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On the Second Order Derivatives of Convex Functions
on the Heisenberg Group

CRISTIAN E. GUTIÉRREZ – ANNAMARIA MONTANARI

Abstract. In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller
theorem states that convex functions are a.e. twice differentiable. In this paper we
prove that a similar result holds in the Heisenberg group, by showing that every
continuous H–convex function belongs to the class of functions whose second
order horizontal distributional derivatives are Radon measures. Together with a
recent result by Ambrosio and Magnani, this proves the existence a.e. of second
order horizontal derivatives for the class of continuous H–convex functions in the
Heisenberg group.
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1. – Introduction

A classical result of Aleksandrov asserts that convex functions in R
n are

twice differentiable a.e., and a first step to prove it is to show that these
functions have second order distributional derivatives which are measures, see
[4, pp. 239-245].

On the Heisenberg group, and more generally in Carnot groups, several
notions of convexity have been introduced and compared in [3] and [7], and
Ambrosio and Magnani [1, p. 3] ask the natural question if a similar result holds
in this setting. Recently, these authors proved in [1, Theorem 3.9] that BV 2

H

functions on Carnot groups, that is, functions whose second order horizontal dis-
tributional derivatives are measures of H -bounded variation, have second order
horizontal derivatives a.e., see Subsection 2.1 below for precise statements and
definitions. On the other hand and also recently, Lu, Manfredi and Stroffolini
proved that if u is an H-convex function in an open set of the Heisenberg group
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H
1 in the sense of the Definition 2.4 below, then the second order symmetric

derivatives (Xi X j u + X j Xi u)/2, i, j = 1, 2, are Radon measures [7, Theorem
4.2], where X j are the Heisenberg vector fields defined by (2.1). Their proof
is an adaptation of the Euclidean one, it is based on the Riesz representation
theorem, and it can be carried out in the same way for H

n. However, to prove
that H-convex functions u are BV 2

H
, one should show that the non symmetric

derivatives Xi X j u are Radon measures. Since the symmetry of the horizontal
derivatives is essential in the proof of [7, Theorem 4.2], this prevents these au-
thors to answer the question of whether or not the class of H-convex functions
is contained in BV 2

H
.

The purpose in this paper is to establish the existence a.e. of second
order horizontal derivatives for the class of H-convex functions in the sense
of Definition 2.5. We will actually prove the stronger result that every H-
convex function belongs to the class BV 2

H
answering the question posed by

Ambrosio and Magnani in the setting of the Heisenberg group. In order to do
this we use the technique from our work [5] which we shall briefly explain.
Indeed, following an approach recently used by Trudinger and Wang to study
Hessian equations [10], we proved in [5] integral estimates in H

1 in terms of the
following Monge–Ampère type operator: detH(u)+12 (ut )

2, see Definition 2.4.
We first established, by means of integration by parts, a comparison principle
for smooth functions, and then extended this principle to “cones”. Together
with the geometry in H

1, this leads to an Aleksandrov type maximum principle
[5, Theorem 1.3]. Moreover, in [5, Theorem 1.4] we proved the estimate of
the oscillation of H-convex functions. This estimate furnishes L2 estimates of
the Lie bracket [X1, X2]u = −4∂t u of H-convex functions on H

1 and permits
to fill the gap between the results in [7, Theorem 4.2] and [1, Theorem 3.9],
and to prove that

Xi X j u = [Xi , X j ]u

2
+ (Xi X j + X j Xi )u

2
, i, j = 1, 2,

are Radon measures.
Following the route just described in H

1, in this paper we introduce in
H

n the operator σ2(H(u)) + 12nu2
t , where σ2 is the second elementary sym-

metric function of the eigenvalues of the matrix H(u), we define the notion of
σ2(H)-convex function related to this operator, and as a main tool we establish
a comparison principle for σ2(H)-convex functions, see Definition 2.6 and The-
orem 3.1. In this frame, we next establish an oscillation estimate, Proposition
4.3, which yields as a byproduct L2 estimates of ∂t u in H

n for a class of func-
tions bigger than the class of H-convex functions. We apply these estimates
to obtain that the class of H-convex functions is contained in BV 2

H
, and as a

corollary of [1, Theorem 3.9] it follows that H-convex functions have horizontal
second derivatives a.e.

The paper is organized as follows. Section 2 contains preliminaries about
H

n , BVH functions, and the definitions of H-convexity and σ2(H)-convexity.
In Section 3 we prove a comparison principle for C2 functions. Section 4
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contains the oscillation estimate and the construction of the analogue Monge–
Ampère measures for σ2(H)-convex functions. Finally, in Section 5 we prove
Aleksandrov’s type differentiability theorem for H-convex functions in H

n.

