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Borromean surgery equivalence of spin 3-manifolds with boundary

EVA CONTRERAS AND KAZUO HABIRO

Abstract. Matveev introduced Borromean surgery on 3-manifolds, and proved
that the equivalence relation on closed, oriented 3-manifolds generated by Bor-
romean surgery is characterized by the first homology group and the torsion link-
ing pairing. Massuyeau generalized this result to closed, spin 3-manifolds, and
the second author to compact, oriented 3-manifolds with boundary.

In this paper we give a partial generalization of these results to compact,
spin 3-manifolds with boundary.

Mathematics Subject Classification (2010): 57N10 (primary); 57R15 (sec-
ondary).

1. Introduction

Matveev [5] introduced an equivalence relation on 3-manifolds generated by Bor-
romean surgery. This surgery transformation removes a genus 3 handlebody from
a 3-manifold and glues it back in a nontrivial, but homologically trivial way. Thus,
Borromean surgeries preserve the homology groups of 3-manifolds, and moreover
the torsion linking pairings. Matveev gave the following characterization of this
equivalence relation.

Theorem 1.1 (Matveev [5]). Two closed, oriented 3-manifolds M and M 0 are re-
lated by a sequence of Borromean surgeries if and only if there is an isomorphism
f : H1(M; Z) ! H1(M 0

; Z) inducing isomorphism on the torsion linking pairings.

Massuyeau [4] showed that Borromean surgery induces a natural correspon-
dence on spin structures, and thus can be regarded as a surgery move on spin 3-
manifolds. He generalized Theorem 1.1 as follows.

Theorem 1.2 (Massuyeau [4]). Two closed spin 3-manifolds M and M 0 are re-
lated by a sequence of Borromean surgeries if and only if there is an isomorphism
f : H1(M; Z) ! H1(M 0

; Z) inducing isomorphism on the torsion linking pairings,
and the Rochlin invariants of M and M 0 are congruent modulo 8.
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In a paper in preparation [3], the second author generalizes Matveev’s theorem
to compact 3-manifolds with boundary (see Theorem 2.2 below).

In the present paper, we attempt to generalize the above results to compact spin
3-manifolds with boundary.

After defining the necessary ingredients in Sections 2 and 3, our main result is
stated in Theorem 3.6.

ACKNOWLEDGEMENTS. The first author would like to thank Anna Beliakova
for guidance and support, Christian Blanchet, and Gwénaël Massuyeau for several
helpful discussions.

2. Y -surgeries on 3-manifolds

Unless otherwise specified, we will make the following assumptions in the rest of
the paper. All manifolds are compact and oriented. Moreover, all 3-manifolds are
connected. All homeomorphisms are orientation-preserving. The (co)homology
groups with unspecified coefficient group are assumed to be with coefficients in Z.

2.1. Y -surgeries and Y -equivalence

Borromean surgery is equivalent to Y -surgery used in the theory of finite type 3-
manifold invariants in the sense of Goussarov and the second author [1, 2].

A Y -clasper in a 3-manifold M is a connected surface (of genus 0, with 4
boundary components) embedded in M , which is decomposed into one disk, three
bands and three annuli as depicted in Figure 2.1.

Figure 2.1. A Y -clasper.

We associate to a Y -clasper G in M a 6-component framed link LG contained in a
regular neighborhood of G in M as depicted in Figure 2.2. Surgery along the Y -
clasper G is defined to be surgery along the framed link LG . The result MLG from
M of surgery along LG is called the result of surgery along the Y -clasper G and is
denoted by MG .
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Figure 2.2. How to replace a Y -clasper with a 6-component framed link. Here the
framings of the three inner components are zero and the framings of the three outer
components are determined by the annuli in the Y -clasper.

By Y -surgery we mean surgery along a Y -clasper. Thus, we say that a 3-manifold
M 0 is obtained from another 3-manifold M by a Y -surgery if there is a Y -clasper G
in M such that the result of surgery, MG , is homeomorphic to M 0. It is well-known
that this relation is symmetric, i.e., if M 0 is obtained from M by a Y -surgery then,
conversely, M can be obtained from M 0 by a Y -surgery.

The Y -equivalence is the equivalence relation on 3-manifolds generated by
Y -surgeries.

2.2. 6-bordered 3-manifolds

Throughout the paper, we fix a closed surface6, which may have an arbitrary finite
number of components. In this paper, we consider 3-manifolds whose boundaries
are parameterized by 6.

