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Harmonic Bergman spaces, the Poisson equation
and the dual of Hardy-type spaces
on certain noncompact manifolds

GIANCARLO MAUCERI, STEFANO MEDA AND MARIA VALLARINO

Abstract. In this paper we consider a complete connected noncompact Rieman-
nian manifold M with bounded geometry and spectral gap. We realize the dual

space Y¥(M) of the Hardy-type space X k(M), introduced in a previous paper of
the authors, as the class of all locally square integrable functions satisfying suit-
able BMO-like conditions, where the role of the constants is played by the space
of global k-quasi-harmonic functions. Furthermore we prove that YK(M) is also
the dual of the space X g (M) of finite linear combination of XX-atoms. As a con-
sequence, if Z is a Banach space and T is a Z-valued linear operator defined on
X gn(M ), then T extends to a bounded operator from X k(M ) to Z if and only if
it is uniformly bounded on X k_atoms. To obtain these results we prove the global
solvability of the generalized Poisson equation .Z ky = f with f € le0 (M) and
we study some properties of generalized Bergman spaces of harmonic functions
on geodesic balls.

Mathematics Subject Classification (2010): 30H10 (primary); 42B20, 42B35,
58C99 (secondary).

1. Introduction

A seminal result of C. Fefferman [10, Theorem 2] identifies the Banach dual of
the Hardy space H'(R") as BMO(R")/C, the space of all functions of bounded
mean oscillation modulo constants. A function g in BMO(IR") possesses the nice
property of being “well approximated” on each ball by constants, to wit

sup in

1
f— —c]*d . 1.1
BC€C|B|/3|g<x) e dx < 00 (L.1)
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The continuous linear functionals on H'(R") are precisely those which, restricted
to finite linear combinations f of H!-atoms, are of the form

rg(f) = /Rn f(x)g(x)dx (1.2)

for some function g in BMO(R").

Recently several authors have investigated Hardy spaces on noncompact dou-
bling Riemannian manifolds [2,14,22]. On nondoubling manifolds, versions of the
so called local Hardy spaces, introduced by D. Goldberg in the context of R” [11],
have been investigated in [7,26]. These local Hardy spaces are well adapted to
obtain endpoint estimates for singular integrals whose kernels have only local sin-
gularities, such as, for instance, pseudodifferential operators. However, it is known
that singular integral operators whose kernel is also singular at infinity, such as
Riesz transforms or imaginary powers of the Laplacian, do not map the local Hardy
spaces in L'(M). To overcome this problem, in [16,17] the authors introduced and
studied the properties of a family of global Hardy-type spaces on a class of non-
doubling manifolds that includes all symmetric spaces of the noncompact type.

In this paper we aim at proving a version of Fefferman’s result for this new
class of spaces. A striking difference between the aforementioned classical result
and our version thereof is that the role played by constants in the former will be
played in the latter by quasi-harmonic functions, i.e., solutions to the (generalised)
Poisson equation . ku = ¢ for some positive integer k and constant ¢. Here &
denotes minus the Laplace—Beltrami operator on M.

We elaborate on this. In [16,17] we defined a strictly decreasing sequence
X' (M), X>(M), X3(M), ... of subspaces of L'(M), where M is a complete con-
nected noncompact Riemannian manifold with Ricci curvature bounded from be-
low, positive injectivity radius and spectral gap (see also [27] for an interesting
variant of the spaces X k(M)). Note that these manifolds are of exponential volume
growth, hence their Riemannian measure u is nondoubling. Important examples of
manifolds with these properties are nonamenable connected unimodular Lie groups
equipped with a left invariant Riemannian distance, and symmetric spaces of the
noncompact type with the Killing metric. The spaces X* (M) share with the classi-
cal Hardy space H L(R") the following properties (see [16,17]):

(i) if p is in (1, 2), then the Lebesgue space L”(M) is an interpolation space
between X¥(M) and L2(M);

(ii) some interesting operators, such as the Riesz transforms associated to . and
the purely imaginary powers of .#, are bounded from X*(M) to L' (M) for k
large enough (improvements thereof will appear in [18]);

(iii) the space X L(M) admits an atomic decomposition in terms of atoms, which
are defined much as in the classical case, but are supported in balls of radius
at most one and satisfy an appropriate infinite dimensional cancellation con-
dition. Under the additional assumption that some (depending on k) covariant
derivatives of the Ricci tensor are bounded, the same holds for X*(M) with
k>2.
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For this reason we call the spaces XX (M) generalised Hardy spaces. They play for
harmonic analysis on M a role similar to that played by H'(R") on R” [24] and,
more generally, by the Coifman—Weiss Hardy space [8] on spaces of homogeneous
type.

In order to describe the cancellation condition alluded to in (iii) above we de-
fine, for each geodesic ball B, the class q,?(B) of all k-quasi-harmonic functions on

B as the class of functions that are restrictions to B of functions v such that
#*y = const

in some open neighbourhood of B.
Atoms in X¥(M) are then L?(M) functions A with support contained in a ball
B of radius at most one such that

(i) /Avdu —0  VueglB);
(i) 11All, < u(B)V2,

The space X*(M) is the space of all (possibly infinite) linear combinations of X*-
atoms with ¢! coefficients, endowed with the standard “atomic norm”. If we con-
sider atoms with support contained in balls of radius at most s > 0, instead of atoms
with support in balls of radius at most 1, we obtain the same space of functions, and
the two corresponding “atomic norms” are equivalent [17]. In view of this observa-
tion, we may choose the “scale parameter” s equal to 5o := (1/2) Inj(M). This will
simplify some of the arguments below, and avoid many annoying technicalities. We
shall call atoms supported in balls od radius at most so admissible.

An important point that we overlooked in [17], and that we shall discuss in
Section 4, is that the cancellation condition for X*-atoms may be equivalently for-
mulated, at least for atoms A with support in small balls, by requiring that A is
orthogonal to gx (M), the space of all global k-quasi- harmonic functions, i.e. the
space of all solutions to the (generalised) Poisson equation

ZLru =,

where ¢ is an arbitrary constant. In Section 2 we shall prove that the generalised
Poisson equation has global solutions and that if 5 is small enough, then functions
in q,f(E) may be approximated in the L>(B) norm to any degree of precision by
global k-quasi-harmonic functions. This suggests to define the generalised BMO
space GBMOX (M) as the space of all locally square integrable functions G on M
such that

1 1/2
G M) :=sup inf —/ G—V2d> < 00, 13
l ”GBMOk( ) Bp Veq (M) (M(B) R | |~ du (1.3)

where the supremum is taken with respect to all balls of radius at most so. Note that
this “norm” annihilates all global k-quasi-harmonic functions, and defines a genuine
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norm on the quotient space GBMOX (M) /qi(M). Loosely speaking, functions in
GBMO* (M) may be “well approximated” on balls of radius at most so by global
k-quasi-harmonic functions. Our main result, Theorem 5.8, states that the Banach
dual of X*(M) is isomorphic to GBMOk(M )/qx(M). Specifically, the continuous
linear functionals on X* (M) are precisely those, which, restricted to finite linear
combinations F of X¥- atoms, are of the form

AG(F) = /MFGd;L (1.4)

for some function G in GBMO* (M). Note the analogy between the classical case
(1.1), (1.2), and our setting (1.3), (1.4). It is an interesting problem to determine
explicitly the function G that corresponds to a given functional . We solve this
problem in Section 5. It may be worth observing that one of the steps in the proof
is showing that the solutions of the generalised Poisson equation

Lru=g

with datum g in BMO(M) are in GBMOK (M), with control of the norms. As a
consequence of our analysis, we prove in Section 6 that the X*(M)-norm and the

o inf {Z lcj| = F Z cj A

J

where the infimum is taken over all representations of F as a finite sum of admis-
sible X*-atoms, are equivalent on the space X 'gn(M ) of finite linear combination

of X*-atoms. This implies that if Z is a Banach space and .7is a Z-valued linear
operator on finite combinations of X*-atoms that is uniformly bounded on admis-
sible X*-atoms, then it extends to a bounded linear operator from X k (M) to Z.
Thus, the atomic decomposition is really useful to test the boundedness of linear
operators defined on finite linear combinations of X*- atoms. See, on this delicate
point, [15,20,21] and the references therein. This result has already been implic-
itly used in [16,17], where, in order to show that certain singular integral operators
are bounded from X*(M) to L'(M), we simply checked that they are uniformly
bounded on X*-atoms.

