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Borromean surgery equivalence of spin 3-manifolds with boundary

EvA CONTRERAS AND KAZUO HABIRO

Abstract. Matveev introduced Borromean surgery on 3-manifolds, and proved
that the equivalence relation on closed, oriented 3-manifolds generated by Bor-
romean surgery is characterized by the first homology group and the torsion link-
ing pairing. Massuyeau generalized this result to closed, spin 3-manifolds, and
the second author to compact, oriented 3-manifolds with boundary.

In this paper we give a partial generalization of these results to compact,
spin 3-manifolds with boundary.

Mathematics Subject Classification (2010): 57N10 (primary); 57R15 (sec-
ondary).

1. Introduction

Matveev [5] introduced an equivalence relation on 3-manifolds generated by Bor-
romean surgery. This surgery transformation removes a genus 3 handlebody from
a 3-manifold and glues it back in a nontrivial, but homologically trivial way. Thus,
Borromean surgeries preserve the homology groups of 3-manifolds, and moreover
the torsion linking pairings. Matveev gave the following characterization of this
equivalence relation.

Theorem 1.1 (Matveev [5]). Two closed, oriented 3-manifolds M and M’ are re-
lated by a sequence of Borromean surgeries if and only if there is an isomorphism
f: Hi(M;Z) — H{(M'; Z) inducing isomorphism on the torsion linking pairings.

Massuyeau [4] showed that Borromean surgery induces a natural correspon-
dence on spin structures, and thus can be regarded as a surgery move on spin 3-
manifolds. He generalized Theorem 1.1 as follows.

Theorem 1.2 (Massuyeau [4]). Two closed spin 3-manifolds M and M’ are re-
lated by a sequence of Borromean surgeries if and only if there is an isomorphism
f: H{(M; Z) - H{(M'; Z) inducing isomorphism on the torsion linking pairings,
and the Rochlin invariants of M and M’ are congruent modulo 8.
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In a paper in preparation [3], the second author generalizes Matveev’s theorem
to compact 3-manifolds with boundary (see Theorem 2.2 below).

In the present paper, we attempt to generalize the above results to compact spin
3-manifolds with boundary.

After defining the necessary ingredients in Sections 2 and 3, our main result is
stated in Theorem 3.6.

ACKNOWLEDGEMENTS. The first author would like to thank Anna Beliakova
for guidance and support, Christian Blanchet, and Gwéna&l Massuyeau for several
helpful discussions.

2. Y-surgeries on 3-manifolds

Unless otherwise specified, we will make the following assumptions in the rest of
the paper. All manifolds are compact and oriented. Moreover, all 3-manifolds are
connected. All homeomorphisms are orientation-preserving. The (co)homology
groups with unspecified coefficient group are assumed to be with coefficients in Z.

2.1. Y-surgeries and Y -equivalence

Borromean surgery is equivalent to Y-surgery used in the theory of finite type 3-
manifold invariants in the sense of Goussarov and the second author [1,2].

A Y-clasper in a 3-manifold M is a connected surface (of genus 0, with 4
boundary components) embedded in M, which is decomposed into one disk, three
bands and three annuli as depicted in Figure 2.1.
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Figure 2.1. A Y-clasper.

We associate to a Y-clasper G in M a 6-component framed link L contained in a
regular neighborhood of G in M as depicted in Figure 2.2. Surgery along the Y-
clasper G is defined to be surgery along the framed link L. The result M, ; from
M of surgery along L is called the result of surgery along the Y -clasper G and is
denoted by Mg.
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Figure 2.2. How to replace a Y-clasper with a 6-component framed lin_k. Here the

framings of the three inner components are zero and the framings of the three outer
components are determined by the annuli in the Y-clasper.
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By Y-surgery we mean surgery along a Y-clasper. Thus, we say that a 3-manifold
M’ is obtained from another 3-manifold M by a Y -surgery if there is a Y -clasper G
in M such that the result of surgery, Mg, is homeomorphic to M’. It is well-known
that this relation is symmetric, i.e., if M’ is obtained from M by a Y-surgery then,
conversely, M can be obtained from M’ by a Y -surgery.