A6-bordered 3-manifold is a pair (M,�) of a compact, connected 3-manifold
M and a homeomorphism � : 6

⇠
=

! @M .
Two 6-bordered 3-manifolds (M,�) and (M 0,�0) are said to be homeomor-

phic if there is a homeomorphism 8 : M
⇠
=

! M 0 such that (8|@M) � � = �0.

2.3. Y -equivalence for 6-bordered 3-manifolds

The notions of Y -surgery and Y -equivalence extend to 6-bordered 3-manifolds in
a natural way.

For a 6-bordered 3-manifold (M,� : 6
⇠
=

! @M) and a Y -clasper G in M ,
the result of surgery MG has an obvious boundary parameterization �G : 6

⇠
=

!

@MG induced by �. Thus surgery along a Y -clasper G in a 6-bordered 3-manifold
(M,�) yields a 6-bordered 3-manifold (M,�)G := (MG,�G). Two 6-bordered
3-manifolds (M,�) and (M 0,�0) are said to be related by a Y -surgery if there is a Y -
clasperG in M such that (M,�)G is homeomorphic to (M 0,�0). The Y -equivalence
on 6-bordered 3-manifolds is generated by Y -surgeries.
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The following well known characterization of the Y -equivalence is useful.

Lemma 2.1. Two6-bordered 3-manifolds (M,�) and (M 0,�0) are Y -equivalent if
and only if there are finitely many, mutually disjoint Y -claspersG1, . . . ,Gn (n � 0)
in M such that the result of surgery, (M,�)G1,...,Gn is homeomorphic to (M 0,�0).

2.4. Homology isomorphisms between compact 3-manifolds

Let (M,�) and (M 0,�0) be 6-bordered 3-manifolds. Set

� := �0

� ��1
: @M

⇠
=

! @M 0.

A homology isomorphism1 from (M,�) to (M 0,�0) (or a homology isomorphism
from M to M 0 along �) is an isomorphism f = ( fi , fi )i=0,1,2,3 of the homology
exact sequences of pairs (M, @M) and (M 0, @M 0)

· · · Hi(∂M)

δ∗

Hi(M)
fi

Hi(M, ∂M)

fi

Hi−1(∂M)

δ∗

· · ·

· · · Hi(∂M ) Hi(M ) Hi(M , ∂M ) Hi−1(∂M ) · · ·

satisfying the following properties:

(i) f0([pt]) = [pt];
(ii) fi and fi are compatible with the intersection forms, i.e., for i = 0, 1, 2, 3, the

square commutes:

Hi(M) × H3−i(M, ∂M)

fi×f3−i

, M Z

Hi(M ) × H3−i(M , ∂M )
, M Z ;

here h, iM and h, iM 0 denote the intersection forms;
(iii) f1 and f1 are compatible with the torsion linking pairings, i.e., the square

commutes:

TorsH1(M) × TorsH1(M, ∂M)
τM

Tors f1×Tors f1

TorsH1(M ) × TorsH1(M , ∂M )
τM ;

here Tors denotes torsion part, and ⌧M denotes the torsion linking pairing of M .

1 In [3], this is called “full enhanced homology isomorphism”. In this paper, we call it “homology
isomorphism” for simplicity.
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The classification of compact 3-manifolds up to Y -equivalence is given by the fol-
lowing result.
Theorem 2.2 ([3]). Let 6 be a closed surface, and let (M,�) and (M 0,�0) be two
6-bordered 3-manifolds. Then the following conditions are equivalent:
(1) (M,�) and (M 0,�0) are Y -equivalent;
(2) There is a homology isomorphism from (M,�) to (M 0,�0).
For closed 3-manifolds, Theorem 2.2 is equivalent to Matveev’s theorem (Theo-
rem 1.1).

3. Y -surgery on spin 3-manifolds

3.1. Spin structures

For an oriented manifold M with vanishing second Stiefel-Whitney class, let
Spin(M) denote the set of spin structures on M .

It is well known that Spin(M) is affine over H1(M; Z2), i.e., acted by
H1(M; Z2) freely and transitively

Spin(M) ⇥ H1
�
M; Z2

�
! Spin(M), (s, c) 7! s + c.

An embedding f : M 0 ,! M of a manifold M 0 into M induces a map

i⇤ : Spin(M) ! Spin(M 0).

If i is an inclusion map, i⇤(s), for s 2 Spin(M), is denoted also by s|M 0 .

