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A criterion for good reduction of Drinfeld modules
and Anderson motives in terms of local shtukas

URS HARTL AND SIMON HÜSKEN

Abstract. For an Anderson A-motive over a discretely valued field whose residue
field has A-characteristic ", we prove a criterion for good reduction in terms of its
associated local shtuka at ". This yields a criterion for good reduction of Drinfeld
modules. Our criterion is the function-field analog of Grothendieck’s [15, Propo-
sition IX.5.13] and de Jong’s [19, 2.5] criterion for good reduction of an Abelian
variety over a discretely valued field with residue characteristic p in terms of its
associated p-divisible group

Mathematics Subject Classification (2010): 11G09 (primary); 145L05 (sec-
ondary).

1. Introduction

We fix a finite field F with r elements and characteristic p. Let C be a smooth
projective and geometrically irreducible curve over Fwith function field Q = F(C).
Let1 2 C be a closed point and let A = 0(Cr{1},OC) be the F-algebra of those
rational functions on C which are regular outside1. For every F-algebra R we let
� be the endomorphism of AR := A⌦F R given by � := idA⌦ Frobr,R : a⌦ b 7!
a ⌦ br for a 2 A and b 2 R.

Let oL be a complete discrete valuation ring containing F, with fraction field L ,
uniformizing parameter ⇡ , maximal ideal mL = (⇡) and residue field ` = oL/mL .
We assume that ` is a finite field extension of `p. This is equivalent to saying that
` has a finite p-basis over `p in the sense of [7, Section V.13, Definition 1]. It
holds for example if ` is perfect, or if ` is a finitely generated field. Since every
Anderson A-motive over L can be defined over a finitely generated subfield of L
our restriction on ` is not serious. Let c⇤ : A ! oL be a homomorphism of
F-algebras such that the kernel of the composition A ! oL ⇣ ` is a maximal
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ideal " in A. We say that the residue field ` has finite A-characteristic ". We
do not assume that c⇤ : A ! oL is injective. So L can have either generic A-
characteristic ker c⇤ = (0) or finite A-characteristic ker c⇤ = ". In the following we
will consider various AoL -algebras. In all of them we consider the ideal generated
by {a ⌦ 1 � 1⌦ c⇤(a) : a 2 A} ⇢ AoL . By abuse of notation we denote all these
ideals by J.

By an Anderson A-motive over L we mean a pair M = (M, FM) consisting
of a locally free AL -module M of finite rank, and an injective AL -homomorphism
FM : � ⇤M ! M where � ⇤M := M ⌦AL ,� AL , such that coker(FM) is a finite
dimensional L-vector space and is annihilated by a power of J. We say that M has
good reduction over oL if there exists a locally free AoL -moduleM and an injective
AoL -homomorphism FM : � ⇤M !M such that (M, FM) ⌦AoL AL ⇠= M and
coker(FM) is a finite free oL -module which is annihilated by a power of J. We call
M = (M, FM) a good model of M . In particular if M = M(�) is the Anderson A-
motive associated with a Drinfeld A-module � over L , then M has good reduction
if and only if � has good reduction; see Proposition 4.10.

Anderson A-motives are function-field analogs of Abelian varieties. For an
Abelian variety A over a discretely valued field K with residue field of charac-
teristic p there are criteria for good reduction in terms of local data. For a prime
number l 6= p the criterion of Néron-Ogg-Shavarevich [22, Section 1, Theorem
1] states that A has good reduction if and only if the l-adic Tate module TlA
of A is unramified as a Gal(K alg/K )-representation. At the prime p the crite-
rion of Grothendieck [15, Proposition IX.5.13] (for char(K ) = 0), respectively de
Jong [19, 2.5] (for char(K ) = p) states thatA has good reduction if and only if the
Barsotti-Tate groupA[p1] has good reduction.

These criteria have function-field analogs for Anderson A-motives. The ana-
log of the Néron-Ogg-Shavarevich-criterion was proved by Gardeyn [12, Theorem
1.1]. In this article we simultaneously prove the analog of Grothendieck’s and de
Jong’s criterion. Here the function-field analogs of Barsotti-Tate groups are lo-
cal shtukas [17, Section 2.1] which are defined as follows. Let AoL ,(",⇡) be the
(",⇡)-adic completion of AoL . An (effective) local shtuka at " over oL is a pair
M̂ = (M̂, FM̂) consisting of a finite free AoL ,(",⇡)-module M̂ and an injective
AoL ,(",⇡)-homomorphism FM̂ : � ⇤M̂ ! M̂ such that coker(FM̂) is a finite free
oL -module and is annihilated by a power of J. The local shtuka associated with a
good modelM of an Anderson A-motive is M̂(M) :=M⌦AoL AoL ,(",⇡). Strictly
speaking effective local shtukas are the function field analogs of the F-crystals of
Barsotti-Tate groups. The analogs of the latter are called "-divisible local Anderson-
modules and their category is equivalent to the category of effective local shtukas;
see [18] for more details. Our analog of Grothendieck’s and de Jong’s reduction
criterion is now the following:

Corollary 6.6. Let M be an Anderson A-motive over L . Then M has good reduc-
tion over oL if and only if there is an effective local shtuka M̂ at " over oL and an
isomorphism M ⌦AL AoL ,(",⇡)[1/⇡]

⇠
= M̂ ⌦AoL ,(",⇡) AoL ,(",⇡)[1/⇡].
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(In the body of the text we prove a slightly stronger statement.) This applies
in particular if M is the Anderson A-motive associated with a Drinfeld module
� over L to give a criterion for good reduction of � in terms of its associated
local shtuka. The reformulation of this criterion in terms of the "-divisible local
Anderson-module of � is given in [18].

ACKNOWLEDGEMENTS. We would like to thank the anonymous referee for his
careful reading and for asking an interesting question which lead to the answer
given in Remark 5.4.

2. The base rings

Let oL be an equi-characteristic complete discrete valuation ring containing the
finite field F, with quotient field L = Frac(oL) and residue field ` = oL/mL , where
mL ⇢ oL is the maximal ideal of oL . We assume that ` is a finite field extension of
`p := {b p : b 2 `}. We fix a uniformizer ⇡ = ⇡L of oL and sometimes identify
oL with `[[⇡]]. Let v = v⇡ = ord⇡ (·) be the discrete valuation on L normalized by
v(⇡) = 1.

We assume that there is an oL -valued point c 2 C(oL) such that the corre-
sponding F-morphism c : Spec(oL)! C factors via C r {1} ⇢ C. Such a datum
corresponds to a homomorphism of F-algebras c⇤ : A ! oL which we call the
characteristic map. We further assume that the closed point V (⇡) ⇢ Spec(oL) is
mapped to a closed point " of Spec(A) ⇢ C. The latter is the kernel of the compo-
sition A ! oL ⇣ `. So, in accordance with Drinfeld’s terminology [9], we call "
the residue characteristic or residual characteristic place of Q. By continuity, the
characteristic map c⇤ : A ! oL factors through a morphism of complete discrete
valuation rings A" ! oL where A" is the completion of A at the characteristic
place ". Note that A" ! oL is injective if c⇤ is injective, and factors through A/"
if c⇤ is not injective.
Remark 2.1. Since A is a Dedekind domain there is a power "m which is a princi-
pal ideal in A. We fix a generator t of "m and frequently use the finite flat monomor-
phism of F-algebras ◆ : F[z]! A, z 7! t .

