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A generalization of the Castelnuovo-de Franchis inequality

VÍCTOR GONZÁLEZ-ALONSO

Abstract. In this article we give a lower bound on h2,0 (X), where X is an
irregular compact Kähler (or smooth complex projective) variety, in terms of the
minimal rank of an element in the kernel of

 2 :

2̂
H0

⇣
X,�1X

⌘
! H0

⇣
X,�2X

⌘
.

As a consequence, we obtain a generalization to higher dimensions of the Castelnuovo-
de Franchis inequality for surfaces, improving some results of Lazarsfeld and
Popa and Lombardi for threefolds and fourfolds.

Mathematics Subject Classification (2010): 14J40 (primary); 32Q15 (sec-
ondary).

1. Introduction

In the classification of higher dimensional algebraic varieties, a first step can be
to decide whether the variety admits (or not) a fibration onto a variety of lower
dimension. If the answer is positive, then one can reduce the problem to the study
of the base and the fibres, which are of lower dimension and, somehow, easier than
the original variety. Therefore, it is interesting to have any kind of criteria to decide
the existence of fibrations whose total space is the given variety, and in particular,
it is useful to know conditions on the numerical invariants of the variety (e.g., its
Betti, Chern or Hodge numbers) implying that it is (or not) fibred.

A paradigmatical example is the classical Castelnuovo-de Franchis theorem,
which says that an irregular surface S admits a fibration onto a curve of genus
g � 2 if and only if there are two holomorphic 1-forms whose wedge is zero. This
theorem gives a numerical criterion in the spirit mentioned above: if the geometric
genus pg (S) and the iregularity q (S) of the surface satisfy

pg (S)  2q (S) � 4, (1.1)

then there exist two 1-forms wedging to zero, and therefore the variety is fibred.
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The Castelnuovo-de Franchis theorem suggests that, for an irregular variety,
its higher irrational pencils (fibrations analogous to surfaces fibred over curves
of genus g � 2) are closely related to some special property of the algebra of
holomorphic differential forms. Following this approach, Catanese [2] and Ran
[9] proved independently a Generalized Castelnuovo-de Franchis theorem. As a
consequence, one obtains that a non-fibred irregular variety X must verify

hk,0 (X) > k (q (X) � k) (1.2)

for every k = 1, . . . , dim X .
A different approach is followed by Green and Lazarsfeld in [4,5], where they

relate the same class of fibrations to the positive-dimensional components of some
cohomological support loci of the variety. This alternative characterization led to
a different generalization of the Castelnuovo-de Franchis inequality (1.1), obtained
by Pareschi and Popa in [8]. The same inequality and some new ones were proven
later by Lazarsfeld and Popa in [6], using a completely different technique: the
BGG complex. Using a similar construction (a BGG complex for the sheaves �p

X
of holomorphic p-forms), Lombardi obtained in [7] more inequalities involving the
Hodge numbers of varieties all whose 1-forms vanish at most at isolated points (a
much more restrictive hypothesis than the non-existence of fibrations).

While the BGG complex takes into account only the multiplicative structure
of the algebra �

d
p=0H

0 �X,�
p
X
�
of holomorphic forms, in this article we construct

a generalization (the Grassmannian BGG complex) that also captures some of the
additive structure. Unfortunately, we have not been able to relate the exactness
of our complex to the existence of fibrations, as it was done in [6] for the BGG
complex. However, we have been able to characterize the exactness of the shortest
case in terms of the kernel of  2 :

V2 H0
�
X,�1X

�
! H0

�
X,�2X

�
and, as a

byproduct, we can prove the following inequality, which generalizes (1.2) for k = 2
and improves some of the inequalities proven in [6] and [7]:

Theorem 1.1. Let X be an irregular variety without higher irrational pencils. Then

h2,0 (X) �

(�q(X)
2

�
if q (X)  2 dim X � 1

2 (dim X � 1) q (X) �

�2 dim X�1
2

�
otherwise.

(1.3)

Although the case q  2d � 1 was already proven by Causin and Pirola in [3], the
bound in the general case is, as far as the author is aware, completely new (at least
for dimension d � 4).
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2. Notation and preliminaries

In this section we set the basic notation and recall the main known results which
will be used along the article.