Further applications of the theory developed in this paper to the boundedness
of spectral multipliers of .Z and Riesz transforms will appear in [19].

We briefly outline the content of this paper. Section 2 is devoted to the study
of the solvability of the generalised Poisson equation. In Section 3 we introduce
various classes of k-quasi-harmonic functions and study their mutual relations. In
Section 4, after stating the basic geometric assumptions on the manifold M and
their analytic consequences, we recall the definition of the spaces H Ly, Xk(m,
Y*(M) and their main properties. Our main result is proved in Section 5. Finally, in
Section 6 we shall prove that the dual of X ﬁn(M ) is isomorphic to that of X*(M),
and draw some consequences concerning the extendability of Banach-valued linear
operators uniformly bounded on X*-atoms.
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We shall use the “variable constant convention”, and denote by C, possibly
with sub- or superscripts, a constant that may vary from place to place and may de-
pend on any factor quantified (implicitly or explicitly) before its occurrence, but not
on factors quantified afterwards. Throughout the paper 1 will denote the indicator
function of the set E.

2. Solvability of the Poisson equation

In this section M will denote a connected complete n-dimensional Riemannian
manifold of infinite volume with Riemannian measure p. We assume that the bot-
tom b of the L2(M) spectrum of . is strictly positive and so % ! is bounded on
L*(M). The aim of this section is to investigate the solvability of the (generalised)
Poisson equation

.,?kuzg,

where g is a datum in leoc(M ) and k a positive integer. Clearly, if U is a distribu-
tional solution of this equation, any other solution is of the form U 4+ H, where H
solves the generalised Laplace equation £ KH =0,ie. Hisa global k-harmonic
function on M, according to the terminology that we shall introduce in Defini-
tion 3.1.

The proof of the solvability hinges on the following approximation result of
k-harmonic functions on certain compact subsets of M by global k-harmonic func-
tions on M. The proof for k = 1 can be found in [3, Theorem 3.10]; the case k > 1
is a straightforward adaptation of the argument given there. We recall that if K is a
closed subset of M, then a hole of K is any component of M \ K which is bounded.

Lemma 2.1 (Walsch-Pfluger—Lax—Malgrange). Let K be a compact subset of M
without holes and k be a positive integer. If v is a solution of the equation £ kb=0
in a neighbourhood of K and ¢ > 0 then there is a function u such that £ ku=0
in M and supg |v —u| < ¢.

Theorem 2.2. Suppose that M is a complete, noncompact, Riemannian manifold
with spectral gap and that k is a positive integer. Then for every f in leoc(M ) there

exists u in leoc(M ) such that £ ky = f in the sense of distributions.

Proof. First we consider the case k = 1. Fix a reference point o in M and denote
by Bg the open ball of radius R and centre o, and by Bg the union of Bg with the
bounded connected components of M \ Bg. Then Bg has no holes and M is the
union of the increasing sequence of bounded open sets { Br}.

Fix ¢ > 0 small. Set v; = £~ !(f 1§1+£). This makes sense, because £ !
is bounded on L*(M). Then v; is in L2(M) and solves the equation L= f
in Bi.. f w € L%(M) is a solution of Lw = f in B4, (for instance w =
27 1§2+5))’ then .Z (vi — w) =01in §1+g. Hence, by Lemma 2.1, there exists
hsuchthat £ h = 0in M and supg, vy —w — h| < 1/2. Thus, setting v, = w+h,
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one has vy, = f in §2+8 and supg, |v; — v2| < 1/2. Iterating this argument, one
constructs a sequence of functions v; in L%(M) such that . vj = fin § j+e and
Supg, |v.,- — v_,-+1| < 27/. Thus v; converges in L120C (M), whence in the sense of
distributions, to a limit u, which satisfies Zu = f in M.

The case k > 1 can be reduced to k = 1, by observing that the equation
Lk = f is equivalent to the system of k equations Luy = u;—1,¢ =1,...,k,
where ug = f. O

3. Quasi-harmonic functions and Bergman spaces

We introduce various spaces of functions on M that will play an important role
in what follows and investigate their mutual relations. Here M is as in Section 2.
Recall that .Z is an elliptic operator. Thus, given an open subset 2 of M, a positive
integer k and a constant c, every solution u of the equation

L =c1qg

is smooth in €.

The operator .Z has been defined in the introduction as the unique self-adjoint
extension of minus the Laplace-Beltrami operator acting on C2°(M). We recall that
the domain of . in L2(M) is the space Dom(.%) = {u eL*M): Lue L2(M)},
where Zu is interpreted in the sense of distributions [25]. Henceforth we shall
also denote by .Z the natural extension of the Laplace-Beltrami operator to distri-
butions.

Definition 3.1. Suppose that £ is a positive integer, and that 2 is a bounded open
subset of M. We say that a function v : Q@ — C is k-quasi-harmonic on  if L5y
is constant on €2 (in the sense of distributions, hence in the classical sense, since v
is smooth by elliptic regularity). We shall denote by q,%(Q) the space of k-quasi-
harmonic functions on 2 which belong to L%(2). The subspace of q,f(Q) of all
functions such that .2 *v = 0 in Q will be denoted by h,%(Q) and will be called the
(k' generalised) Bergman space on .

Suppose now that K is a compact subset of M. We say that w : K — C
is k-quasi-harmonic on K if w is the restriction to K of a function in q,f(Q), for
some open set Q2 containing K. We shall denote by q,f(K ) the space of all k-
quasi-harmonic functions on K. The subspace of q,f(K ) of all functions which are
restrictions to K of functions in h,%(Q) will be denoted by h,%(K ) and will be called
the (k' generalised) Bergman space on K .

Finally we shall denote by g, (M) the space of all k-quasi-harmonic functions
on M. Notice that g (M) is a space of functions in C*°(M).
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Clearly h,%(Q) is a subspace of q,?(Q) of codimension one. Indeed, we have
the vector space decomposition

GF () = h2(2) & C (L ¥1g) o

Note that & % 1g isin LZ(M ), for the bottom b of the spectrum of % is assumed
to be positive, whence .Z ~* is bounded on L?>(M).

Observe that both q,%(Q) and h%(Q) are closed subspaces of L?(€2). Indeed, in
view of the decomposition above it suffices to prove that h,%(Q) is closed. Now, if
{v,} is a sequence in hi(Q) that converges to v in L2(2), then .L”kvn tends to .Z*v
in the sense of distributions. Thus .Zv = 0, whence v is in h,%(Q). Clearly q,% ()
is contained in q,?(Q). We shall prove below that if the boundary of €2 is smooth
then q,f (Q) is dense in q,%(Q). To prove this, we need a few preliminary facts.

Definition 3.2. For a positive integer m denote by H"” (M) the Sobolev space of
order m, i.e., the completion of

{ueCoo(M): Viu e L2(M), j=0,1...,m}

with respect to the norm

m 1/2
P2
lull gm = <§ ||VJuH2> )
Jj=0

See [12] and the references therein for more on Sobolev spaces on manifolds.

Given a compact subset K of M, denote by H” (M) g the subspace of H™ (M)
of all functions whose support is contained in K, by K the interior of K, and by
HJ"(K) the closure of C2°(K) in H™(M).