For any F-algebra R we abbreviate AR := A ⌦F R. In particular, AoL ⇢ AL
is a noetherian integral domain, and by virtue of the equality A` ⇠= AoL/⇡ AoL it
follows that ⇡ 2 oL is a prime element of AoL .
Definition 2.2. Let AoL ,⇡ (respectively, AoL ,(",⇡)) be the completion of the oL -
algebra AoL for the ⇡-adic topology (respectively, the (",⇡)-adic topology).

By Krull’s Theorem ([8], III.3.2), the ring AoL is separated for both the ⇡-adic
and the (",⇡)-adic topology. The topological oL -algebra AoL ,⇡ is admissible in the
sense of Raynaud, i.e. it is of topologically finite presentation and has no ⇡-torsion.
In particular, the L-algebra AoL ,⇡ [1/⇡] is affinoid in the sense of rigid analytic
geometry; see [4–6].
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For example if C = P1F and A = F[z] then we have AoL = oL [z] and corre-
spondingly AL = L[z]. Let us specify that " = zF[z]. Our choice of a uniformizer
⇡ gives rise to an identification oL = `[[⇡]]. Consequently oL [[z]] = `[[⇡]][[z]] =

`[[⇡, z]] = AoL ,(",⇡). On the other hand, the ⇡-adic completion of oL [z] equals
oLhzi := {

P
1

i=0 bi zi : v(bi ) ! 1(i ! 1)}, and since Lhzi = oLhzi ⌦oL L ,
we may view AoL ,⇡ [1/⇡] as a replacement, for general C, of the Tate algebra Lhzi
of strictly convergent power series in one indeterminate z over L , which serves as
coordinate ring for the one-dimensional affinoid unit ball in rigid analytic geometry.

There is a natural embedding AL ! AoL ,⇡ [1/⇡]which, for general C, replaces
the completion homomorphism L[z] ! Lhzi, and which itself can be regarded as
a completion map with respect to the L-algebra norm-topology on the reduced affi-
noid L-algebra AoL ,⇡ [1/⇡] and its restriction on AL ; see [4, Section 1.4, Proposi-
tion 19]. Note that the canonical homomorphism AoL ! AoL ,(",⇡) factors uniquely
via AoL ,⇡ , where the induced map AoL ,⇡ ! AoL ,(",⇡) identifies AoL ,(",⇡) with the
(",⇡)AoL ,⇡ -adic completion of AoL ,⇡ . Since AoL ,⇡ is a regular integral domain,
it is (",⇡)AoL ,⇡ -adically separated by Krull’s theorem and AoL ,⇡ ! AoL ,(",⇡) is
injective and flat.

Recall that there is a finite flat monomorphism of F-algebras ◆ : F[z] ! A
which identifies the indeterminate z with the generator t 2 A of "m chosen in
Remark 2.1. The oL -algebra homomorphism ◆ ⌦ id : oL [z] ! AoL ,

P
⌫ a⌫z⌫ 7!P

⌫ t⌫ ⌦ a⌫ , is finite flat, so that we obtain finite flat maps

oLhzi! AoL ,⇡ , Lhzi! AoL ,⇡ [1/⇡], oL [[z]]! AoL ,(t,⇡), `[z]! A`. (2.1)

Here the (t,⇡)-adic completion AoL ,(t,⇡) of AoL equals AoL ,(",⇡) since (",⇡)m ⇢
("m,⇡) = (t,⇡) in AoL .

Lemma 2.3. If AoL ," denotes the "-adic completion of AoL , the canonical map
AoL ," ! AoL ,(",⇡) is an isomorphism.

3. Frobenius modules

The r-Frobenius Frobr : oL ! oL , x 7! xr , gives rise to an endomorphism

� = idA ⌦ Frobr : AoL ! AoL , a ⌦ x 7! a ⌦ xr ,

which extends to give a map idA ⌦ Frobr,L : AL ! AL again denoted by � . On
the other hand, reducing mod ⇡ gives �̄ = idA ⌦ Frobr,` : A` ! A`. The latter is
a finite flat endomorphism of the Dedekind domain A`, because ` is finite over `p.
The map � : AoL ! AoL is ⇡-adically and (",⇡)-adically continuous and therefore
extends to give endomorphisms AoL ,⇡ ! AoL ,⇡ and AoL ,(",⇡) ! AoL ,(",⇡), again
denoted by � .
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Lemma 3.1. In the commutative diagram

AoL //

�

✏✏

AoL ,⇡ //

�

✏✏

AoL ,(",⇡)

�

✏✏
AoL // AoL ,⇡ // AoL ,(",⇡)

both squares are co-Cartesian, and the vertical arrows are finite flat.

We let the proof be preceded by the following:
Remark 3.2. Via the identification oL = `[[⇡]], the r-Frobenius Frobr,oL : oL !
oL is mirrored by the map `[[⇡]]! `[[⇡]],

P
1

⌫=0 a⌫⇡⌫ 7!
P
1

⌫=0 ar⌫⇡r⌫ . Choosing
an `r -basis of ` and lifting it to a subset W of oL , this implies (Frobr,oL )⇤oL =Lr�1

i=0
L

w2W oL w⇡ i , so that Frobr,oL : oL ! oL is finite flat.

Proof of Lemma 3.1. By base change the remark implies that � = idA ⌦ Frobr,oL :

AoL ! AoL is finite flat, and that AoL ⌦�,AoL AoL ,⇡ is a finite flat AoL ,⇡ -module
and hence equals the ⇡-adic completion of the AoL -module �⇤AoL . If we let a =

� (⇡ AoL )AoL = ⇡r AoL and b = ⇡ AoL , we get br = a ⇢ b. Consequently,
by [10, Lemma 7.14], the inverse systems (AoL/an)n and (AoL/bn)n give the same
limit, which shows that the square on the left is co-Cartesian, and that � : AoL ,⇡ !

AoL ,⇡ is finite flat. Similarly, we have � (",⇡)AoL = (",⇡r ) ⇢ (",⇡) as well as
(",⇡)r ⇢ (",⇡r ), which proves that the displayed diagram qualifies AoL ,(",⇡) as
tensor product AoL ,(",⇡) ⌦AoL ,� AoL , and that � : AoL ,(",⇡) ! AoL ,(",⇡) is finite
flat.

Finally, note that the embedding of oL -algebras ◆ ⌦ id : oL [z] ! AoL com-
mutes with � : AoL ! AoL and the r-Frobenius lift of oL [z], given by oL [z] !
oL [z],

P
⌫ a⌫z⌫ 7!

P
⌫ ar⌫z⌫ . Consequently, also the embeddings from (2.1) are

Frobenius-equivariant.