3.2. Y -surgery and spin structures

Let G be a Y -clasper in a 3-manifold M . Let N (G) be a regular neighborhood of
G in M . Note that the result of surgery, MG , can be identified with the manifold

(M \ int N (G)) [@N (G) N (G)G

obtained by gluing M \ int N (G) with N (G)G along @N (G).
As is proved by Massuyeau [4], for a spin structure s 2 Spin(M), there is a

unique spin structure sG on MG such that

sG |M\int N (G) = s|M\int N (G).

This gives a bijection

Spin(M)
⇠
=

! Spin
�
MG

�
, s 7�! sG .

The spin 3-manifold (MG, sG) is called the result of surgery on the spin 3-manifold
(M, s) along G.

As in Section 2.1, the Y -equivalence on spin 3-manifolds is the equivalence
relation generated by Y -surgery.
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3.3. Twisting a spin structure along an orientable surface

Let (M, s) be a spin 3-manifold possibly with boundary, and let T be an orientable
surface properly embedded in M . Then we can twist the spin structure s along T .
More precisely, we can define a new spin structure

s ⇤ T = s + [T ]
!

2 Spin(M),

where [T ]
!
2 H1(M; Z2) is the Poincaré dual of [T ] 2 H2(M, @M; Z2). (One can

consider similar operation when T is non-orientable, but we do not need it in this
paper.)

Note that twisting along a closed surface preserves the restriction of the spin
structure to the boundary.

Proposition 3.1. If T is a closed, orientable surface in a spin 3-manifold (M, s),
then (M, s ⇤ T ) is Y -equivalent to (M, s).

Proof. We may assume that T is connected, since the general case follows from
this special case.

Take a bicollar neighborhood T ⇥ [�1, 2] ⇢ M . Set T2 = T ⇥ {2} ⇢ M .
Let c be a simple closed curve in T bounding a disk in T . Let A denote a bicollar
neighborhood of c in T . Let D and T 0 be the two components of T \ int A, where
D is a disk. Set

V0 = A ⇥ [�1, 1], V1 = (A [ D) ⇥ [�1, 1], V2 = (A [ T 0) ⇥ [�1, 1],
Mi = M \ int Vi , i = 0, 1, 2.

Note that M1,M2 ⇢ M0. For i = 0, 1, 2, set si = s|Mi 2 Spin(Mi ).
Let K = (c,+1) denote the framed knot in M whose underlying knot is c and

the framing is +1. Let MK denote the result of surgery along K , which may be
regarded as the manifold M0 [@ (V0)K obtained from M0 and the result of surgery
(V0)K by gluing along their boundaries in the natural way. We may regard M0, M1
and M2 as submanifolds of MK .

Note that V1 and (V1)K are 3-balls. Hence there is a unique spin structure sK 2

Spin(MK ) such that (sK )|M1 = s1. We have the spin homeomorphism (M, s) ⇠
=

(MK , sK ).
We have

sK |M0 = s0 ⇤ D = s0 ⇤ T2.

Hence we have

sK |M2 = s2 ⇤ T2.

It suffices to prove that (MK , sK ) is Y -equivalent to (M, s⇤T2) = (M, s⇤T ). Since
the framed knot K is null-homologous in V2 and+1-framed, (V2)K is Y -equivalent
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to V2 in a way respecting the boundary [5]. This Y -equivalence extends to Y -
equivalence of MK and M . This Y -equivalence implies the desired Y -equivalence
of (MK , sK ) and (M, s ⇤ T2) since we have

sK
��M2 = s2 ⇤ T2 =

�
s ⇤ T2

���
M2

,

and since the maps

Spin
�
MK

�
! Spin

�
M2
�
, Spin(M) ! Spin

�
M2
�

induced by inclusions are injective.

3.4. (6, s6)-bordered spin 3-manifolds

We fix a spin structure s6 2 Spin(6). In the following we consider Y -equivalence
of spin 3-manifolds with boundary parameterized by the spin surface (6, s6).

A (6, s6)-bordered spin 3-manifold is a triple (M,�, s) consisting of a 6-
bordered 3-manifold (M,�) and a spin structure s 2 Spin(M) such that �⇤(s) =

s6 .
Clearly, surgery along a Y -clasper in M preserves the spin structure on the

boundary of M . Hence a Y -surgery on a (6, s6)-bordered spin 3-manifold yields
another (6, s6)-bordered spin 3-manifold.

