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On the Hilbert function of lines union one non-reduced point

ENRICO CARLINI, MARIA VIRGINIA CATALISANO
AND ANTHONY V. GERAMITA

Abstract. In this paper we consider the problem of determining the Hilbert
function of schemes X ⇢ Pn which are the generic union of s lines and one m-
multiple point. We completely solve this problem for any s and m when n � 4.
When n = 3 we find several defective such schemes and conjecture that they are
the only ones. We verify this conjecture in several cases.

Mathematics Subject Classification (2010): 14N20 (primary); 14C20, 13H15
(secondary).

1. Introduction

If P is a point in Pn with corresponding ideal IP ⇢ R = k[x0, . . . , xn], where k is
algebraically closed of characteristic zero, the scheme supported on P and defined
by the ideal (IP)m is called an m-multiple point with support P . In a remarkable
paper [1] J. Alexander and A. Hirschowitz found the Hilbert function of a finite
union of 2-multiple points supported on a generic set of points in Pn (see also
[8] and [2] for simpler proofs). This result permitted Alexander and Hirschowitz
to solve the long open problem regarding the dimensions of the (higher) secant
varieties of the Veronese varieties (see [11, 15] for an expository discussion of this
important result). In a subsequent paper [7] Catalisano, Geramita and Gimigliano
showed that, in an analogous way (using the Lemma of Terracini) one can find
the dimensions of the (higher) secant varieties to Segre embeddings of products of
projective spaces, if one could calculate the Hilbert functions of certain unions of
reduced and non-reduced schemes supported on unions of generic linear spaces of
different dimensions (for more details see Theorem 1.1 in [7]). The study of such
schemes is one of the principal motivations for our work in this paper.

There is also other closely related research in the literature, e.g., some authors
have considered the problem of finding the Hilbert function of generic m-multiple
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points in P2 (see the survey [17] and [6, 14, 18]) as well as of generic m-multiple
points in Pn with n > 2 (see [9, 16]). Moreover, Hartshorne and Hirschowitz
considered the same problem for a generic union of (reduced) lines in Pn , with
n > 2. Recent results in this direction, and in the more general setting of Nagata’s
conjecture, are contained in [10] and [12].

In this paper we consider yet another variant of this family of problems: namely
the case in which the scheme X ⇢ Pn , with n � 3, is composed of s generic (re-
duced) lines and one generic m-multiple point. A simple parameter count leads one
to expect that the Hilbert function of such an X , denoted HF(X, ·), is

HF(X, d) = min
⇢✓

d + n
n

◆
,

✓
m + n � 1

n

◆
+ s(d + 1)

�
. (⇤)

If we let hp(X, ·) denote the Hilbert polynomial of X , then (⇤) is really saying that

HF(X, d) = min
�
hp(Pn, d), hp(X, d)

 
,

or equivalently

dim(IX )d = max
⇢✓

d + n
n

◆
�

✓
m + n � 1

n

◆
� s(d + 1), 0

�
.

Note that in this case we say that the Hilbert function of X is bipolynomial (see
also [3] for other examples of this).

We prove (⇤) for any s andm when n � 4 (see Theorem 3.2). When n = 3, the
situation is less clear. In particular, the “simple parameter count" no longer always
gives the actual Hilbert function (the precise statement is given in Theorem 4.2).
We conjecture that the parameter count fails (for n = 3) if and only if m = d and
1 < s  d. In these cases we show that dim(IX )d =

�d�s+2
2

�
.

ACKNOWLEDGEMENTS. The first and second authors wish to thank Queens Uni-
versity, in the person of the third author, for their kind hospitality during the prepa-
ration of this work.

2. Basic facts and notation

Since we will make use of Castelnuovo’s inequality several times, we recall it here
in a form more suited to our use (for notation and proof we refer to [1, Section 2]).
Definition 2.1. If X,Y are closed subschemes of Pn , we denote by ResY X the
scheme defined by the ideal (IX : IY ) and we call it the residual scheme of X with
respect to Y , we denote by TrY X ⇢ Y the schematic intersection X \ Y , and call it
the trace of X on Y . We also denote by X + Y the schematic union of X and Y .
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Lemma 2.2 (Castelnuovo’s inequality). Let d, � 2 N, with d � �, let Y ✓ Pn be
a smooth hypersurface of degree �, and let X ✓ Pn be a closed subscheme. Then

dim(IX,Pn )d  dim(IResY X,Pn )d�� + dim(ITrY X,Y )d .