Suppose that u is a function in Dom(.Z k) that vanishes in the complement
of K. Then .Z*u is in L2(M) and vanishes in K¢. By identifying . *u with its
restriction to K, we may interpret .Z Fasa map from Dom(.% k )k into LZ(K). We
shall make this identification in the sequel without further comment. Henceforth, if
E is a measurable subset of M and S is a subspace of L?(E), then we denote by S+
its orthogonal in L*(E).

Lemma 3.3. Let K be a compact subset of M. The following hold:
() H* (M) is contained in Dom(.ZL*);

(ii) the map & k' is a Banach space isomorphism between H 2(M) g and h,%(K )L
(the orthogonal complement of h,%(K ) in L*(K)).
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Proof. First we prove (i). Let TXM be the bundle of covariant tensors of order k
and denote by tr : T¥*2M — T M a trace, i.e. a metric contraction. Then for all
sections T of T*+2 M

(7)), < v/ T (x)], Vx e M,

as can be easily seen by computing the trace in local coordinates given by an or-
thonormal frame and applying Schwarz’s inequality.

Next we observe that the Laplacian . is bounded from the Sobolev space
H2*+2(M) to H*(M). Indeed if u € H*+2(M) then, since the trace commutes
with covariant derivatives,

VI Lu=vViw(Viu) =Vt Vj=0,1,...,2k.
Thus

El

V7], = vl

whence the boundedness of .Z from H*+2(M) to H**(M) follows.
To prove that H k(M) c Dom(Z k) we consider first the case k = 1. If
u € C®(M) N H*(M) then

[l = s, < 5]

The inclusion H2(M) c Dom(.%) follows, since C(M)NH2%(M) is dense in HXM)
and .Z is closed. Finally, since Dom(.Z%) = {u eDom(%): Luc Dom(Zkfl)} ,

the inclusion H* (M) ¢ Dom(.¥ k ) follows by induction on k.

Now we prove (ii). First we show that Lk maps H?*(M)g into h,%(K)J-.
Suppose that u is in H k(M) and v is in h,%(l( ). Denote by v a smooth function
with compact support which is k-harmonic in an open neighbourhood of K and
satisfies V|, = v. Then

/vﬁkudM:/ Eiﬂkud,u:f L*udp =0
K M M

because the support of u is contained in K and .Z k% vanishes in a neighbourhood
of K.

Since the bottom of the L2(M) spectrum of .Z is strictly positive, % ks in-
jective on its domain, hence on H 2k (M), for this is a subspace of Dom(.¥ k) by
(i) above.

Next we prove that . ks onto. Suppose that v is in h%(K )*. Denote by ¥ the
extension of v to a function on M that vanishes off K. Set u := % ~*. Clearly u
belongs to Dom (. k). We shall prove that u is in H 2k(M) g . First we show that the
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support of u is contained in K . For every smooth function ¢ with support contained
in K¢

/(l)udM:/ L5 udu
M M
=/ R .ﬁ/ﬂkud,u=/ L7k 5du =0,
M M

the last equality follows from the fact that . —k ¢ is k-harmonic in a neighbourhood
of K (hence its restriction to K belongs to h,%(K)) and v is in h,%(K)L.

Since .Z* is an elliptic operator of order 2k and both u and . K are functions
in L2(M) with compact support, u is in H?*(M). Thus, zk maps H* (M) onto
h%(K )1 in a one-to-one fashion. Furthermore .& k¥ is a continuous operator from
H*(M)g to h,%(K )L, The closed graph theorem then implies that . ~* is contin-
uous, thereby concluding the proof that .# ¥ is a Banach space isomorphism. [

Theorem 3.4. Let K be a compact subset of M. The following are equivalent:

(i) h2(K)*t = h2(K)*L;
(i) H* M)k = HF(K).

Proof. First we prove that (i) implies (ii). Clearly Hgk (I% ) € H*(M)g, so that it
suffices to prove the inclusion H (Mg C Hozk(I% ), equivalently that CSO(I% ) is
dense in H?*(M)g. By the proof of Lemma 3.3, this is equivalent to the den-
sity of .,"L”k(CCOO(I%)) in h%(K)J- = h,%(l%)l-, i.e., that the orthogonal space to
gk(Cfo(I%)) in hi(I%)J- is the null space.

Suppose that f is a function in h,%([% )* that is orthogonal to . "¢, for every
¢inCX (I% ). Denote by f the extension of f to a function on M which vanishes
in (I% )¢, and consider the distribution & k f Then

(0.2 F)=(2%. ) =0 vgec2K),
Thus, Z* f = 0in K, so that f belongs to h?(K). But this implies that f = 0 for
fisin h2(K)* N hZ(K).

Next we prove that (ii) implies (i). Observe that the obvious inclusion h,%(K ) C
hZ(K) implies the containment h7(K)* C hZ(K)*. Thus, it suffices to show that
the assumption H (Mg = H()Zk(I% ) implies

hi(K)* € hp(K)*.

Suppose that v is in hi(K )©. Write ¥ for the extension of v to M which vanishes in
K¢. By Lemma 3.3 there exists u in H>*(M)g such that ¥ ku = 7. The assumption
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H*(M)x = HOZk (IE' ) implies the existence of a sequence {¢,} of functions in
C?O(I%) that is convergent to u in H?*(M). Then, if for every f in h%([%) we
denote by f its extension to M that vanishes off K,

/nvfd/uc=/ Ffdu=/ Z*u fdu
K M M
= lim | Z*¢, Fdu = lim <¢n,$"f>,
M n—oo

n—oo

which vanishes because the support of ¢, is contained in K and Z* f =0inK.
Therefore v is in h,%(K )L, as required. 0

The above result raises the following question: which compact subsets K of M

satisfy the requirement H k(Mg = HOZk (I% )? In the case where K = Kisa
domain whose boundary is a smooth (n — 1)-dimensional manifold, the spaces
H*(M)g and H02k (1% ) coincide by a well known result of Lions and Magenes
(see [9, Theorem 2, page 259] for a proof in the Euclidean case, to which the result
on M can be reduced by passing to local coordinates via a partition of unity). More
generally, we may use a version of the segment condition for manifolds (see [1,
Theorem 5.29, page 159]). Unfortunately, this is not very useful in the setting of
Riemannian manifolds, for the boundary of geodesic balls may contain even cusps
(think of the elementary example of a cylinder in R?). However, it is a classical
fact that if r < Inj,, then the boundary of B(p, r) is a smooth (n — 1)-dimensional
submanifold of M, a fact that will be used without further comment in the sequel.
Note that for every nonnegative integer k£ and every open ball B, we have the or-
thogonal decompositions

L*(B) = q}(B)* + qi(B) = q(B)*" + 7 (B).

In fact, these decompositions coincide, at least for all B such thatrp < Inj, Y- the
following result shows.

Proposition 3.5. Suppose that B is an open ball in M, that rg < Inj., and that k
is a positive integer. The following hold:

(i) ¢ (B) = ¢ (B);
(i1) q,f(B) is the set of all v in L*>(B) such that there exists a sequence {v,} of global
k-quasi-harmonic functions such that

lim [ |v—v,>du=0.

n—oo B

Proof. To prove (i) we first prove that if v is in q,? (B), then v is smooth on B and
#*v is constant therein, i.e., v is in q,f(B). Indeed, there exists a sequence {v;}
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of functions in C°(M), such that . k v; is constant in a neighborhood of B, that

converges to v in L2(B). Then {,,Z”kvj} converges to Z*vin Z(B) so that L*v
is constant on B in the sense of distributions, and, by elliptic regularity, v is smooth
on B, as required.

Conversely, suppose that v is in L2(B) and that .Z kv = ¢ on B in the sense of
distributions for some constant ¢. Then v is smooth in B by elliptic regularity. De-
note by ¢o a global k-quasi-harmonic function such that .2 kg0 = 1 (such a function
exists by Theorem 2.2 above). Then the function v — ¢ qo is in the Bergman space
h%(B). By Theorem 3.4 (i) and since h%(B) is closed in L?(B), the Bergman space

h%(B) coincides with hi(ﬁ). Hence there exists a sequence {4 ;} of k-harmonic

functions in neighbourhoods of B such that

jlggo ||v —¢q0 — hj||L2(B) =0,
whence {h; + cqo} converges to v in L?(B), i.e., v is in the closure of q,?(?), as
required.