Let B be an oL -algebra together with a ring endomorphism � : B ! B such
that � and Frobr,oL : oL ! oL are compatible with the structure map oL ! B. For
example, B could be any of the base rings considered above.
Definition 3.3. We define the category FMod(B) of Frobenius B-modules (or sim-
ply F-modules over B) as follows:

– An object of FMod(B) is a pair M = (M, F) consisting of a B-module M
which is locally free of finite rank, together with an injective B-linear map F =

FM : � ⇤M ! M , where � ⇤M := M ⌦B,� B.
– A morphism of Frobenius B-modules (M, FM) ! (N , FN ) is a B-linear map
� : M ! N between the underlying B-modules such that � is F-equivariant,
i.e. such that � � FM = FN � � ⇤�. It is called an isomorphism if � is an
isomorphism of the underlying B-modules.
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Let B0 be a flat B-algebra together with a ring endomorphism � : B0 !
B0 extending the Frobenius lift of B, as explained before. Then the exact functor
·⌦B B0 from B-modules to B0-modules yields a functor FMod(B)! FMod(B0).
If the structure map B ! B0 is, in addition, injective then the induced functor on
FMod(B) is faithful since, given a map f : M ! N of finite projective B-modules,
restricting its image f ⌦id : M⌦B B0 ! N⌦B B0 to M gives back f . In particular,
we obtain a natural commutative diagram of categories and faithful functors

FMod(AoL ) //

✏✏

FMod(AoL ,⇡ )

✏✏

// FMod(AoL ,(",⇡))

✏✏
FMod(AL) // FMod(AoL ,⇡ [1/⇡]) // FMod(AoL ,(",⇡)[1/⇡])

Slightly abusing notation, we agree to write M ⌦B B0 for (M ⌦B B0, FM ⌦ idB0),
whenever M = (M, FM).

4. Anderson motives

Let J ⇢ AoL be the ideal generated by a⌦1�1⌦c⇤(a) for all a 2 A. For example,
if C = P1F and A = F[z], then J = (z � ⇣ ) ⇢ oL [z] where ⇣ = c⇤(z). Note that
the convention introduced in Remark 2.1 that (z) = "m implies ⇣ 2 mL . So ⇣ = 0
if c⇤ is not injective. By abuse of notation we denote the ideal generated by J in
any AoL -algebra again by J. We consider the following variant of Anderson’s [1]
t-motives.
Definition 4.1. An Anderson A-motive over L is an object M = (M, FM) 2
FMod(AL) such that coker(FM) is a finite-dimensional L-vector space and is an-
nihilated by a power of J. A morphism of Anderson A-motives is defined as a
morphism inside FMod(AL).

Since Spec(AL) is of finite type over L , one can consider its rigid analyti-
fication Spec(AL)an; see [4, 5, 11]. In accordance with [2], we denote this rigid
analytic L-space by A(1). On the other hand, the formal completion of the oL -
scheme X = Spec(AoL ) along its special fiber V (⇡) leads to the formal oL -scheme
X = Spf(AoL ,⇡ ); see [14, Inew, I.10.8.3]. Its associated rigid analytic space Xrig
([4, 11]) is given by the affinoid L-space A(1) := Sp(AoL ,⇡ [1/⇡]). This space can
be regarded as the unit disc of the rigid analytic space A(1) as it corresponds to
“radius of convergence 1”, hence the notation.

We study the following instance of rigid analytic ⌧ -sheaves over AoL ,⇡ [1/⇡],
in the sense of [2].
Definition 4.2. An analytic Anderson A(1)-motive over L is an object M =

(M, FM) 2 FMod(AoL ,⇡ [1/⇡]) such that coker(FM) is a finite-dimensional L-
vector space and is annihilated by a power of J. A morphism of analytic Anderson
A(1)-motives is defined as a morphism in the category FMod(AoL ,⇡ [1/⇡]).
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Here the prefix “A(1)-” indicates that we are considering an analytic variant of
Anderson A-motives over the rigid analytic “unit disc” A(1) in Spec(AL).
Proposition 4.3. The natural functor FMod(AL) ! FMod(AoL ,⇡ [1/⇡]), M 7!
M⌦AL AoL ,⇡ [1/⇡] restricts to a functor (Anderson A-motives over L)! (analytic
Anderson A(1)-motives over L).
Definition 4.4. (a) Let ML 2 FMod(AL) be an F-module over AL . A model of
ML is a pair (M,↵) consisting of an objectM 2 FMod(AoL ) and an isomorphism
↵ : ML

⇠
�!M⌦AoL AL inside FMod(AL).

(b) Let ML 2 FMod(AoL ,⇡ [1/⇡]) be an F-module over AoL ,⇡ [1/⇡]. A (formal)
model of ML is a pair (M,↵) consisting of an objectM 2 FMod(AoL ,⇡ ) and an
isomorphism ↵ : ML

⇠
�!M⌦AoL ,⇡ AoL ,⇡ [1/⇡] inside FMod(AoL ,⇡ [1/⇡]).

(c) In both cases a morphism of models � : (M,↵)! (M0,↵0) is an isomorphism
� : M ⇠

�!M0 of F-modules satisfying ↵0 = �[1/⇡] � ↵. In particular the sets
Hom

�
(M,↵), (M0,↵0)

�
contain at most one element.

We will sometimes drop the ↵ from the notation and simply speak ofM as a model
of ML .

For everyM 2 FMod(AoL ), respectivelyM 2 FMod(AoL ,⇡ )we can consider
the reductionM⌦AoL A`, respectivelyM⌦AoL ,⇡ A`. Note, however, that this does
not induce a functor from FMod(AoL ), respectively FMod(AoL ,⇡ ) to FMod(A`),
since the induced F-map need not be injective. This circumstance lies at the origin
of our study of good models:
Definition 4.5. LetM be a model of an F-module ML over AL , respectively over
AoL ,⇡ [1/⇡]. ThenM is called a good model ifM/⇡M is an F-module over A`,
i.e. if the induced A`-linear map

�̄ ⇤(M/⇡M) = (M/⇡M)⌦A`,�̄ A`!M/⇡M
is injective.

If ML is an (analytic) Anderson motive there is an alternative notion of good
reduction as follows.
Definition 4.6. LetM be a model of an Anderson A-motive ML , respectively of
an analytic Anderson A(1)-motive ML . ThenM is called a good model in the
strong sense if coker(FM) is a finite free oL -module and is annihilated by Jd , for
some d � 0. In this case we also say thatM has good reduction over oL .
Theorem 4.7. LetM be a model of an Anderson A-motive, respectively of an an-
alytic Anderson A(1)-motive ML . ThenM is a good model in the weak sense of
Definition 4.5 if and only if it is a good model in the strong sense of Definition 4.6.
Proof. Since � ⇤M is locally free over AoL , respectively over AoL ,⇡ , the natural
map � ⇤M ! � ⇤ML is injective and hence FM is injective because FML is. We
obtain a short eqact sequence

0 �! � ⇤M FM
���!M �! coker(FM) �! 0 . (4.1)
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LetM be a good model in the strong sense. Tensoring the short exact sequence
(4.1) with ` over oL and using that coker(FM) is supposed to be free over oL shows
that the induced A`-linear map �̄ ⇤(M/⇡M) ! M/⇡M remains injective. So
M is a good model in the weak sense.

Conversely suppose thatM is a good model in the weak sense. This time
tensoring (4.1) with ` over oL yields

0 �! ToroL1
�
cokerFM, `) �! � ⇤M⌦oL `

FM⌦id`
�����!M⌦oL `

�! coker(FM)⌦oL ` �! 0 .