Acknowledgements. We are greatly indebted to Bianca Stroffolini for
useful discussions.

We like to thank the referee for reading carefully the manuscript and for
useful suggestions.

2. – Preliminaries, H-convexity and σ2(H)-convexity

Let ξ = (x, y, t), ξ0 = (x0, y0, t0) ∈ R
n × R

n × R, and if x = (x1, . . . , xn),

y = (y1, . . . , yn), then x · y = ∑n
j=1 xj yj . The Lie algebra of H

n is spanned by
the left-invariant vector fields

(2.1) X j = ∂xj + 2yj ∂t , Xn+ j = ∂yj − 2xj ∂t for j = 1, . . . n.

We have [X j , Xn+ j ] = X j Xn+ j − Xn+ j X j = −4∂t for every j = 1, . . . n, and
[X j , Xi ] = X j Xi − Xi X j = 0 for every i �= n + j. If ξ0 = (x0, y0, t0), then the
non–commutative multiplication law in H

n is given by

ξ0 ◦ ξ = (x0 + x, y0 + y, t0 + t + 2(x · y0 − y · x0)),

and we have ξ−1 = −ξ , (ξ0 ◦ ξ)−1 = ξ−1 ◦ ξ−1
0 . In H

n we define the gauge
function

ρ(ξ) =
(
(|x |2 + |y|2)2 + t2

)1/4
,

and the distance

(2.2) d(ξ, ξ0) = ρ(ξ−1
0 ◦ ξ).

The group H
n has a family of dilations that are the group homomorphisms,

given by
δλ(ξ) = (λx, λy, λ2t)

for λ > 0. Then
d(δλξ, δλξ0) = λ d(ξ, ξ0).

For more details about H
n see [9, Chapters XII and XIII].
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2.1. – BVH functions

For convenience of the reader, we collect here some definitions and a result
from Ambrosio and Magnani [1] particularized to the Heisenberg group that will
be used in the proof of Theorem 5.1.

We identify the vector field X j with the vector (ej ,
−→
0 , 2yj ) in R

2n+1 for

j = 1, · · · , n, and with the vector (
−→
0 , ej−n, −2xj−n) for j = n + 1, · · · , 2n.

Here ej is the j th-coordinate vector in R
n and

−→
0 is the zero vector in R

n .
Given ξ = (x, y, t) ∈ R

2n+1, with this identification we let {X j (ξ)}2n
j=1 be the

vectors with origin at ξ and set Hξ = span{X j (ξ)}. The set Hξ is a hyperplane
in R

2n+1. Given � ⊂ R
2n+1 we set H� = ∪ξ∈� Hξ . Consider Tc,1(H�) the

class functions φ : � → R
2n+1, φ = ∑2n

j=1 φj X j that are smooth and with

compact support contained in � and denote by ‖φ‖ = supξ∈�

∑2n
j=1 |φj (ξ)|.

Definition 2.1. We say that the function u ∈ L1(�) is of H -bounded
variation if

sup
{∫

�

u divXφ dx : φ ∈ Tc,1(H�), ‖φ‖ ≤ 1
}

< ∞,

where divXφ = ∑2n
i=1 Xiφi . The class of these functions is denoted by BVH(�).

Definition 2.2. Let k ≥ 2. The function u : � → R has H -bounded k
variation if the distributional derivatives X j u, j = 1, · · · , 2n are representable
by functions of H -bounded k − 1 variation. If k = 1, then u has H -bounded 1
variation if u is of H -bounded variation. The class of functions with H -bounded
k variation is denoted by BV k

H
(�).

Theorem 2.3 (Ambrosio and Magnani [1], Theorem 3.9). If u ∈ BV 2
H
(�),

then for a.e. ξ0 in � there exists a polynomial P[ξ0](ξ) with homogeneous degree
≤ 2 such that

lim
r→0+

1

r2

∫
Uξ0,r

|u(ξ) − P[ξ0](ξ)| dξ = 0,

where Uξ0,r is the ball centered at ξ0 with radius r in the metric generated by the
vector fields X j , and

P[ξ0](ξ) = P[ξ0]

exp

 2n∑
j=1

ηj X j + η2n+1[X1, X2]

 (ξ0)

 =
∑
|α|≤2

cαηα,

with α = (α1, . . . , α2n+1), cα ∈ R, ηα = η
α1
1 · · · ηα2n+1

2n+1 and |α| = ∑2n
j=1 αj +

2α2n+1.
(1)

(1)We can explicitly compute η = (x − x0, y − y0, (t0 − t + 2(x · y0 − y · x0))/4) by solving the

ODE ξ = exp
(∑2n

j=1 ηj X j + η2n+1[X1, X2]
)

(ξ0).
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2.2. – H-convexity and σ2(H)-convexity

For a C2 function u, let X2u denote the non symmetric matrix [Xi X j u].
Given c ∈ C and u ∈ C2(�), let

Hc(u) = X2u + cut

[ 0n In

−In On

]
.

