX̃ is supported
on a discrete set) gives rise to a weighted directed graph GX̃ , by grouping to-
gether the paths in the support of µX̃ with the same starting and ending point.
These constructions are performed in Section 2.2.

• We define a way of perturbing GX̃ into another graph G
0. For the underlying

vector fields, this corresponds to perturbing X̃ into a vector field X 0 that is (not
smooth but) still in L pZ, and has energy bounded by the energy of X̃ . We call
these modifications elementary operations (see the definitions at the beginning
of Section 2.2), and we use the same notation for operations on the graph GX̃
and on the corresponding vector field X̃ .

• If X̃ has little energy on a ball B, then we can perturb it by elementary opera-
tions into another vector field X 0 as above, and which has no charges inside B.
This uses the classical “max flow/min cut” theorem on the graph G̃ (see Sec-
tion 2.3).

• Finally, as the vector fields X̃ approximate better and better the minimizer X ,
since p > 1 we can apply the results of [25] and extract a subsequence of the
perturbed X 0 that converge weakly to a competitor for X . The comparison of X
with the competitor gives a contradiction unless X has no charges in B, proving
the result (see Section 2.3.2).
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X ∈ Lp
Z

approxi-
mation

X̃ ∈ R∞ TX̃
Smirnov’s

decomposition

competitor X ∈ Lp
Z

µX̃
measure on

rect. lip. paths

perturbed
graph

G weighted
directed graph

GX̃

elementary
operations

(2.3)

2.1. Smirnov’s decomposition of 1-dimensional normal currents

We build our constructions upon Smirnov’s decomposition result for 1-dimensional
normal currents [27]. In order to state the results that we use, we need some pre-
liminaries.
Definition 2.2. A 1-current T in R3 is called an elementary solenoid if there exists
a 1-Lipschitz function f : R ! R3 with f (R) ⇢ spt(T ), such that f, T satisfy

T = D � lim
s!1

1
2s

f#
����!

[�s, s],
M(T ) = 1.

In the spirit of the above definition, we can identify an oriented Lipschitz curve (or
path) with a 1-dimensional rectifiable current. We call C` the set of all such paths
of length  `, which we endow with the weak topology. All measures on paths
described in this section will be positive, � -finite measures, Borel with respect to
the weak topology. The corresponding integrals are understood in the weak sense,
i.e.

S=

Z
C`
Rdµ(R) is the current defined by S(�)=

Z
C`
R(�)dµ(R) for � 2 D1(R3).

Definition 2.3. We say that a 1-current T is decomposed into currents lying in a set
J ⇢ D1,loc(R3) if there is a Borel measure µ supported on J such that

T =

Z
J
Rdµ(R),

||T || =

Z
J
||R||dµ(R).

T 2 N1,loc(R3) is totally decomposed if the same µ also decomposes the boundary:

@T =

Z
J
@Rdµ(R),

||@T || =

Z
J
||@R||dµ(R).
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Theorem 2.4. If ` > 0, T 2 D1(R3), @T = 0, then T can be decomposed into
elements of C`, with a measure µ of total mass M(T )/`. Moreover, the following
relations hold in the sense of measures:

2
`
||T || �

Z
C`

||@R||dµ(R),

1
`
||T || =

Z
C`
�b(R)dµ(R) =

Z
C`
�e(R)dµ(R),

where b(R), e(R) are the start and end points of R, respectively.

We do not use the above theorem, but we cite it because in [27] it is the ba-
sic ingredient for the next two theorems, which we rely upon. Using Birkhoff’s
theorem (in the appropriate setting), Smirnov proves the following decomposition
result.

Theorem 2.5. T 2 D1(R3), @T = 0, then T can be decomposed in elementary
solenoids.

For the case @T 6= 0 there holds instead:

Theorem 2.6. If T 2 N1,loc(R3) then T can be decomposed as follows:

T = P + Q,

||T || = ||P|| + ||Q||,

@T = @Q, @P = 0.

moreover Q can be totally decomposed into simple paths of finite length, i.e. into
elements of C1 := [`>0C`.

Remark 2.7. We now note some facts that follow easily from the constructions of
Smirnov, but are not explicitly stated in his paper:

(1) In the total decomposition of Q above, the paths have in general unbounded (fi-
nite) lengths, but almost all of them (with respect to the decomposing measure
µ) have b(R), e(R) on the support of @T = @Q.

(2) If T corresponds to a regular vector field (i.e. for all test forms !, T (!) =R
!(X)dL3 and X is regular), then the paths are composed of pieces of trajec-

tories of the flow of X .
(3) The functions b, e : C1 ! R3 are continuous for the weak topology. In

particular, given two Borel sets A, B ⇢ R3, the set of paths

{R : M(R) < 1, b(R) 2 A, e(R) 2 B}

is Borel for the weak topology.
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(4) Suppose that a 1-current T decomposes via a measure µ on the space of 1-
currents. If ↵ is a bounded Borel function on D1(R3), then ⌫ = ↵µ induces
by integration a 1-current T↵ that is totally decomposed via |↵|µ, and satisfies

�!T ↵ = ±

�!T and ||T↵||  ||↵||L1(µ)||T ||.

Indeed, this is true for step functions ↵, and L1-convergence at the level of
the decomposition induces weak convergence at the level of the decomposed
currents.

(5) The same result as above holds also in the case of a totally decomposed current
T , with the analogous inequality holding also for the boundaries:

||@T↵||  ||↵||L1(µ)||@T ||.

2.2. Encoding the useful information in a graph

For vector fields X 2 R1

Z (�) the decomposition of Smirnov allows to group the
integral trajectories of X � according to their start and end points: a generic tra-
jectory could start or end on @� or on one of the “charges” (i.e. singularities) of
X . We encode this information in a weighted directed graph (i.e. a graph such that
to each edge a positive number called “weight” and a direction are assigned). The
weights in our encoding graphs keep track of how much of the flux of X is carried
by each group of trajectories, and the direction of an edge encodes the direction of
the corresponding trajectories. The grouping is done in such a way that there are
no flux cancellations within the same group. Thus specifying the flux for a group
of trajectories automatically gives a measure of the norm of the restriction of X to
those trajectories.

2.2.1. Elementary operations

The following kind of operations will be the ones that we perform on our encoding
graphs:
Definition 2.8. An elementary operation on a directed weighted graph G consists
of multiplying by a factor ↵ 2 [�1, 1] the weight of an edge, where multiplica-
tion of the weight by a negative factor ↵ < 0 means inverting the orientation and
multiplying by |↵|.

We indicate by G � G 0 the statement that G is achieved from G 0, after apply-
ing finitely many elementary operations.

We now define the elementary operations on the underlying X 2 R1

Z (�). We
use the same name because the two definitions correspond to each other in a natural
way, as described in Section 2.2.3.
Definition 2.9. Consider X 2 R1

Z (�), which we identify with a current T = TX
as in Remark 2.7 (2), and to which we associate P, Q and a measure µ totally
decomposing Q as in Theorem 2.6. An elementary operation on X consists in
replacing X by the vector field corresponding to (TX )↵ obtained as in Remark 2.7
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(5), for some function ↵ that only takes values in [�1, 1] and that is piecewise
constant on a family of sets defined via b, e as in Remark 2.7 (3).

We indicate by X � X 0 the property of X of being achievable after performing
finitely many elementary operations starting from X 0.
Remark 2.10.

(1) It is immediate form Remark 2.7 (3) that X � X 0 implies ||X ||L p  ||X 0
||L p

with strict inequality unless |↵| = 1 in all of our elementary operations.
(2) R1

Z is not invariant under elementary operations, since such operations often
create jumps in X . In general also the integer divergence condition is not
preserved by these modifications.