By assumption FM ⌦ id` is injective, and so 0 = ToroL1
�
cokerFM, `) = {x 2

coker(FM) : ⇡x = 0} and coker(FM) is flat over oL by [10, Corollary 6.3]. This
implies coker(FM) ,! coker(FM) ⌦oL L = coker(FML ). Since coker(FML ) is
annihilated by Jd for some d, the same is true for coker(FM) which therefore is
a finitely generated AoL/Jd -module, respectively AoL ,⇡/Jd -module, and a fortiori
a finitely generated oL -module. Being flat, coker(FM) is a finite free oL -module.
ThusM is a good model in the strong sense.

Remark 4.8. In [13] Gardeyn develops a theory of semi-stable reduction of an-
alytic Anderson A(1)-motives ML . He shows that after replacing L by a finite
separable extension, ML has a modelM such that the reduction FM ⌦ id` is not
nilpotent [13, Proposition 3.3]. IfM0 ⇢ M/⇡M is the maximal Frobenius A`-
submodule with injective FM0 , he further shows that the support of coker(FM0) is
a finite set S ⇢ Spec A`. After removing S from A(1) := Sp(AoL ,⇡ [1/⇡]) one
can liftM0 to an F-submoduleM0 ⇢M|A(1)rS which has good reduction in the
weak sense of Definition 4.5; see [13, Theorem 4.7]. As one sees from the follow-
ing example, it is false in general that S is the zero locus of J in Spec A` and so we
cannot expect thatM0 has good reduction in the strong sense of Definition 4.6.

Let A = F[z] and ⇣ = c⇤(z) 2 mL . Then J = (z � ⇣ ). LetM = oLhzi�2
and FM =

� 0 ⇡(z�⇣ )
⇡ z�1

�
. ThenM = (M, FM) is a model of the analytic Ander-

son A(1)-motive ML := M ⌦oL L . The reductionM/⇡M =

�
`[z]�2,

� 0 0
0 z�1

��
contains the maximal Frobenius A`-submoduleM

0

= `[z] ·

�0
1
�
, whose Frobenius

is FM0 = z � 1. So S = V (z � 1) 6= V (z) = V (J).

Proposition 4.9. If ML is an Anderson A-Motive over L having a (good) modelM
then its analytification ML ⌦AL AoL ,⇡ [1/⇡] is an analytic Anderson A(1)-motive
having the (good) model cM := M⌦AoL AoL ,⇡ and the reduction cM/⇡ cM of cM
is canonically isomorphic to the reductionM/⇡M ofM.

Proof. The statement without the properties of being a good model is obvious.
From the isomorphism cM/⇡ cM ⇠

�!M/⇡M it follows thatM is a good model
in the sense of Definition 4.5 if and only if cM is a good model in the sense of
Definition 4.5.
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Let us also mention the following result of Gardeyn on good reduction of Drin-
feld A-modules.

Proposition 4.10. Let � : A ! L[⌧ ] be a Drinfeld A-module over L; see [9]
or [21]. Let M = M(�) be the associated Anderson A-motive; see [1, Section 4.1]
or [12, Section 8.1]. Then the following are equivalent:

(i) � has good reduction over oL , i.e. � is isomorphic over L to a Drinfeld A-
module  : A ! L[⌧ ] satisfying  (A) ⇢ oL [⌧ ] such that the reduction
 : A! oL [⌧ ] ⇣ `[⌧ ] is a Drinfeld A-module over ` of the same rank as  
and �;

(ii) M has good reduction over oL in the weak and strong senses of Definitions 4.6
and 4.5.

Proof. Gardeyn [12, Theorem 8.1] proved that � has good reduction over oL if and
only if M has a good model in the weak sense. So the proposition follows from
Theorem 4.7.

5. Local shtukas and analytic Anderson motives

Anderson A-motives can be viewed as function-field analogs of Abelian varieties.
Barsotti-Tate groups, which can be associated with Abelian varieties over Zp-
schemes, have effective local shtukas as function-field analogs.
Definition 5.1. An (effective) local shtuka at " over oL is an object M̂=(M̂, FM̂)2
FMod(AoL ,(",⇡)) such that coker(FM̂) is a finite free oL -module and is annihilated
by a power of J.
Remark 5.2. If the residue field F" = A/" of " is larger than F, i.e., if the de-
gree d" := [F" : F] > 1, the ring AoL ,(",⇡) is not an integral domain but a product
AoL ,(",⇡) =

Q
i2Z/d"Z AoL ,(",⇡)/ai of integral domains. To describe this product de-

composition, note that AoL ,(",⇡) = lim
 �

n AoL/"n = lim
 �

n (A/"n)⌦F oL = A"b⌦FoL .
By Cohen’s structure theorem A" ⇠= F"[[z"]] for a uniformizer z" of A at ". Then
ai = (↵⌦ 1� 1⌦ c⇤(↵)r

i
: ↵ 2 F" ⇢ A"), where we use that c⇤ : A! oL factors

through c⇤ : A" ! oL . The factors AoL ,(",⇡)/ai are isomorphic to oL [[z"]] and
hence are integral domains. They are cyclically permuted by � because � (ai ) =

ai+1. By [3, Proposition 8.8] the functor (M̂, FM̂) 7! (M̂/a0M̂, (FM̂)d") is an
equivalence between the category of effective local shtukas at " over oL as in Def-
inition 5.1 and the category of pairs (M̂0, eFM̂) where M̂0 is a free module of finite
rank over AoL ,(",⇡)/a0 and eFM̂ : (� d")⇤M̂0 ! M̂0 is injective with coker(eFM̂) be-
ing a finite free oL -module. In [16, 17] these pairs (M̂0, eFM̂) are called (effective)
local shtukas.

The following criterion for good reduction of analytic Anderson A(1)-motives
can be regarded as a good-reduction Local-Global Principle at the characteristic
place.
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Theorem 5.3. Let ML = (ML , FML ) be an analytic Anderson A(1)-motive over L
such that coker(FML ) is annihilated by Jd for some d. Then the following assertions
are equivalent:

(i) ML admits a good model in the strong sense of Definition 4.6;
(ii) There is an effective local shtuka M̂=(M̂,FM̂) at " over oL such that coker(FM̂)

is annihilated by Jd , and an isomorphism ML ⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡]
⇠
=

M̂ ⌦AoL ,(",⇡) AoL ,(",⇡)[1/⇡] in FMod(AoL ,(",⇡)[1/⇡]).

Proof. 1. In order to show that (ii) implies (i), we let f : ML ⌦ AoL ,(",⇡)[1/⇡]
⇠
�!