Definition 2.4. The function u ∈ C2(�) is H-convex in � if the 2n × 2n
symmetric matrix

H(u) = H2(u) =
[

Xi X j u + X j Xi u

2

]
is positive semidefinite in �.

Notice that the matrix Hc(u) is symmetric if and only if c = 2. Also, if
〈Hc(u)ξ, ξ〉 ≥ 0 for all ξ ∈ R

2n and for some c, then this quadratic form is
nonnegative for all values of c ∈ R.

We extend the Definition 2.4 to continuous functions.

Definition 2.5. The function u is convex in � if there exists a sequence
uk ∈ C2(�) of convex functions in � in the sense of Definition 2.4 such that
uk → u uniformly on compact subsets of �.

On the Heisenberg group, and more generally in Carnot groups, several
notions of convexity have been introduced and compared in [3] (horizontal
convexity), and [7] (viscosity convexity). All these definitions are now known
to be equivalent to Definition 2.5 even in the general case of Carnot groups,
see [2], [6], [8], and [11].

Definition 2.6. The function u ∈ C2(�) is σ2(H)-convex in � if

(1) the trace of the symmetric matrix H(u) is non negative,
(2) the second elementary symmetric function in the eigenvalues of H(u)

σ2(H(u)) =
∑
i< j

{
X2

i u X2
j u −

(
Xi X j u + X j Xi u

2

)2
}

is non negative.

We extend the definition of σ2(H)-convexity to continuous functions.

Definition 2.7. The function u ∈ C(�) is σ2(H)-convex in � if there
exists a sequence uk ∈ C2(�) of σ2(H)-convex functions in � such that uk → u
uniformly on compact subsets of �.

Remark 2.8. Every H-convex function is σ2(H)-convex. The two defini-
tions are equivalent in H

1. Moreover, from [3, Theorem 5.11] we have that if
u is convex in the standard sense, then u is H-convex. However, the gauge
function ρ(x, y, t) = (

(|x |2 + |y|2)2 + t2
)1/4

is H-convex but is not convex in
the standard sense.
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3. – Comparison principle

A crucial step in the proof of Aleksandrov’s type theorem, Theorem 5.1,
is the following comparison principle for C2 and σ2(H)-convex functions.

Theorem 3.1. Let u, v ∈ C2(�̄) such that u+v is σ2(H)-convex in � satisfying
v = u on ∂� and v < u in �. Then∫

�

{
σ2(H(u)) + 12 n (∂t u)2

}
dξ ≤

∫
�

{
σ2(H(v)) + 12 n (∂tv)2

}
dξ,

and ∫
�

traceH(u) dξ ≤
∫

�

traceH(v) dξ.

Proof. We can assume u, v ∈ C∞(�). By arguing as in [5], set

S(u) = σ2(H(u)) =
∑
i< j

{
X2

i u X2
j u −

(
Xi X j u + X j Xi u

2

)2
}

.

We have, by putting ri j = Xi X j u + X j Xi u

2
,

(3.3)
∂S(u)

∂rii
=
∑
j �=i

X2
j u; ∂S(u)

∂ri j
= −

(
Xi X j + X j Xi

2

)
u,

and it is a standard fact that if u is σ2(H)-convex, then the matrix
∂S(u)

∂ri j
is

non negative definite, see Section 6 for a proof.
Let 0 ≤ s ≤ 1 and ϕ(s) = S(v + sw), w = u − v. Then

∫
�

{S(u) − S(v)} dξ

=
∫ 1

0

∫
�

ϕ′(s) dξds

=
∫ 1

0

∫
�


2n∑

i, j=1

∂S

∂ri j
(v + sw) (Xi X j )w

 dξds

=
∫ 1

0

∫
�


2n∑

i, j=1

Xi

(
∂S

∂ri j
(v + sw) X jw

)
− Xi

(
∂S

∂ri j
(v + sw)

)
X jw

 dξds

= A − B.
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Since w = 0 on ∂�, w > 0 in �, then the horizontal normal to ∂� is

νX = − Xw

|Dw| . Integrating by parts A we have

A =
∫ 1

0

∫
�

2n∑
i, j=1

Xi

(
∂S

∂ri j
(v + sw)

)
X jw dξds

=
∫ 1

0

∫
∂�

2n∑
i, j=1

(
∂S

∂ri j
(v + sw)