Now an easy, but useful lemma.

Lemma 2.3. Let X ⇢ Pn .

(i) If X = X1+· · ·+Xs is the union of non-intersecting closed subschemes Xi , if
X 0

= X1+· · ·+Xs0 ⇢ X, where s0 < s , and ifHF(X, d) =

Ps
i=1 HF(Xi , d),

then

HF(X 0, d) =

s0X
i=1

HF(Xi , d).

(ii) If X = Y+mP is the union of a closed subscheme Y and onem-multiple point,
if X 0

= Y+m0P ⇢ X,wherem0 < m, and ifHF(X, d) = HF(Y, d)+
�m+n�1

n
�
,

then
HF(X 0, d) = HF(Y, d) +

✓
m0

+ n � 1
n

◆
.

(iii) If dim(IX )d = 0, then dim(IX 00)d = 0, for any subscheme X 00
� X .

Proof. (i)

HF(X, d) =

sX
i=1

HF(Xi , d) =

s0X
i=1

HF(Xi , d) +

sX
i=s0+1

HF(Xi , d)

� HF(X 0, d) +

sX
i=s0+1

HF(Xi , d) � HF(X, d).

Hence the inequalites are equalities, and we get the conclusion.
(ii) Since HF(X, d) = HF(Y, d) +

�m+n�1
n

�
, and IX = IY \ ImP , from the exact

sequence

0 �! R/IY \ ImP �! R/IY � R/ImP �! R/(IY + ImP) �! 0

we get that dim(R/(IY + ImP))d = 0 and HF(mP, d) =

�m+n�1
n

�
. It follows that

dim(R/(IY + Im0P))d = 0 and HF(m0P, d) =

�m0
+n�1
n

�
. Thus from the analogous

sequence for m0P we get

HF(X 0, d) = HF(Y, d) + HF(m0P, d) = HF(Y, d) +

✓
m0

+ n � 1
n

◆
.

(iii) Obvious.
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We now recall some basic notions contained in [4].

Definition 2.4. We say that C is a degenerate conic if C is the union of two inter-
secting lines L ,M. In this case we write C = L + M .

Definition 2.5. Let L and M be two intersecting lines in Pn (n � 3), let P = L\M ,
and let T ' P3 be a generic linear space containing the scheme L + M . We
call the scheme L + M + 2P|T a degenerate conic with an embedded point or a
3-dimensional sundial (see [13], or [4, Definition 3.7]).

Remark 2.6. A degenerate conic with an embedded point can be viewed either as
a degeneration of two generic lines, or as a degeneration of a scheme which is the
union of a degenerate conic and a simple generic point (see [4, Lemma 3.8 and
Remark 3.9]).

We refer the reader to [4, Theorem 4.4] for a proof of the following technical
result.

Theorem 2.7. Let n � 3 and let X ⇢ Pn be the union of s generic 3-dimensional
sundials and l generic lines. Then X has bipolynomial Hilbert function, that is,

HF(X, d) = min
⇢✓

d + n
n

◆
; (d + 1)(2s + l)

�
.

Equivalently, the following schemes have the expected Hilbert Function in degree
d:

W =

(bC1 + · · · +
bCs + P1 + · · · + Pr for t evenbC1 + · · · +
bCs + M + P1 + . . . Pr for t odd ,

T =

(bC1 + · · · +
bCs + M for t even and r > 0bC1 + · · · +
bCs+1 for t odd and r > 0,

where

t =

$�d+n
n
�

d + 1

%
, r =

✓
d + n
n

◆
� t (d + 1), s =

�
t
2

⌫
,

and the bCi ’s are degenerate conics with an embedded point, that is 3-dimensional
sundials, the Pi ’s are generic points, and M is a generic line, that is,

dim(IW )d = exp dim(IW )d =

✓
d + n
n

◆
� t (d + 1) � r = 0,

dim(IT )d = exp dim(IW )d = max
⇢✓

d + n
n

◆
� (t + 1)(d + 1); 0

�
= 0.
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3. The main theorem in Pn , for n � 4

In this section we will prove (see Theorem 3.2) that for n � 4, the ideal of the
scheme X ⇢ Pn consisting of s generic lines and a generic point of multiplicity
m has the expected dimension. We start with the following proposition, which, for
m  d, is equivalent to Theorem 3.2.