M̂⌦AoL ,(",⇡)[1/⇡]=: M̂[1/⇡] be an F-equivariant isomorphism of AoL ,(",⇡)[1/⇡]-
modules as in (ii). We have canonical F-equivariant AoL ,⇡ -linear maps

i : ML ! ML ⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡], j : M̂ ! M̂[1/⇡]

where i (respectively, j) is injective since ML (respectively, M̂) is flat. Consider the
AoL ,⇡ -moduleM = im(i) \ f �1(im( j)). We will show thatM is a good model
of ML . The inclusionM ,! ML gives rise to an AoL ,⇡ [1/⇡]-linear embedding
M[1/⇡] ,! ML [1/⇡]

⇠
= ML , which is in fact an isomorphism, because ifm 2 ML

there is an s � 0 such that ⇡ s f (m ⌦ 1) 2 im( j), i.e. ⇡ sm 2M.
2. In order to show thatM is a finitely generated AoL ,⇡ -module we use the embed-
ding ◆ : F[z] ! A from Remark 2.1 and the induced maps Lhzi ! AoL ,⇡ [1/⇡]

and oL [[z]] ! AoL ,(",⇡) from (2.1). Let (e1, ..., em) be a basis of ML over the
principal ideal domain Lhzi. Furthermore, let (d1, ..., dn) be a basis for M̂ over
the local ring oL [[z]]. Note that the basis (e1, ..., em) gives rise to an isomorphism
ML ⌦Lhzi oL [[z]][1/⇡]

⇠
= oL [[z]][1/⇡]

�m . For every ⌫ = 1, ..., n we consider
f �1(d⌫) and regard it as an element of the right-hand side of this isomorphism. We
choose N � 0 big enough, such that f �1(⇡Nd⌫) 2 oL [[z]]�m for all ⌫, say

f �1(⇡Nd⌫) = (⇢⌫,1, ..., ⇢⌫,m)

where ⇢⌫,µ 2 oL [[z]]. Now let x 2M. Via f we obtain f (x) =

P
⌫ �⌫d⌫ in M̂ ,

with suitable �⌫ 2 oL [[z]]. Consequently f (⇡N x) =

P
⌫ �⌫(⇡

Nd⌫), so that the
image of ⇡N x in oL [[z]]�m satisfies ⇡N x =

P
µ(

P
⌫ �⌫⇢⌫,µ)eµ. The appearing

scalars hµ =

P
⌫ �⌫⇢⌫,µ have, in fact, to be elements of Lhzi \ oL [[z]] = oLhzi.

Inside ML wemay write x = ⇡�N⇡N x =

P
µ hµ⇡

�Neµ, so that we may conclude

M ⇢
X
µ

oLhzi⇡�Neµ.

Being a submodule of a finitely generated module over a noetherian ring,M has to
be a finitely generated oLhzi-module and hence a finitely generated AoL ,⇡ -module.
3. We claim thatM/⇡M is torsion-free and hence free over `[z], because it is
finitely generated. Let x 2M, and let � 2 oLhzi be such that � /2 ⇡oLhzi and �x 2
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⇡M, say �x = ⇡y for some y 2M. In order to prove thatM/⇡M is torsion-free
we must show that x 2 ⇡M. First suppose that � 2 oLhzi \ oL [[z]]⇥. We consider
⇡�1x 2 ML . In fact, this element lies inM, since we have f (⇡�1x) = ��1 f (y) 2
M̂ . Consequently x = ⇡(⇡�1x) 2 ⇡M.

Let us next assume that � = zn and show that znx 2 ⇡M implies x 2 ⇡M
for any n � 0. By induction, it suffices to consider the case n = 1. So suppose
zx 2 ⇡M, say zx = ⇡y. Let f (x) =

P
⌫ �⌫d⌫ , where (d1, ..., dn) is the finite

oL [[z]]-basis of M̂ fixed before. The relation zx = ⇡y implies that ⇡ | z�⌫ for every
index ⌫, so that ⇡ | �⌫ for every ⌫. Therefore ⇡�1x 2 ML necessarily maps via f
to an element of M̂ , i.e. x 2 ⇡M.

Finally we treat the case for general � =

P
s �s zs and suppose that � /2

oL [[z]]⇥, that is ⇡ | �0. This means we find �0 2 oL [z] and �00 2 oLhzi \ oL [[z]]⇥
such that � = ⇡�0+zN�00 for some N � 1. We have ⇡y = �x = ⇡�0x+zN�00x . In
particular zN�00x = ⇡(y��0x) 2 ⇡M and by the above �00x 2 ⇡M and x 2 ⇡M.

Thus we have proved thatM/⇡M is free over `[z]. It follows thatM/⇡M
is locally free of finite rank over A`.
4. We claim thatM is locally free of finite rank over AoL ,⇡ . Since it is finitely
generated it only remains to show that M is flat over AoL ,⇡ . Since AoL ,⇡ is
⇡-adically complete and separated, ⇡ AoL ,⇡ is contained in the Jacobson radical
j(AoL ,⇡ ) by [20, Theorem 8.2], and the AoL ,⇡ -moduleM is finitely generated, so
thatM is ⇡-adically ideally Hausdorff in the sense of [8, III.5.1]. In the preceding
step we have shown thatM/⇡M is flat over A` ⇠= AoL ,⇡/⇡ AoL ,⇡ , and we know
thatM has no ⇡-torsion, so that the canonical map ⇡ AoL ,⇡ ⌦AoL ,⇡ M ! ⇡M
is an isomorphism. Therefore, by Bourbaki’s Flatness Criterion [8, Section III.5.2,
Théorème 1(iii)], we may conclude thatM is indeed flat over AoL ,⇡ .
5. We note that � ⇤M = � ⇤im(i) \ (� ⇤ f )�1(� ⇤im( j)) because the functor � ⇤
is exact by Lemma 3.1. By the F-equivariance of f we obtain a Frobenius FM :

� ⇤M!M. It is injective because FML is. We setM := (M, FM).
6. Next we claim that Jdcoker(FM) = 0. Let x =

P
⌫ h⌫m⌫ 2 JdM where

h⌫ 2 Jd and m⌫ 2M. Since coker(FML ) is annihilated by Jd , there is a (unique)
y 2 � ⇤ML such that x =

P
⌫ h⌫m⌫ = FML (y). We have to show that y 2 � ⇤M =

� ⇤im(i) \ (� ⇤ f )�1(� ⇤im( j)). So it remains to see that (� ⇤ f )(y) 2 im(� ⇤ j).
Indeed, inside M̂[1/⇡] we have f (x) = f (FML (y)) = FM̂((� ⇤ f )(y)). On the
other hand, the linearity of f and j gives that f (x) =

P
⌫ h⌫ f (m⌫ ⌦ 1) = j (y0)

for some y0 2 Jd M̂ ⇢ im(FM̂), say y0 = FM̂(y00) for a y00 2 � ⇤M̂ . Thus f (x) =

FM̂((� ⇤ j)(y00)). So finally, since FM̂ : � ⇤M̂[1/⇡] ! M̂[1/⇡] is injective, we
obtain that (� ⇤ f )(y) = (� ⇤ j)(y00), as desired.
7. Finally we show that the kernel V of F : � ⇤(M/⇡M) !M/⇡M is trivial.
This implies thatM is a good model of ML in the weak sense of Definition 4.5,
which is enough by Theorem 4.7.

We have already shown that JdM ⇢ im(FM). Since (z � ⇣ ) 2 J for ⇣ :=

c⇤(z) 2 oL we have a chain of oLhzi-modules (z � ⇣ )dM ⇢ im(FM) ⇢M. The
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element ⇣ 2 oL is zero mod ⇡ , and we obtain

zd(M/⇡M) ⇢ im(F) ⇢M/⇡M. (5.1)

We know thatM/⇡M is finite free over `[z]. Therefore the middle term W :=

im(F) in the latter chain has full rank insideM/⇡M. Finally, taking ranks in the
(split) short exact sequence of finite free `[z]-modules

0! V ! � ⇤(M/⇡M)
F
�! W ! 0

accomplishes the proof that V indeed is trivial.