(3) From Remark 2.7 (5) it follows however, that for X 2 R1

Z \ L p(�), any
elementary operation sends X to a vector field X 0

2 L p(�) having zero diver-
gence away from the singular set of X .

A+
1

A+
2

A−
1

A−
2

Figure 2.1. We represent schematically (i.e. we forget for a moment that we are in
a 3-dimensional setting, and we take � to be a ball) the finitely many charges of our
vector field X 2 R1 \ L1(�) as black dots, and some of the supports of the rectifiable
currents R of Definition 2.3, as thin lines.

2.2.2. Grouping trajectories of X 2 R1 \ L1(�)

Consider X 2 R1 \ L1(�) and the normal 1-current TX as in Remark 2.7 (2).
Using Theorem 2.6, we can find a decomposition TX = PX + QX and a mea-

sure µX on C1 := [`>0C` that totally decomposes QX into finite-length simple
paths.

Then note that, due to the special structure of X , @(TX �) is supported on
@�[ {charges of X}. Also, by the total decomposition property of QX , there holds

@(TX B) =

Z
C1

@RdµX (R) =

Z
C1

(�e(R) � �b(R))dµX (R)



1130 MIRCEA PETRACHE

and b(R), e(R) 2 spt@(TX B) for µX -a.e.R, so that we can decompose the set of
finite length paths into disjoint Borel sets:

C1 = C [

n[
i, j=0

Ci j ,

where µX (C) = 0 and for all R 2 Ci j there holds

b(R) 2 A�

i , e(R) 2 A+

j ,

where
A±

0 := @� \ {sgn(X · ⌫�) = ±1}

and

A±

i , i > 0 enumerate the ± �charges of X, possibly with repetitions.

By the decomposition theorem 2.6, if

C�

i = [
n
j=0Ci j ,C

+

j = [
n
i=0Ci j ,

then

µX (C+

i ) =

nX
j=0

µX (Ci j ), µX (C�

j ) =

nX
i=0

µX (Ci j ),

and for i > 0 it is clear that µX (C±

i ) is equal to the charge of A±

i (see also Figure
2.2).

A+
1

A+
2

A−
1

A−
2

: C01

: C02

: C11

: C22

: C10

: C20

: C00

Figure 2.2. In the example of Figure 2.1, we represent with different patterns the sup-
ports of paths belonging to different Ci j ’s. We omit the set Ci j if it has µX (Ci j ) = 0.
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2.2.3. Associating a graph to a vector field

With the notations of the previous subsection, we associate to X the graph GX (see
Figure 2.3) which has the following features:

• has vertices indexed by A±

i , i = 0, . . . , n,
• has a directed edge A�

i ! A+

j , for all 0  i, j  n, unless µ(Ci j ) = 0,
• any edge A�

i ! A+

j , it has weight µX (Ci j ) assigned to it.

A−
0 A+

0

A+
1 A−

1

A−
2

A+
2

µX(C22)

µX(C20)

µX(C11) µX(C10)

µX(C02)

µX(C01)

µX(C00 )

Figure 2.3. We superpose to the picture of Figure 2.2 the associated graph, where on
top of each arrow we also describe its weight. The gray vertices A+

0 , A�

0 correspond
respectively to start and end points of paths which lie on the boundary.

Further, if Ḡ � GX then we associate to Ḡ a vector field X̄ � X such that Ḡ = GX̄ ,
by the following procedure:

• Fix a sequence GX = G0 � G1 � · · · � GN = Ḡ such that Gk+1 is obtained
from Gk by an elementary operation. We can still identify the vertices of Gk
with those of GX .

• To each Gk we associate a function ↵k 2 L1(µX ), as follows. We start with
↵0 ⌘ 1. For k > 0 if Gk+1 is obtained from Gk by multiplying the weight on
A�

i ! A+

j by ↵ 2 [�1, 1] then we define ↵k+1 := ↵�Ci j↵k + �C1\Ci j↵k .
• Clearly ↵N 2 L1(µX ) defines an elementary operation on X , and so we call X̄
the vector field corresponding to (TX )↵N .

2.3. Proof of the ✏-regularity

2.3.1. Modifications to eliminate charges in the regular case

In this subsection we restrict to vector fields X 2 R1

Z (�) satisfying the conditions
of the ✏-regularity theorem, and we show that we can apply elementary operations
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decreasing the energy while eliminating the charges of X . The main result is as
follows.

Proposition 2.11 (regular case). Suppose that X 2 R1

Z \ L p(�̂) and that �̂ c �

is such that
R
@� |X | < 1 and

R
@� X · ⌫ = 0. Then there exists a second vector field

X̄ 2 L pZ(�̂) such that X̄ � X and

(1) X̄ = X on �̂ \�,
(2) ||X̄ ||L p(�̂) < ||X ||L p(�̂),
(3) (divX̄) � = 0.

The inequality of point (2) is strict unless X already satisfies point (3).

Proof. The main idea of the proof is to apply elementary operations to X , so that we
cancel out the charges inside�. Because of the above constructions, it is enough to
do the corresponding operations on the graph GX that encodes all the information
that we need for the proof.
Step 1: structure of the graph GX . Consider the graph G := GX defined in
Section 2.2.3, and call

• C+,C� the sets of vertices of G corresponding to the interior charges of a given
sign,

• 6± the sets of vertices of G corresponding to components of @� with local
charge ±, i.e. 6±

= {A±

0 }.

The form of our graph is summarized in the following scheme, where we also indi-
cate names for groups of arrows:

Σ+ σ+

C− C+ν σ−
Σ−.

The hypothesis
R
@� |X |

p < 1 implies that the arrows �± have total weight less
than 1. This will be important in the sequel.
Step 2: elimination of the singularities. We want to keep the arrows in �± fixed,
and modify the other arrows via elementary operations so that the modified graph
satisfies Kirchhoff’s law. This can be done as follows:

• We keep (i.e. multiply by +1) all the edges which go directly from 6+ to 6�.
Since these edges are not affected by the elementary operations done in the rest
of the proof, we suppose from now on, without loss of generality, that there are
no such edges.

• Let’s restrict to a connected component of our graph. Suppose first that it has the
form drawn above (i.e. it is not degenerate): in this case we can find a maximal
Kirchhoff subgraph K connecting 6+ to 6�, in the undirected graph

6+ C� C+ 6� .
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By the “max flow-min cut” theorem, after subtracting such directed subgraph,
the remaining edges make a disconnected graph that has 4 possible forms (where
we keep the orientations as in the original G):
(1) All arrows in ⌫ have been cut, but there are some edges joining 6 to some

point charges. These charges correspond to singularities of X , for which at
least 1/2-charge flowed from/to 6. In particular, since the difference |�+

| �

|��
| is constant during our construction, there must be an even number of

such charges. This is not possible because the
R
6 |X · ⌫6|dH2 was assumed

to be smaller than 1.
(2) The whole graph has been used, and we end up without leftover edges of the

graph. Then again we see that
R
6 |X · ⌫6|dH2 is prohibited to be smaller

than 1, since in any charge connected to 6±, the total wight of the arrows
from/to the boundary @�, is =

1
2 , and there are at least 2 such charges.

(3) All arrows �� have been cut. Then also the arrows in �+ have disappeared
after eliminating the maximal flow, again because |�+

| � |��
| is constant

(equal to zero) during these modifications. Thus in this case all arrows out-
side ⌫ are canceled. Then we can multiply by zero the remaining arrows:
these arrows are of positive total weight since else we reduce to point (2.3.1),
which is already excluded. Thus we strictly decrease the L p-norm of X .

