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W21 estimate for singular solutions to the Monge-Ampere equation

CONNOR MOONEY

Abstract. We prove an interior W21 estimate for singular solutions to the
Monge-Ampere equation, and construct an example to show our results are opti-
mal.

Mathematics Subject Classification (2010): 35J96 (primary); 35B65 (sec-
ondary).

1. Introduction
Interior W27 estimates for the Monge-Ampére equation
detD’u=f inQ, ulgg =0

were first obtained by Caffarelli assuming that f has small oscillation depending
on p (see [2]).

In the case that we only have A < f < A, De Philippis, Figalli and Savin
recently obtained interior W !*€ estimates for some € depending only on n, A and
A (see [4,5]). This result is optimal in light of counterexamples due to Wang [8]
obtained by seeking solutions with the homogeneity

1
u(x,y) = Tl (Ax, A1+“y) .

These can be viewed as estimates for strictly convex solutions to the Monge-Ampere
equation. Indeed, at a point x where u is strictly convex we can find a tangent plane
that touches only at x and lift it a little to carve out a set where u has linear boundary
data.

In [7] we show that solutions to A < det D?u < A are strictly convex away
from a singular set of Hausdorff » — 1 dimensional measure zero, and as a conse-
quence we prove W ! regularity for singular solutions. We also construct for any €
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a singular solution to det D?u=1in B; C R* (n > 3) witha singular set of Haus-
dorff dimension at least n — 1 — € which is not in W2 !*€_ However, as € — 0 these
examples become arbitrarily large. In this paper we give a more precise, quantita-
tive version of the work done in [7] and improve the examples. Our main theorem
is:

Theorem 1.1. Assume that
A <detD*u <A inB CR"Y, lullLoos,) < K.

Then for some €(n) and C(n, A, A, K) we have Au € Llog® L and

/ Au (log(1 + Au))€ dx < C.
B2

We also construct an example with a singular set of Hausdorff dimension exactly
n — 1 and second derivatives not in L log” L for M large, showing that the main
theorem is in a sense optimal and that we cannot improve our estimate on the Haus-
dorff dimension to n — 1 —e for any €. Since solutions in two dimensions are strictly
convex, this result is interesting for n > 3.

The paper is organized as follows. In Section 2 we present some preliminaries
on the geometry of sections. In Section 3 we state our key proposition and use
it to prove Theorem 1.1. In Section 4 we prove the key proposition, which is a
quantitative version of work done in [7] obtained by closely examining the geometry
of maximal sections. Finally, in Sections 5 and 6 we construct an example with a
singular set of Hausdorff dimension n — 1 and show that it gives optimality of
Theorem 1.1.

ACKNOWLEDGEMENTS. I would like to thank my thesis advisor Ovidiu Savin for
his patient guidance and encouragement.

2. Preliminaries

Letu : Q@ € R"” — R be a convex function. Then u has an associated Borel
measure Mu, called the Monge-Ampéere measure, defined by

Mu(A) = [Vu(A)|

where |Vu(A)| represents the Lebesgue measure of the image of the subgradients
of u in A (see [6]). We say that u solves det D%y = f in the Alexandrov sense if

Mu = fdx.
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We define a section of u by
Sp(x) ={y € Q:u(y) <ulx)+ Vux)-(y —x) +h}

for some subgradient Vu(x) at x. Finally, we define D, A k to be the collection
of convex functions satisfying

A<detD’u<A inB CR",  ulp~m) <K

in the Alexandrov sense and we say that a constant depending only on n, A, A and
K is a universal constant. In this section we recall some geometric observations
about sections of solutions in D, 3 A k-

Lemma 2.1 (John’s lemma). If S C R" is a bounded convex set with nonempty
interior, and 0 is the center of mass of S, then there exists an ellipsoid E and a
dimensional constant C(n) such that

ECScCE.

We call E the John ellipsoid of S. There is some linear transformation A such that
A(B)) = E, and we say that A normalizes S.

In the following two lemmas we present an important observation on the vol-
ume growth of sections that are not compactly contained and relate the volume of
compactly contained sections to the Monge-Ampere mass of these sections. Short
proofs can be found in [7].