)
X jw νXi dσ(ξ)ds

= −
∫ 1

0

∫
∂�

2n∑
i, j=1

(
∂S

∂ri j
(v + sw) X jw

)
Xiw

|Dw|dσ(ξ)ds

= −1

2

∫
∂�

2n∑
i, j=1

(
∂S

∂ri j
(u + v) X jw

)
Xiw

|Dw|dσ(ξ) ≤ 0,

because u + v is σ2(H)-convex.
We now calculate B. Let us remark that for any fixed j = 1, . . . , 2n by

(3.3) we have

2n∑
i=1

Xi

(
∂S

∂ri j
ω

)
= X j

(
∂S

∂rj j
ω

)
+
∑
i �= j

Xi

(
∂S

∂ri j
ω

)

= X j

∑
k �= j

X2
kω

−
∑
i �= j

Xi

(
Xi X jω + X j Xiω

2

)

=
∑
i �= j

(
X j X2

i ω − Xi

(
Xi X jω + X j Xiω

2

))

=
∑
i �= j

(
[X j , Xi ]Xiω

2
+ [X j , Xi ]Xiω

2
+ Xi [X j , Xi ]ω

2

)

= 3
∑
i �= j

(
Xi [X j , Xi ]ω

2

)

= 3

2

{
X j+n[X j , X j+n]ω, if j ≤ n

X j−n[X j , X j−n]ω, if j > n,

where, in the last two equalities, we have used the remarkable fact that
[Xi , [X j , Xk]] = 0 for every i, j, k = 1, . . . , 2n, and [X j , Xi ] �= 0 iff i = j ± n.
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Hence,

B =
∫ 1

0

∫
�

2n∑
i, j=1

Xi

(
∂S

∂ri j
(v + sw)

)
X jw dξds

= 3

2

∫ 1

0

∫
�

n∑
j=1

X j+n[X j , X j+n](v + sw)X jw dξds

+ 3

2

∫ 1

0

∫
�

2n∑
j=n+1

X j−n[X j , X j−n](v + sw)X jw dξds

= 3

2

∫ 1

0

∫
�

n∑
j=1

X j+n
{

[X j , X j+n](v + sw)X jw
}

dξds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)X j+n X jw dξds

+ 3

2

∫ 1

0

∫
�

2n∑
j=n+1

X j−n
{

[X j , X j−n](v + sw)X jw
}

dξds

− 3

2

∫ 1

0

∫
�

2n∑
j=n+1

[X j , X j−n](v + sw)X j−n X jw dξds

= 3

2

∫ 1

0

∫
�

n∑
j=1

X j+n
{−4∂t (v + sw)X jw

}
dξds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)X j+n X jw dξds

+ 3

2

∫ 1

0

∫
�

2n∑
j=n+1

X j−n
{

4∂t (v + sw)X jw
}

dξds

− 3

2

∫ 1

0

∫
�

2n∑
j=n+1

[X j , X j−n](v + sw)X j−n X jw dξds

= 3

2

∫ 1

0

∫
�

n∑
j=1

X j+n
{−4∂t (v + sw)X jw

}
dξds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)X j+n X jw dξds

+ 3

2

∫ 1

0

∫
�

n∑
j=1

X j
{

4∂t (v + sw)Xn+ jw
}

dξds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j+n, X j ](v + sw)X j X j+nw dξds
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= 3

2

∫ 1

0

∫
∂�

n∑
j=1

−4∂t (v + sw)X jw νX j+n dσ(ξ)ds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)X j+n X jw dξds

+ 3

2

∫ 1

0

∫
∂�

n∑
j=1

4∂t (v + sw)Xn+ jw νX j dσ(ξ)ds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j+n, X j ](v + sw)X j X j+nw dξds

= 3

2

∫ 1

0

∫
∂�

n∑
j=1

−4∂t (v + sw)X jw νX j+n dσ(ξ)ds

− 3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)[X j+n, X j ]w dξds

+ 3

2

∫ 1

0

∫
∂�

n∑
j=1

4∂t (v + sw)Xn+ jw νX j dσ(ξ)ds

= −3

2

∫ 1

0

∫
�

n∑
j=1

[X j , X j+n](v + sw)[X j+n, X j ]w dξds

= 3n

2

∫ 1

0

∫
�

(4∂t )(v + sw)(4∂t )w dξds = 24n
∫ 1

0

∫
�

(∂tv + s∂tw)∂tw dξds

= 12 n
∫

�

{(∂t u)2 − (∂tv)2} dξ.

This completes the proof of the first inequality of the theorem. The proof of
the second one is similar.

4. – Oscillation estimate and σ2(H)-Measures

In this section we prove that if u is σ2(H)-convex, we can locally control
the integral of σ2(H)(u) + 12 n (ut )

2 in terms of the oscillation of u. This
estimate will be crucial for the L2 estimate of ∂t u.