(4) The last case is the “generic” one: it could be that after the cut we are left
with a graph of the form

C− C+

Σ+ Σ−

C̄− C̄+

.

It is shown in Lemma 2.13 that in this case it is possible to find another
minimal cut that gives a graph as in (3) or in (2) instead, and we conclude
the proof.

The conclusion of this enumeration is that the only possible cases that allow any
singularity at all inside � and are compatible with the small boundary energy
are the ones corresponding to the case (3) above. Observe that in this case we
are sure to have canceled some edges i.e. we have decreased the energy of X̃ ,
as wanted.

Example 2.12. Consider a regular vector field inR1 \ L p(�) that has 5 singular-
ities, one point having charge 1 a second point having charge 2, and the remaining
points having charge �1 each (see Figure 2.4). Suppose that the weights of the
edges of the associated graph are as in Figure 2.4. We assume from the beginning
that µX gives no weight to the paths that both start and end point on the boundary
(such paths are anyways not affected by our manipulations). The maximal flow
showed on the right corresponds to any of the 3 minimal cuts on the left. In gen-
eral, no uniqueness of either the maximal flow or the minimal cut is guaranteed. In
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(A)

(B) (C)

1
3

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
6

2
3

5
6

1
3

1
6

1
6

1
2

1
3

1
6

2
3

5
6

1
3

1
6

1
6

1
2

Figure 2.4. (A): a graph corresponding to a possible vector field X having 6 charges (of
which the one represented by a larger circle is a double one). In the unoriented graph
(B), we represent by dashed lines two minimal cuts separating the vertices with dashed
boundaries; a non-minimal cut is represented by a dotted line. Observe that the flow
through each of the 3 cuts in (A) is the same, but in (B) the sum of edge capacities is
larger for the dotted line. In (C) we show the unique maximal obtained on (B) between
the gray vertices.

Figure 2.5 it is shown what happens next, in our manipulations. Once we fix the
maximal flow of Figure 2.4, we change by elementary operations the flow lines of
X , ending up with the graph on the left of Figure 2.5. Since this represents a flow,
i.e. obeys Kirchhoff’s law, the paths representing the modified vector field X̄ are
concatenated, i.e. that they all start and end on the boundary. This concatenation is
“automatically done” by Smirnov’s decomposition, since the associated current TX̄
is totally decomposed (see Definition 2.3). The “canceled flow” on the right of the
figure, gives a measure of the amount of L p-norm of X gained this way.

We must point out that the L p-energy improvement in passing from X to X̄ de-
pends also from factors not captured by the graph GX itself, namely on the lengths
and concentrations of the paths decomposing the associated current TX . But for our
purposes a subtler analysis along these lines is not needed.

Lemma 2.13. Under the hypotheses of Proposition 2.11 on X , suppose that a con-
nected component of the associated graph GX has the form

C− C+

c

e

Σ+

a

b

Σ−

C̄− C̄+ f
d

,
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2
3

1
3

1
3

1
6

1
6

1
6

2
3

Figure 2.5. Continuing with the example of Figure 2.4, we show schematically on the
left what remains after the cancellation of the charges (in terms of the associated graphs
the three arrows of weight 16 actually are substituted by just one arrow of weight

1
2 , but

we drew the picture to suggest that a procedure of “concatenating arrows” is actually
underlying the operation). On the right we show the flow that results after removing
the maximal flow graph out of the initial graph. In our charge removal procedure, we
diminish the weights of our graph by the amounts in the right picture, so in this particular
X̄ has a smaller energy than X .

where a minimal cut is given by the arrows in b, c, d, e. Then another minimal cut
is given by the arrows in a, b.

Proof. The fact that a, b give a cut is clear from the above diagram. We must show
that such cut is a minimal one.

We indicate by |x | the total flow through the arrows of the group labelled by x .
First of all observe that by the zero total flux and small boundary energy hypotheses
on X ,

|a| + |b| = |e| + | f | <
1
2
,

therefore, being b, c, d, e a minimal cut, by comparison with the above cut we ob-
tain

|b| + |c| + |d| + |e| <
1
2
.

This implies that the total number of charges contributing to the vertices C+ is the
same as the number of charges contributing to C�, and similarly for C̄+, C̄�. In-
deed, suppose for contradiction that the numbers of charges contributing to C+,C�

were not equal. Then the total flow |a| + |c| + |d| + |e| would be � 1, and this
would contradict the fact that |a| and |c| + |d| + |e| are both < 1

2 .
By the consideration in italics above, we obtain that

|a| + |d| = |c| + |e|, |b| + |c| = |d| + | f |.

Therefore, by definition of a minimal cut

|b| + |c| + |d| + |e|  |a| + |b|

and this gives, using the previous computations,

|a| � |c| + |d| + |e| = |a| + 2|d|,

so |d| = 0 and the above inequalities are actually equalities, as wanted.
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2.3.2. The proof of ✏-regularity

Proof of Theorem 2.1. First of all, we may reduce to the case where the ✏-regular
ball B(x0, r) of the theorem is the unit ball B = B(0, 1), since the estimates and
the function spaces considered are invariant under homotheties and translations of
R3. We call �̂ the image of the initial B1 under this transformation.

Step 1: fixing a small energy sphere. We claim that, for any small ✏ > 0, we can
find a positive measure set of radiuses ⇢ > 1/2 such that

R
@B⇢ |X |

p < 2✏p. Indeed,
if the opposite estimate would hold for a.e. ⇢ > 1/2, then we would obtain

Z
B

|X |
p

�

Z 1

1�✏

Z
@B⇢

|X |
p > ✏p,

therefore Z
B

|X |
pdH3

� (1� ✏)✏0,

and this contradicts our assumption for ✏ small enough. Now from the above bound-
ary energy bound by ✏p we get via Hölder’s inequality the following boundZ

@B⇢
|X | 

�
2✏p

� 1
p
h
H2�S2�i p�1

p
,

and we choose ✏p such that the right hand side is equal to 1. This gives the small
boundary energy condition as in Proposition 2.11, and the zero flux condition fol-
lows from the definition of L pZ(B) and from the inequality |X · ⌫B⇢ |  |X |.

Step 2: passing to the approximants. We know that there exist X̃k 2 R1

Z (�̂) that
converge to X in L p-norm. From the construction leading to this approximation it
is clear that we can also further impose the convergence

X̃k
����@B⇢ L p

! X
����
@B⇢

,

therefore for k large enough, X̃k satisfies the properties required in Proposition
2.11. Applying this proposition, we thus obtain X̄k 2 L pZ(�̂) which are equal
to X̃k outside B⇢ and satisfy ||X̄k ||L p(�̂)  ||X̃k ||L p(�̂) (with strict inequality if
(divX̃k) B⇢ 6= 0) and (divX̄k) B⇢ = 0.

Step 3: a divergence-free competitor. By weak compactness of L pZ(�̂) it follows
that a subsequence of the X̄k0 converges weakly to some X̄ 2 L pZ(�̂). The zero
divergence condition passes to weak limits, so divX̄ = 0 on B⇢ . By sequential
weak lowersemicontinuity of the norm, we also deduce

��X̄��p  lim inf
k0

��X̄k0

��
p  lim inf

k

���X̃k
���
p

= ||X ||p.
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Since X was a minimizer, all the above inequalities must actually be equalities. We
also observe that since the sequence X̄k0 converges both weakly and in norm, it must
converge also strongly, to X̄ . By examining the definition of elementary operations
we also observe that the inequality |X̄k |(x)  |X̃k |(x) holds almost everywhere
for all k, and from it and the a.e. convergence it follows that the same inequality
holds also in the limit. Since both X̄ and X are minimizers it further follows that
|X̄ |(x) = |X |(x) almost everywhere.