3.5. Gluing of (6, s6)-bordered spin 3-manifolds

Let (M,�, s) and (M 0,�0, s0) be two (6, s6)-bordered spin 3-manifolds. Let M 00
=

(�M)[�,�0M 0 be the closed 3-manifold obtained from�M (the orientation reversal
of M) and M 0 by gluing their boundaries along �0

� ��1.
By a gluing of s and s0, we mean a spin structure s00 2 Spin(M 00) satisfying

s00
��
�M = s, s00

��
M 0

= s0.

If 6 is empty or connected, then s00 is uniquely determined by s and s0. Otherwise,
s00 is not unique.

The spin manifold (M 00, s00) is called a gluing of (M,�, s) and (M 0,�0, s0).

Proposition 3.2. All the gluings of two (6, s6)-bordered spin 3-manifolds(M,�,s)
and (M 0,�0, s0) are mutually Y -equivalent.

Proof. If 6 has at most one boundary component, then there is nothing to prove
since there is only one gluing of (M,�, s) and (M 0,�0, s0).

Suppose 6 has components 61, . . . ,6n with n � 2. For i = 2, . . . , n, choose
a framed knot Ki in M 00

= (�M)[�,�0 M 0 which transversely intersects each of61
and 6i by exactly one point and is disjoint from the other components of 6. There
are 2n�1 gluings s00✏2,...,✏n 2 Spin(M 00) of s and s0 for ✏2, . . . , ✏n 2 {0, 1}, where for
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i = 2, . . . , n the framed knot Ki is even framed with respect to s00✏2,...,✏n if ✏i = 0,
and odd framed otherwise. Moreover, we have

s00✏2,...,✏n = s000,...,0 ⇤

 [
2in, ✏i=1

6i

!
.

Hence, by Proposition 3.1, (M 00, s001 ) and (M 00, s002 ) are Y -equivalent.

3.6. Rochlin invariant mod 8 of pairs of (6, s6)-bordered spin 3-manifolds

Let (M,�, s) and (M 0,�0, s0) be two (6, s6)-bordered spin 3-manifolds. Set

R8
⇣
(M,�, s),

�
M 0,�0, s0

�⌘
:=

⇣
R
�
M 00, s00

�
mod 8

⌘
2 Z8, (3.1)

where M 00
= (�M)[�,�0 M 0 as before and s00 2 Spin(M 00) is any gluing of s and s0.

Proposition 3.2 and Theorem 1.2 imply that (3.1) is well defined.

Lemma 3.3. The invariant R8((M,�, s), (M 0,�0, s0)) depends only on the Y -equi-
valence classes of (M,�, s) and (M 0,�0, s0).

Proof. Suppose that (M1,�1, s1) is Y -equivalent to (M2,�2,s2) and that (M 0

1,�
0

1,s
0

1)
is Y -equivalent to (M 0

2,�
0

2, s
0

2). Consider gluings (M 00

i , s00i ) of (Mi ,�i , si ) and
(M 0

i ,�
0

i , s
0

i ) for i = 1, 2. Then (M 00

1 , s
00

1 ) and (M 00

2 , s
00

2 ) are Y -equivalent. Hence
we have

R8
⇣�
M1,�1, s1

�
,
�
M 0

1,�
0

1, s
0

1
�⌘

=

⇣
R
�
M 00

1 , s
00

1
�
mod 8

⌘

=

⇣
R
�
M 00

2 , s
00

2
�
mod 8

⌘
= R8

⇣�
M2,�2, s2

�
,
�
M 0

2,�
0

2, s
0

2
�⌘

.

3.7. Main results

Now we state the main result of the present paper, which gives a characterization of
Y -equivalence of (6, s6)-bordered spin 3-manifolds in terms of homology isomor-
phism and the Rochlin invariant mod 8.
Conjecture 3.4. Let (M,�, s) and (M 0,�0, s0) be two (6, s6)-bordered spin 3-
manifolds. Then the following conditions are equivalent.

(1) (M,�, s) and (M 0,�0, s0) are Y -equivalent.
(2) There is a homology isomorphism from (M,�) to (M 0,�0), and we have

R8
⇣
(M,�, s),

�
M 0,�0, s0

�⌘
= 0 (mod 8).