Let us start with a lemma on σ2(H)-convex functions.

Lemma 4.1. If u1, u2 ∈ C2(�) are σ2(H)-convex, and f is convex in R
2

and nondecreasing in each variable, then the composite function w = f (u1, u2) is
σ2(H)-convex.
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Proof. Assume first that f ∈ C2(R2). We have

X jw =
2∑

p=1

∂ f

∂up
X j up,

Xi X jw =
2∑

p=1

 ∂ f

∂up
Xi X j up +

2∑
q=1

∂2 f

∂uq∂up
Xi uq X j up

 ,

and for every h = (h1, h2) ∈ R
2

〈H(w)h, h〉 =
2n∑

i, j=1

Xi X jw hi hj

=
2∑

p=1

∂ f

∂up
〈H(up)h, h〉+

2∑
p,q=1

∂2 f

∂uq∂up

(
2n∑

i=1

Xi uqhi

) 2n∑
j=1

X j uphj

 .

Since the trace and the second elementary symmetric function of the eigenvalues

of the matrix H(up) are non negative,
∂ f

∂up
≥ 0 for p = 1, 2, and the matrix

(
∂2 f

∂uq∂up

)
p,q=1,2

is non negative definite, it follows that w is σ2(H)-convex.
If f is only continuous, then given h > 0 let

fh(x) = h−2
∫

R2
ϕ

(
x − y

h

)
f (y)dy,

where ϕ ∈ C∞ is nonnegative vanishing outside the unit ball of R
2, and

∫
ϕ = 1.

Since f is convex, then fh is convex and by the previous calculation wh =
fh(u1, u2) is σ2(H)-convex. Since wh → w uniformly on compact sets as
h → 0, we get that w is σ2(H)-convex.

Remark 4.2. If u, v ∈ C2(�) are σ2(H)-convex, then u+v is σ2(H)-convex.
Indeed, it is enough to take f (x, y) = x + y in Lemma 4.1.

Proposition 4.3. Let u ∈ C2(�) be σ2(H)-convex. For any compact domain
�′ � � there exists a positive constant C depending on �′ and � and independent
of u, such that

(4.4)
∫

�′
{σ2(H(u)) + 12 n (ut )

2} dξ ≤ C(osc�u)2.



HEISENBERG GROUP 359

Proof. Given ξ0 ∈ � let BR = BR(ξ0) be a d-ball of radius R and center
at ξ0 such that BR ⊂ �. Let Bσ R be the concentric ball of radius σ R, with
0 < σ < 1. Without loss of generality we can assume ξ0 = 0, because the
vector fields X j are left invariant with respect to the group of translations. Let
M = maxBR u, then u − M ≤ 0 in BR . Given ε > 0 we shall work with the
function u − M − ε < −ε. In other words, by subtracting a constant, we may
assume u < −ε in BR, for each given positive constant ε which will tend to
zero at the end of the proof.

Define
m0 = inf

BR
u,

and
v(ξ) = m0

(1 − σ 4)R4
(R4 − ‖ξ‖4).

Obviously v = 0 on ∂ BR and v = m0 on ∂ Bσ R . We claim that v is σ2(H)-convex

in BR and v ≤ m0 in Bσ R . Indeed, setting r = ‖ξ‖4, h(r) = m0

(1 − σ 4)R4
(R4−r),

and following the calculations in the proof of [5, Theorem 1.4] we get

σ2(H(v)) = cn(|x |2 + |y|2)2
(

m0

(1 − σ 4)R4

)2

≥ 0,

with cn a positive constant and

trace (H(v)) = −(8n + 4) (|x |2 + |y|2) m0

(1 − σ 4)R4
≥ 0,

because m0 is negative. Hence v is σ2(H)-convex in BR . So trace (H(v−m0))≥
0 and since v − m0 = 0 on ∂ Bσ R , it follows from the maximum principle for
linear subelliptic equations that (v − m0) ≥ 0 in Bσ R . In particular, v ≤ u in
Bσ R .

Let ρ ∈C∞
0 (R2), radial with support in the Euclidean unit ball,

∫
R2ρ(x)dx = 1,

and let

(4.5) fh(x1, x2) = h−2
∫

R2
ρ((x − y)/h) max{y1, y2} dy1dy2.

Define
wh = fh(u, v).