Step 4: X is also divergence-free. We use the classical regularity theory, namely
Lemma 2.15 (which applies since divX̄ = 0) and Proposition 2.16 to deduce that
X̄ is Hölder-continuous in the interior of Br/2. It then follows that also divX = 0
on Br/2, since in this case X 2 L1

Z (Br/2). Indeed, using Theorem 1.9 it follows
that X can be approximated by vector fields in R1

Z (Br/2) in the strong norm in
Lq for q > 3/2. But for such exponents the vector fields in R1

Z \ Lq(�) are all
smooth (and in particular divergence-free, since the divergence is concentrated at
their singular points). Thus by approximation also X is divergence-free.

2.4. A classical consequence: C0,↵-regularity

From Theorem 2.1, using an extension by Peter Tolksdorff (and Christoph Ham-
burger) of the regularity theory first developed by Karen Uhlenbeck, it is relatively
straightforward to prove the following extension of it:

Theorem 2.14 (Hölder version of the ✏-regularity). If X 2 L pZ is a minimizer
then we can find an ✏p > 0 such that if on B3r (x0) ⇢ B3 the vector field X satisfies
(2.1) then on Br/2(x0) the vector field X is ↵-Hölder, with ↵ depending only on p
and with the Hölder constant of X |Br/2 depending only on p and on ||X ||L p(Br ).

In order to prove the above theorem, we use the conclusion that divX = 0
of Theorem 2.1 and the Euler equation of the functional

R
� |X |

p to reduce to the
by now classical regularity result for systems of equations due to the above cited
authors. The main heuristic idea in play here is that roughly “divX = 0 implies that
X = r f for some W 1,p

loc -function f ”.
In order to use this idea while still keeping rigorous, we use the formulation

of our minimization problem in terms of differential 2-forms ! instead of vector
fields X .

Lemma 2.15. The condition that a vector field X 2 L pZ(�) minimizes the L p-
energy and satisfies divX = 0 implies that the associated 2-form ! 2 F p

Z (�)
satisfies locally in the sense of the distributions the following equations:

⇢
d! = 0
�
�
|!|

p�2!
�

= 0.

Proof. The first equation is a trivial translation of divX = 0 in our new setting. The
second one is the Euler equation, and can be directly obtained from the requirement
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that ! be minimizing, by using the perturbations ! 7! !+✏d�, for � 2 C1

0 (^2�)
and taking the derivative in ✏ at ✏ = 0. Since d is exact, it easily follows that the
perturbed form is still in F p

Z (�).

With the result of the above lemma, we are exactly in the setting of [33], except
that that article treats the case p > 2, while we are interested in the case 1 < p <
3/2.

Luckily, the result of [33] was extended in [31,32] to the case 1 < p < 2. The
article of Tolksdorf considers only the “basic case” where the equations concern
a differential of a function instead of the generalization of exact differential forms
described by Uhlenbeck, but the setting in which Tolksdorf proves regularity can
be translated without much effort into the one of Uhlenbeck, and the techniques
present there are not affected by the translation. Later on Hamburger [11] partially
recovers the approach of Uhlenbeck for the whole range of exponents of Tolksdorf,
but this work deals with homological minimizers (i.e. minimizers with respect to
perturbations as in the proof of Lemma 2.15 that keep the comparison forms in our
class F p

Z (�)) instead of just using the Euler equations as the other two works. In
particular, the range of exponents p 2]1, 2[ is recovered from the range p > 2 via
a duality argument where the requirement of dealing with minimizers is involved.
Due to these considerations, we can safely state the following version of these reg-
ularity results. A recent treatment of the regularity for differential forms including
the case needed here is [2].

Proposition 2.16 ([2, 11, 31]). If ! 2 L p(^2�) satisfies the equations of Lemma
2.15 in the weak sense, then ! is ↵-Hölder, with ↵ depending only on p and with
the local Hölder constant of X |Br/2 depending only on p and on ||X ||L p(Br ) for any
ball contained in �.

From the above lemma and the proposition, it is straightforward that Theorem
2.14 holds.

3. For minimizers X , weak convergence implies strong convergence

In this section we prove the following compactness result:

Theorem 3.1. Suppose Xk 2 L pZ(B) are minimizers of the L p-energy, and that
Xk * X weakly in L p. Then X is also a minimizer and Xk ! X also L p-strongly
on any ball B(0, r), r < 1. In particular, any sequence of minimizers of bounded
energy has a strongly convergent subsequence.

It is a classical result that strong convergence can fail while weak convergence
holds, only if some energy is lost in the limit. Thus, it remains to prove that the
energy of X on Br is not lower than the limit of the energies of the Xk on the same
ball. The fact that any X obtained as a strong limit of minimizers is a minimizer
itself follows from the strong local convergence.
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The idea of the proof is to introduce a small parameter ✏ > 0 and to construct
an interpolant X̃k 2 L pZ(B) that equals Xk on B \ Br+✏ and X inside Br , in such
a way that the energy of X̃k in the small spherical shell B \ Br+✏ goes to zero as
✏ ! 0. This allows us, using the minimization property of Xk , to bound from above
the energy of Xk on Br , by the energy of X on the same ball.

For the proof of the ✏-regularity, it is enough to be able to do the constructions
for vector fields in R1. The interpolation construction faces again a problem re-
lated to possibility that (the approximant of) X � Xk have some singularities in the
small shell Br+✏ \ Br . We deal with this situation again by choosing shells where
on the boundaries X � Xk does not have large energy for k large, and by applying
the singularity removal operations of Proposition 2.11 from the ✏-regularity proof.
After these elementary operations, we are reduced to an easier situation (see Figure
3.1), where the paths of the Smirnov decomposition of our vector fields all move
from one boundary of the shell to the other. In this simpler case, the interpolation
can be done via an auxiliary function f satisfying a Neumann boundary value prob-
lem in the shell, and the scaling of the classical energy bounds as the thickness of
the shell vanishes (see Lemma ref scaling), are strong enough for our purposes.

3.1. Interpolant construction in the regular case

The result on the existence of the interpolants that we need is the following.

Proposition 3.2. There exists a constant C depending only on our exponent p from
above, such that the following holds. For any numbers R and ✏ such that R >
1+ ✏ > 1, for any Y 2 R1(BR) having zero flux through @B1+✏ and through @B1,
having no singularities lying on these two boundaries, and satisfying

Z
@Br

|Y |dH2 <
1
2
,

for r = 1 and for r = 1 + ✏, there exists another vector field Ȳ 2 R1(BR), such
that:

• Ȳ = Y on B1,
• Ȳ = 0 outside B1+✏ ,
• ||Ȳ ||L p(B1+✏\B1)  ||Y ||L p(B1+✏\B1) + C✏�

1
p
||Y ||L p(@B1).

Proof of Proposition 3.2. Consider the total decomposition µ of the current TY as-
sociated to Y . In order to prove Proposition 3.2, we proceed in two steps. In the first
one (see Section 2.3.1), we apply some elementary operations Y |B1+✏\B1 , obtaining
a new vector field Y1 such that:

• Ȳ1 := �B1+✏\B1Y1 + (�BR � �B1+✏\B1)Y still belongs to L
p
Z(BR),

• ||Ȳ1||L p(BR)  ||Y ||L p(BR),
• divY1 = 0 in the interior of B1+✏ \ B1,
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• µY1 S = µY |B1+✏\B1
S where the Borel (for the weak topology) set S consists

of the 1-currents R having boundary on @B1+✏ [ @B1.