Lemma 2.2. Assume that det D>u > A in Q C R™. Then if Sj,(x) is any section of
u, we have
ISh(0)| < Ch"/?

for some constant C depending only on A and n.
The proof is just a barrier by above in the John ellipsoid for S, (x).

Lemma 2.3. Let v be any convex function on @ C R" with v|yq = 0. Then

n

Mv(Q2) 2] = c(n) Irgnv

The proof is by comparing to the Monge-Ampere mass of the function whose graph
is the cone generated by the minimum point of v and 9€2.

Next, we recall the following geometric observation of Caffarelli for solutions
to the Monge-Ampere equation with bounded right hand side (see [1]). It says that
compactly contained sections S (x) are balanced around x.

Lemma 2.4. Assume that .. < detD*u < A in Q@ C R". Then there exist c,
C(n, A, A) such that for all Sy (x) CC S2, there is an ellipsoid E centered at 0 of
volume h"™'? with

cE C Sp(x)—x CCE.



1286 CONNOR MOONEY

Finally, we give the following engulfing and covering properties of compactly con-
tained sections (see [3] and [5]). In the following « Sy, (x) will denote the « dilation
of S, (x) around x.

Lemma 2.5. Assume that » < det D*u < A in Q. Then there exists § > 0 univer-
sal such that:

(1) If Sp(x) CC Q2 then
1
Ssn(x) C ESh(X)-

(2) Suppose that for some compact D C 2, we can associate to each x € D some
Sn(x) CC 2. Then we can find a finite subcollection {S, ()c,-)}l."i1 such that
Ssn; (x;) are disjoint and

D c UM, S (x)).

3. Statement of key proposition and proof of Theorem 1.1

In this section we state the key proposition and use it to prove our main theorem.
In [7] we show that the Monge-Ampere mass of u + %lxl2 in small balls around
singular points is large compared to the mass of Au. The proposition is a more
precise, quantitative version of this statement for long, thin sections. Let 4(x) > 0
be the largest & such that Sj, (x) CC By. We say that Sj, ) (x) is the maximal section

at x. If i(x) = 0 then x is a singular point.

Proposition 3.1. Ifu € Dy Ak, v =u+ %|x|2, X € Byjpand h > h(x) then
there exist n(n) and c universal such that for some r with

[logr| > clloghll/z,

we have
Muv(B,(x)) > cr"|logr|".

Remark 3.2. Let ¥ denote the singular set of u, where &7 = 0. It follows from
proposition 3.1 and a covering argument that

o0
. -1 . 00 _
;2’5 E r | logr|" : {Br,- (x,-)}l.:1 cover X, r; < 8} =0

i=1

for some small n(n), giving a quantitative version of the main theorem in [7] for
solutions to A < det D?u < A.

We will give a proof of Proposition 3.1 in the next section by closely examining
the geometric properties of maximal sections.
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The idea of the proof of Theorem 1.1 is to apply Proposition 3.1 in the thin
maximal sections, and then apply the W2 !7€ estimate of [5] in the larger sections
to show the following decay of the integral of Au over its level sets:

C
/ Audx < , 3.1)
{Au>t} |10gl‘|E

for some €(n). Assuming this is true, theorem 1.1 follows easily by Fubini:

1+Au 1
AM/ 71_/2dl‘dx
Bi) 1 t(logt)'—<

o0 1
< C+C/ 7./ Audx dt
2 t(logt)l_e/z {Au>t}

o 1
<C+C ———=dt
=C+ /2 t(lOgt)H'e/z
< C(e).

/ Au(log(1 + Au))/*dx < C
By

To prove (3.1), We first recall the following theorem of De Philippis, Figalli and
Savin:

Theorem 3.3. Assume that
A<detD’u <A inSp©0),  ulysyo =0

and By is the John ellipsoid for Sg(0). Then there exist C, € depending only on
A, A and n such that

/ Audx < Ct™°.
SH/Q(O)Q{AM>I}

We will use the rescaled version of this theorem in the larger maximal sections.