Next we prove (ii). Clearly, if V is a function in L?(B) that may be approxi-
mated in the L2(B)-norm by a sequence of global k-quasi-harmonic functions, then
it belongs to the closure of q,% (B), which, by (i), is q,f(B).

Conversely, suppose that v is in q,%(B). Then, by (i), it may be approximated
in the L2-norm by a sequence {u,} of k-quasi-harmonic functions in q,f (B). Thus,
it suffices to show that each of these functions may, in turn, be approximated in
the L2(B)-norm by global k-quasi-harmonic functions. Set ¢, := .%*u,. Denote
by ¢ a global k-quasi-harmonic function such that & kg =1 on M. The function
un — cq is k- harmonic in a neighbourhood of B. Since B has no holes, there exists
by Lemma 2.1 a global k-harmonic function w, such that

luy —cq —wy| < 27" in B.
The functions v, := w, + cq are the required approximants of v. O

Remark 3.6. We note explicitly that if M is a Cartan-Hadamard manifold, then
4;(B) = 4{ (B)

for every geodesic ball B.

4. Background on Hardy-type spaces

Let M denote a connected n-dimensional Riemannian manifold of infinite volume
with Riemannian measure p. In this section we gather some known facts about
the Hardy space H 1(M), introduced by Carbonaro, Mauceri and Meda [5] in the
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setting of measured metric spaces of infinite volume (see also [6] for the case of
finite volume), and the Hardy-type spaces X k(M), introduced in [16] and studied
in [17].

Definition 4.1. We say that M has C¢ bounded geometry if the injectivity radius is
positive and the following hold:

e if £ = 0, then the Ricci tensor Ric is bounded from below;
e if ¢ is positive, then the covariant derivatives V/ Ric of the Ricci tensor are
uniformly bounded on M for all j in {0, ..., €}.

Standing assumptions 4.2. Hereafter we make the following assumptions on M :

(i) b > 0 (b denotes the bottom of the L2- spectrum of £ );
(i) M has C* bounded geometry for some nonnegative integer {.

Remark 4.3. Set § = lim supr_wo[log pL(B(O, r))]/(Zr), where o is any reference
point of M and B(o, r) denotes the geodesic ball with centre o and radius r. By a
result of Brooks b < B2 [4]. It is well known that for manifolds with properties
(i)-(i1) above there exist positive constants « and C such that

w(B(p,r)) <Cr*e?” V¥re[l,c0) Vpe M. 4.1)
Furthermore [17, Remark 2.3] there exists a positive constant C such that

C'r" < u(B(p,r)) <Cr" Vre(©,1]1 VpeM. 42)

We denote by % the family of all balls on M. For each B in %8 we denote by c¢p and
rp the centre and the radius of B respectively. Furthermore, we denote by ¢ B the
ball with centre cp and radius c rz. For each scale parameter s in R*, we denote
by %, the family of all balls B in Z such thatrg < s.

We recall the definitions of the atomic Hardy space H!(M) and its dual space
BMO(M) given in [5]. We set s := (1/2) Inj(M).

Definition 4.4. An H'-atom a is a function in L?(M) supported in a ball B with
the following properties:

(1) /(ld/j, =0;
B
(i) llall, < w(B)~"2.

Given a positive “scale parameter" s, we say that an H!-atom a is at scale s if it is
supported in a ball b of Z,. An H'-atom is called admissible if it is supported in a
ball B of Ay,.
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Definition 4.5. The Hardy space H' (M) is the space of all functions f in L'(M)
that admit a decomposition of the form

f=> cjaj (4.3)
j=1

where a; are admissible H'-atoms, and Z(J’il |cJ-| < 0o. The norm || f|| 51 of f is
the infimum of Z?il |c j| over all decompositions (4.3) of f.

We denote with Hf}n (M) the vector space of all finite linear combinations of
admissible H!-atoms, endowed with the norm

N N
fll.,1 =inf lcil: f= c;jaj, a;admissible H'-atom, N e N} .
11, {Z j D g aj

j=l Jj=l1

It is known that, under the Standing assumptions 4.2, the H'-norm and the Hﬁln—
norm are equivalent on Hf}n(M ) [15, Section 4].

Remark 4.6. Actually, in the definition of the spaces H (M) and Hﬁln(M), the
choice of scale is irrelevant. Indeed, in [5] it has been shown that in Definition 4.5
one obtains the same spaces, with equivalent norms, if admissible atoms are re-
placed by atoms at any fixed scale s.

Definition 4.7. We define BMO(M) as the space of all locally integrable func-
tions g such that

172

o : 1 Y
I8l gm0 = Bi‘;g()jg(f: —M(B)Bflg cl® du < 00.

The Banach dual of H'(M) is isomorphic to BMO(M)/C [5, Theorem 5.1].

Now we recall the definition of the generalised Hardy spaces X*(M). For
o > 0 denote by %, the operator .% (c.# + %)~ !. It is known that for every
positive integer k the operator % is injective on L' (M) + L?(M) [16, Proposi-
tion 2.4 (ii)].
Definition 4.8. For each positive integer k and for each 0 > 2 — b we denote by

X*(M) the Banach space of all L'(M) functions f such that %(;k fisin H (M),
endowed with the norm )
| £ = 1275 F | g -

Clearly ?/U_k is an isometric isomorphism between X k(M) and H'(M). It is known
[16, Section 3] that the space X*(M) does not depend on o > B% — b, and that
different values of o give rise to equivalent norms on X*(M). For later use, it is
convenient to assume that o > 2, and we shall denote %, simply by %.
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Definition 4.9. For each positive integer k we denote by Y*(M) the Banach dual
of X*(M).

Remark 4.10. Since %% is an isometric isomorphism between X*(M) and
H'(M), the transpose map (% ~*)" is an isometric isomorphism between the dual
of HY (M), i.e., BMO(M)/C, and Y*(M). Hence

127 £l = 1/ lssoye -

Some properties of X k(M) are listed in the introduction (see [16,17]). The space
X*(M) admits an atomic decomposition in terms of “special atoms” [17], which
we now define.

Definition 4.11. Let & be a positive integer and B a ball in M. An X*-atom asso-
ciated to the ball B is a function A in L2(M ), supported in B, such that:

(i) [Ahdu=0  Vheq?(B);
(i) [IAll, < u(B)~'/2

Note that condition (i) implies that f y Adu =0, because 155 is in q,? (B). Given a
positive “scale parameter” s, we say that an X*-atom is at scale s if it is supported
in a ball B of %,. As in the case of H', atoms at scale so will simply be called
admissible X*-atoms.

Observe that X*-atoms satisfy an infinite dimensional cancellation condition.
In [17] we proved the following result.

Theorem 4.12. Suppose that k is a positive integer and that M has C*~2 bounded
geometry (see Definition 4.1). Choose a “scale parameter” s. Then the space
XK(M) is the space of all functions F in H'(M) that admit a decomposition of
the form F = Zj cj Aj, where {c;} is a sequence in ¢! and {A;} is a sequence of
admissible X*-atoms at scale s. Furthermore

| F || xx =< inf Z|Cj|: F=ZCJ- Aj, where A; are Xk_atoms at scale s
j j

Notice that the equivalence of norms above implies that “atomic norms” associated
to different “scale parameters” s and s, are equivalent on X¥(M). As in the defi-
nition of H' (M), a convenient choice of the scale parameter is so := (1/2) Inj(M).
This choice of the scale parameter will simplify most of the arguments below, for
balls of radius at most s¢ have no holes and their boundaries are smooth, whence
the theory developed in Sections 3 and 4 applies. In particular, in view of Proposi-
tion 3.5 the cancellation condition of an X*-atom A associated to a ball B may be
described in one of the following equivalent ways:

(a) /Avduzo Vv € g7 (B);
B
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(b) /Avdu:O Vv € g7 (B);
B

(© /Avdu:O Yv € gr(M).
B

We remark also that X! (M) admits an atomic decomposition in terms of X _atoms
whenever M satisfies mild geometric assumptions, i.e. M has positive injectivity
radius, Ricci curvature bounded from below and spectral gap, whereas if k > 2,
then the atomic decomposition of X* (M) requires at least C? bounded geometry.