From Lemma 4.1 wh is σ2(H)-convex in BR . If y ∈ Bσ R then v(y) ≤ u(y).
If v(y) < u(y) then fh(u, v)(y) = u(y) for h sufficiently small; and if v(y) =
u(y), then fh(u, v)(y) = u(y) + α h. Hence∫

Bσ R

{σ2(H(u)) + 12 n (∂t u)2} dξ =
∫

Bσ R

{σ2(H(wh)) + 12 n ((wh)t)
2} dξ

≤
∫

BR

{σ2(H(wh)) + 12 n ((wh)t )
2} dξ.
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Now notice that fh(u, v) ≥ v in BR for all h sufficiently small. In addition,
u < 0 and v = 0 on ∂ BR so fh(u, v) = 0 on ∂ BR . From Remark 4.2 we can
then apply Theorem 3.1 to wh and v to get

∫
BR

{σ2(H(wh))+12n(∂twh)
2}dξ ≤

∫
BR

{σ2(H(v)) + 12 n (vt )
2} dξ

=
(

m0

(1 − σ)R4

)2∫
BR

(cn(|x |2 + |y|2)2 + 48n t2) dξ

=
(

m0

(1 − σ)

)2

R2n−2
∫

B1

(cn(|x |2 + |y|2)2+48n t2) dξ.

Combining this inequality with (4.6) we get

∫
Bσ R

{σ2(H(u)) + 12 n (∂t u)2} dξ ≤ C (m0)
2 R2n−2 ≤ C R2n−2(oscBR u + ε)2,

and then (4.4) follows letting ε → 0 and covering �′ with balls.

Corollary 4.4. Let u ∈ C2(�) be σ2(H)-convex. For any compact domain
�′ � � there exists a positive constant C, independent of u, such that

(4.7)
∫

�′
σ2(H(u)) dξ ≤ C (osc�u)2,

and

(4.8)
∫

�′
(∂t u)2 dξ ≤ C (osc�u)2.

Corollary 4.5. Let u ∈ C2(�) be σ2(H)-convex. For any compact domain
�′ � � there exists a positive constant C, independent of u, such that

(4.9)
∫

�′
traceH2(u) dξ ≤ C osc�u.

4.1. – Measure generated by a σ2(H)-convex function

We shall prove that the notion
∫

σ2(H(u)) + 12 n u2
t can be extended for

continuous and σ2(H)-convex functions as a Radon measure. We call this
measure the σ2(H)-measure associated with u, and we shall show that the map
u ∈ C(�) → µ(u) is weakly continuous on C(�).
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Theorem 4.6. Given u ∈ C(�) and σ2(H)-convex, there exists a unique Radon
measure µ(u) such that when u ∈ C2(�) we have

(4.10) µ(u)(E) =
∫

E
{σ2(H(u)) + 12 n u2

t } dξ

for any Borel set E ⊂ �. Moreover, if uk ∈ C(�) are σ2(H)-convex, and uk → u
on compact subsets of �, then µ(uk) converges weakly to µ(u), that is,

(4.11)
∫

�

f dµ(uk) →
∫

�

f dµ(u),

for any f ∈ C(�) with compact support in �.

Proof. Let u ∈ C(�) be σ2(H)-convex, and let {uk} ⊂ C2(�) be a sequence
of σ2(H)-convex functions converging to u uniformly on compacts of �. By
Proposition 4.3 ∫

�′
{σ2(H(uk)) + 12 n (∂t uk)

2} dξ

are uniformly bounded, for every �′ � �, and by [4, Theorem 2, Section 1.9]
a subsequence of (σ2(H(uk)) + 12n(∂t uk)

2) converges weakly in the sense of
measures to a Radon measure µ(u) on �. We shall now prove that the map
u ∈ C(�) → µ(u) ∈ M(�), the space of finite Radon measures on �, is well
defined. By the same argument used in the proof of [5, Theorem 6.5], let
{vk} ⊂ C2(�) be another sequence of σ2(H)-convex functions converging to u
uniformly on compacts of �, assume (σ2(H(uk))+12n(∂t uk)

2) and (σ2(H(vk))+
12n(∂tvk)

2) converge weakly to Radon measures µ, µ′ respectively. Let B =
BR � �, and fix σ ∈ (0, 1). Let η ∈ C2(�̄) be a H-convex function such that
η = 0 in Bσ R and η = 1 on ∂ BR . From the uniform convergence of {uk} and
{vk} towards u, given ε > 0 there exists kε ∈ N such that

−ε

2
≤ uk(x) − vk(x) ≤ ε

2
, for all x ∈ B̄ and k ≥ kε.

Hence
uk + ε

2
≤ vk + εη

on ∂ BR for k ≥ kε. Define �k = {ξ ∈ BR : uk + ε
2 > vk +εη}. From Theorem 3.1

and (6.17) we have

(4.12)

∫
�k

{σ2(H(uk)) +12n(∂t uk)
2} dξ ≤

∫
�k

σ2(H(vk + εη)) + 12n(∂tvk + ε∂tη)2

≤
∫

BR

σ2(H(vk)) + 12n(∂tvk)
2 + ε2 C

+ ε C
∫

BR

(traceH(vk) + |∂tvk |)

≤
∫

BR

σ2(H(vk)) + 12n(∂tvk)
2 + ε2 C

+ ε C
∫

BR

(
traceH(vk) + |∂tvk |2 + 1

)
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and by Proposition 4.3 and Corollary 4.5 the right hand side is bounded by∫
BR

σ2(H(vk)) + 12n(∂tvk)
2 + ε C.