Lemma 34. Ifu € D, Ak withx € Byj; and Sp(x) CC By, then for C univer-
sal and €(n, ), A) we have

/ Audx < Ch"?1=€=<,
Sp2()N{Au>t}

Proof. By subtracting a linear function and translating assume that x = 0 and
u|ash(0) =0. Let

u(x) = (det A" (A—‘x)

where A normalizes Sy, (x) and & has height H. Then

Du(x) = C|S,©0)¥" (A“) D% <A—‘x) (A—‘)T .
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Applying the estimate on |S;(0)| from Lemma 2.4 and letting d denote the length
of the smallest axis for the John ellipsoid of Sy (0), it follows that

Au(x) < C (%) Aii (A_lx) .

Using change of variables and Theorem 3.3 we obtain that

h
/ Audx < C(det A) (—2)/ , Auly)dy
S 2 (0)N{Au>t} d Sup(O)N{Al>c 41}
1+e
—€
< C(detA) (E) trc.

Since det A = h"/? up to a universal constants and d > ch since u is locally
Lipschitz, the conclusion follows. O

Let Fy ={x € Bijp: § < h(x) <y}.

Lemma 3.5. Let u € Dy A k. Then there is some C universal and €(n, A, A)

such that
/ Audx < Cy €t~
Fyn{Au>t}

Proof. By Lemma 2.5 we can take a cover of F), by sections {Sﬁ,- )2 (x,-)}l.ﬁiy1 with
x; € F), and §; i (xi)(xi) disjoint for some universal §. Then

/ Audx < CMyy"/z_l_et_é
Fyn{Au>t}

by Lemma 3.4. We need to estimate the number of sections M,, in our Vitali cover
of F,.

Take x € F), and consider Sﬁ(x)(x), which touches d B;. By translation and
subtracting a linear function assume that x = 0 and ”'3552;1<0) ©) = 0. By rotating
and applying Lemma 2.4 assume that Sy2j,(0) contains the line segment from
—ce, to ce, , with ¢ universal.

Let w; be the restriction of u to {x, = ¢} and let
SY = Ss2720)(0) N {xy = 1}

be the slice of SSZﬁ(O) (0) at x,, = ¢. Since |S(32,;(0) (0)| < Cy™? and this section has
length 2¢ in the e, direction, it follows from convexity that

|1 < Cy"2.
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By convexity, u(te,) < —82}_1(0)/2 for —c/2 <t < ¢/2. Applying Lemma 2.3, we
conclude that for ¢t € [—c/2, ¢/2],

Mw,($*") > cy™/?1

Let  be the distance between Sy, (0) and (2852, (0)). Divide 285j ) (0)
into the slices
Sk = 2552,;(0)(0) N{kr < x, < (k+ Dr}

fork = —5-to 5. Letv =u + %lez. Then Vv (S;) contains a ball of radius r/2
around each point in Vo (S§*&+1/2r) (see Figure 3.1), so

MU(Sk) = chv(S“’<k+1/2>r) > Cryn/Q—l.

Summing from k = — 5 to 5 we obtain that
V(283250 @) 2 ey,
Using that 25, 7 (x;) C S 7 (x;) are disjoint and summing over i we obtain that

M},y"/zf1 <C

and the conclusion follows. O

Proof of Theorem 1.1. We first consider the set where 4 (x) < t'% At any point in

this set, by Proposition 3.1, we can find some » > 0 such that | logr| > ¢|log#|!/?
and

Mv(B,(x)) > er"V(log )2,
We conclude that

C
/ Audx < Cr* ! < —2Mv(Br(x)).
B, (x) (log 1)/

Covering {Au > t} N {h(x) < ﬂ%} with these balls and taking a Vitali subcover
{By,; (x;)}, we obtain that

/ Audx £ — SN Mu(B, () < —
udx < ——— v(By (X)) = ———,
{Au>t}ﬂ{ﬁ(x)<L} (logf)”/z i A (logt)"/z

172

giving the desired bound over the “near-singular” points.
We now study the integral of Au over the remaining subset of {Au > t}. Take
ko so that
2k071 5 t1/2 < 2k0.
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S,:M‘k* 12)r VU(Br/z(y )

Sk\‘

ANA

Br/Z(y)

Vv( S:’(k+ l/2)r)

2S 52];(0)

Figure 3.1. Vu(Sk) contains an r/2-neighborhood of the surface Vv (SW&+1/2r), which
projects in the x,, direction to a set of H"~! measure at least cy”/>~1.