Next we introduce a norm on the space of finite linear combinations of admis-
sible X*-atoms.

Definition 4.13. Suppose that k is a positive integer. We denote by X ﬁn(M ) the
vector space of all finite linear combinations of admissible X*-atoms, endowed

with the norm
N N
[Flyg =inf {3 | F =
j=1 j=1

cjAj, Aj admissible X*-atom | .

Remark 4.14. By combining [17, Remark 3.5] with the proof of [17, Lemma 6.1]
one can see that any X*-atom A at scale s > sy can be written as a finite linear
combination A = Zy:(? AjA;j of admissible X*-atoms A;, with ) |A;| < Cs.
Thus, if in the definition of X ’gn(M ) we replace admissible X*-atom by X*-atoms
at any fixed scale s, we obtain the same space with an equivalent norm.

Remark 4.15. Notice that X gn(M ) is contained in %% (Hﬁln(M )). Indeed, for any
admissible X*-atom A, % ~* A is a multiple of an admissible H '-atom by [17, Re-
mark 3.5]. Hence, % ~* A lies in Hf}n(M). It follows that A = %*%/ % A belongs
to Z*(HE,(M)).
Clearly

|l < 1Pl vF extom,

so that there is a natural injection of the completion of X lgn(M ) into XK(M). We
shall show that this map is an isomorphism of Banach spaces.

Lemma 4.16. Suppose that k is a positive integer and that M has C*~2 bounded
geometry. If a is an H'-atom in Dom(.& k ), then & ka is in Xﬁn(M ). Furthermore,
if the support of a is contained in the ball B, then there exists a constant C such
that
| Zalye < C U+ rp)ud)? [ Lhal,.
fin

Proof. See [17, Lemma 6.1], where the statement is proved for the norm in X kv
instead of X gn(M ). It is straightforward to check that the proof of [17, Lemma 6.1]
proves the stronger statement above. O
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In the following lemma and elsewhere we shall identify functions in q,?(B)L
with their extensions to M that vanish outside B.

Lemma 4.17. Suppose that k is a positive integer and that M has C**~2 bounded
geometry. There exists a constant C such that for every ball B and every F in

gt (B)*
[Fll =€ +ra) ()2 |F],).

Proof. The function A := F/(u(B)"/? |F|, ) is an X*- atom with support con-
tained in B. Hence a := ,,iﬂ_kA/m.iﬂ_k |”2 is a H!'-atom with support contained in
B. Note that @ is in Dom(.Z%). By Lemma 4.16

|24l =€+ u®)'? |25l
from which the required estimate follows directly. O

We also need the following result, which provides a “nice” decomposition of
% a for an admissible H'-atom a in terms of admissible X*-atoms.

Lemma 4.18. Suppose that k is a positive integer and that M has C*~2 bounded

geometry. Let a be an admissible H'-atom supported in a ball B(p, R), where p is
in M and R < sq. Then there exist a positive constant C, functions A and A/Jf such

that
d 00
Ua=> A+ 4],
i=0 j=1

where d = [log4(3/R) + 1], the series converges in XK(M) and in L*(M), and

(i) the function Al is supported in B! = B(p, @ + DR), lies in q,f(Bl()L and

|47l = € B4

(ii) the function A’]f is supported in B}’ = B(p, j+1), lies in q,f(B}’)L and

|45, < ce?.

Moreover, A/Jf liesin X ]f‘m (M) and there exist positive constants C and €, such
that

|47

flxe =cCe™. (44)
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Proof. Since the proof is a slight variation of the argument used in the proof of
[17, Lemma 4.2], we explain only the differences between the two arguments. Let

D = &L — b+ k2, where —«2 is a lower bound for the Ricci curvature, and
R =r(D), where r(t) = - with ¢ = 482 + b. Write

02+12

Uka = L*F*a = L* Sa+ L* T,

where . and .7 are the operators defined spectrally as in equation (6.14) of [17],
with r replaced by r*. Then, as in the proof of [17, Lemma 4.2], one sees that

d
I=Y ST,  T=

i=0 j=1

o0
Ti(21),
where the functions §; and 7T; are defined as in equation (6.9), (6.10) and (6.23)

of [17], where again r has been replaced by r*. To conclude the proof it suffices to
define
A =L5S(Da. A= LTI D).

and argue as in the proof of [17, Lemma 4.2]. O

5. The dual of Hardy-type spaces

In this section we prove our main result, which identifies the dual of X k(M) to a
Banach space of functions on M. We need more notation and some preliminary
results. For any open ball B in M, we denote by g : L>(B) — q,f(B)L the or-

thogonal projection onto q,?(B)L. We may extend 7p  to a map 7 g x from LIZOC(M)
to q,f(B)l, by setting

wpk(F) :=7pi(Flg) VF € Ly (M),
where F|p denotes the restriction of F' to B.

Proposition 5.1. Suppose that s > 0, G is in L%OC(M) and g (G) = 0 for every
B in Bs. Then G is a global k-quasi-harmonic function, i.e. it belongs to g, (M).

Proof. Observe that wp x(G) = 7 x(G|p). Hence, G|p is orthogonal to q,f(B)J-,
i.e., it belongs to q,f(B). Thus, #*G is constant on B. Now, if B and B’ are two

balls in A, with nonempty intersection, .Z’ kG is constant both on B and on B’,
whence the constant must be the same for the two balls. Since M is connected by
assumption, .Z kG is constant on M, i.e. it is in qr (M), as required. O

Definition 5.2. Suppose that k is a positive integer and s > 0. Then GBMO’S‘ (M)

is the vector space of all functions G in leo (M) such that

”G”GBMOk = sup u(B)”'/? ||7TBJ<(G)”2 < 0.
s Be %y
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Note that if rg < Inj(M), then by Proposition 3.5 (ii)

1/2
l7s4(G)[, = inf [/ IG—VIZdu] .
Veqr(M) | JB

Loosely speaking, if s < Inj(M), then the space GBMOIS‘ (M) consists of all lo-
cally square-integrable functions G, which are “well approximated” on each ball
B in %, by global k-quasi-harmonic functions. If we interpret constants as 0-
quasi-harmonic functions, we may say that BMO(M) functions are those locally
square-integrable functions, which are “well approximated” on each ball B in %,
by 0-quasi-harmonic functions. Thus, functions in GBMOISc (M) may be consid-
ered as generalisations of functions in BMO(M), a fact which partially justifies the
notation.

Henceforth, we shall consider the spaces GBMOf (M) only for s < Inj(M)
and we shall write GBMOF (M) instead of GBMO”S‘0 (M), where so = lInj(M ). We

shall prove later that if s is less than Inj(M) then the spaces GBMOIS‘(M ) do not
depend on s and that all the norms ||-[|gGgmok> 0 < s < Inj(M), are equivalent (see
Corollary 5.9). )

Obviously, ”'”GBMOf vanishes on g (M) and, by Proposition 5.1, it defines a

norm on the quotient space GBMOIS‘ (M)/qr(M). Note that if k < £ then a function
G in GBMOX (M) is also in GBMOY (M), for

|75.(6), < |7B4(G)], - (5.1)

In particular, any representative of a class in BMO(M)/C, represents also a class in
GBMO (M) /qe(M).