In the second step, we modify the currents R 2 S (that up to nowwere untouched by
our construction). We apply an elementary operation in which we cancel (i.e. mul-
tiply by 0) the R’s with both boundaries on @B1+✏ , and we let the others unchanged.
Then we consider (identifying the current T2 with a vectorfield Y2)

T2 = Y2 :=

Z
S0

RdµY1(R),

where S0 are the currents corresponding to lipschitz paths with one end on @B1+✏
and the other one on @B1. It follows Y2 � Y1 and we see that Y2 is an L p-vector
field, and since µY2 totally decomposes Y2, there holds divY2 = 0 on B1+✏ \ B1.
The elementary operations decrease the L p-norms of the boundary values, thus

Z
@B1

|Y2|pdH2


Z
@B1

|Y |
pdH2. (3.1)

We now are in a situation where on one hand

@T2 =

�
⌫ · Y2|@B1+✏

�
H2 @B1+✏ �

�
⌫ · Y2|@B1

�
H2 @B1,

where ⌫ is the radial vector. On the other hand, by the zero flux condition on Y ,

@T2 @B1+✏(1) = 0 = @T2 @B1(1),

and by homological reasons this implies that the two boundary parts above are
themselves boundaries. So our strategy is to find another L p-vector field Y3 whose
associated current T3 has @T3 = �@T2 @B1+✏ , and which has good norm esti-
mates. The choice to which we are led is as follows:

Y3 = r f,

for f solving 8<
:
1 f = 0 on B1+✏ \ B1,
@⌫ f = g on @B1,
@⌫ f = 0 on @B1+✏,

(3.2)

for g := �Y2 · ⌫. Then we can define Ȳ by extending Y3 + Y1 � Y2 as zero outside
B1+✏ and as Y inside B1.

The boundary of the associated current TȲ is equal to (@TY ) intB1, therefore
Ȳ 2 R1(BR).



REGULARITY OF L p -VECTOR FIELDS WITH INTEGER FLUXES 1141

Figure 3.1. We represent schematically, to the left the decomposition of (the current
associated to) the vector field Y near B1+✏ \ B1, in the center the similar decomposition
for Y1, and to the right the vector field Y2, where the part of the decomposition that
will stay unmodified (and does not contribute to Y2) is dotted. The result of subtracting
Y2 and adding Y3 to Y1 can be rephrased in a more picturesque way by saying that we
are “cancelling” Y2 and “replacing it” by Y3. We eventually loose a bit in our estimates,
since Y3 “forgets about the support” of Y2, and no easy form of a superposition principle
holds for our range of exponents p.

The only fact left to prove in order to obtain Proposition 3.2, is the estimate of the
L p-energy of Ȳ , for which we need the following scaling lemma:

Lemma 3.3. There exists a constant C depending only on the exponent p but not
on ✏, such that the following holds. For any f 2 W 1,p(B1+✏ \ B1) that is a weak
solution of the Neumann boundary value equation (3.2), where g 2 L p(@B1), the
following estimate holds:

||r f ||L p(B1+✏\B1)  C✏�
1
p
||g||L p(@B1).

Proof. We denote by f✏ a solution of (3.2) with parameter ✏. We observe that the
weak formulation of the above Neumann problem states that for all � 2 C1(B̄1+✏ \
B1), Z

B1+✏\B1
r f✏ · r� =

Z
@B1

�gdH2.

Therefore, for any ✏ > 0 and for any test function � on R3 there holds
Z
B1+✏\B1

r f✏ · r� =

Z
B2\B1

r f1 · r�. (3.3)

Now observe that the gradients form a closed subspace of L p(B1+✏ \ B1, R3), thus
the following equality holds, where q =

p
p�1 :

||r f✏ ||L p(B1+✏\B1) = sup
⇢Z

B1+✏\B1
r f✏ · r�✏ : ||r�✏ ||Lq (B1+✏\B1)  1

�
. (3.4)
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Here it is enough to consider functions �✏ belonging to C1(B̄1+✏ \ B1). For any
such test function, there exists another test function � defined via the relation

�✏(1+ r, ✓) = �(1+ r/✏, ✓), 8r 2 [0, ✏],8✓ 2 S2.

The map � 7! �✏ is bijective between C1(B̄2 \ B1) and C1(B̄1+✏ \ B1) and for a
geometric constant Cg  2, there holds

||r�✏ ||Lq (B1+✏\B1)  Cg✏
1
q �1

||r�||Lq (B2\B1).

This last fact and (3.3) can be applied to the equivalent definition (3.4), immedi-
ately yielding our thesis. Indeed, we can obtain a constant C as in the theorem’s
formulation, which depends onCg and on the constant of the classical L p-regularity
estimate for the Neumann problem on the domain B2\B1, neither of which depends
on ✏.

We thus obtained an estimate of ||Y3||L p(B1+✏\B1) via ✏
�
1
p
||Y2||L p(@B1), and

this suffices because of (3.1). Moreover, ||Y1 � Y2||L p(B1+✏\B1)  ||Y ||L p(B1+✏\B1),
because (Y1 � Y2)|B1+✏\B1 � Y |B1+✏\B1 .

This concludes the proof of Proposition 3.2.

3.2. Proof of Theorem 3.1

In the proof of Theorem 3.1 it is enough to consider the case r = 1, and suppose
B = BR, R > 1, since the general case follows via the scaling of the energy.

If the Xk and the X would be in L p\R1(B), then we would apply Proposition
3.2 to Yk = Xk � X on the shell B1+✏0 \ B✏ . In general we cannot rely on this
hypothesis, so we use the fact thatR1(B) is dense in L pZ(B) and, in Step 2, modify
a bit our constructions.

Proof of Theorem 3.1: We proceed in 3 steps.
Step 1: finding a spherical shell of small norm. X 2 L p(B) and the Xk converge
weakly to it, so by weak lowersemincontinuity, up to forgetting the first terms of
the sequence Xk , there holds

||Xk � X ||L p  ||Xk ||L p + ||X ||L p  3||X ||L p .

We fix ✏0 and we divide the interval [1, 1+ ✏0] in M smaller intervals Ih of length
at least ✏ = ✏0/2M . Then, with the notation

AIh =

n
x 2 R3 : |x | 2 Ih

o
,

by pigeonhole principle we can find a subsequence of the Xk and an index h such
that

||Xk � X ||
p
L p(AIh ) 

C
M

= ✏
2C
✏0

.
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From now on we forget about h, and call I := Ih . Given any � > 0, up to choosing
another subsequence and changing I slightly, we can also assume

||Xk � X ||
p
L p(@Binf I )  �.

Step 2: approximating the interpolant. At this point, with the notation Yk :=

Xk � X , we use the strong density of R1(B) in L pZ(B) to find an approximant
Ỹk 2 R1(B) such that the L p-distance of Yk and of Ỹk on AI , as well as the L p-
distance of their boundary values, are not larger than ✏1. Similarly we can define
approximants X̃k, X̃ .

Up to changing I slightly, we can insure that none of the Ỹk have any charges
on @AI , so that we can apply Proposition 3.2 to them. We obtain Ȳk 2 R1(B), that
is:

• L p-close to Yk on B1,
• zero om B \ B1+✏0 .

Up to passing to a subsequence there holds:8>>><
>>>:

X̃k � Ȳk * X̄k 2 L pZ(B),⇣
X̃k � Ȳk

⌘���
B1+✏0\B1

! Xk |B1+✏0\B1,⇣
X̃k � Ȳk

⌘���
B1

! X |B1 .