The Y-equivalence is the equivalence relation on 3-manifolds generated by
Y -surgeries.

2.2. X -bordered 3-manifolds

Throughout the paper, we fix a closed surface X, which may have an arbitrary finite
number of components. In this paper, we consider 3-manifolds whose boundaries
are parameterized by X.

A X-bordered 3-manifold is a pair (M, ¢) of a compact, connected 3-manifold

M and a homeomorphism ¢: ¥ = M.
Two X-bordered 3-manifolds (M, ¢) and (M’, ¢') are said to be homeomor-

phic if there is a homeomorphism ®: M = M’ such that (®|yp) 0 ¢ = ¢'.

2.3. Y-equivalence for X-bordered 3-manifolds

The notions of Y-surgery and Y-equivalence extend to X-bordered 3-manifolds in
a natural way.

For a ¥-bordered 3-manifold (M,¢: ¥ — 9dM) and a Y-clasper G in M,

the result of surgery Mg has an obvious boundary parameterization ¢g: ¥ —
d Mg induced by ¢. Thus surgery along a Y-clasper G in a X-bordered 3-manifold
(M, ¢) yields a X-bordered 3-manifold (M, ¢)g := (Mg, ¢g). Two X-bordered
3-manifolds (M, ¢) and (M’, ¢’) are said to be related by a Y -surgery if there isa Y -
clasper G in M such that (M, ¢)¢ is homeomorphic to (M’, ¢’). The Y -equivalence
on X-bordered 3-manifolds is generated by Y -surgeries.

11
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The following well known characterization of the Y-equivalence is useful.

Lemma 2.1. Two X-bordered 3-manifolds (M, ¢) and (M’, ¢') are Y -equivalent if
and only if there are finitely many, mutually disjoint Y -claspers G1, ..., G, (n > 0)
in M such that the result of surgery, (M, $)G,.....G, is homeomorphic to (M', ¢").

.....

2.4. Homology isomorphisms between compact 3-manifolds

Let (M, ¢) and (M’, ¢') be X-bordered 3-manifolds. Set
S:=¢ op oM > M.

A homology isomorphism! from (M, ¢) to (M’, ¢') (or a homology isomorphism
from M to M’ along §) is an isomorphism f = (fi, fi)i=0.1,2,3 of the homology
exact sequences of pairs (M, 9M) and (M', 9M")

o> H;(OM) = Hy(M) — H;(M,0M) — H;_1(OM) — - - -

la* if WL la*

e Hi(OM') = Hy(M') > H;(M',0M’) = H;_1(0M') > - - -

satisfying the following properties:

() folptD = [ptl;
(i) f; and f; are compatible with the intersection forms, i.e., fori =0, 1, 2, 3, the
square commutes:

H, (M) x Ha_y(M,0M) —2 o 7,

\Lfmx?s—i H
H;(M') x Hs_i(M',0M") g

here (, ) » and (, )y denote the intersection forms;
(iii) f; and f1 are compatible with the torsion linking pairings, i.e., the square
commutes:

Tors Hy (M) x Tors H; (M,0M) —~~ Q/Z

\LTors f1xTors ?1 H

Tors Hy (M') x Tors Hy (M',0M') —~ Q /Z;
here Tors denotes torsion part, and t); denotes the torsion linking pairing of M.

1'In [3], this is called “full enhanced homology isomorphism”. In this paper, we call it “homology
isomorphism” for simplicity.
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The classification of compact 3-manifolds up to Y-equivalence is given by the fol-
lowing result.

Theorem 2.2 ([3]). Let X be a closed surface, and let (M, ¢) and (M’, ¢') be two
Y.-bordered 3-manifolds. Then the following conditions are equivalent:

(1) (M, ¢) and (M', ¢') are Y -equivalent;
(2) There is a homology isomorphism from (M, ¢) to (M’, ¢').

For closed 3-manifolds, Theorem 2.2 is equivalent to Matveev’s theorem (Theo-
rem 1.1).