Proposition 3.1. Let n, d,m 2 N, with n � 4 and m  d. Let

e =

$�d+n
n
�
�

�m+n�1
n

�
d + 1

%
, r =

✓
d + n
n

◆
�

✓
m + n � 1

n

◆
� e(d + 1).

The ideal of the scheme X ⇢ Pn consisting of e generic lines L1, . . . , Le and
together with r generic points P1, . . . , Pr lying on a generic line L , together with a
generic point P of multiplicity m, has the expected dimension, that is,

dim(IX )d =

✓
d + n
n

◆
�

✓
m + n � 1

n

◆
� e(d + 1) � r = 0.

Proof. We will prove the proposition by induction on d � m.
Let d = m. Since for d = m any form of degree d in IX represents a cone with

P as its vertex, it follows that

dim(IX )d = dim(IW )d ,

where W ⇢ Pn�1 consists of e generic lines and r generic points lying on a line.
Since for d = m we have

�d+n
n
�
�

�m+n�1
n

�
=

�d+n�1
n�1

�
, we get

e =

$�d+n�1
n�1

�
d + 1

%
, r =

✓
d + n � 1
n � 1

◆
� e(d + 1).

So by [13, Theorem 0.2] we get

dim(IW )d =

✓
d + n � 1
n � 1

◆
� e(d + 1) � r = 0,

and we are done for m = d.
Assume m < d. Let

e0 =

$�d�1+n
n

�
�

�m+n�1
n

�
� r

d

%
,

r 0

=

✓
d � 1+ n

n

◆
�

✓
m + n � 1

n

◆
� r � e0d.
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Since
�d�1+n

n
�
�

�m+n�1
n

�
� r � 0, we have e0 � 0 (for a proof of this inequality

see [5, Lemma 5.1 (i)], a preliminary version on-line of the present paper).
Notice that e � e0 � 2r 0

� 0 (this inequality is treated in [5, Lemma 5.1 (ii)]).
Using this inequality we construct a scheme Y obtained from X by specializing
some lines and by degenerating other pairs of lines into a hyperplane H ' Pn�1.

More precisely, we specialize e � e0 � 2r 0 lines into H and we degenerate r 0

pairs of lines in order to obtain the following specialization of X :
Y =

bC1+· · ·+
bCr 0 +M1+· · ·+Me�e0�2r 0 + L1+· · ·+ Le0 +mP+ P1+· · ·+ Pr ;

here the Mi ⇢ H are generic lines and the bCi ⇢ Hi ' P3 are 3-dimensional
sundials such that bCi is the union of a degenerate conic Ci lying on H and a double
point 2Qi |Hi 6⇢ H .

So we have
ResH Y = Q1 + · · · + Qr 0 + L1 + · · · + Le0 + mP + P1 + · · · + Pr ⇢ Pn,

TrH Y = C1 + · · · + Cr 0 + M1 + · · · + Me�e0�2r 0 + T1 + · · · + Te0 ⇢ H ' Pn�1,
where Ti = Li \ H and the Ti are generic points.

Since e0 � r 0 (this inequality is proved in [5, Lemma 5.1 (iii)]), and r 0


d � 1, by Remark 2.6, Lemma 2.3 and Theorem 2.7, we get that the dimension of
dim(ITrH Y )d is as expected, that is,

dim(ITrH Y )d =

✓
d + n � 1
n � 1

◆
� r 0(2d + 1) � (e � e0 � 2r 0)(d + 1) � e0

=

✓
d + n � 1
n � 1

◆
� (e � e0)(d + 1) + r 0

� e0

=

✓
d + n � 1
n � 1

◆
� e(d + 1) +

✓
d � 1+ n

n

◆
�

✓
m + n � 1

n

◆
� r

=

✓
d + n �1
n �1

◆
� e(d+1) +

✓
d �1+n

n

◆
�

✓
d + n
n

◆
+ e(d+1)= 0.