The X̄k defined as above (which depends of the choices of subsequences, on I , and
on the parameters ✏1, ✏0, ✏, �), will be our choice of an interpolant between X and
Xk .
Step 3: final norm estimates. We can now patch together all our constructions and
estimates to obtain the following chain of inequalities. We simplify the notations
and write directly || · ||X instead of || · ||

p
L p(X).

||Xk ||B1  ||Xk ||B1+✏0  ||X̄k ||B1+✏0 by minimality of Xk
 ||X ||B1 + lim inf

✏1!0
||Ȳk ||B1+✏0\B1 by lower semicontinuity

 ||X ||B1 + C lim inf
✏1!0

⇣
||Yk ||AI + ✏1 + C✏�1||Yk ||@Binf I + ✏1

⌘

using Proposition 3.2

 ||X ||B1 + C
✓
✏

✏0
+

�

✏0

◆
,

and since there is no obstruction to letting ✏, � be arbitrarily small, the desired
inequality

||Xk ||L p(B1)  ||X ||L p(B1),

holds and the thesis follows.
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4. The regularity result

4.1. Dimension of the singular set

Definition 4.1. For a vector field X 2 L p(�) defined on some domain�, we define
the regular set of X , reg(X) ⇢ �, as the set of those points in a neighborhood of
which X is C1-regular. The set � \ reg(X) := sing(X) is called the singular set of
X .

Proposition 4.2. If X 2 Lp
Z(�) is a minimizer of the L p-energy, then for �0 b �,

H3�2p(sing(X) \�0) = 0 and sing(X) is nowhere dense in �0.

Proof. Without loss of generality we suppose that X is minimizing with respect to
perturbations supported in a neighborhood N of �, and we prove the result with �
instead of �0. From Proposition 2.1 we know that x0 2 reg(X) if for some r > 0
there holds

r2p�3
Z
B(x0,r)

|X |
p

 ✏0.

We can then cover sing(X) by 2�-balls B2�1 , . . . , B2�l contained in N such that the
balls B�k , having the same centers and radius �, are disjoint. Now, by monotonicity
we obtain

✏0  �2p�3
Z
B�k

|X |
p, k = 1, . . . , l,

and summing this on k we obtain

l�3�2p 

1
✏0

Z
[B�k

|X |
p



||X ||
p
L p(�)

✏0
. (4.1)

After choosing such a family of balls for all � we obtain the volume estimate

H3
⇣[

B�k
⌘

= l�3  C�2 p ! 0,

therefore by dominated convergence,Z
[B�k

|X |
p

! 0 as � ! 0.

Inserting this in (4.1) gives, by definition ofH3�2p and by the covering property of
our chosen balls,H3�2p(sing(X)) = 0, as wanted.

If we choose a ball B ⇢ � and we pack it as above with families F� of small
disjoint balls of radiuses � ! 0, we see by the scaling reasoning as above that
if X has rescaled energy bounded from below by ✏0 on all balls for all �, then X
has to have infinite energy on B, which is not the case. Therefore there is a small
ball on which the ✏-regularity Theorem 2.1 holds, showing that sing(X) is nowhere
dense.
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4.2. Singular set of weak limits of minimzing vector fields

Proposition 4.3. Suppose that Xk are minimizers and Xk * X0. Then Xk ! X0
locally uniformly on �0

\ S0, for any �0 b �. Moreover S0 is contained in the
energy concentration set

6 :=

⇢
x 2 � : lim inf

k!1

lim
r!0

r2p�3
Z
B(x,r)

|Xk |p > 4✏0
�

,

where ✏0 is the constant of the ✏-regularity Theorem 2.1, andH3�2p(6 \�0) = 0.

Remark 4.4. It can be shown that S0 = 6, but we do not need this characterization.

Proof. We can assume up to taking a subsequence that Xk ! X0 strongly in L p.
We show that H3�2p

1
(6) = 0, and that outside 6 the Xk converge uniformly; this

is equivalent to the thesis.
It follows, directly from its definition, that 6 can be covered by finitely many

balls Bi , with centers in 6 and radiuses ri , and such that for k large enough,

(2ri )2p�3
Z
2Bi

|Xk |p > 2✏0, for all k, i.

We fix the choice of this set of balls, such thatX
i
r3�2pi  H3�2p

1
(6) + ✏.

Then, by the estimates of the ✏-regularity, it follows that Xk are uniformly Hölder
on �0

\

S
Bi , and therefore they have a subsequence converging uniformly on that

set. By the reasoning of the proof of Proposition 4.2, as � ! 0 the sum
P
r3�2pi

must converge to zero, and by the arbitrarity of ✏ above it follows that H3�2p
1

(6) =

0.

Corollary 4.5. Let Xk be a minimizer of the L p-energy, Xk * X0 and Sk :=

sing(Xk) for i � 0, and s � 0. Then for any �0 b � there holds

Hs
1

�
S \�0

�
� lim sup

k!1

Hs
1

�
Sk \�0

�
.

Proof. Consider the balls Bk as in Proposition 4.3, except that this time they are
used to approximateHs

1
(S). Then for k large enough there holds

Sk ⇢

[
Bi ,

and therefore we can obtain

Hs
1

(S \�0) + ✏ � lim
k!1

Hs
1

(Sk \�0),

as wanted.
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4.3. Monotonicity and tangent maps

We consider now a sequence of blow-ups of a minimzer X around a point x0. We
call Xr (x) =

1
r2 X (r x + x0), and we observe that

X 2 L pZ(Br (x0)) , Xr 2 L pZ(B)

Proposition 4.6 (Monotonicity formula). If X 2 L pZ is a minimizer of the L p-
energy, then for all x 2 B and for almost all r < dist(x, @B) there holds

d
dr

✓
r2p�3

Z
Br (x)

|X |
pdH3

◆
= 2p r2p�3

Z
@Br (x)

|X |
p�2

���Xk

���2 dH2 (4.2)

where Xk is the component of X orthogonal to @/@r .

Since the right hand side is positive, the left hand side has a limit L(x) for
r ! 0+, so we can integrate equation (4.2) from 0 to �, getting

�2p�3
Z
B�

|X |
pdH3

� L = 2p
Z
B�
r2p�3|X |

p�2
|Xk

|
2dH3.

As in [13], the function L(x) is actually upper semi-continuous.
The equation (4.2) also implies that

Z
B1

|Xr |p = Er (X) := r2p�3
Z
Br

|X |
p

is increasing in r , therefore the X� have a L p-weakly convergent subsequence
X�i * X0 2 L p, �i ! 0. By a change of variables in the integrated formula
we obtain

�2p�3
Z
B�

|X |
pdH3

� L = 2p
Z
B1
r2p�3|X�|p�2

���Xk

�

���2 dH3,

therefore
lim
�!0+

Z
B1
r2p�3|X�|p�2

���Xk

�

���2 dH3
= 0. (4.3)

Since p0
=

p
p�1 and X0 2 L p, we obtain that |X0|p�2X0 2 L p0 ; the weight r2p�3

actually worsens the convergence above since it’s bounded away from zero, so we
obtain that Xk

0 = 0. This proves more in general the following:

Proposition 4.7. For any minimizer X , for any x 2 int(B) and for any sequence
of rescalings Xx,�i around x , with �i ! 0, the weak accumulation points Xx,0 are
radially directed.
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4.4. Stationarity and dimension reduction for the singular set

From now on we call s any exponent (smaller than 3�2p, as seen above) for which
Hs(S \ �0) > 0, where S = sing(X) for a minimizer X . Except for x0 in a set S0

such thatHs(S0) = 0, there holds

lim inf
�!0

��sHs �S \ B�/2
�

> 0, (4.4)

where the balls B�/2 are all centered at x0. As in the previous section, for a subse-
quence �i ! 0 our blow-ups converge to a radial tangent map X0 weakly in L p,
and since they are all minimizers, by Theorem 3.1 they converge strongly, up to
taking another subsequence, and also X0 is a minimizer.