Applying Lemma 3.5 we obtain that

ko
/ ) Audx < Z/ Audx
(Au=nn{h> | = JtausnnF,-;

ko

<Cr ey o
i=1

< Cl‘_é/z,

giving the desired bound. ]

4. Quantitative behavior of maximal sections

In this section we closely examine the geometric properties of maximal sections of
solutions in Dy A, k to prove Proposition 3.1.

Let u € Dy Ak and fix x € Bjp. Then for any i > i_z(x), S (x) is not
compactly contained in d By. If i(x) > 0, then by Lemma 2.4, Sj(x)(x) contains an
ellipsoid E centered at x with a long axis of universal length 2c.

If 7(x) = 0 and L is the tangent to u at x then it is a consequence of lemma 2.4
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(see [1]) that {u = L} has no extremal points, and in particular for any &7 > 0 we
know Sy, (x) contains a line segment (independent of /) exiting d By at both ends.

By translating and subtracting a linear function assume that x = 0 and Vu(0) =
0. By rotating assume that S;,(0) contains the line segment from —ce;, to ce, for all
h > h(0). For the rest of the section denote 4 (0) by just .

Let w be the restriction of u to {x, = 0} with sections §;’. Since |S,(0)| <
Ch"/? for all h and S;(0) contains a line segment of universal length in the e,
direction, we have

[Si'©)

1 < Ch"?

for & > h. In the following analysis we need to focus on those sections of w with
the same volume bound. The following property is sufficient:

Property F: We say S;’(y) satisfies property F if
w(y) + Vwy) - (=y) +h = h.
(See Figure 4.1).

(12'0 %

Figure 4.1. S,°(y) satisfies property F' if the tangent plane at y, lifted by £, lies above
h at0.

Lemma 4.1. If S;°(y) satisfies property F then
ISP ()| < ch/2.

Proof. The plane u(y) + Vu(y) - (z — y) + h is greater than h along z = te, for
eitherz > 0 or ¢ < 0. Since u < h on the segment from —ce, to ce,, it follows that
S (y) contains the line segment from O to ce, or —ce,,. Since |Sy(y)| < C h"/? the
conclusion follows. ]

The first key lemma says that w grows logarithmically faster than quadratic in
at least two directions at a level comparable to /. Let

dY(h) = dY(h) = ... = d)_, (h)

denote the axis lengths of the John ellisoid for S;’ ().
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T . . _ 1/2
Lemma 4.2. For any h > h there exist €(n), Co universal, hy < e~ 108"l /

such that ShwO (y) satisfies property F and

and y

&), (ho) < Cohy/*|log ho| ™.

The next lemma says that if w grows logarithmically faster than quadratic in at
least two directions up to height z then the Monge-Ampere mass of u + %|x|2 is
logarithmically larger than the mass of Au in a ball with radius comparable to 1'/2.
Lemma 4.3. Fix € > 0 and assume that for some h > 0, S,"(y) satisfies property
F. Then there exist ny, n2(n, €) and C depending on universal constants and € such
that if

d>_,(h) < h'*|logh|~

172

then for somer < Ch'/“|logh|™™ we have

1
M (u + 5|x|2> (B, (0)) > C~'r" " logr|™.

These lemmas combine to give the key proposition:

Proof of Proposision 3.1. By Lemma 4.2, there is some Sy (y) satisfying property
F with
d>_,(h) < Coh'*|logh|~,

with €(n), Co universal and h < e~ log(8+h (DI for any 4. The conclusion follows
from Lemma 4.3. O

We now turn to the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Assume by way of contradiction that for all 2 < hg and S}’ (y)
satisfying property F* we have

d>_,(h) > Coh'/*|logh|™,
for ho depending on /1 and Cy, € we will choose later. We divide the proof into two

steps.