Now we compute the dimension of the residue. Let
ResH Y = Y1 + Y2,

where
Y1 = Q1 + · · · + Qr 0 + L1 + · · · + Le0 + mP,

Y2 = P1 + · · · + Pr ⇢ L .

By the inductive hypothesis and since r  d we have

dim(IY1)d�1 =

✓
d � 1+ n

n

◆
� r 0

� e0d �

✓
m + n � 1

n

◆

=

✓
d � 1+ n

n

◆
�

✓
d � 1+ n

n

◆
+

✓
m + n � 1

n

◆
+ r

+ e0d � e0d �

✓
m + n � 1

n

◆
= r,
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and
dim(IY1+L)d�1 = max{r � d; 0} = 0.

Hence, by [4, Lemma 3.5] we get

dim(IResH Y )d�1 = 0.

Now, since dim(ITrH Y )d = dim(IResH Y )d�1 = 0, by Castelnuovo’s Inequality (see
Lemma 2.2) the conclusion follows.

Theorem 3.2. Let n, d, s,m 2 N. For n � 4, the ideal of the scheme X ⇢ Pn
consisting of s generic lines L1, . . . , Ls and a generic point P of multiplicity m has
the expected dimension, that is,

dim(IX )d = max
⇢✓

d + n
n

◆
�

✓
m + n � 1

n

◆
� s(d + 1), 0

�
.

Proof. Obvious for m > d, so assume that m  d.
For

�d+n
n
�
�

�m+n�1
n

�
� s(d + 1) � 0 the conclusion follows from Proposition

3.1 and Lemma 2.3 (i).
If
�d+n
n
�
�

�m+n�1
n

�
� s(d + 1) < 0, let e, r be as in Proposition 3.1, hence

s(d + 1) >

✓
d + n
n

◆
�

✓
m + n � 1

n

◆
= e(d + 1) + r, 0  r < d + 1.

It follows that s > e. Now consider a subscheme Y ⇢ X consisting of the lines
L1, . . . , Le and r generic points lying on the line Le+1. Since, by Proposition 3.1,
dim(IY )d = 0, then dim(IX )d = 0 follows.

4. The main theorem in P3

Proposition 4.1. Let d 2 N, with d � 3. Let

e =

$�d+3
3
�
� 4

d + 1

%
, r =

✓
d + 3
3

◆
� 4� e(d + 1).

The ideal of the scheme X ⇢ P3 consisting of e generic lines L1, . . . , Le and
together with r generic points P1, . . . , Pr together with a generic double point sup-
ported on P , has the expected dimension, that is,

dim(IX )d =

✓
d + 3
3

◆
� 4� e(d + 1) � r = 0.
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Proof. We will prove the theorem by induction on d.
For d = 3 we have e = 4 and r = 0 so

X = 2P + L1 + · · · + L4.

Since the trace of X on the plane hP, Li i is formed by the line Li , one double point
and three simple points, then the surfaces defined by the forms of degree 3 in IX
have the plane hP, Li i as a fixed component. But the four planes hP, Li i cannot be
fixed components for a surface of degree 3. It follows that dim(IX )3 = 0.

For d = 4 we have e = 6 and r = 1 so

X = 2P + L1 + · · · + L6 + P1.

Now we degenerate the scheme X : first we degenerate the lines L1 and L2, so that
they become a 3-dimensional sundial bC , then we specialize the line L3 on the plane
H = hP, R, P1i, whereR is the double point of bC . Let

eX = 2P +
bC + L3 + · · · + L6 + P1

be the degenerate scheme.
The trace of eX on the plane H is

TrH eX = 2P|H + 2R|H + L3 + P1 + (L4 + L5 + L6) \ H ⇢ H ' P2,

hence
dim(ITrH eX )4 = dim(ITrH eX�L3)3.

Since (TrH eX � L3) is the union of two double points and four simple points, it
follows that dim(ITrH eX )4 = 0. So H is a fixed component for the forms of (IeX )4,
and we have

dim(IeX )4 = dim(IResH eX )3,

where ResH eX is the union of three lines, a point and a degenerate conic C , say
ResH eX = P + C + L4 + L5 + L6.

Now, if we degenerate P and C , we obtain again the sundial bC , so, by Theorem 2.7
we have

dim(IResH eX )3 = 0,
and from here we get dim(IX )4 = 0.