By definition of �k and since η = 0 in Bσ R , it follows that Bσ R ⊂ �k and so
by (4.12) we get

(4.13)
∫

Bσ R

σ2(H(uk)) + 12n(∂t uk)
2 ≤

∫
BR

σ2(H(vk)) + 12n(∂tvk)
2 + ε C,

and letting k → ∞, we get µ(Bσ R) ≤ µ′(BR) + C ε. Hence if ε → 0 and
σ → 1 we obtain

µ(B) ≤ µ′(B).

By interchanging {uk} and {vk} we get µ = µ′.
To prove (4.11), we first claim that it holds when uk ∈ C2(�). Indeed,

let ukm be an arbitrary subsequence of uk , so ukm → u locally uniformly
as m → ∞. By definition of µ(u), there is a subsequence ukmj

such that

µ
(

ukmj

)
→ µ(u) weakly as j → ∞. Therefore, given f ∈ C0(�), the se-

quence
∫
� f dµ(uk) and an arbitrary subsequence

∫
� f dµ(ukm ), there exists a

subsequence
∫
� f dµ(ukmj

) converging to
∫
� f dµ(u) as j → ∞ and (4.11) fol-

lows. For the general case, given k take uk
j ∈ C2(�) such that uk

j → uk locally
uniformly as j → ∞, and then argue as in the proof of [5, Theorem 6.5].

Corollary 4.7. If u, v ∈ C(�̄) are σ2(H)-convex in a bounded set �, u = v

on ∂� and u ≥ v in �, then µ(u)(�) ≤ µ(v)(�).

Proof. If u = v in � then the assertion follows from the previous theorem.
Otherwise we proceed as follows. Let uk, vk ∈ C2(�̄) be sequences of σ2(H)-
convex functions in �, converging uniformly to u and v respectively on compact
subsets of �. For any 0 < ε < max�̄(u −v)/3 we define �ε = {ξ ∈ � : u(ξ) >

v(ξ)+ε }. Then, �ε ⊂ � and u = v+ε on ∂�ε. From the uniform convergence,
given 0 < ε < max�̄(u − v)/3, there exists kε > 0 such that vk + 2ε > uk on
∂�ε for every k ≥ kε. Moreover, in �3ε we have u > v + 3ε, and we can find
k̃ε > 0 such that uk > vk + 2ε for every k ≥ k̃ε. Given k ≥ max{kε, k̃ε} we
define �k = {ξ ∈ � : uk(ξ) > vk(ξ) + 2ε }. By construction �3ε ⊂ �k ⊂ �ε

and uk = vk + 2ε on ∂�k . From Theorem 3.1 we then get

µ(uk)(�
k) ≤ µ(vk + 2ε)(�k) = µ(vk)(�

k).

Thus, µ(uk)(�3ε) ≤ µ(vk)(�ε). Letting k → ∞ we obtain from Theorem 4.6
that

µ(u)(�3ε) ≤ µ(v)(�ε),

and the corollary follows by letting ε → 0.
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By arguing as in [5, Theorem 6.7] we also get the following comparison
principle for σ2(H)-measures.

Theorem 4.8. Let � ⊂ R
2n+1 be an open bounded set. If u, v ∈ C(�̄) are

σ2(H)-convex in �, u ≤ v on ∂� and µ(u)(E) ≥ µ(v)(E) for each E ⊂ � Borel
set, then u ≤ v in �.

5. – Aleksandrov-type differentiability theorem for H-convex functions

As an application of our previous results we finally have the following
main theorem.

Theorem 5.1. If u is H-convex, then u ∈ BV 2
H

and so the distributional
derivatives Xi X j u exist a.e. for every i, j = 1, . . . , 2n.

Proof. If u is H-convex, then by [7, Theorem 3.1] u is locally Lipschitz
continuous with respect to the distance d defined in (2.2), and Xi u exists a.e.
for i = 1, . . . , 2n. Moreover, by [7, Theorem 4.2] there is a Radon measure
dνi j such that, in the sense of distributions

Xi X j u + X j Xi u

2
= dνi j , i, j = 1, . . . , 2n.