Throughout the paper, X will denote a complex smooth irregular projective (or
more generally, compact Kähler) variety of dimension d = dim X . For the sake
of brevity, we denote by V = H0

�
X,�1X

�
the space of holomorphic 1-forms on

X . The dimension of V is q = q (X), the irregularity of X , which is positive by
assumption. We also denote by h p,q = h p,q (X) = dimC Hq �X,�

p
X
�
the Hodge

numbers of X , as usual.
Let A = Alb (X) denote the Albanese torus of X , which is a q-dimensional

complex torus (projective if X is so), and a = aX : X �! A the Albanese mor-
phism of X .
Definition 2.1. An irregular variety X is said to be of maximal Albanese dimension
if dim a (X) = dim X i.e., if the Albanese morphism is generically finite. If further-
more a is not surjective, i.e. a (X) ( Alb (X), X is said to be of Albanese general
type. These definitions can be extended to non-smooth varieties considering any
desingularization.

Equivalently, a variety is of Albanese general type if it is of maximal Albanese
dimension and q (X) > dim X . For example, every irregular curve ( i.e. of genus
g � 1) is of maximal Albanese dimension, because the Albanese map is nothing
but the Abel-Jacobi map. Moreover, the curves of Albanese general type are exactly
the curves of genus g � 2.

For any n = 1, . . . , d, let

 n :

n̂
H0

⇣
X,�1X

⌘
! H0

�
X,�n

X
�

be the map induced by wedge product. Since a⇤
: H0

�
A,�1A

�
! H0

�
X,�1X

�
is

an isomorphism and H0
�
A,�n

A
�

⇠
= ^

nH0
�
A,�1A

�
, we can identify  n with the

pull-back a⇤
: H0

�
A,�n

A
�

! H0
�
X,�n

X
�
of n-forms by the Albanese morphism.

Because of this interpretation, the maps  n are very related to the geometry of X ,
and in particular, the existence of decomposable elements in ker n has very strong
consequences, as was shown independently by Ran and Catanese (see Theorem 2.3
below).

The case n = 2 has been studied by Causin and Pirola in [3], proving in
particular that  2 is injective for q  2d � 1, and also by Barja, Naranjo and Pirola
in [1], where the authors focus on the consequences of the existence of elements of
rank 2d (what they call generalized lagrangian forms) in the kernel of  2. Our aim
is to go further in the study of ker 2 in order to obtain new lower-bounds on h2,0.

We will now introduce some basic notions on fibrations of irregular varieties,
as well as the main characterization of some of them in terms of the algebra of
holomorphic forms. Recall that a fibration is a surjective morphism f : X ! Y
of varieties which has connected fibres. When dealing with irregular varieties, one
can consider some special classes of fibrations:
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Definition 2.2. A fibration f : X �! Y is called irregular if Y is irregular. If
furthermore Y is of Albanese general type, then f is said to be a higher irrational
pencil (on X).

Note that irregular fibrations (respectively higher irrational pencils) are higher-
dimensional analogues of fibrations over non-rational curves (respectively curves
of genus g � 2).

The existence of higher irrational pencils is closely related to the maps  n , as
the following theorem shows:

Theorem 2.3 ([2, Theorem1.14], [9, Proposition II.1]). If w1,...,wn 2H0(X,�1X)
are linearly independent 1-forms such that  n (w1 ^ · · · ^ wn) = 0, then there
exists a higher irrational pencil f : X �! Y over a normal variety Y of dimension
dimY < n and such that wi 2 f ⇤H0

�
Y,�1Y

�
.

Because of this theorem, we will deal with linear subspaces of V=H0(X,�1X ),
hence with Grassmannian varieties. For any positive integer k, we will denote by
Gk = Gr (k, V ) the Grassmannian of k-dimensional subspaces of V . Recall that
Gk is naturally a subvariety of the projective space Pk = P

⇣Vk V
⌘
via the Plücker

embedding.
In general, if E is any vector space and e 2 E is a non-zero vector, we denote

by [e] the corresponding point in P (E). With this notation, the Plücker embedding
maps the subspace spanned by v1, . . . , vk 2 V to the point [v1 ^ · · · ^ vk] 2 Pk .

We will also use symmetric powers of vector spaces and vector bundles. If
E is a vector space (or a vector bundle), we denote by 6r E its r-th symmetric
power, which is a quotient of E⌦r . We denote elements in6r E using multiplicative
notation, so that if e1, . . . , er 2 E are arbitrary elements, we denote by e1 · · · er 2

6r E the image of e1 ⌦ · · · ⌦ er , and by er1 the image of e
⌦r
1 = e1⌦

r
· · · ⌦e1.