Now let d � 5. Let Q be a smooth quadric: we will specialize some of the
lines of the scheme X on Q. We consider three cases.

Case 1: d ⌘ 0 mod 3. Let d = 3h. Note that, since d � 5, then h � 2. We have:

e =

(h + 1)(3h + 2)
2

� 1, r = 3(h � 1) � 3,

X = 2P + L1 + ... + Le + P1 + .... + Pr .
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Let eX be the scheme obtained from X by specializing 2h + 1 lines in such a way
that the lines L1, . . . , L2h+1 become lines of the same ruling on Q, (the lines
L2h+2, . . . , Le remain generic lines, not lying on Q), and by specializing on Q
the points P1 and P2. We have

ResQ eX = 2P + L2h+2 + ... + Le + P3 + .... + Pr .

By the inductive hypothesis we have:

dim(IResQ eX )d�2 =

✓
3h + 1
3

◆
� 4� (e � 2h � 1)(3h � 1) � (r � 2)

=

h(3h + 1)(3h � 1)
2

� 4�

(h + 1)(3h � 2)
2

(3h � 1)

� (3h � 5) = 0.

Now

TrQ eX = L1 + · · · + L2h+1 + TrQ(L2h+2 + ... + Le) + P1 + P2.

Since the trace on Q of the (e�2h�1) lines L2h+2, . . . , Le consists of 2(e�2h�1)
generic points, we have that TrQ eX consists of (2h+1) lines of the same ruling, and
(2e�4h) generic points. Thinking of Q as P1⇥P1, we see that the forms of degree
3h in the ideal of TrQ eX are curves of type (3h � (2h + 1), 3h) = (h � 1, 3h) in
P1 ⇥ P1 passing through (2e � 4h) generic points. Hence

dim(ITrQ eX )3h = h(3h + 1) � 2e + 4h = 0.

So by Lemma 2.2 and by the semicontinuity of the Hilbert function we get
dim(IX )3h= 0.

Case 2: d ⌘ 2 mod 3. For the computation in this case, recall that we will think of
Q as P1 ⇥ P1 and that (see, for instance, [7, Section 2]) in the case we are treating
each of the double points on Q will give three independent condition to our forms.

Let d = 3h + 2. We have:

for h = 1 : d = 5 ; e = 8 ; r = 4 ;

for h = 2 : d = 8 ; e = 17 ; r = 8 ;

for h � 3 : d = 3h + 2 ; e =

3(h + 1)(h + 2)
2

; r = h � 3 .

For h = 1, we have

X = 2P + L1 + · · · + L8 + P1 + · · · + P4.

Specialize the scheme X in such a way that the lines L1, . . . , L4 become lines of
the same ruling on Q, and the points P and P1 become points on Q. We get

ResQ eX = P + L5 + · · · + L8 + P2 + · · · + P4,
TrQ eX = 2P|Q + L1 + · · · + L4 + TrQ(L5 + ... + L8) + P1,
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and we easily get

dim(IResQ eX )3 = 20� 1� 16� 3 = 0,

dim(ITrQ eX )5 = 12� 3� 8� 1 = 0.

For h = 2, we have

X = 2P + L1 + · · · + L17 + P1 + · · · + P8.

We specialize the scheme X so that the lines L1, . . . , L6 become lines of the same
ruling on Q, and the points P , P1 and P2 become points on Q. We get

ResQ eX = P + L7 + · · · + L17 + P3 + · · · + P8,
TrQ eX = 2P|Q + L1 + · · · + L6 + TrQ(L7 + ... + L17) + P1 + P2,

and we have
dim(IResQ eX )6 = 84� 1� 77� 6 = 0,

dim(ITrQ eX )8 = 27� 3� 22� 2 = 0.

For h � 3, we have

X = 2P + L1 + · · · + Le + P1 + · · · + Ph�3.

Now we degenerate the lines L1 and L2, so that they become a 3-dimensional sun-
dial bC = C + 2R, where C is a degenerate conic and 2R is a double point. Then
we specialize the points R, P , P1 . . . Ph�3 so that they become points on Q, and
the lines L3, . . . , L2h+4 so that they become lines of the same ruling on Q. Let eX
be the specialized scheme. We have

ResQ eX = P + C + L2h+5 + · · · + Le,

and, by Remark 2.6, we get

dim(IResQ eX )3h =

✓
3h + 3
3

◆
� 2(3h + 1) � (e � 2h � 4)(3h + 1) = 0.