The singular set Si of X�i is the blowup of S, and

��s
i Hs �S \ B�i/2

�
= Hs �Si \ B1/2

�
and from (4.4) it follows that

Hs �S0 \ B1/2
�

> 0, (4.5)

where S0 is the singular set of X0.
Using the radial direction of X0 and the stationarity (Proposition 5.1) we now

show the following fact.

Lemma 4.8. For any minimizer X , any tangent map X0 satisfies

|X0|(x) = |x |�2|X0|(x/|x |).

Proof. We use the equation (5.1) with respect to a local frame e1, e2, e3 such that
the vector e3 is the radial one and ! associated to X has just the component parallel
to de1^de2 different from zero (as was proved in Proposition 4.7), and we consider
a perturbation field that can be expressed in polar coordinates (⇢, ✓) as

V (⇢, ✓) = f (⇢)�(✓)⇢̂.

We then get from (5.1) that

0 = p
Z

|!|
p(⇢, ✓)

1
⇢
f (⇢)⇢2d⇢ �(✓)d✓

�

Z
|!|

p(⇢, ✓)
1
⇢2
@⇢

⇣
⇢2 f (⇢)

⌘
⇢2d⇢ �(✓)d✓ .

By the arbitrarity of �(✓) this translates into the following equation holding for
almost all ✓ Z

|!|
p(⇢, ✓)

h
2(p � 1)⇢ f (⇢) � ⇢2 f 0(⇢)

i
d⇢ = 0.
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This can also be written in terms of F(⇢) = ⇢�2p f (⇢)] as
Z

|!|
p(⇢, ✓)⇢2pF 0(⇢)d⇢ = 0

and since this holds for all F with support contained in ]0,1[, it must be that

|!|(⇢, ✓)⇢2 is independent of ⇢,

as wanted.

Along the same lines as the above proof (we just have to redefine the the or-
thonormal frames properly), we obtain the following result without difficulty:

Lemma 4.9. If X1 is parallel to one coordinate direction e3 and if the stationarity
equation holds, then X1 is almost everywhere independent of the coordinate x3. In
particular the hypothesis is satisfied if X1 minimizes the energy.

Remark 4.10. We note that for Propositions 4.6 and 4.7 ans Lemmas 4.8 and 4.9
just the monotonicity and stationarity formulas were used, without the intervention
of any comparison argument. Thus the results proved so far in this subsection are
valid not only when X is a minimizer, but also when X is just stationary, i.e. the
2-form F associated to it satisfies

d
dt

����
t=0

Z
B3

���⇤

t F
��p

= 0,

for all families of diffeomorphisms �t : B3 ! B3 that are differentiably dependent
on t 2 [�1, 1], equal to the identity in a neighborhood of @B3, and such that �0 =

idB3 . This requirement is indeed enough to prove stationarity and monotonicity. On
the contrary, the dimension reduction technique that we are about to prove uses the
strong convergence result which in turn depends on a comparison argument, thus
the following proofs hold only for minimizers X . An intriguing open question is
whether or not the uniqueness of tangent maps holds in our case (see Section 6.2
of [23] for a broader discussion).

We are now ready to apply the dimension reduction technique of Federer to
our minimizing vector field X . We start with a radial tangent map X0, obtained by
blow-up at a point x0 at which S0 has positive density with respect toHs for some
s < 3� 2p as above, as in (4.5).

As we saw in Section 4.3, X0 is a strong limit of a blowup sequence relative
to some �i ! 0+. We also know that the singular set S0 of X0 has zero H3�2p-
measure and is nowhere dense. It follows from Lemma 4.8, that |X0| must be
(�2)-homogeneous, and divX0 = 0 locally outside S0. Therefore X0 is itself (�2)-
homogeneous outside S0, and S0 is radially invariant, i.e.

�S0 ⇢ S0, 8� > 0.
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Now we show that S0 = {0}. Indeed, were this not the case, we could find a point
x1 2 S0 \ B1/2. In this case we could blow up again X0 with center x1, obtaining
a tangent map X1. By strong convergence we obtain that X1 would have to be
both directed radially and directed along one fixed direction: this would imply that
X1 = 0, contradicting the fact that x1 2 S0.

The following proposition summarizes the above discussion.

Proposition 4.11. For a minimizing vector field X , the singular set of any tangent
map sing(X0) is either empty or contains just the origin.

After Proposition 4.11 we easily deduce our main result.

Theorem 4.12. A minimizer X must have finitely many isolated singularities in any
open �0 b �.

Proof. If X had an accumulating sequence of singular points sing(X) 3 xi ! x 2

�0, then we can select a small r > 0 such that B(x, r) ⇢ �0. Then we can consider
the distances

�i =

|x � xi |
4

,

and we observe that for the blowups Si of ratio �i and center x , there holdsH0(Si \
B1/2) > 2. This contradicts Proposition 4.11 (where H0(S0)  1) and the semi-
continuity proved in Corollary 4.5.

5. Stationarity and monotonicity

5.1. Stationarity formula

We consider a smooth diffeomorphism 't := id + tV , where V is a compactly
supported vector field and t is small enough. We compute the stationarity formula
arising from

d
dt

Z ��'⇤

t !
��p����

t=0
= 0.

We recall the formula of the norm of the pullback of ! via 't , with respect to an
orthonormal frame field e1, e2, e3:

���'⇤

t !
�
x
��2

=

nX
i, j=1

��!'t (x) �d't ei , d't e j���2

=

nX
i, j=1

��!'t (x) �ei + t dV · ei , e j + t dV · e j
���2 .
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To deal better with the above t-derivative, we change variable (we let y := '�1
t (x)),

so that the point at which we calculate the norm of ! does not depend on t :

Z
|'⇤

t !x |
pdx=

Z 24
 

nX
i, j=1

|!y(ei+t dV · ei , e j+t dV ·e j )|2
!p/2

det(id+tdV )�1

3
5 dy.

Now we take the derivative of the integrand in t = 0, obtaining by easy computa-
tions (see for example [26]):

p
Z

|!|
p�2

3X
i, j=1

!
�
ei , e j

�
!
�
rei V, e j

�
�

Z
|!|

pdivV = 0. (5.1)

The above formula is justified for minimization problems in L p, because we are
sure that the manipulations done extend to that setting. What ensures that doing the
pullback preserves the property of being in L pZ as well, is the following:

Proposition 5.1. Consider a regular foliation
n
62� : � 2 [�✏, ✏]

o
,

i.e. a parameterized set of 2-surfaces in R3 such that if N✏6 = [�6
2
�, then the

following (has sense and) holds:

Z
N✏6

X · ⌫62�
dH3

'

Z ✏

�✏

Z
62�

X · ⌫62�
dH2 d�,

where ⌫62� is the normal vector of 6
2
�.

The following property is equivalent to the fact that X 2 L pZ:
For almost all � 2 [�✏, ✏] the following holds:

Z
62�

X · ⌫ dH2
2 Z. (5.2)

Proof. This follows sinceR1 is dense in L pZ in the L
p-norm. Suppose indeed that

there exists a closed C2-surface 6 such that for a set of � 2 [�✏, ✏] of measure
� > 0 there holds

Z
62�

X · ⌫dH2
2]a + c, a + 1� c[, for some a 2 Z.
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In particular, whenever Xi
L p
! X , Xi 2 R1

' then

Z
N✏6

|Xi � X |
pdH3

� C
Z ✏

�✏

Z
62�

|Xi � X |
pdH2 d�

� C
Z ✏

�✏

���62�
���1�p

�����
Z
62�

Xi · ⌫dH2
�

Z
62�

X · ⌫dH2

�����
p

d�

� C�cp,

contradicting the convergence in L p-norm stated above.