3. Y-surgery on spin 3-manifolds

3.1. Spin structures

For an oriented manifold M with vanishing second Stiefel-Whitney class, let
Spin(M) denote the set of spin structures on M.

It is well known that Spin(M) is affine over H WM Z), ie., acted by
H'(M; Z,) freely and transitively

Spin(M) x H'(M; Z,) — Spin(M), (s, ¢) > s +c.
An embedding f: M’ < M of a manifold M’ into M induces a map
i*: Spin(M) — Spin(M").

If i is an inclusion map, i*(s), for s € Spin(M), is denoted also by s| ;.

3.2. Y-surgery and spin structures

Let G be a Y-clasper in a 3-manifold M. Let N(G) be a regular neighborhood of
G in M. Note that the result of surgery, Mg, can be identified with the manifold

(M \intN(G)) Usn) N(G)g

obtained by gluing M \ int N(G) with N(G)¢g along dN(G).
As is proved by Massuyeau [4], for a spin structure s € Spin(M), there is a
unique spin structure sg on Mg such that
SGlm\int N(G) = SIM\int N(G)-

This gives a bijection

Spin(M) i Spin (MG), S —> SG.

The spin 3-manifold (Mg, s¢) is called the result of surgery on the spin 3-manifold
(M, s) along G.

As in Section 2.1, the Y-equivalence on spin 3-manifolds is the equivalence
relation generated by Y-surgery.
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3.3. Twisting a spin structure along an orientable surface

Let (M, s) be a spin 3-manifold possibly with boundary, and let 7' be an orientable
surface properly embedded in M. Then we can twist the spin structure s along 7.
More precisely, we can define a new spin structure

sxT =s+[T] € Spin(M),

where [T]' € HY(M; Z,) is the Poincaré dual of [T] € Hy(M, dM; Z5). (One can
consider similar operation when 7 is non-orientable, but we do not need it in this
paper.)

Note that twisting along a closed surface preserves the restriction of the spin
structure to the boundary.

Proposition 3.1. If T is a closed, orientable surface in a spin 3-manifold (M, s),
then (M, s x T) is Y-equivalent to (M, s).

Proof. We may assume that T is connected, since the general case follows from
this special case.

Take a bicollar neighborhood T x [—1,2] C M. SetT, = T x {2} C M.
Let ¢ be a simple closed curve in 7 bounding a disk in 7. Let A denote a bicollar
neighborhood of ¢ in T'. Let D and T’ be the two components of T \ int A, where
D is a disk. Set

Vo=Ax[-1,1], Vi=(AUD)x[-1,1], V,=(AUT") x[-1,1],
M;=M\intV;, i=0,1,2.

Note that My, My C Mp. Fori =0,1, 2,sets; = s|y, € Spin(M;).

Let K = (c, +1) denote the framed knot in M whose underlying knot is ¢ and
the framing is +1. Let Mg denote the result of surgery along K, which may be
regarded as the manifold My Uy (Vo) g obtained from My and the result of surgery
(Vo) k by gluing along their boundaries in the natural way. We may regard My, M
and M, as submanifolds of Mg .

Note that V| and (V) g are 3-balls. Hence there is a unique spin structure sx €
Spin(Mg) such that (sg)|a, = s1. We have the spin homeomorphism (M, s) =
(Mg, sk).

We have

S](|M0 :So*D :SO*TZ.
Hence we have
S](|M2 = 52 * Tz.

It suffices to prove that (Mg, sk ) is Y-equivalent to (M, s« T>) = (M, s*T). Since
the framed knot K is null-homologous in V; and +1-framed, (V») g is Y-equivalent
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to V» in a way respecting the boundary [5]. This Y-equivalence extends to Y-
equivalence of Mg and M. This Y-equivalence implies the desired Y-equivalence
of (Mg, sk) and (M, s x T») since we have

SK|M2 =S2*T2= (S*TQ)‘MZ,
and since the maps
Spin (Mk) — Spin (M),  Spin(M) — Spin (M)

induced by inclusions are injective. O

34. (%, sy)-bordered spin 3-manifolds

We fix a spin structure sy, € Spin(X). In the following we consider Y-equivalence
of spin 3-manifolds with boundary parameterized by the spin surface (X, sx).