Moreover

TrQ eX = 2P|Q + 2R|Q + L3 + · · · + L2h+4 + TrQ(L2h+5 + ... + Le)
+ P1 + · · · + Ph�3,

and we get

dim(ITrQ eX )3h+2 = (h+ 1)(3h+ 3)� 3� 3� 2� 2(e� 2h� 5+ 1)� (h� 3) = 0.

So by Lemma 2.2 and by the semicontinuity of the Hilbert function we get
dim(IX )3h+2 = 0.
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Case 3: d ⌘ 1 mod 3. Let d = 3h + 1. Note that h � 2. We have

e =

(h + 1)(3h + 4)
2

� 1 , r = 3h � 2.

We specialize the scheme X in such a way that the lines L1, . . . , L2h+1 become
lines of the same ruling on Q, and the points P and P1, . . . , P2h�1 become points
on Q. Let eX be the specialized scheme. So

ResQ eX = P + L2h+2 + ... + Le + P2h + .... + P3h�2,

and by [13, Theorem 0.1] we have

dim(IResQ eX )3h�1 =

✓
3h + 2
3

◆
� 1� 3h(e � 2h � 1) � (h � 1)

=

h(3h + 2)(3h + 1)
2

� 1�

9h2(h + 1)
2

� h + 1 = 0.

The trace of eX on Q consists of the (2h+1) lines of the same ruling L1, . . . , L2h+1,
the double point P , the simple points P1, . . . , P2h�1, and the trace of the lines
L2h+2, . . . , Le. As usual, thinking of Q as P1⇥P1, we see that the forms of degree
3h + 1 in the ideal of TrQ eX are curves of type ((3h + 1) � (2h + 1), 3h + 1) =

(h, 3h+1) in P1⇥P1. Hence, since it is easy to prove that the double point P gives
3 independent conditions to our forms (see, for instance, [7, Section 2]), we have

dim(ITrQ eX )3h+1 = (h + 1)(3h + 2) � 3� (2h � 1) � 2(e � 2h � 1) = 0.

So also in this case, by Lemma 2.2 and by the semicontinuity of the Hilbert function,
we get dim(IX )3h+1 = 0.

Theorem 4.2. Let d, s,m 2 N, with d � 1. Let X ⇢ P3 be the scheme consisting
of s � 1 generic lines and a generic point P of multiplicity m � 1.

(i) The ideal of X ⇢ P3 has the expected dimension, that is,

dim(IX )d = exp dim(IX )d = max
⇢✓

d + 3
3

◆
�

✓
m + 2
3

◆
� s(d + 1), 0

�
,

(a) for m > d, any s;
(b) for m = d and s > d, or for m = d and s = 1;
(c) for m = d � 1, any s;
(d) for m < d � 1 and 1  s  m + 2;
(e) for m = 2, d � 3, any s;
(f) for m = 1, any d, and any s.
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(ii) For m = d � 2 and 2  s  d, the dimension of (IX )d is

dim(IX )d =

✓
d � s + 2

2

◆
6= exp dim(IX )d ,

and the defect is

� =

8>>>><
>>>>:

✓
s
2

◆
for s 

d+2
2

✓
d � s + 2

2

◆
for

d + 2
2

 s  d.

Proof. (i) (a) Obvious. We have dim(IX )d = exp dim(IX )d = 0.

(i) (b) and (ii). If m = d any form of degree d in IX represents a cone whose vertex
contains P . Hence

dim(IX )d = dim(IX 0)d ,

where X 0
⇢ P2 is the projection of X from P in a P2 and it is a scheme consisting

of s generic lines. Hence, for s > d, we immediately get dim(IX )d = 0.
For s  d we have

dim(IX )d =

✓
d � s + 2

2

◆
.