8. Conversely, in order to show that (i) implies (ii), suppose that (M,↵) is a good
model of ML . We define

M̂ =M⌦AoL ,⇡ AoL ,(",⇡),

i.e. M̂ equals the completion ofM for the (",⇡)AoL ,⇡ -adic topology. It is clear
that the F-equivariant isomorphism ↵ : ML

⇠
�!M[1/⇡] of AoL ,⇡ [1/⇡]-modules

gives rise to a natural F-equivariant AoL ,(",⇡)[1/⇡]-linear isomorphism

ML ⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡]
⇠
= M̂[1/⇡].

We claim that M̂ is a local shtuka. Indeed, by base change, M̂ is again locally free of
finite rank. Furthermore, since the completion map AoL ,⇡! AoL ,(",⇡) is Frobenius-
equivariant and flat, we obtain an injective map M̂ ⌦(AoL ,(",⇡)),� AoL ,(",⇡) ! M̂ .

Let C 0 be its cokernel, and let C = coker(FM), i.e. C 0 ⇠= C ⌦AoL ,⇡ AoL ,(",⇡). Since
C is annihilated by Jd the module C 0 equals C and it is finite free over oL . Thus M̂
is an effective local shtuka over oL .

Remark 5.4. Steps 1-4 in the previous proof suggest that there is an equivalence
of categories

F :

⇢
finite locally free
AoL ,⇡ -modulesM

�

⇠

 !

8>>>><
>>>>:

triples (ML , M̂, f ) consisting of
• a finite locally free AoL ,⇡ [1/⇡]-module ML ,

• a finite locally free AoL ,(",⇡)-module M̂, and
• an isomorphism of AoL ,(",⇡)[1/⇡]-modules
f :ML⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡]

⇠
�! M̂⌦AoL ,(",⇡) AoL ,(",⇡)[1/⇡]

9>>>>=
>>>>;

M 7�!

�
M⌦AoL ,⇡ AoL ,⇡ [1/⇡], M⌦AoL ,⇡ AoL ,(",⇡), idM⌦AoL ,(",⇡)[1/⇡]

�
,
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where on the right a morphism h = (hL , ĥ) : (ML , M̂, f ) ! (M 0L , M̂
0, f 0) con-

sists of a morphism hL : ML ! M 0L and a morphism ĥ : M̂ ! M̂ 0 such that
f 0 � (hL ⌦ idAoL ,(",⇡)[1/⇡]) = (ĥ ⌦ idAoL ,(",⇡)[1/⇡]) � f .

However, this is false as can be seen from the following example, where we
take A = F[z]. We choose an element a 2 `[[z]] ⇢ `((z)) such that a /2 `(z), and we
let 1 =

⇣
1 ⇡�1a
0 ⇡�1

⌘
. Set ML = Lhzi�2, M̂ = 1 · oL [[z]]�2 and f = idoL [[z]][1/⇡]

2 .
Then 1�1 =

� 1 �a
0 ⇡

�
2 oL [[z]]2⇥2 and

oL [[z]]�2 = 1 ·1�1oL [[z]]�2 ⇢ M̂ ⇢ ⇡�1oL [[z]]�2 .

If there were a finite free AoL ,⇡ -moduleMwith (hL , ĥ) : F(M) ⇠�! (ML , M̂, f ),
then it had to satisfyM ⇠

= ML \ M̂ with hL and ĥ induced from the inclusions
ML \ M̂ ⇢ ML and ML \ M̂ ⇢ M̂ . So we may take directlyM := ML \ M̂ . It
satisfies oLhzi�2 ⇢M ⇢ ⇡�1oLhzi�2. We claim that, in fact, the first inclusion
is an equality. Namely let ( v

w ) =

⇣
⇡�1v0+v0

⇡�1w0+w0

⌘
2 M with v0, w0 2 `[z] and

v0, w0 2 oLhzi. Then 1�1 ( v
w ) =

⇣
⇡�1v0+v0�⇡�1aw0�aw0

w0+⇡w0

⌘
2 oL [[z]]�2. This

implies v0 = aw0 in `[[z]]. If w0 6= 0 we get a = v0/w0 2 `(z) in contradiction
to our assumption. So w0 = v0 = 0 and ( v

w ) 2 oLhzi�2. This proves our claim
thatM = oLhzi�2. We conclude that F(M) 6⇠= (ML , M̂, f ) and F is not an
equivalence of categories.

After this example the following result is even more surprising.

Corollary 5.5. Let ML be an analytic Anderson A(1)-motive over L . Then there
is an equivalence of categories

⇢
good models (M,↵) of ML in the
sense of Definitions 4.6 and 4.5

�

⇠

 !

8>><
>>:
pairs (M̂, f ) consisting of
• a local shtuka M̂ at " over oL , and
• an isomorphism in FMod(AoL ,(",⇡)[1/⇡])

f : ML ⌦ AoL ,(",⇡)[1/⇡]
⇠
�! M̂[1/⇡]

9>>=
>>;

(M,↵) 7�! (M,↵)⌦AoL ,⇡ AoL ,(",⇡) ,

where on the right-hand side a morphism of pairs �̂ : (M̂, f ) ⇠
�! (M̂ 0, f 0) is

defined to be an isomorphism of local shtukas �̂ : M̂ ⇠
�! M̂ 0 satisfying f 0 = �̂ � f .

Proof. Suppose that (M,↵) is a good model of ML . In the proof of 5.3 we have
seen that its completion ˆM := M ⌦AoL ,⇡ AoL ,(",⇡) is a local shtuka at ". The
F-equivariant isomorphism ↵ : ML

⇠
�!M[1/⇡] of AoL ,⇡ [1/⇡]-modules induces
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the isomorphism

f := ↵ ⌦ idAoL ,(",⇡)[1/⇡] : ML ⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡]

⇠
�!

ˆM⌦AoL ,(",⇡) AoL ,(",⇡)[1/⇡]

which is F-equivariant, and satisfies M = f (ML) \ ˆM, because AoL ,⇡ =

AoL ,⇡ [1/⇡] \ AoL ,(",⇡).
To see that this functor is fully faithful let (M,↵) and (M0,↵0) be good mod-

els of ML and let �̂ : ( ˆM, f ) := (M,↵) ⌦AoL ,⇡ AoL ,(",⇡)
⇠
�! ( ˆM0, f 0) :=

(M0,↵0) ⌦AoL ,⇡ AoL ,(",⇡) be an isomorphism. This means f 0 = �̂ � f . Applying
M = f (ML)\ ˆM andM0 = f 0(ML)\ ˆM0 we see that �̂(M) =M0. Therefore
� := �̂|M :M ⇠

�!M0 is the desired isomorphism satisfying � ⌦ idAoL ,(",⇡) = �̂.
This implies ↵0 = � � ↵ and the F-equivariance of �, and hence � : (M,↵) ⇠�!
(M0,↵0).

To prove essential surjectivity, let a local shtuka M̂ together with an isomor-
phism f : ML ⌦AoL ,⇡ [1/⇡] AoL ,(",⇡)[1/⇡]

⇠
�! M̂[1/⇡] be given. It remains to

show that the (",⇡)AoL ,⇡ -adic completion ˆM :=M⌦AoL ,⇡ AoL ,(",⇡) of the good
modelM = ML \ f �1(M̂) gained in the proof of 5.3 gives back M̂ . Then we take
↵ as the canonical isomorphism id :M⌦AoL ,⇡ AoL ,⇡ [1/⇡]

⇠
�! ML . By construc-

tion ofM, the map f restricts to an embeddingM ,! M̂ , which in turn induces
an F-equivariant and AoL ,(",⇡)-linear map  := f |

ˆM :
ˆM! M̂ , which becomes

an isomorphism after inverting ⇡ . Our aim is to show that already the map  is an
isomorphism (M, id)⌦AoL ,⇡ AoL ,(",⇡)

⇠
�! (M̂, f ). According to Remark 5.4 we

have to use the Frobenius morphisms F
ˆM and FM̂ in an essential way.