A (X, sx)-bordered spin 3-manifold is a triple (M, ¢, s) consisting of a X-
bordered 3-manifold (M, ¢) and a spin structure s € Spin(M) such that ¢p*(s) =
Sy.

Clearly, surgery along a Y-clasper in M preserves the spin structure on the
boundary of M. Hence a Y-surgery on a (X, sx)-bordered spin 3-manifold yields
another (X, sy )-bordered spin 3-manifold.

3.5. Gluing of (X, sx)-bordered spin 3-manifolds

Let (M, ¢, s) and (M, ¢', 5") be two (X, sx)-bordered spin 3-manifolds. Let M” =
(—M)Uy ¢ M’ be the closed 3-manifold obtained from — M (the orientation reversal
of M) and M’ by gluing their boundaries along ¢’ o ¢~!.

By a gluing of s and s’, we mean a spin structure s” € Spin(M”) satisfying

" "
N

y =S

If ¥ is empty or connected, then s” is uniquely determined by s and s’. Otherwise,
s” is not unique.
The spin manifold (M”, s”) is called a gluing of (M, ¢, s) and (M', ¢’, s').

Proposition 3.2. All the gluings of two (X, sx)-bordered spin 3-manifolds (M, ¢,s)
and (M', @', s') are mutually Y -equivalent.

Proof. If ¥ has at most one boundary component, then there is nothing to prove
since there is only one gluing of (M, ¢, s) and (M’, ¢', s').

Suppose ¥ has components Xy, ..., X, withn > 2. Fori =2, ..., n,choose
a framed knot K; in M" = (—=M) U, 4 M’ which transversely intersects each of X
and X; by exactly one point and is disjoint from the other components of ¥. There

are 2"~! gluings s/, . € Spin(M") of s and s’ for €3, ..., €, € {0, 1}, where for
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i =2,...,n the framed knot K; is even framed with respect to sé’z e, i€ =0,
and odd framed otherwise. Moreover, we have
1 1
Sez ..... e”:So ..... 0*( U Ei)'
2<i<n, ¢;=1
Hence, by Proposition 3.1, (M", s{) and (M", s)) are Y -equivalent. O

3.6. Rochlin invariant mod 8 of pairs of (X, sx)-bordered spin 3-manifolds

Let (M, ¢, s) and (M', ¢, s") be two (X, sx)-bordered spin 3-manifolds. Set
Re((M. 9,5), (M. ¢/.5")) = (R(M".s") mod8) €Zg,  (3.)

where M" = (—=M)Uy 4 M' as before and s” € Spin(M") is any gluing of s and s’.
Proposition 3.2 and Theorem 1.2 imply that (3.1) is well defined.

Lemma 3.3. The invariant Rs((M, ¢, s), (M, ¢', s')) depends only on the Y -equi-
valence classes of (M, ¢, s) and (M', ¢', s").

Proof. Suppose that (M1, ¢1, s1) is Y-equivalent to (Ma,¢2,s2) and that (M{,¢],s})
is Y-equivalent to (M, ¢,,s}). Consider gluings (M, s') of (M;, ¢;,s;) and
(M, ¢!,s]) fori = 1,2. Then (M{,s]) and (M}, s}) are Y-equivalent. Hence
we have

Rs((M1, 91, 1), (M}, 1. 51)) = (R(M{.s{) mod8)

= (R(M}.s5) mod 8) <(M2 2. 52), (Mg,qsé,sé))_ 0

3.7. Main results

Now we state the main result of the present paper, which gives a characterization of
Y -equivalence of (X, sx)-bordered spin 3-manifolds in terms of homology isomor-
phism and the Rochlin invariant mod 8.

Conjecture 34. Let (M, ¢,s) and (M', ¢', s’) be two (Z, sx)-bordered spin 3-
manifolds. Then the following conditions are equivalent.

(1) (M, ¢,s)and (M, ¢', s") are Y-equivalent.
(2) There is a homology isomorphism from (M, ¢) to (M’, ¢’), and we have

Rg ((M, ¢.5), (M, ¢, s’)) =0 (mod 8).