On the other hand, since u is continuous and σ2(H)-convex, then by (4.8) ∂t u
is in L2

loc. Let K � �, φ = ∑2n
j=1 φj X j ∈ C2(�, R

2n+1), with compact support
in K , ‖φ‖ < 1. Since

Xi X j = Xi X j + X j Xi + [Xi , X j ]

2
= Xi X j + X j Xi

2
± 2δi,i∓n∂t ,

then for any i = 1, . . . , 2n

(5.14)

∫
�

Xi u divX (φ)dξ = −
∫

�

u Xi divX (φ)dξ

= −
2n∑

j=1

∫
�

u Xi X jφj dξ

= −
2n∑

j=1

∫
�

u
(

Xi X jφj + X j Xiφj

2
± 2δi,i∓n∂tφj

)
dξ

=
2n∑

j=1

∫
�

φj dνi j ∓ 2
2n∑

j=1

δj∓n, j

∫
�

u ∂tφj dξ

≤
2n∑

j=1

νi j (K ) ∓ 2
2n∑

j=1

δj∓n, j

∫
�

u ∂tφj dξ.
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Now, let uε be the horizontal mollification of the function u as in the proof of
[7, Theorem 4.2]. Then uε is H-convex and∣∣∣∣∫

�

uε∂tφj dξ

∣∣∣∣ = ∣∣∣∣∫
�

∂t uεφj dξ

∣∣∣∣ ≤ c‖∂t uε‖L2(K ) ≤ C,

where c, C are positive constants depending on the diameter of K and on the
oscillation of u over K , but independent of ε. Letting ε tend to zero, we get

(5.15)
∣∣∣∣∫

�

u∂tφj dξ

∣∣∣∣ ≤ C.

Thus, by (5.14) and (5.15) we can conclude that

∫
�

Xi u divX (φ)dξ ≤
2n∑

j=1

νi j (K ) + C < ∞.

Hence, u ∈ BV 2
H

and the result then follows from Theorem 2.3.

6. – Appendix

Let A = [ai j ] be an n × n symmetric matrix with eigenvalues λ1, · · · , λn ,
and the second elementary symmetric function

σ2(A) = s(λ) =
∑
j<k

λjλk

with λ = (λ1, . . . , λn). An easy calculation shows that

∂s

∂λj
(λ) =

∑
k �= j

λk

and

(6.16) s(λ) = 1

2


 n∑

j=1

λj

2

−
n∑

j=1

λ2
j

 .

Lemma 6.1. If σ2(A) ≥ 0 and trace(A) ≥ 0, then
∂s

∂λj
(λ) ≥ 0 for every

j = 1, . . . , n.
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Proof. Since

trace(A) = ∂s

∂λj
(λ) + λj ≥ 0,

then either λj ≥ 0 or
∂s

∂λj
(λ) ≥ 0. If λj ≥ 0, since s(λ) ≥ 0, then by (6.16)

n∑
k=1

λk ≥
(

n∑
k=1

λ2
k

)1/2

≥ λj ,

and we get
∂s

∂λj
(λ) =

∑
k �= j

λk =
n∑

k=1

λk − λj ≥ 0.

Proposition 6.2. If σ2(A) ≥ 0 and trace(A) ≥ 0, then

n∑
i, j=1

∂σ2

∂ai j
(A)xi xj ≥ 0

for every x ∈ R
n.

Proof. Let C be a non negative definite Hermitian matrix. We write

σ2(A + C) − σ2(A) = s(η1, . . . , ηn) − s(λ1, . . . , λn)

where η1, . . . , ηn are the eigenvalues of A + C . Since C ≥ 0, then ηj ≥ λj ,

for any j ∈ {1, . . . , n}.
Moreover, by Lemma 6.1, δ=δ(A)= 1

2
min

{
∂s

∂λj
(λ1, . . . , λn) : j =1, . . . , n

}
≥0.

If C is small enough, then

(6.17)

σ2(A + C) − σ2(A) =
∫ 1

0

d

dτ
s(λ + τ(η − λ)) dτ

=
n∑

j=1

∫ 1

0

∂s

∂λj
(λ + τ(η − λ)) dτ (ηj − λj )

≥ δ

n∑
j=1

(ηj − λj ) = δ (trace(A + C) − trace(A))

= δ trace(C) ≥ 0.

Let us now apply this inequality to the matrix

C = t x · xT = t (xi xj ), x ∈ R
n,
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and t > 0 small enough. We obtain

(6.18) σ2(A + t x · xT ) − σ2(A) ≥ δ trace (C) = δt |x |2.
On the other hand

d

dt
σ2(A + t x · xT ) |t=0=

n∑
i, j=1

∂σ2

∂ai j
(A)xi xj .

Then, from (6.18) we get

(6.19)
n∑

i, j=1

∂σ2

∂ai j
(A)xi xj ≥ δ|x |2 ≥ 0, ∀x ∈ R

n.
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