Since for t < ||X ||1/2, it follows that �t is a diffeomorphism and the integral
of ! on a sphere S is by definition the same as the integral of �⇤

t ! on �
�1
t (S), we

see by the above proposition that ! 2 F p
Z (�) implies that also the perturbations

�⇤

t ! belong to the same space for t small.

5.2. Monotonicity formula

In this section we prove a refinement of the stationarity formula. Since the proof
is independent of the dimension n of our domain, we give a formulation in any
dimension (the defnition ofF p

Z (�) now requiring the degree, on almost any (n�1)-
dimensional sphere, of the (n � 1)-form i⇤! to be an integer). For our applications
we will just use the case n = 3.

Proposition 5.2 (Monotonicity formula). If an (n�1)-form ! 2 F p
Z is stationary,

then for all x and almost all r 2]0, R] with the constraint BR(x) ⇢ � there holds

d
dr

✓
r2p�n

Z
Br

|!|
pdy

◆
= 2p r2p�n

Z
@Br

|!|
p�2

|@⇢y!|
2d� (5.3)

where @⇢ =
@
@⇢ is the radial derivative.

Proof. We use a strategy similar to [13]. If F : BR ! BR is a weakly differen-
tiable bijective Lipschitz function, and if ! 2 F p

Z then also F
⇤! 2 F p

Z , so it is a
competitor in our minimization. Therefore the stationarity d

dt
R
BR |8⇤

t !|
p
���
t=1

= 0,
holds provided that 80 = idBR and that the family 8t is differentiable in t . Such
properties will be clear from our choices of the map F . (5.3) follows from this.

Definition of 8. Fix 0 < r < s < R such that 0 < t < s/r . Then we define a
function 8 = 8r,s,t : BR ! BR by 8(x) := ⌘(|x |)x , such that

⇢ := |x | 7! |8(x)|
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is continuous and affine on each of the intervals [0, r], [r, s], [s, R]. We define

⌘(⇢) =

(
t if ⇢  r
1 if ⇢ 2 [s, r]

(5.4)

and ⌘|]r,s[ is defined accordingly:

⌘|[r,s](⇢) :=

s � tr
s � r

+

1
⇢

rs(t � 1)
s � r

.

Expression of |8⇤!|
2. We do our computation in coordinates. We choose a basis

{e0, e1, . . . , en�1} with respect to which to write the matrix d8x , where e0 = @⇢
and the other vectors form an orthogonal basis together with it. Then

@8

@xk
= ⌘ek + ⇢⌘0�0ke0. (5.5)

Then

|(8⇤!)x |
2

=

X
i, j

⇥
!8(x)

�
d8xei , d8xe j

�⇤2
=

n�1X
i, j=0

����!
✓
@8

@xi
,
@8

@x j

◆����
2

=

X
i, j>0

��! �⌘ei , ⌘e j���2 + 2
X
i>0

��!��⌘ + ⇢⌘0
�
e0, ⌘ei

���2

= ⌘4
X
i, j>0

!2i j + 2⌘2
�
⌘ + ⇢⌘0

�2
|@⇢y!|

2.

The derivative in t . We now start the computations for the monotonicity formula.
Z
BR

��8⇤!
��p

= I + I I + I I I (5.6)

where, after a change of variables y = 8�1(x),

I : =

Z
Br

��8⇤!
��p

= t2p�n
Z
Brt

|!|
pdy,

I I : =

Z
Bs\Br

��8⇤!
��p

I I I : =

Z
BR\Bs

��8⇤!
��p

=

Z
BR\Bs

|!|
p dy.
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We want now to change variable also in I I and to take d
dt
��
t=1 of the terms above.

The easy terms give:

I 0 :=
d
dt
��
t=1 (I ) = (2p � n)

Z
Br

|!|
pdy + r

Z
@Br

|!|
pd�

I I I 0 :=
d
dt
��
t=1 (I I I ) = 0.

Ingredients for the computations

• We observe that

⌘(⇢) + ⇢⌘0(⇢) =

s � tr
s � r

,

which has t-derivative �r
s�r . It is useful to keep in mind that ⌘ = 1 for t = 1; this

will be used without mention in the calculations.
• If y = 8(x) and � := |y|, then we can write the expression of ⌘ in terms of � :

� = ⇢⌘(⇢) = (⇢ � r)
s � tr
s � r

+ tr

so

⇢ = f (� ) := (s � r)
� � tr
s � tr

+ r

and

⌘( f (� )) =

s � tr
s � r

+


(s � r)

� � tr
s � tr

+ r
�

�1 rs(t � 1)
s � r

,

whence
d
dt
⌘( f (� ))

����
t=1

= �

r
s � r

+

rs
� (s � r)

.

• From (5.5) it follows that for ⇢ := |x | 2 [r, s],

J (d8�1) =

h
⌘(⇢)n�1

�
⌘(⇢) + ⇢⌘0(⇢)

�i�1
,

so

d
dt
J
�
d8�1�����

t=1
= (1� n)

d
dt
⌘

����
t=1

+

d
dt

✓
s � r
s � tr

◆����
t=1

= (1� n)

�

r
s � r

+

rs
� (s � r)

�
+

r
s � r

.
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Computation of the t-derivative. We call |i⇤!y|2 =

P
i, j>0 !

2
i j and we obtain

I I=
Z
Bs\Brt

 
|i⇤!y|2⌘4+2

✓
s�tr
s�r

◆2
⌘2|!y(ŷ,·)|2

!p/2
J
�
d8�1�dy

I I 0 :=
d
dt
I I
����
t=1

(derivative of the domain)= � r
Z
@Br

|!y|
pd�

(derivative of the Jacobian) + (n � 1)
r

s � r

Z
Bs\Br

✓
1�

s
|y|

◆
|!y|

pdy

+

r
s � r

Z
Bs\Br

|!y|
pdy

(derivative of the main term)
p
2


r

s � r

Z
Bs\Br

4|!|
p
✓
s

|y|
� 1

◆
dy

�

r
s � r

Z
Bs\Br

4|!|
p�2

|@⇢y!|
2dy

�
.

We now take the limit s # r and we are interested in seeing what the equation
I 0 + I I 0 + I I I 0 = 0 becomes. The answer is

lim
s#r

I I 0 = �r
Z
@Br

|!|
pd�

+0+ r
Z
@Br

|!|
pdy

+0� 2pr
Z
@Br

|!|
p�2

|@⇢y!|
2dy

= �2pr
Z
@Br

|!|
p�2

|@⇢y!|
2dy,

and
lim
s#r

I 0 = (2p � n)
Z
Br

|!|
pdy + r

Z
@Br

|!|
pdy.

Summing up and using the fact that ! is a minimizer of the energy, we get

(2p � n)
Z
Br

|!|
pdy + r

Z
@Br

|!|
pdy = 2pr

Z
@Br

|!|
p�2

|@⇢y!|
2dy.

Multiplying both the right hand side and the left hand side of the above equation by
r2p�n�1 we get the desired formula

d
dr

✓
r2p�n

Z
Br

|!|
pdy

◆
= 2p r2p�n

Z
@Br

|!|
p�2

|@⇢y!|
2dy.
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In terms of vector fields, we can state the following:

Proposition 5.3 (Monotonicity formula, alternative formulation). If X 2 L pZ
minimzes the energy, then for almost all r 2 [0, R] there holds

d
dr

✓
r2p�n

Z
Br

|X |
pdy

◆
= 2p r2p�n

Z
@Br

|X |
p�2

|X � hX, ⌫Br i⌫Br |
2dH2. (5.7)
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