It follows from Theorem 2.2 that Conjecture 3.4 is equivalent to the following.

Conjecture 3.5. Let (M, ¢, s) and (M', ¢', s’) be two (Z, sx)-bordered spin 3-
manifolds. Then the following conditions are equivalent.
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(1) (M, ¢,s)and (M, ¢', s") are Y-equivalent.
(2) (M, ¢) and (M’, ¢') are Y-equivalent, and we have

Rs((M,9.5), (M, ¢/.5')) =0 (mod ).

The following theorem says that Conjecture 3.5 holds when H(M; Z) has no 2-
torsion. The proof of this result does not use definitions and results given in [3],
which is not available when we are writing the present paper.

Theorem 3.6. In the setting of Conjecture 3.5, (1) implies (2). Moreover, if
H{(M; Z) has no 2-torsion, then

2" (M, ¢) and (M’, ¢') are Y -equivalent

implies (1).

4. Proof of Theorem 3.6

4.1. Proof of (1) = (2)

Suppose that (1) of Theorem 3.5 holds. Then, clearly, (M, ¢) and (M, ¢') are Y-
equivalent. We have to prove R(M”,s"”) =0 (mod 8), where (M”, s”) is a gluing
of (M, ¢,s)and (M, ¢, s').

Since (M, ¢, s) and (M’, ¢’,s’) are Y-equivalent, Lemma 3.3 implies that
(M", s") is Y-equivalent to a gluing (M(, s;) of (M, s) and itself.

Consider the 4-manifold C which is the quotient of the cylinder M x [0, 1] by
the equivalence relation (x, ) ~ (x, t') forx € 9M and ¢, 1" € [0, 1]. Then we may
naturally identify M with dC. The 4-manifold C has a spin structure sc induced
by the spin structure s x sj0,1] € Spin(M x [0, 1]), where so,1] is the unique spin
structure of [0, 1]. We have

R(C,sc) = R(M x [0,1],s x s0,11) =0 (M x [0,1]) =0 (mod 16).

Since both s and sc are gluings of (M, s) and itself, Proposition 3.2 implies that
(M(’)’ ,83) and (C, sc) are Y-equivalent. Hence, by Theorem 1.2, we have

R(M",s") = R(M{.sj) = R(C,sc) =0 (mod 8).

4.2. Proof of (2') = (1) when H;(M; Z) has no 2-torsion

We assume that H; (M ; 7Z) has no 2-torsion.
We divide the proof into three cases:

e M is a Z;-homology handlebody, i.e., M is connected and Hy (M, M ; Z;) =
0;

e M has non-empty boundary;

e M is closed.
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4.2.1. Case where M is a Z-homology handlebody

Since Spin(M) ﬂ Spin(X) and Spin(M’) (Q Spin(X) are injective, Y-equi-
valence of (M, ¢) and (M’, ¢") implies Y -equivalence of (M, ¢, s) and (M’, ¢, s').

4.2.2. Case where d M is non-empty
We will use the following result.

Lemma 4.1. Let M be a 3-manifold with boundary such that Hy(M; Z) has no 2-
torsion. Then M can be obtained from a Z;p-homology handlebody V by attaching
2-handles hy, . .., h, (withn > 0) along simple closed curves cy, ...,c, indV in
such a way that each c; is null-homologous (over Z) in 'V .

Proof. M can be obtained from a solid torus V' of genus g by attaching some 2-
handles along simple closed curves ¢}, ..., ¢, in 3V’. After finitely many handle-
slides, we can assume the following.

e There is a basis x1, ..., xg of Hi(V'; Z) such that we have
g
[ci] =) aijx;
j=1
fori =1, ..., k, where the matrix (a;, ;) is diagonal (but not necessarily square),

in the sense that a; ; = §; ;d;.

Clearly, H,(M; Z) is isomorphic to @Ll Zg; . By the assumption that Hy(M; Z)
has no 2-torsion, each d; is either odd or O.