The main result of this section (Theorem 5.8 below) is that the dual Y*(M)
of X¥(M) can be identified with GBMO* (M) /qx (M) via the map ¢ that to each
coset G + qx(M) in GBMOF (M) /qr(M) associates the functional (G + gx(M))
on Xk (M) defined by

UG + qe(M))(F) ;=/ FGdu VFeXk M. (5.2)
M

It is straightforward to check that the integral above does not change if we replace G
by any other representative of the coset G + gx (M). At this point it is by no means
clear that the functional ((G + gr(M)) extends to a continuous linear functional on
XK(M). We shall prove that this is indeed the case and that ¢ extends to a Banach
space isomorphism between GBMO¥ (M)/qx(M) and Y k(M) (see Theorem 5.8).

To prove this result it is useful to introduce another space that will play also a
role in the characterization of the dual of X ﬁn(M ) in the next section.

Definition 5.3. Suppose that k is a positive integer. We define Y¥(M) to be the
space of all families of functions G := {Gp : B € 9} such that
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(i) Gpising}(B)* and mpx(Gp) = G forall B, B’ € #such that B C B';

N 1 172
(ii) [Gllyt = sup (— / |GB|2d,u,> < oo,
sot \u® Iy

It is straightforward to check that if G is in GBMO (M) then the collection G :=
{(m3.4(G) : B € %} isin Y¥(M),and

IGllyx = “G“GBMO]"

Conversely, given G = {Gp : B € %} in Y*(M), it is not clear a priori whether
there exists G in GBMOk(M) such that Gg = mp x(G) for every B in #A. In
Corollary 5.11 we shall prove that this is indeed the case, following a somewhat
long detour. It would be nice to have a more direct proof of this fact.

Definition 5.4. Given a function z : 8 — C and a complex number «, we say that
limp h(B) = « if for every € > 0 there exists a ball B, such that

|h(B) —a| < & VB € #suchthat B, C B.

Fix a reference point o in M, and, for every positive integer m, denote by B,, the
ball with centre o and radius m. It is straightforward to check that if » : & — C
and limpg A(B) = o € C, then lim;, 00 h(By,) = « .

Lemma 5.5. Suppose that k is a positive integer and that M has C**~2* bounded
geometry. The following hold:

(i) for every G in Y*(M) the linear functional g on X’gn(M), defined by
rG(F) = 1i1§n/ FGpdu YF eXk (M), (5.3)
M

is well defined and it is continuous on XEH(M) and ||A(;||(X§ ye < |Gy s

(ii) there exists a positive constant C such that for every B in % and for every G
in YK(M)

1 / ) 172
— [ 1G5 du) =C |G|y (1 +rB);
<M(B) B |61,
(iii) for every admissible H'-atom a and for every G in YX(M), the limit
MZ*a) = lim (%*a,Gp,)
m—0o0

exists and does depend on the reference point o. Furthermore, there exists a
positive constant C such that

M@ o) = C 16l
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(iv) for every G in YX(M) the linear functional Ag on Xﬁn(M ), defined in (i), ex-
tends to a continuous linear functional on X k(M), and there exists a constant
C, independent of G, such that ||AG |l xx)» < C IIGlyk;

(v) for every G in GBMOX (M) the linear functional ((G + qr(M)) on X’gn(M),
defined by

L(G—i—qk(M))(F):/ FGdu VF eXEt (M),
M

extends to a unique continuous linear functional on X*(M), and the map ¢ :
GBMO¥ M)/qr(M) — Y*(M) that associates to the coset G + qr (M) the
extension of L(G + qr(M )) described above is a continuous linear map.

Proof. First we prove (i). Note that the limit
lim/ F Gpdu YF e Xk (M)
B Jm

exists, for the support of F is contained in a ball. Thus, Ag(F) is well defined.
Suppose that A is an X*-atom with support contained in a ball B in ABy,. We have

that
A (A)| = /BAGBdM‘
= llal, Gsl,
<uB)"? |G|,
< Gy -
Therefore, if F = Z;V:l cjAjisin X’gn(M), then

N

6P < |Glye Y lej]-

j=1

We now take the infimum of both sides with respect to all finite representations
of F', and obtain

(Pl < |Gl [l YF e Xy,
as required to conclude the proof of (i).
Next we prove (ii). If 75 < 59, then the required estimate follows directly from
the definition of the space Y*(M).

Suppose that rp > so. Denote by Ag the continuous linear functional on
Xlén (M) associated to G as in (i). Then

[(F, Gp)| = [AG(F)]
< Jacloss 1715t

<C el g A+r) B2 [Fl, YFeqi(B)"
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by Lemma 4.17. By taking the supremum of both sides over all F in q,f(B)L such
that || F||, = 1, we obtain that

[Gsll, =€ [rc]xe ) (0 +rm) (B2,

which, in view of (i), implies the required conclusion.

Now, we prove (iii). Suppose that the atom a is supported in the ball B(p, R)
with R < sg. Observe preliminarily that both %/ kq and G B, (recall that B, de-
notes the ball with centre o and radius m) are in L*>(M), so that the inner product
(4 ka, G B,,) in the statement makes sense. By Lemma 4.18, we may write

d o)
Uka = ZA: —|—Z A.//{,
=0 =1

where the series ) 72| A’} converges in L*(M), A} is supported in B and A/ is
supported in B;'. Therefore

o0
(Al Gg,) +Z(A’Jf, GBm>.

1 j=1

d
(?/ a, G Bm) =

i=
By (i) for every 1 < i < d and for every j > 1 the limits lim,,_.o(A;, Gp,,) and
limm%oo(A/Jf , G B,,) exist and do not depend on the reference point 0. We claim that

m—00

lim (%*a,Gp,) = .d

. / . 1
mh_)mOO (A,-, GB,,,) + Z mh_)moo <AJ-, GB,,,> .
i=1 j=1
To prove this we set ¢, := (A/]f , G B,,) and we show that sup,, |c Jom | is a summable
sequence, whence the result will follow by the Dominated Convergence Theorem.
We denote by § the distance between p and o and consider the three cases

m<8—j—1, §—j—1<m<8+j+1 and m>8+j+1

separately.
In the first case, B}’ N By =@,sothatc;, =0.

In the second case, B;.’ N By, # @, and

ejm| < 4

2HGBmHz

< Ce 2B 172

<Ce P mu(Bn) " IGly:

<Ce 5+ j+1)uBssjr1)"* Gl
< Ce ¥ |Glly,

5.4)



1178 GIANCARLO MAUCERI, STEFANO MEDA AND MARIA VALLARINO

for some positive ¢. Here we have used the estimate of the L?-norm of A/]f and
G p given in Lemma 4.18 (ii) and (ii) above, respectively, and inequality (4.1). The
constant C is independent of j and m, but may depend on the point p.

Finally, in the third case B,, D B}’. Since A’j’ isin qlz(B}’)J- and nB}/,l(G B,) =
GB}/ N

| =A% 741.1(G, )|
<[4l lsj1Gm

_ |l A"
=4

,
(5.5)

G nr
2” Bill,

<Ce P juBH'? Gy
<Ce |Gy

for some positive £. Here we have applied again the estimate of the L?-norms of
A’ "and of G B! given in Lemma 4.18 (ii) and in (ii) above, respectively, and C is a
constant wh1ch is independent of j and m, but may depend on the point p.

This completes the proof that sup,, ]c j,m} is a summable sequence. To con-
clude the proof of point (iii) of the lemma, it remains to prove the estimate in the
statement. Since A} and A’Jf are in q%(Bl.’ ) and qIZ(B;.’)l, respectively, we get

‘k(%ka)’ ‘ lim (4], G,)

)
+ Z] ‘mli—>moo(A/{’ Gay)

Z A%, Gy

+C Gy Ze 27 j w(BY)'?

l’

i 1L o],

d
S|

+ C |Gy

where we have applied Lemma 4.18 and C is independent of a, as required.