Step 1: Define the breadth b(h) as the minimum distance between two parallel
tangent hyperplanes to 9S;’(0). We show that for 4| logh| < h < ho we have

1 C;
b(h)2) > (5 + |10gh|) b(h)

for some C; large depending on Co. Let xo be the center of mass of S;’(0) and
rotate so that the John ellipsoid for §;’(0) is A(B1) + xo, where

A =diag (), ... d2_, (h)) .
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Let P;, P, be the tangent hyperplanes to BS;I"/Z(O) a distance b(h/2) apart. Let

x1, x2 be points where Py and P, become tangent to 95;’(0) when we slide them
out. Assume that the distance between O and the plane tangent at x; is larger than
that between 0 and the plane tangent at x;. (See Figure 4.2).

X

5,(0)

X2

Figure 4.2.
Let | be the image of x; under A~! and let
W(x) = (det A)~>"w(Ax).

Observe that w is the restriction of #(x) = (det A) "2y (AX, xp) which solves
A < det D’u < A, so that sections S}’ of w satisfying property F with & replaced
by (det A)~2/"h have volume bounded above by Ch"/?. Furthermore, since the
distance between O and the plane tangent at x; was larger and the images of the
tangent planes under A~! are separated by distance at least 2, we have |%1| > 1.
By convexity we can find y on the line segment connecting O to X such that
- X1 H
V() == —=.
X1l Xl

where H = det A~2/"} is the height of w. Let & be the smallest 7 such that 0 €
S/ (¥). We aim to bound / below, which heuristically rules out cone-like behavior
in the x| direction. Let

h* = h + (det A)~"h.

We have chosen 4* so that S;Zi(y) and S§'(y) = A(S;;‘i(i)) satisfy property F,
where 8 = (det A)?/"h*. (See Figure 4.3). It follows that

ISi(9)] < C(h*)".

We now bound the volume of S ;Ei (¥) by below. Since 0, X are in this section, it has
diameter at least 1. Since w has height H it has interior Lipschitz constant € so

the smallest axis of the John ellipsoid for S ;lzi () has length at least c%. We turn to
the remaining axes.
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N /
AL
/ (det Ay2np O Y

Figure 4.3. Lifting the tangent plane at § by h* = h + det(A)~2/"h we obtain a section
of w satisfying property F'.

I

Let E, be the John ellipsoid for S§’(y). By contradiction hypothesis for any n — 2
dimensional plane P passing through the center of Ey, we can find a n — 3 dimen-
sional plane P’ contained in P such that P’ N E|, is an n — 3 dimensional ellipsoid

with axes div prZ = d}ff3 pr satisfying

d_4 o > Co8'?|log 8| ¢.

n

Take P such that A~!(P) is perpendicular to the segment connecting 0 and X;. By
using the hypothesis and that w is locally Lipschitz we have

d® ,(h)d®_|(h) > cCoh®*|log h|~<.

Since .,
dh)...d°_ (h) <Ch2,

this gives
C 3
dY(hy...d° 5(h) < ch | log h|€.

It follows that A~! changes the n — 3 dimensional volume of P’ N E y by a factor

of at least -
c\n n=3
> cCoh™ 2 |logh| €.
Dy d0_m = o e

Since
det A > ch"/?|log h| =€ ™)<

(by the contradiction hypothesis) and § = (det A)%>/"h* we conclude that
(5172 1og 8]=€)"
n—3 =t 0 0
H di(h)...d,_5(h)
oo 023 n=3 _n3 wn—C(n)e
>Ci(h*) 7 (detA) = h™ 2 (C|logh| + |logh*|)

SEF) N AP
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for some large C; depending on C. We also have
H = h(det A)~>" < |log h|C™¢.
Using that the remaining axes have lengths at least 1 and c% we obtain
[S7.G)| = €107 [og hl~C™<(Clog hl + [1og h*)~C*.
Using that |S;fi ()| < C(h*)"/? we get a lower bound on A*:

h* > Ci|logh|~€ e,
(See Figure 4 .4 for the simple case n = 3.)

SO ~
L0 - M > ch'IH
>1 g

Figure 4.4. For the case n = 3, the above figure implies that IS;EL ()| > ch*/H. This,
combined with the volume estimate |S;fif ()| < C(h*)3/? and the upper bound on H
from the contradiction hypothesis give a lower bound of c|log 4| =€ for h*.