Since in this case the expected dimension of (IX )d is

exp dim(IX )d = max
⇢✓

d + 3
3

◆
�

✓
d + 2
3

◆
� s(d + 1), 0

�

=

8><
>:

✓
d + 2
2

◆
� s(d + 1) for s 

d + 2
2

0 for s �

d + 2
2

,

then for s = 1 we have dim(IX )d = exp dim(IX )d , and so we are done with (i)(b).
For 2  s  d the defect is

dim(IX )d � exp dim(IX )d =

8>><
>>:

✓
s
2

◆
for s 

d + 2
2✓

d � s + 2
2

◆
for s �

d + 2
2

,

so we have proved (ii).
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(i) (c). By induction on d. Obvious for d = 1, let d > 1. Let

X = L1 + · · · + Ls + mP

be our scheme, where the Li are generic lines. Since d = m + 1, we have that

exp dim(IX )d = max
⇢✓

d + 3
3

◆
�

✓
d + 1
3

◆
� s(d + 1); 0

�

= max
n
(d + 1)2 � s(d + 1); 0

o
,

hence it is enough to prove that (IX )d has the expected dimension for s = d + 1,
and the conclusion will follows from Lemma 2.3.

Let H ' P2 be the plane though P and L1. The trace of X on H is

TrH X = mP|H + L1 + R2 + · · · + Rd+1,

where Ri = Li \ H , and the Ri are d generic points on H .
Since L1 is a fixed component for the curves defined by the forms of ITrH X ,

we have

dim(ITrH X )d = dim(ITrH X�L1)d�1 =

✓
d + 1
2

◆
�

✓
m + 1
2

◆
� d

=

✓
d + 1
2

◆
�

✓
d
2

◆
� d = 0.

It follows that H is a fixed component for the forms of (IX )d , so

dim(IX )d = dim(IResH X )d�1

where

ResH X = (m � 1)P + L2 + · · · + Ls = (d � 2)P + L2 + · · · + Ld+1.

By the inductive hypothesis we get

dim(IResH X )d�1 =

✓
d + 2
3

◆
�

✓
d
3

◆
� d2 = 0,

and we are done with (i) (c).
(i) (d). Since for m = d � 1, and s = m + 2 by (i) (c) we have

dim(IX )d =

✓
d + 3
3

◆
�

✓
m + 2
3

◆
� s(d + 1),

by Lemma 2.3 (i) and (ii) we get the conclusion.
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(i)(e). Let m = 2 and d � 3. We have to prove that

dim(IX )d = exp dim(IX )d = max
⇢✓

d + 3
3

◆
� 4� s(d + 1), 0

�
.

If
�d+3
3
�
� 4� s(d + 1) � 0, let

e =

$�d+3
3
�
� 4

d + 1

%
, r =

✓
d + 3
3

◆
� 4� e(d + 1),

and let P1, . . . , Pr be generic points.
By Proposition 4.1 we know that for s = e

dim(IX+P1+···+Pr )d = 0,

hence for s = e we have

dim(IX )d = r = exp dim(IX )d

and now the conclusion follows from Lemma 2.3 (i). Now let
✓
d + 3
3

◆
� 4� s(d + 1) < 0.

In this case we have

s >

�d+3
3
�
� 4

(d + 1)
=

8>>>>>><
>>>>>>:

(h + 1)(3h + 2)
2

�

4
3h + 1

for d = 3h

(h + 1)(3h + 4)
2

�

4
3h + 2

for d = 3h + 1

3(h + 1)(h + 2)
2

+

h � 3
3h + 3

for d = 3h + 2,

that is,

s �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(h + 1)(3h + 2)
2

for d = 3h;

(h + 1)(3h + 4)
2

for d = 3h + 1

9 for d = 5

18 for d = 8

3(h + 1)(h + 2)
2

+ 1 for d = 3h + 2, h � 3.
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Since

t =

&�d+3
3
�

d + 1

'
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(h + 1)(3h + 2)
2

for d = 3h;

(h + 1)(3h + 4)
2

for d = 3h + 1

10 for d = 5

19 for d = 8

3(h + 1)(h + 2)
2

+ 1 for d = 3h + 2, h � 3

then, except for d = 5 and d = 8, by [13, Theorem 0.1] we immediately get
dim(IX )d = 0.

We remain with the cases d = 5; s = 9 and d = 8; s = 18. We omit the
proves of these cases.

(i) (f) immediately follows from [13, Theorem 0.1].
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