It follows from Theorem 2.2 that Conjecture 3.4 is equivalent to the following.
Conjecture 3.5. Let (M,�, s) and (M 0,�0, s0) be two (6, s6)-bordered spin 3-
manifolds. Then the following conditions are equivalent.
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(1) (M,�, s) and (M 0,�0, s0) are Y -equivalent.
(2) (M,�) and (M 0,�0) are Y -equivalent, and we have

R8
⇣
(M,�, s),

�
M 0,�0, s0

�⌘
= 0 (mod 8).

The following theorem says that Conjecture 3.5 holds when H1(M; Z) has no 2-
torsion. The proof of this result does not use definitions and results given in [3],
which is not available when we are writing the present paper.

Theorem 3.6. In the setting of Conjecture 3.5, (1) implies (2). Moreover, if
H1(M; Z) has no 2-torsion, then

(20) (M,�) and (M 0,�0) are Y -equivalent

implies (1).

4. Proof of Theorem 3.6

4.1. Proof of (1) ) (2)

Suppose that (1) of Theorem 3.5 holds. Then, clearly, (M,�) and (M 0,�0) are Y -
equivalent. We have to prove R(M 00, s00) ⌘ 0 (mod 8), where (M 00, s00) is a gluing
of (M,�, s) and (M 0,�0, s0).

Since (M,�, s) and (M 0,�0, s0) are Y -equivalent, Lemma 3.3 implies that
(M 00, s00) is Y -equivalent to a gluing (M 00

0 , s
00

0 ) of (M, s) and itself.
Consider the 4-manifold C which is the quotient of the cylinder M ⇥ [0, 1] by

the equivalence relation (x, t) ⇠ (x, t 0) for x 2 @M and t, t 0 2 [0, 1]. Then we may
naturally identify M 00

0 with @C . The 4-manifold C has a spin structure sC induced
by the spin structure s ⇥ s[0,1] 2 Spin(M ⇥ [0, 1]), where s[0,1] is the unique spin
structure of [0, 1]. We have

R
�
C, sC

�
⌘ R

�
M ⇥ [0, 1], s ⇥ s[0,1]

�
⌘ � (M ⇥ [0, 1]) = 0 (mod 16).

Since both s000 and sC are gluings of (M, s) and itself, Proposition 3.2 implies that
(M 00

0 , s
00

0 ) and (C, sC) are Y -equivalent. Hence, by Theorem 1.2, we have

R
�
M 00, s00

�
⌘ R

�
M 00

0 , s
00

0
�

⌘ R
�
C, sC

�
⌘ 0 (mod 8).

4.2. Proof of (20) ) (1) when H1(M; Z) has no 2-torsion

We assume that H1(M; Z) has no 2-torsion.
We divide the proof into three cases:

• M is a Z2-homology handlebody, i.e., @M is connected and H1(M, @M; Z2) =

0;
• M has non-empty boundary;
• M is closed.
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4.2.1. Case where M is a Z2-homology handlebody

Since Spin(M)
�⇤

! Spin(6) and Spin(M 0)
(�0)⇤

! Spin(6) are injective, Y -equi-
valence of (M,�) and (M 0,�0) implies Y -equivalence of (M,�, s) and (M 0,�0, s0).

4.2.2. Case where @M is non-empty

We will use the following result.

Lemma 4.1. Let M be a 3-manifold with boundary such that H1(M; Z) has no 2-
torsion. Then M can be obtained from a Z2-homology handlebody V by attaching
2-handles h1, . . . , hn (with n � 0) along simple closed curves c1, . . . , cn in @V in
such a way that each ci is null-homologous (over Z) in V .

Proof. M can be obtained from a solid torus V 0 of genus g by attaching some 2-
handles along simple closed curves c01, . . . , c

0

k in @V 0. After finitely many handle-
slides, we can assume the following.

• There is a basis x1, . . . , xg of H1(V 0
; Z) such that we have

[ci ] =

gX
j=1

ai, j x j

for i = 1, . . . , k, where the matrix (ai, j ) is diagonal (but not necessarily square),
in the sense that ai, j = �i, j di .

Clearly, H1(M; Z) is isomorphic to
Lk

i=1 Zdi . By the assumption that H1(M; Z)
has no 2-torsion, each di is either odd or 0.

Wemay assume that, for some n, we have d1 = · · · = dn = 0 and dn+1, . . . , dk
are odd. The union V := V 0

[h0

n+1[· · ·[h0

k is aZ2-homology handlebody. Setting
ci = c0i , hi = h0

i for i = 1, . . . , n, we have the result.