Recalling the definition of 4* and using again the lower bound on det A it follows
that

- h
h +CE|10gh|C(”)E > Cy|logh| ™,

Taking € to be small enough that C (n)e = 1/2 and using that i1|log 2| < h we get
h > Ci|logh|~'/2.
Finally, let (% + y) X1 be the point where w = % It is clear from convexity (see
Figure 4.5) that
2yH > h.
Recalling that H < ¢|log h|€™¢ < ¢|logh|'/?, we obtain
y = Cillogh|™".

Let [1, [> be the distances from O to the translations of P; and P, which are tangent
to 95;’(0) so that b(h) < 1 +[>. The previous analysis implies that P; and P, have

distance at least (% + y) [ and %12 from 0. Since /1 > [, it follows that

1 1 1+
b(h/2) > <§ + V) I+ 512 = (Ty> (h + D).

Since y > “Oc—g‘M, step 1 is finished.
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H/2

2y|z|

Figure 4.5. By convexity 2y is at least 4/ H , giving a quantitative modulus of continuity
for Vw near 0 which we exploit in Step 2 to obtain a contradiction.

Step 2: We iterate Step 1 to prove the lemma. First assume that h > 0 and that
hllogh| =27% and hy = 27%0. Note that d?_, (h) > c(n)b(h) and thatd"_, (ho) >
c27k0 since u is locally Lipschitz. Iterating step 1 for Cy large we obtain

dy_1(27%) = c(1/2+ C1/k)(1/2+ C1/(k — 1)) ... (1/2+ C1/ko)2~*0

showing that
dS_, (kl1oghl) = ch [log | (|log | |1og o[ ™).
Finally, take |log | = | log i|'/2. We conclude using convexity that
d0_, (k) > |logh|™" d (h [logh|) > ck [log k|

Since B B B
d) (h)...d>_, (h) < Ch"?
we thus have ) B B
40, (k) < Ch"* [logh| ™™,

giving the desired contradiction.
In the case that 4 = 0, we may run the above iteration for any # > O starting

. 1/2 . o L.
at height ho = e1102" ”? to obtain the contradiction. O
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Proof of Lemma 4.3. First assume that dly (h) < h'/?|1og h|~* for some ;. Since
|S¥(y)| < Ch"/?, Lemma 2.3 gives

Muw (S;f(y)) > ch'7.
Take C (n) large enough that for r = C (n)h'/?|log h|~*1,
S (v) C Br2(0).

Clearly,
1
M (G + 0 ) (570) = M (57).

Furthermore, V (u + %|x|2> (B»(0)) contains a ball of radius r/2 around every

point in V (u + %|x|2> (S”(y)) (see Figure 4.6). We conclude that

1 2 w
M <u + 5l ) (B-(0)) > crMw (Si ()

n=2
>crh 2
> cr" ! log h| =P

> cr"71|10gr|(”72)“‘.

V(u +1xP/2)(B,,(x))

V(u +1xP72)(SF )

B,(0) r’<h

Figure 4.6. V(u + |x|?/2)(B,(0)) contains an r /2-neighborhood of the surface V(1 +
x| /2)(S} (), which projects in the x, direction to a set of H"~! measure at least

cr"72| logrl(”fz)‘)‘1 .

We proceed inductively. Assume that diy (h) > h'/?| logh|™% fori =1,...,k—1
and that
d} (h) < h'/?|log h|~*
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for some «fp, ..., o to be chosen shortly. We aim to apply Lemma 2.3 to slices
of the section S;’(y) at 0, but we need the height of the plane w(y) + Vw(y) -
(x —y) + h at O to be at least 1. We thus consider Sy, (y) instead. Note that
d? (2h) > h'/%|log h|~% fori < k—1and by convexity d} (2h) < 2h'/?|logh|~*.

Rotate so that the axes align with those for the John elhpsmd of 3, (). Take
the restriction of w to the subspace spanned by ¢, ..., e,—1,and call thls restriction
wy. Let

S =8N N{xi=...=x-1 =0},

the slice of the section S5, (y) in this subspace. Then since
di(2h)...d)_,(2h) < Ch?,
by hypothesis we have
| w

Since S;’(y) contains 0 and S™* is the slice of S5, (y), we know that wy has height
at least h in S**. Using this and Lemma 2.3,

L < CRT log bttt

My (S™%) > ch"™ T | log h| =1+,
Finally, take C (n) large enough that for r = C(n)h'/?| log h|~* we have
S*k Br/z(O).