We know thatM is finite free over oLhzi and that rkoL [[z]]( ˆM)= rkoL [[z]](M̂)=:

s. We fix an oL [[z]]-basis B (respectively, C) of ˆM (respectively, of M̂) and let
A = C[ ]B 2 oL [[z]]s⇥s be the matrix which describes  with respect toB and C.
Likewise, we let

T = B[F
ˆM]� ⇤B, T0 = C[FM̂ ]� ⇤C

be the matrices corresponding to F
ˆM and FM̂ , so that AT = T0� (A) by virtue of

the F-equivariance of  . In order to see that  is an isomorphism, we need to
show that det(A) is a unit in oL [[z]]. To begin with, an elementary application of
the Weierstraß Division Theorem for oL [[z]] ( [8, VII.3.8.5]) shows that the kernel
of the epimorphism oL [[z]] ! oL , z 7! ⇣ , is generated by z � ⇣ , so that the
latter is a prime element of oL [[z]]. Furthermore, recall that oL [[z]], being a regular
local ring, is factorial ( [20], 20.3). We know that ˆM is a local shtuka, so that
F

ˆM becomes an isomorphism after inverting z � ⇣ which means that det(T)�1

lies in oL [[z]][ 1
z�⇣ ]. Say we have a relation (z � ⇣ )e = det(T)u in oL [[z]], for

some e � 0 and some u 2 oL [[z]]. By a comparison of powers of z � ⇣ , we
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may assume that u is not divisible by z � ⇣ . In this equation there is only one
prime element of oL [[z]] occurring on both sides, which, by factoriality, implies
that u has to be a unit in oL [[z]]. Let (z � ⇣ )e

0

= det(T0)u0 be the corresponding
relation for the local shtuka M̂ , with a unit u0 2 oL [[z]]⇥ and some suitable e0 � 0.
Since ˆM ! M̂ becomes an isomorphism after inverting ⇡ , we see that det(A) 2
oL [[z]][1/⇡]

⇥. Note that the natural reduction-mod-z map oL [[z]]! oL , h 7! h(0),
induces an epimorphism of Abelian groups oL [[z]][ 1⇡ ]

⇥
! L⇥, so that the absolute

term � := det(A)(0) of det(A) lies in L⇥. By virtue of the relations derived above,
the equation det(A) det(T) = det(T0)� (det(A)) yields

det(A)u�1(z � ⇣ )e = u0�1(z � ⇣ )e
0

� (det(A))

which modulo z gives �q�1 =
u0(0)
u(0) (�⇣ )e�e

0 in L⇥. Suppose for a moment that
e = e0. In this case it follows at once that � is a unit in oL , so that det(A) is a
unit in oL [[z]]. Therefore it remains to verify that our assumption e = e0 is justi-
fied. This can be seen as follows: The reduction-mod-⇡ map oL [[z]] ! `[[z]] is
an epimorphism with kernel ⇡oL [[z]], and via applying the functor ·⌦oL [[z]] `[[z]] to
FM̂ : � ⇤M̂ ! M̂ we obtain a commutative diagram

� ⇤M̂ = M̂ ⌦oL [[z]],� oL [[z]] //

✏✏

M̂

✏✏
�̄ ⇤M̂/⇡ M̂ = M̂/⇡ M̂ ⌦`[[z]],�̄ `[[z]] // M̂/⇡ M̂

where in the upper row (respectively, the bottom row) both modules are finite free
of the same rank over oL [[z]] (respectively, over `[[z]]) and the arrow is given by FM̂
(respectively, by F̄ = FM̂ ⌦ id`[[z]]). The reduced matrix T0 2 `[[z]]

s⇥s describes
the map F̄ with respect to the `[[z]]-bases � ⇤C = �̄ ⇤ ¯C of �̄ ⇤M̂/⇡ M̂ and ¯C of
M̂/⇡ M̂ respectively, and from what we have seen before, we derive the relation
det(T0)u0 = ze0 , i.e. e0 = ordz(det(T0)), the latter being true since u0 2 `[[z]]⇥.
In particular we have det(T0) 2 `[[z]] � {0}. A similar observation for the local
shtuka ˆM instead of M̂ shows that e = ordz(det(T)). Let C = coker(F

ˆM) and
C 0 = coker(FM̂). Multiplication with the matrixT0 gives rise to a finite presentation
`[[z]]s ! `[[z]]s ! C 0/⇡C 0 ! 0. Taking determinants in an equation of the
form S1T0S2 = Diag(a1, ..., ad , 0, 0, ..., 0), where S1,S2 2 Gls(`[[z]]) are suitable
matrices such that a1, ..., ad 2 `[[z]]� {0} are the elementary divisors of T0 (see [7],
VII.4.5.1), yields that necessarily d = s, so that C 0/⇡C 0 is a torsion `[[z]]-module
and

C 0/⇡C 0 ⇠= `[[z]]/a1`[[z]]� ...� `[[z]]/as`[[z]] ⇠= `n1 � ...� `ns

where n j = ordz(a j ) and
P

j n j = e0, i.e. e0 = ordz(det(T0)) = rk`(C 0/⇡C 0) =

rkoL (C 0), the latter equation being valid since C 0/⇡C 0 ⇠= C 0 ⌦oL [[z]] `[[z]]. Finally,
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imitating this argument for the local shtuka ˆM yields that e = ordz(det(T)) =

rk`(C/⇡C) = rkoL (C). So it remains to show that rkoL (C) = rkoL (C 0). Indeed, we
know that  :

ˆM! M̂ gives back f in the generic fiber, which means that  is an
isomorphism after inverting ⇡ . Therefore, inverting ⇡ in the commutative diagram
with exact rows

0 // � ⇤( ˆM) //

� ⇤ 

✏✏

ˆM //

 

✏✏

C //

✏✏

0

0 // � ⇤M̂ // M̂ // C 0 // 0

exhibits (� ⇤ )[1/⇡] = � ⇤( [1/⇡]) and  [1/⇡] as oL [[z]][1/⇡]-linear isomor-
phisms, so that the Snake Lemma yields C 0[1/⇡]

⇠
= C[1/⇡], and we obtain

rkoL (C 0) = dimL(C 0[1/⇡]) = dimL(C[1/⇡]) = rkoL (C), as desired.