To prove (iv) observe that, given G is in Y¥ (M), the linear functional a >
limy;, — oo (% ka, G B,,) extends, by (iii), to a unique linear functional on Hﬁln (M)
that is uniformly bounded on atoms. Thus, it extends to a unique continuous linear
functional, £ say, on H L(M) (see [15, Theorem 4.1]). In particular,

€Nl g1y < C sup {le@)] = a Hl—atom} < C |IGllyx,
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where C is the same as in (iii). Since %~ is an isometry between X k(M) and
H' (M), the linear functional £ o % ¥ is in Y*(M), and

Hﬂo%_k

o = Il = C Gl

Furthermore, if F is in %kaln(M), then F = %* f for some f in Hfln(M), and

Lo VF)= oW\ U"f)
= 0(f)
= lim (%"f.Gg,).

so that £ o ¥ coincides with Ag on %% Hﬁln(M ) and

o w5 = e
< Cllf I G (5.6)
=CIlIFlx IGllye YF € Z*(HL(M)).

Since Xk (M) C %*(H} (M)) (see Remark 4.15), the space %*(HJ (M)) is
dense in X¥(M). Then, by (5.6), L0 U —k extends to a unique bounded functional
AG on X¥(M), defined by (5.3) on X§ (M), such that [|Agll(xky < C |G |lye.
Finally, we prove (v). Pick G in GBMO"(M) and set G := {mpx(G) : B €
AB}. Clearly, l(G + g (M )) agrees on X]gn (M) with the functional Ag, defined in

(5.3). By (iv), Ag extends uniquely to a continuous linear functional on Xk (M)
(for Xﬁn(M ) is norm dense in X¥(M)). The required norm estimate follows then
from (iv). ]

Corollary 5.6. All the spaces GBMO]S‘(M ), 0 < s < Inj(M), coincide and all the
norms ||-||ggmok are equivalent.

Proof. Suppose that 51 < s;. It is obvious from Definition 5.2 that GBMO’S‘2 (M) C
GBMOY, (M) and Gl ayiot < G lamo, -

Assume next that G € GBMOIS‘1 (M) and for every ball B € 9 define Gg =
7.k (G). Let Ag be the linear functional on X/f?m(M ) defined by

AG(F) = lilgn/FGB du.

Now, arguing as in the proof of Lemma 5.5 (i), but using X*-atoms with support
contained in balls of radius less than s; instead of 5o (see Remark 4.14), we obtain
that

6 (F) < ClGllgeyor, I1Fllxt oy VF € XEu(M).
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Hence, arguing as in the proof of part (ii) of Lemma 5.5, we obtain that for all balls
Be%#

A

1GBl2 < Cliaglxk - € (1 +75) u(B)'/2
= C”G”GBMO’S‘I (1+rp) u(B)"/2.
Thus

IGlgemor, = sup w(B)™*1Gpll2 = € (1 +)1Gllgauor: -
BeZ s

7

This shows that GBMOfl (M) < GBMO’;2 (M) and that the two norms are equiva-
lent. O

To prove that the map ¢ : GBMOF M)/qr(M) - Y k(M) is an isomorphism, we
need a regularity result for solutions in leoc(M ) of the equation .Z ku = g with g
in BMO(M).

Proposition 5.7. For every g € BMO(M) and for every positive integer k any
solution Uy 4 of the equation Z*u = g is in GBMOX (M) and
1Uk.g |l gamor < 127 112 lgllsmo-

Proof. Suppose that B is in %y, , and denote by ¢ a smooth function with compact
support that is equal to 1 in a neighbourhood of B. Then the function % K (pg)
satisfies the equation . ky = ¢ gon M. Hence Uy ¢ —.Z -k (¢ g) satisfies the equa-
tion Z*u = (1 —¢) g, so that Uk,g — % (¢ g) is k-harmonic in a neighbourhood
of B. Therefore

7px(Ure —-Z (@) =0,

whence
.U, = i (£ 0)]

=sup[|(F. 2 wo)|: Feaqi®™ IFI=1].

Since . ¥ is self adjoint and .Z ~*F is a multiple of an H'-atom supported in B
(see [17, Remark 3.5]),

(F,.Z"(wg))z(f"F,wg)sz"ngu
B (5.7)
=/B$"F(g—g3)du-

This implies that

(2 wo)| | [ 27F @ =enrau| < |27, 1 = sollzqn
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Thus
—k . 2 pyL _ —k
sp{|(F. 27w )| : F e g®* IFI =1} = .27, s — g5l 28
By combining this inequality with the formulae above, we conclude that

||Uk~g||GBMO" = sup w(B)~'? ||7TB,k(Uk,g)||2
BG%’SO

IA

12 "Il sup w(B)" g — gall2m)
Be,"}sO

=112 12 gl gmo>
as required. O

Theorem 5.8. Suppose that k is a positive integer and that M has C**~2 bounded
geometry. Then the map t (see Lemma 5.5 (v)) is a Banach space isomorphism
between GBMOk(M)/qk(M) and YS(M).

Proof. By Lemma 5.5 (v) the map ¢ is continuous. We shall prove that ¢ is bijective.
The required conclusion will then follow from (a standard consequence of) the Open
Mapping Theorem.

First we show that ¢ is injective. Suppose that G is a function in GBMOX (M)
such that ((G + gx(M)) = 0. In particular,

L<G+qk(M>)<A>=/ AGdu=0
M

for every X*-atom A. This implies that g k(G) = O for every ball B with radius
< so. By Proposition 5.1, G is in gx (M), as required.
Next we prove that ¢ is surjective. Suppose that A is in Y*(M). Since (% ~*)'

is an isomorphism between BMO(M)/C and Y k(M), there exists a unique coset
g + C in BMO(M)/C such that

(%) (g +C) =1
Therefore, for every X*-atom A
AA) = (A (27 g+ O) = (7). g+ C).
by definition of transpose operator. The pairing in the first line is the duality be-

tween XX(M) and Y*(M) and that in the second is the duality between H '(M) and
BMO(M)/C. Since A is in L>(M),

k
U K(A) = Z (lj) ol LTIA.

=0
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Since A is an Xk—'atom, then A is an X/—atom for every j = 0, ..., k. .By [17,
Remark 3.5] .2/ A is a multiple of an H'-atom, so in particular ¥ /A, j =
0,1,...,k,are in Hﬁln(M). Hence

<62/—’<(A),g+<c>:fM (/X;:) (lj) oj,,i”_-iA) gdu.

Now, denote by ¢ a smooth function with compact support which is equal to 1 in
a neighbourhood of the support of A, and let U, ; denote any global solution of

the equation Ly = g. We remark that U, ; € GBMO/ (M) € GBMO*(M) by
Proposition 5.7 and the remark preceeding (5.1). Then

/ LA ng:/ LTIA .,%J'Ug,jdu=/ LA LT (pUy ) du
M M M

:/ AgoUg’jduz/ AUg jdpu.
M M

We have used the fact that the support of .Z ~J A is contained in the support of A
in the second equality, and the self adjointness of . in the third equality. Now,
define U = lezo (];) 0/ Ug, ;. The function U is in GBMOX (M) because U, ; €
GBMO/ (M) < GBMO/‘(M) for all j = 0, ..., k. By combining the formulae
above, we see that

A(A) = /M AU = (U + qe(M))(A).

This completes the proof of the surjectivity of ¢, and of the theorem. O

Remark 5.9. We observe that in the proof of Theorem 5.9 we have actually shown
the commutativity of the following diagram
(7
BMO(M)/C Y& (M)

GBMO* (M) /qi (M)

where _# is the map g + C — ZI;:() (];) o/Uq j + qu(M).

Now we draw a few consequences of Theorem 5.8.
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Corollary 5.10. If g is a function in BMO(M) such that £ g + o0 g = const then g
is constant.