We may assume that, for some n,wehaved; = --- =d, =0anddy41, ..., dk
are odd. The union V := V'Uh] . U---Uh is a Zp-homology handlebody. Setting
ci =cj, hi =h;fori =1,...,n,we have the result. O

Let M be obtained as above from a Z,-homology handlebody V by attaching
2-handles hy, ..., h, along disjoint simple closed curves cy,...,c, C dV,n =
rank Hy(M; Z) > 0, such that ¢; is null-homologous in M and such that 9 M \ (c¢; U
-+ Ucp) is connected.

The proof is by induction on n. The case n = 0 is proved in Section 4.2.1.
Suppose n > 0.

Let N = h, = D? x [0, 1] C M be one of the 2-handles. Set

A=03D*x[0,1] C dN,
B =D?x{0,1} CdN,
My:=M\N=VUhU---Uh,_1 CM.

Thus, M = My Uy4 N is obtained from a 3-manifold M, by attaching N along an
annulus A C dMj.
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Since (M, ¢) and (M’, ¢') are Y-equivalent, it follows from Lemma 2.1 that
there exists a disjoint family G of Y-claspers in M and a homeomorphism

~

: (Mg, ¢g) > (M', ).

By isotoping G if necessary, we may assume that G is contained in the interior
of M.
Set Xg = (X '\ int(¢~1(B))) U A. Then we have a Xo-bordered 3-manifold

(Mo, ¢o) where ¢ : Zo = 9 Mo is obtained by gluing ¢| s\ inys-1(y) and ida.
Set

MG = w((Mo)g) = M\ (N) € M

We have a Xo-bordered 3-manifold (M, ¢;), where ¢ : Zo = d M) is obtained

by glulng ¢/|E\il’1t(¢7l (B)) and "IllA : A i) \IJ(A) .
We have a homeomorphism of ¥¢-bordered 3-manifolds

Yy = \IJ|MOZ ((Mo)g, (¢0)g) i (M(/)’ ¢(/))

Set s, = (¢0)*(s|m,) € Spin(Xp) and S/ZO = (¢6)*(s’|M6) € Spin(Zp). Note that
S |Z\int(¢*1 (B)) = S/EO | Z\int(¢*' (B))* Hence we have either

5%y = 5%, 4.1)
or
55, =55, +[al' and sy, # s, 4.2)

where a = ¢, = dD?* x {1/2} C A is the core of the annulus A, and [a]' €
H'(Xo; Zy) is the Poincaré dual to [a] € H(Zo; Z2).

Claim 4.2. We may assume (4.1).

Proof. If a is separating in X, then we have (4.1).

Suppose that a is non-separating in Xp, and that we have (4.2). Since a is
null-homologous in 3V C My, it is so also in M(). Therefore, there is a connected,
oriented surface 7 properly embedded in M{ such that 9T = a. Set D' = W (D?* x
{1/2}),and T’ = T;; U D', which is a connected, oriented, closed surface in M".

Sets’ :=s'x T" € Spin(M’) and §/20 = (¢6)*(§’|M6) € Spin(Zp). By Propo-
sition 3.1, it follows that (M’, s") and (M’, §") are Y-equivalent. Thus, we may
replace the spin manifold (M’, s") with (M’, 5"). We have

5’20 = (¢6)*<(s/ * T/)|M()> — (¢(/))*(S/) + [a]! _ S/EO + [a]! = s53,.

Hence, we have only to consider the case where (4.1) holds. O
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We assume (4.1). Set so = s|p, € Spin(Mp) and s, = s/lM(/) € Spin(M).
Then (Mo, ¢o, so) and (Mg, ¢, s,)) are (Xo, sx,)-bordered spin 3-manifolds.

We can use the induction hypothesis to deduce that (Mo, ¢o,s0) and (M), ¢;.s)
are Y-equivalent, and hence so are (M, ¢, s) and (M’, ¢', s7).

4.2.3. Case where M is closed

This case is a special case of Theorem 1.2.
Alternatively, this case easily follows from the previous case by considering
the punctures M \ int B3 and M’ \ int B3.
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