Finally, we will also work with secant varieties of Gk inside Pk . In general,
if X ⇢ P (E) is any projective variety, and r is any positive integer, we denote by
Secr (X) ✓ P (E) the r-th secant variety of X i.e., the closure of the union of the
(r � 1)-planes spanned by r independent points in X . In particular, Sec1 (X) = X
and Sec2 (X) is the usual secant variety of X . More explicitly, Secr (X) is the
closure of the set

n
[e1 + · · · + er ] | [e1] , . . . , [er ] 2 X

o
.

3. The Grassmannian BGG complex

This section is devoted to explaining the construction of our main tool, which we
call the Grassmannian BGG complex.
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Definition 3.1. Given two positive integers r and n  min{r, d}, and a linear sub-
space W ✓ V = H0

�
X,�1X

�
, let Cr,n,W be the complex

0 ! 6rW ! 6r�1W ⌦ H0
⇣
X,�1X

⌘
! · · · ! 6r�iW ⌦ H0

⇣
X,�i

X

⌘
! · · · ! 6r�nW ⌦ H0

�
X,�n

X
�
,
(3.1)

where the maps

µi : 6r�iW ⌦ H0
⇣
X,�i

X

⌘
�! 6r�i�1W ⌦ H0

⇣
X,�i+1

X

⌘

are given by

µi ((w1 · · ·wr�i ) ⌦ ↵) =

r�iX
j=1

�
w1 · · · ŵ j · · ·wr�i

�
⌦

�
w j ^ ↵

�
.

Since for every 1  n0 < n the complex Cr,n0,W is a truncation of Cr,n,W , we may
assume that n is the greatest possible, that is n = min{r, d}, and denote the complex
simply by Cr,W .

Lemma 3.2. The maps µi are well defined and make Cr,W a complex.

Proof. It is a straightforward computation.

Note that for a 1-dimensionalW , generated byw, we have6rW ⌘Chwr
i
⇠
= C,

and Cd,Chwi is nothing but the complex

0 �! H0 (X,OX )
^w
�! H0

⇣
X,�1X

⌘
^w
�! . . .

^w
�! H0 (X,!X ) ,

which is complex-conjugate to the derivative complex studied by Green and Lazars-
feld in [4].

Our first aim is to study the exactness of Cr,W . More precisely, we wish to ob-
tain conditions on W which guarantee that Cr,W is exact in some (say m) of its first
steps, ( i.e., Cr,m,W is exact), because this exactness will provide several inequal-
ities between the Hodge numbers h p,0 (X). Since we want to consider different
subspaces W , we “glue” all the complexes (3.1) with fixed k = dimW as follows.

Let G = Gk = Gr (k, V ) be the Grassmannian of k-planes in V , and let
S ✓ V ⌦OG be the tautological subbundle, the vector bundle of rank k whose fibre
over a point W 2 G is precisely the subspace W ✓ V .
Definition 3.3. For any r � 1, the r-th Grassmannian BGG complex (of rank k) of
X is the complex of vector bundles on Gk

Cr : 0 ! 6r S ! 6r�1S ⌦ H0
⇣
X,�1X

⌘
! · · · ! 6r�i S ⌦ H0

⇣
X,�i

X

⌘
! · · · ! 6r�nS ⌦ H0

�
X,�n

X
� (3.2)

where n = min{r, d} and over each point W 2 Gk it is given by (3.1).
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Remark 3.4. If k = 1 then G = P = P
�
H0

�
X,�1X

��
, S = OP (�1) and 6r S =

OP (�r). So taking k = 1 and r = d, the above complex is (the complex-conjugate
of) the BGG complex introduced by Lazarsfeld and Popa in [6]. In this way, the
Grassmannian BGG complexes can be seen as generalizations (hence the name),
with the new feature that they capture also the additive structure of the algebra of
holomorphic differential forms of X .

The interest of studying these complexes is that, whenever they are exact at
some point W 2 G, they provide some inequalities involving the Hodge numbers
h p,0 (X) = h0

�
X,�

p
X
�
. These inequalities are much stronger when the complex

is exact at every point, so that the cokernel sheaves of the maps µi are vector
bundles and a deeper study of them is feasible. For example, the proof of the
higher-dimensional Castelnuovo-de Franchis inequality given by Lazarsfeld and
Popa in [6] is based on the fact that the BGG sheaf (the cokernel of the last map of
Cd with k = 1) is an indecomposable vector bundle on Pq�1.