By strict quadratic growth, V <u + %lxlz) (B;(0)) contains a ball of radius r/2
around every point in V(u + %Ix |2)(S¥r). It follows that

M <u + %|x|2> (B (0)) > cMwy ($%) r*

> ch" T |log h| @tk

ZC’,,n l|10gr|(n k—1)oy— (a1+...+ak_1)'

Choose B; sothat (n —k — 1)Br — (B1 + ...+ Br—1) = 1 and let o; = ¢fB;, with ¢
chosen so that oo = €. If dly (h) < h'/?|1og h|~*1, we are done by the first step,

so assume not. Then apply the inductive step fori = 2, ..., n — 2 to conclude the
proof. O
5. Example

In this section we construct a solution to det D?u = 1 in R? such that ¥ has Haus-
dorff dimension exactly 2. A small modification gives the analagous example in R”
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with a singular set of Hausdorff dimension n — 1. This shows that the estimate on
the Hausdorff dimension of the singular set in [7] cannot be improved ton — 1 — &
for any §.

We proceed in several steps:

(1) The key step is to construct a subsolution w in R> satisfying det D?w > 1
that degenerates along {x; = x» = 0} and grows logarithmically faster than
quadratic in the x; direction, in particular like xfl log x1|*.

(2) Next, we construct S C [—1, 1] of Hausdorff dimension 1 and a convex
function v on [—1, 1] such that v separates from its tangent line faster than
r2|logr|* at each point in S.

(3) Finally, we obtain our example by solving the Dirichlet problem

detD’u=1 inQ={]x'| <1} x(=1,1),  ulo=Cx)+xl
and comparing with w at points in S x {0} x {£1}.

In the following analysis ¢, C will denote small and large constants respectively.

Construction of w. We first seek a function with just faster than quadratic growth
in one direction and sections S, (0) with volume smaller than /43/2. To that end, let

|2
g(x1,x2) = x12|10gx1|°‘ + —
|log x> |#

for some «, B to be chosen shortly. It is tempting to guess w = g(xy, x2)(1 + x32).
However, the dominant terms in the determinant of the Hessian near the x; axis are

| log x1|¢ 1 2
2 —%3)
| log x2|?# \ |log g|
where the first comes from the diagonal entries and the second from the mixed

derivatives. Thus, this function is not convex. This motivates the following modifi-
cation:

’ _ / 1 x32
wx', x3) = gx") +w .

It is straightforward to check that the leading terms in the determinant of the Hessian
(taking x3 small) are

x12| 10gx1|2°‘ [logx|¢

|x2(logx2)P+1logg|  |(logxz) !+ logg|’

since now the mixed derivative terms have the same homogeneity in log(g) as the
diagonal terms. For |x’| small, the first term is large in {|x2| < |x; I°}, and by
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taking o« = 2 4 2 the second term is bounded below by a positive constant in
{|x2] > |x1|3}. Thus, up to rescaling and multiplying by a constant we have

det D*w >1

in 2 = {|x’| < 1} x (-1, 1). For convenience, we take 8 = 1 and a = 4 for the
rest of the example.

Construction of S. Start with the interval [—1/2, 1/2]. For the first step remove
an open interval of length % from the center. At the k' step, remove intervals a

fraction % of the length of the remaining 2¥ intervals from their centers. Denote

. k
the centers of the removed intervals by {x;, k}l.z:1 ,

let

and the intervals by /; ;. Finally,

S=[-1,1] = Uil

Let Iy = |1; k|. It is easy to check

One checks similarly that the length of the remaining intervals after the k" step is
at least

27k,
It follows that
0.¢]
inf{Zril log(r,')|15 {By, (xi)} cover S,r; <8¢ >c .1
i=1
for all § > 0. In particular, the Hausdorff dimension of S is exactly 1.