6. The reduction criterion for Anderson motives

Definition 6.1. (a) LetM 2 FMod(AoL ). Following Gardeyn [13],M is called
AoL -maximal if for everyN 2 FMod(AoL ) the canonical map

HomFMod(AoL )(N ,M)! HomFMod(AL )(N [1/⇡],M[1/⇡])

is surjective (and hence bijective).
(b) An object M0 2 FMod(AoL ,⇡ ) is called AoL ,⇡ -maximal if for every N 0 2
FMod(AoL ,⇡ ) the canonical map

HomFMod(AoL ,⇡ )(N 0,M0)! HomFMod(AoL ,⇡ [1/⇡])(N 0[1/⇡],M0[1/⇡])

is surjective (and hence bijective).
(c) Let M 2 FMod(AL). An objectM 2 FMod(AoL ) is called an AoL -maximal
model for M ifM[1/⇡]

⇠
= M inside FMod(AL) (i.e.M is a model for M) and if

M is AoL -maximal. Correspondingly, given M 0 2 FMod(AoL ,⇡ [1/⇡]), an object
M0 2 FMod(AoL ,⇡ ) is called an AoL ,⇡ -maximal model for M 0 ifM0[1/⇡]

⇠
= M 0

inside FMod(AoL ,⇡ [1/⇡]) and ifM0 is AoL ,⇡ -maximal.
The existence of (AoL - and AoL ,⇡ -)maximal models has been established in

[13].

Proposition 6.2 ([13, Proposition 2.13]). Let M 2 FMod(AL). Then the follow-
ing assertions hold:

(i) M admits an AoL -maximal model, which is unique up to unique isomorphism;
(ii) If a modelM 2 FMod(AoL ) of M is good in the weak sense of Definition 4.5,

then it is AoL -maximal.

The next proposition is a variant of Gardeyn’s theory of maximal models.
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Proposition 6.3. The following assertions hold:

(i) Every M 2 FMod(AoL ,⇡ [1/⇡]) admits a maximal model, which is unique up
to unique isomorphism;

(ii) If M 2 FMod(AL) is given and if M 2 FMod(AoL ) is an AoL -maximal
model of M thenM⌦AoL AoL ,⇡ 2 FMod(AoL ,⇡ ) is an AoL ,⇡ -maximal model
of M ⌦AL AoL ,⇡ [1/⇡] 2 FMod(AoL ,⇡ [1/⇡]);

(iii) Let M 2 FMod(AoL ,⇡ [1/⇡]) and letM 2 FMod(AoL ,⇡ ) be a model of M .
IfM is a good model in the weak sense of Definition 4.5, then it is AoL ,⇡ -
maximal.

Proof. For (i) (respectively (ii); respectively (iii)), see [13], 3.3(i) (respectively
3.4(i); respectively 2.13(ii)). Note that strictly speaking Gardeyn proves these state-
ments for the rings0(A(1),OA(1)) instead of AoL ,⇡ [1/⇡] and0(A(1),OA(1))\
AoL ,⇡ instead of AoL ,⇡ . His arguments carry over literally to our rings.

We may conclude:

Proposition 6.4. In the weak sense of Definition 4.5 a Frobenius AL -module M ad-
mits a good model over AoL if and only if M⌦AL AoL ,⇡ [1/⇡] 2 FMod(AoL ,⇡ [1/⇡])
admits a good model over AoL ,⇡ . If this is the case, the functor (M,↵) 7!
(M ⌦AoL AoL ,⇡ , ↵ ⌦ idAoL ,⇡ [1/⇡]) is an equivalence of categories between the
good models of M and the good models of M ⌦AL AoL ,⇡ [1/⇡].

Proof. First suppose that M admits a good modelM 2 FMod(AoL ). It follows
thatM is an AoL -maximal model of M . Furthermore, its imageM ⌦AoL AoL ,⇡

inside FMod(AoL ,⇡ ) is an AoL ,⇡ -maximal model of M ⌦AL AoL ,⇡ [1/⇡]. Since the
reduction ofM is canonically isomorphic to the reduction ofM ⌦AoL AoL ,⇡ by
Proposition 4.9, it follows that the latter is a good model.

Conversely, suppose that M ⌦AL AoL ,⇡ [1/⇡] admits a good model cM 2

FMod(AoL ,⇡ ). Necessarily cM is a maximal model by Proposition 6.3(iii). We
know that there is an AoL -maximal model M 2 FMod(AoL ) of M such that
M ⌦AoL AoL ,⇡

⇠
=

cM, and that the reduction of cM is canonically isomorphic to
the reduction ofM by Propositions 6.2, 6.3(ii) and 4.9. Since cM is a good model,
so isM. This proves the first statement and it also proves essential surjectivity of
the functor.

To prove full faithfulness let (M,↵) and (M0,↵0) be good models of M and
let �̂ : M ⌦AoL AoL ,⇡

⇠
�!M0 ⌦AoL AoL ,⇡ be an isomorphism in FMod(AoL ,⇡ )

satisfying ↵0 ⌦ id = �̂ � (↵⌦ id). Since AoL = AL \ AoL ,⇡ inside AoL ,⇡ [1/⇡], we
can recoverM asM = ↵(M) \M⌦AoL AoL ,⇡ . This implies �̂(M) = M0 and
� := �̂|M is the desired isomorphism � :M ⇠

�!M with ↵0 = � �↵. This proves
full faithfulness.
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For Anderson A-motives Proposition 6.4 and Theorem 4.7 imply the following:

Corollary 6.5. Let M be an Anderson A-motive over L . Then in the strong sense of
Definition 4.6, M admits a good modelM if and only if the associated analytic An-
derson A(1)-motive M⌦AL AoL ,⇡ [1/⇡] admits a good modelM0. If this is the case,
the functor (M,↵) 7! (M⌦AoL AoL ,⇡ , ↵⌦ idAoL ,⇡ [1/⇡]) is an equivalence of cat-
egories between the good models of M and the good models of M⌦AL AoL ,⇡ [1/⇡].

This corollary together with Theorem 5.3 and Corollary 5.5 implies the follow-
ing criterion for good reduction of Anderson A-motives, which can be regarded as
an analog of the reduction criteria for Abelian varieties of Grothendieck [15, Propo-
sition IX.5.13] and de Jong [19, 2.5].

Corollary 6.6. Let M be an Anderson A-motive over L such that coker(FM) is
annihilated by Jd for some d. Then the following assertions are equivalent:

(i) M admits a good model (M,↵) in the strong sense of Definition 4.6, i.e. there
is an objectM 2 FMod(AoL ) such that coker(FM) is a finite free oL -module
and is annihilated by Jd , together with an isomorphism ↵ : M ⇠

�!M[1/⇡]

inside FMod(AL);
(ii) There is an effective local shtuka M̂ at " over oL such that coker(FM̂) is anni-

hilated by Jd , and an isomorphism M ⌦AL AoL ,(",⇡)[1/⇡]
⇠
= M̂[1/⇡] inside

FMod(AoL ,(",⇡)[1/⇡]).

Moreover, there is an equivalence of categories⇢
good models (M,↵) of M in the
sense of Definitions 4.6 and 4.5

�

⇠

 !

8>><
>>:
pairs (M̂, f ) consisting of
• a local shtuka M̂ at " over oL , and
• an isomorphism in FMod(AoL ,(",⇡)[1/⇡])

f : M ⌦AL AoL ,(",⇡)[1/⇡]
⇠
�! M̂[1/⇡]

9>>=
>>;

(M,↵) 7�! (M,↵)⌦AoL AoL ,(",⇡) ,

where on the right-hand side a morphism of pairs �̂ : (M̂, f ) ⇠
�! (M̂ 0, f 0) is

defined to be an isomorphism of local shtukas �̂ : M̂ ⇠
�! M̂ 0 satisfying f 0 =

�̂ � f .
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