In this paper we deal with the case r = 2, which is “easy” to study more or
less by hand, and we obtain some inequalities for h2,0 (X) in any dimension for
non fibred irregular varieties, or more generally, for varieties which do not admit
a generalized Lagrangian form of low rank. These bounds coincide with those
obtained by Causin and Pirola in [3] for low irregularity, but are stronger than those
known in higher dimension for high irregularity.

However, for bigger values of r , the approach followed in this article becomes
too messy and a different tool to analyze the exactness of the complex Cr is needed.

4. Bounds on h2,0

In this section we consider the complex

C2 : 0 �! 62S �! S ⌦ H0
⇣
X,�1X

⌘
�! OG ⌦ H0

⇣
X,�2X

⌘
(4.1)

over a Grasmannian G = G2k = G (2k, V ) for some 1  k 
q
2 , and use it to

obtain lower bounds on h2,0 (X).
It turns out that the exactness of (4.1) at a general point is related to the ex-

istence of bivectors of small rank in the kernel of  2. We start by defining such a
notion.
Definition 4.1. An element v 2

V2 V is said to have rank 2k if it can be written as

v = v1 ^ v2 + . . . + v2k�1 ^ v2k

for some linearly independent elements v1, . . . , v2k 2 V .
Remark 4.2. If we represent v as an antisymmetric q ⇥ q matrix A with respect
to some fixed basis of V , then the rank of v coincides with the rank of A (which
is always even). In particular, any element v 2

V2 V has rank at most q, and



A GENERALIZATION OF THE CASTELNUOVO-DE FRANCHIS INEQUALITY 179

the elements of rank 2 are precisely the (non-zero) decomposable elements. More
generally, the set of bivectors of rank at most 2m is the cone over Secm (G2) ✓

P
⇣V2 V

⌘
.

We now present our main result.

Theorem 4.3. Fix a positive integer k 
q
2 . If every non-zero element in ker 2 has

rank bigger than 2k, then the complex (4.1) on G2k is generically exact.

Proof. If 2k � q � 1, the hypothesis implies that  2 is injective. In this case, it is
immediate that the complex (4.1) is exact at every point.

Therefore we can assume 2k < q � 1. By Remark 4.2, the hypothesis is
equivalent to P (ker 2) \ Seck (G2) = ;. In this case, the rational map
⇡ = P ( 2) : P

⇣V2 V
⌘

99K P
�
H0

�
X,�2X

��
restricts to a morphism

⇡k = ⇡
|Seck(G2) : Seck (G2) �! P

⇣
H0

⇣
X,�2X

⌘⌘

which is finite onto its image. Indeed, if it is not the case, then there exists a curve
C ✓ Seck (G2) such that ⇡ (C) = p is just a point. Such a curve is thus contained
in the linear space ⇡�1 (p), which contains P (ker 2) as a hyperplane, and hence C
should intersect it, contradicting the fact that ⇡k is defined everywhere in Seck (G2).

Now suppose that the complex (4.1) is not exact at a point W 2 G2k , i.e. the
complex of vector spaces

C2 : 0 �! 62W µ0
�! W ⌦ H0

⇣
X,�1X

⌘
µ1

�! H0
⇣
X,�2X

⌘
(4.2)

is not exact. Fix {w1, . . . , w2k} any base of W . Since µ0
�
wiw j

�
= wi ⌦ w j +

w j ⌦ wi for any i, j , and the elements wi ⌦ w j are linearly independent in
W ⌦ H0

�
X,�1X

�
, µ0 is clearly injective, identifying 62W with the subspace of

W ⌦ H0
�
X,�1X

�
spanned by {wi ⌦ wi }1ik [ {wi ⌦ w j + w j ⌦ wi }1i< jk .

Therefore, the lack of exactness must come from the central term, that is, there
exist ↵1, . . . ,↵2k 2 H0

�
X,�1X

�
such that

P2k
i=1wi ⌦ ↵i 62 imµ0 but

µ1

 
2kX
i=1

wi ⌦ ↵i

!
=  2

 
2kX
i=1

wi ^ ↵i

!
= 0.