Construction of v. Let

|x| x| <1

f(x):{2|x|—l x| > 1

We add rescalings of f together to produce the desired function:

) = Y K S (1,;1 (x — x,,k)) .
k:1
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We now check that v satisfies the desired properties:

(1) v is convex, as the sum of convex functions. Furthermore, using that /; <
C27 %k~ we have

oo 2K 00

I =CY Y k<Y k?=cC
k=1 i=1 k

=1

so v is bounded.

(2) Let x € S. We aim to show that v separates from a tangent line more than
r?| log(r)l4 a distance r from x. By subtracting a line assume that v(x) = 0
and that O is a subgradient at x. Assume further that x 4 r < 1/2 and that
lr <r <lIi_1. There are two cases to examine:

Case 1: There is some y € (x +r/2,x +r) N S. Then by the construction of
S it is easy to see that there is some interval I; ; such that /; x C (x, x +r). On
this interval, v grows by

k4l,% > cl,%| log(lk)|4 > cr2| log(r)|4.

Case 2: Otherwise, there is an interval /; ; of length exceeding /2 such that
(x +7r/2,x +r) C I j. Then at the left point of /; ;, the slope of v jumps by
at least k*1;. It follows that at x 4 r, v is at least

crk*l = er?|log(r)|*.
Thus, v has the desired properties.

Construction of 1. We recall the following lemma on the solvability of the Monge-
Ampere equation (see [6]).

Lemma 5.1. If Q is open and convex, | is a finite Borel measure and ¢ is contin-
uous on 3K then there exists a unique convex solution u € C(Q) to the Dirichlet
problem

det D*u = w, ulgg = @.

Let ¢(x1, x2, x3) = C(v(x1) 4 |x2|) for a constant C we will choose shortly, and
obtain u by solving the Dirichlet problem

detD’u=1 inQ={]x|<1}x[-1 11,  ulso=e¢.

Take x € § x {0} x {£1}. By translating and subtracting a linear function assume
that x; = 0 and O is a subgradient for ¢ at x. Taking C large we guarantee that

pCer x2, £1) > C (el logGenl + al) > w2, £1)
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for all x1, x3, and that that ¢ > w on the sides of 2. Thus, # > w in all of 2. Since
u = 0 at both (0, 0, 1) and w(0, 0, x3) = 0 for all |x3| < 1, we have by convexity
that u = 0 along (0, 0, x3).

This shows that for these examples

Y CSx{0}x (=11,

which has Hausdorff dimension exactly 2.

Remark 5.2. To get the analagous example in R", take

u(x, x2,x3) +x3 + ... +x2.

6. Optimality of Theorem 1.1

In [7] we construct for any € solutions to det D?u = 1 in R” that are not in W21+¢,
but as € — 0 these examples blow up. In this section we aim to improve this by
showing that the example in the previous section is not in W2 !*€ for any ¢, and in
fact the second derivatives are not in L log™ L for M large.

Let ¢(x) = (1 + x)(log(1 4+ x))™ for some M large. Then ¢ is convex for
x > 0, so for any nonnegative integrable function f and ball B, we have by Jensen’s

inequality that
/ O f(x)dx = cr'o (/ fx) dx) .
B, B,

Taking f(x) = r~"Au(x) we obtain

M
(1 4+ Au)(log(1 + Au))de >c ([ Au dx) <log (r_"/ Au dx)) .
B, r r

Recall that at points x € S x {0} x (—1, 1)"~2 the subsolutions w touch u by below,
and that w grows like |x2|| log x2|~! at x. It follows that

sup (u —u(x)) > cr| logr|_1
9B, (x)

Applying convexity we conclude that

M
/ (1 + Au) (log(1 + Au)M dx > ¢ < ) (10g (r u‘,))
B (x) 0By (x) 0By (x)

“ogrI™ (1og (e tog 1))

> cer" logr M1
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Cover ¥ N By > with balls of radius less than § and take a Vitali subcover {B;, }lN: 1
We then have

N
/ (1 + Au) (og(1 + Aup™ dx = ¢ " r " logri| M1,
B2 i=1

and for M large the right side goes to oo as § — 0 by equation 5.1.
Thus, the second derivatives of u are not in Llog" L for M large, and in
particular u is not in W2 1+€ for any e.
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