Let M be obtained as above from a Z2-homology handlebody V by attaching
2-handles h1, . . . , hn along disjoint simple closed curves c1, . . . , cn ⇢ @V , n =

rank H2(M; Z) � 0, such that ci is null-homologous in M and such that @M \ (c1[

· · · [ cn) is connected.
The proof is by induction on n. The case n = 0 is proved in Section 4.2.1.

Suppose n > 0.
Let N = hn = D2 ⇥ [0, 1] ⇢ M be one of the 2-handles. Set

A = @D2 ⇥ [0, 1] ⇢ @N ,

B = D2 ⇥ {0, 1} ⇢ @N ,

M0 := M \ N = V [ h1 [ · · · [ hn�1 ⇢ M.

Thus, M = M0 [A N is obtained from a 3-manifold M0 by attaching N along an
annulus A ⇢ @M0.
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Since (M,�) and (M 0,�0) are Y -equivalent, it follows from Lemma 2.1 that
there exists a disjoint family G of Y -claspers in M and a homeomorphism

9 :

�
MG,�G

� ⇠
=

!

�
M 0,�0

�
.

By isotoping G if necessary, we may assume that G is contained in the interior
of M0.

Set 60 := (6 \ int(��1(B))) [ A. Then we have a 60-bordered 3-manifold
(M0,�0) where �0 : 60

⇠
=

! @M0 is obtained by gluing �|6\int(��1(B)) and idA.
Set

M 0

0 := 9
⇣�
M0
�
G

⌘
= M 0

\ 9(N ) ⇢ M 0.

We have a 60-bordered 3-manifold (M 0

0,�
0

0), where �0

0 : 60
⇠
=

! @M 0

0 is obtained
by gluing �0

|6\int(��1(B)) and 9|A : A
⇠
=

! 9(A).
We have a homeomorphism of 60-bordered 3-manifolds

90 := 9|M0 :
⇣�
M0
�
G,
�
�0
�
G

⌘
⇠
=

!

�
M 0

0,�
0

0
�
.

Set s60 = (�0)⇤(s|M0) 2 Spin(60) and s060 = (�0

0)
⇤(s0|M 0

0
) 2 Spin(60). Note that

s60 |6\int(��1(B)) = s060 |6\int(��1(B)). Hence we have either

s60 = s060 (4.1)

or

s060 = s60 + [a]! and s60 6= s060, (4.2)

where a = cn = @D2 ⇥ {1/2} ⇢ A is the core of the annulus A, and [a]! 2

H1(60; Z2) is the Poincaré dual to [a] 2 H1(60; Z2).
Claim 4.2. We may assume (4.1).

Proof. If a is separating in 60, then we have (4.1).
Suppose that a is non-separating in 60, and that we have (4.2). Since a is

null-homologous in @V ⇢ M0, it is so also in M 0

0. Therefore, there is a connected,
oriented surface T 0

0 properly embedded in M
0

0 such that @T
0

0 = a. Set D0
= 9(D2⇥

{1/2}), and T 0
= T 0

0 [ D0, which is a connected, oriented, closed surface in M 0.
Set ŝ0 := s0 ⇤ T 0

2 Spin(M 0) and ŝ060 = (�0

0)
⇤(ŝ0|M 0

0
) 2 Spin(60). By Propo-

sition 3.1, it follows that (M 0, s0) and (M 0, ŝ0) are Y -equivalent. Thus, we may
replace the spin manifold (M 0, s0) with (M 0, ŝ0). We have

ŝ060 =

�
�0

0
�
⇤

⇣�
s0 ⇤ T 0

�
|M 0

0

⌘
=

�
�0

0
�
⇤
�
s0
�
+ [a]! = s060 + [a]! = s60 .

Hence, we have only to consider the case where (4.1) holds.
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We assume (4.1). Set s0 = s|M0 2 Spin(M0) and s00 = s0|M 0

0
2 Spin(M 0

0).
Then (M0,�0, s0) and (M 0

0,�
0

0, s
0

0) are (60, s60)-bordered spin 3-manifolds.
We can use the induction hypothesis to deduce that (M0,�0,s0) and (M 0

0,�
0

0,s
0

0)
are Y -equivalent, and hence so are (M,�, s) and (M 0,�0, s0).

4.2.3. Case where M is closed

This case is a special case of Theorem 1.2.
Alternatively, this case easily follows from the previous case by considering

the punctures M \ int B3 and M 0
\ int B3.
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