Proof. Let Uy 1 be a global solution of the equation Z’u = g. Then g + o U, 1 €
q1(M). Thus

/ (g+0Ug ) Adu=0
M

for all X!-atoms A. In the proof of Theorem 5.8 we have shown that
t
<A, (02/_1) (g+<C)> = (WIA, g +<C> = / (g+0Ug1) Adu=0.
M

Thus (% ~")!(g + C) = 0 and the conclusion follows, since (%! is an isomor-
phism. O

Corollary 5.11. For every G = {Gp : B € %} in YN(M), there exists G in
GBMOX (M) such that Gg = 75 k(G) for every B in AB. Furthermore, |G|y <

1G llgemor -

Proof. Suppose that G is in Y*(M). By Lemma 5.5 (iv), the linear functional Ag,
defined by

rG(F) = liBm/ F Ggpdu YF e Xk (M),
i

is in the dual Y*(M) of X¥(M). Theorem 5.8 then ensures the existence of a func-
tion G in GBMO (M) such that Ag = (G + qx(M)), and

(G + g (M) (F) =/ FGdu VFeXtm.
M

Therefore, given a ball B, for every ball B’ containing B and for every (possibly
not admissible) X¥-atom A associated to B we have that

/AGBrd,u=/ A G du.
M M

It follows that wp x(Gp') = 7mpx(G). But mp(Gp) = Gp, because G is in
Y*(M), and the required formula follows. The equivalence of the norms of G
and G is an obvious consequence of the definition of the “norms” of Y*(M) and
GBMO* (M). O

6. The dual of X& (M)

A noteworthy consequence of the theory developed in Section 5 is the fact, proved
in the next theorem, that X lgn (M) and X* (M) have isomorphic duals.



1184

GIANCARLO MAUCERI, STEFANO MEDA AND MARIA VALLARINO

Theorem 6.1. Suppose that k is a positive integer and M has C*~2 bounded ge-
ometry. The dual of X gn(M ) is isomorphic to GBMO* (M)/qr(M). The continuous
linear functionals on Xﬁn(M ) are precisely those of the form

/\G(F)=/ FGdu VF eXk (M)
M

for G in GBMOK(M). Furthermore ”A”(X]én)* = |G llgemor -

Proof. By Lemma 5.5 (i) the linear functional Ag is continuous on Xﬁn(M ) and
”)\G”(X/én)* = ”G”GBMOk'

Conversely, given a continuous linear functional A on X ffin(M ), for every B in
A the restriction of A to q,?(B)J- is in (q%(B)J-)*. Indeed,

ACF)] < Il et e I e
12 2L (6.1)
< Clitllge e (L rp) w(B)2|IFlly Y F € gl (B)*,

where we have used Lemma 4.17. By the Riesz Representation Theorem, there
exists G g in q,f(B)J- such that

AMF) = (F,Gp) VF eqfB)",

where (-, -) denotes the inner product in q,f(B)l, i.e., the restriction to q,%(B)l of

the inner product in L?(B). Furthermore HM 2 (B)*
and (6.1), we obtain that

= ||Ggll,. By combining this

1GBlla = C I3l gt )+ (1 +r) u(B)'12,

where C is independent of B. Taking the supremum over all balls B in %y, we
obtain

1 5 1/2
sup | ——< /|GB| du) < C Al gk ye- (6.2)
Be%s, (M(B) B (Xfip)

Suppose that B, B’ are balls such that B C B’ and identify L?(B) with the subspace
of all functions in L?(B’) that vanish on B’ \ B. Then q,%(B)J‘ C q,%(B’)J- and

/FGBd,u:/ FGgdu VF eqg (B
B B’

Hence Gp = mp (G p). As a consequence, G := {Gp : B € %} isin Y¢(M),and
IGllye < C Al xt oo

By Corollary 5.11 there exists G in GBMO* (M) such that Gp = m;, p(G) and
IGllyx = IGllggmor - Therefore A agrees with Ag.

O
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A corollary of the theory we developed is the following.

Corollary 6.2. Ifk is a positive integer and M has C**~? bounded geometry then
the following hold:

(i) the X If?m-norm and the X*-norm are equivalent on X If?m(M ),

(ii) suppose that Z is a Banach space and that Tis a linear operator from X gn(M )
into Z, such that

L:= sup{“ ,7A“Z : A admissible X*- atom} < 00.

Then T extends to a unique bounded linear operator from X*(M) to Z.

Proof. Part (i) follows directly from the fact that X 1{‘\m(M ) and X*(M) have isomor-
phic dual spaces.
To prove (ii) observe that a direct consequence of the assumption is that if

F = Zyzl cj Aj is a function in X lgn(M ), then, by the triangle inequality,

N

|7Fl, =23 leil -

Jj=1
By taking the infimum over all representations of F as a finite linear combination
of X*-atoms, we obtain

| ZF|, <LIFlx <CIFllye VF € Xg,(M).

We have used (i) in the second inequality above. The required conclusion follows
from the density of XX (M) in X*(M). O

Quite often one encounters the following situation. Suppose that 7 is a
bounded linear operator on L*(M). Then is automatically defined on X]ﬁ‘n (M).
Assume that

L :=sup { || ﬂA”L, : A admissible X* — atom} < 00.

By the previous results, the restriction of .7 to X ]ﬁn(M ) has a unique extension to
a bounded linear operator .7 from X k(M) to LY(M). The question is whether the

operators .7 and .7 are consistent, i.e., whether they coincide on the intersection
XK(M) N L?(M) of their domains.

Proposition 6.3. Suppose that k is a positive integer and M has C*~2 bounded
geometry and that Tis bounded on L*(M). The following hold:

() if Lo := sup{”%HLl : a admissible H' — atom} < 00, then the unique

continuous linear extension 7 of the restriction of Jto Hf}n(M ) to an operator
from H'(M) to L'(M) agrees with T on HY (M) N L*(M);
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Gi) if L :=sup {| 74|, : A admissible X* — atom| < oo, then

sup { H 9%ka”Ll : a admissible H! — atom} < 00;

(1) if L := sup { H?AHU : A admissible X*- atom} < 00, then the unique con-

tinuous linear extension .7 of the restriction of Tto X ’f?m(M ) to an operator
Jfrom XK(M) to LY (M) agrees with Ton X*(M) N L*(M).

Proof. The proof of (i) follows the same line of the proof of [20, Proposition 4.2],
and is omitted.

We give the proof of (ii) for k = 1. The proof in the case where k > 2 is
similar and is omitted.

Suppose that the atom a is supported in the ball B(p, R) with R < s9. The
proof hinges on the decomposition

d 00
Ua=) Aj+) Al
i=0 i=1

given in Lemma 4.18. The function 4/ A’ is a multiple of an admissible X I_atom.
Then A
|7 apl, <cL.
Thus,
d .
<CL) 4'<cCL, 63)
L1 i=0

d
> T4
i=0

where C is independent of a.
For every j in N by (4.4) we have

|74 =ceiL.

Ll

Thus,

L1

0
> | 7]
j=1

The inequalities (6.3) and (6.4) imply that

o0
<CL Ze—fJ'SCL. 6.4)
j=1

Hy%a , <CL,

I

as required.
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Finally, we prove (iii). We consider the operator .70 %%, which is bounded on
L*(M) and uniformly bounded on admissible H I_atoms by (ii). By (i) the unique

extension 7o % of the restriction of .Zo %* to Hf}n(M ) to an operator bounded
from H'(M) to L' (M) agrees with o %* on H' (M) N L>(M).

Then the operator (ﬂ oU k) o %% is a bounded operator from X¥(M) to
L' (M) which extends the restriction of .7 to Xgn(M). Then it coincides with the
unique continuous linear extension .7 of the restriction of 7 to X’én(M), ie.,

~

T = (m]‘)o%_k.

Moreover, for every function F in X k(M) N L2(M) we have that ZZ ¥ F is in
H'(M) N L*(M). Then

FF = (To U)o U™ F = (To U)o U™*F = TF.

Hence 7 agrees with Zon X*(M) N L>(M). O
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