Since every element of
V2W has rank at most 2k, the restriction of  2 to

V2W is
injective. This implies that

2kX
i=1

wi ^ ↵i 62

2̂
W,
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so, up to reordering the indices, we can assume ↵2k 62 W . Consider now the curve
C ✓ Seck (G2) parametrized by

� (t)=[(w1 � t↵2)^(w2 + t↵1)+· · ·+(w2k�1 � t↵2k)^(w2k + t↵2k�1)], t 2C.

Let p = � (0) = [w1 ^ w2 + . . . + w2k�1 ^ w2k]. The tangent vector to C at p (to
the branch of C given by the image of a neighbourhood of t = 0) is the class of

v =

2kX
i=1

wi ^ ↵i

in TP
⇣V2 V

⌘
,p=

⇣V2 V
⌘
/Chw1 ^w2+ . . .+w2k�1 ^w2ki. Since at least ↵2k 62W ,

this class is clearly non zero. However, its image by the differential or ⇡k is pre-
cisely the class of

 2

 
2kX
i=1

wi ^ ↵i

!
= 0

in TP
�
H0

�
X,�2X

��
,⇡(p) = H0

�
X,�2X

�
/Ch 2 (w1 ^ w2 + . . . + w2k�1 ^ w2k)i,

so ⇡k is ramified at p. Since the general point of P
⇣V2W

⌘
is of the form

[w1^w2+ . . .+w2k�1^w2k] for some basis ofW , we see that ⇡k ramifies at every
point in P

⇣V2W
⌘
. To finish the proof, note that Seck (G2) is the union of all the

P
⇣V2W

⌘
as W varies in G2k , so if (4.1) were not exact for a general (and hence

for any) W 2 G2k , then ⇡k would be ramified all over Seck (G2), contradicting the
fact that it is finite.

Now an easy dimension count gives our inequality:
Corollary 4.4. If there is no element of rank  2k  q in ker 2, then

h2,0 (X) � 2rq �

✓
2r + 1
2

◆

for all 1  r  k.
Proof. By Theorem 4.3, for every 1  r  k, the complex (4.1) over any G = G2r
is generically exact. Let W 2 G2r be such that

0 �! 62W �! W ⌦ H0
⇣
X,�1X

⌘
�! H0

⇣
X,�2X

⌘
is exact. The cokernel of the last map has dimension

dim H0
⇣
X,�2X

⌘
� dim

⇣
W ⌦ H0

⇣
X,�1X

⌘⌘
+ dim

⇣
62W

⌘

= h2,0 (X) � 2rq +

✓
2r + 1
2

◆
,

which must be non-negative, giving the desired inequality.
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Remark 4.5. The case k = 1 is the classical Castelnuovo-de Franchis inequality.
The case k = 2 has been already considered in [1] and [6], where the same inequal-
ity is obtained.

The existence of low-rank elements in the kernel of

 2 :

2̂
H0

⇣
X,�1X

⌘
! H0

⇣
X,�2X

⌘

can be related to the existence of higher irrational pencils on X , and this will give
us a more geometric hypothesis to apply Corollary 4.4.
Lemma 4.6. If v 2 ker 2 has rank 2k > 0, k < d, then there exists a higher
irrational pencil f : X ! Y with dimY  k.
Proof. The proof relies on Theorem 2.3. By this theorem, it suffices to find a de-
composable element v1 ^ · · · ^ vk+1 in the kernel of  k+1. Writing v = v1 ^ v2 +

. . . + v2k�1 ^ v2k with the vi linearly independent, it is immediate that the element
v1 ^ v3 ^ . . . ^ v2k�1 ^ v2k , obtained via wedging v with v1 ^ v3 ^ . . . ^ v2k�3,
maps to zero by  k+1 because  2 (v) = 0.

We immediately obtain the next result:
Corollary 4.7. If X does not admit any irrational pencil, then

h2,0 (X) � 2rq �

✓
2r + 1
2

◆

for all 1  r  min
�q
2 , dim X � 1

 
.

Proof. Simply observe that Lemma 4.6 allows us to apply Corollary 4.4 for any
k  dim X � 1.

Remark 4.8. If q  2d � 1, then Corollary 4.7 gives h2,0 (X) � 2rq �

�2r+1
2

�
for every 1  r 

q
2 . In this case, the right-hand-side of the inequality attains its

maximum for r =

⌅q
2
⇧
, giving

h2,0 (X) �

✓
q (X)

2

◆
,

as was already obtained by Causin and Pirola in [3].
However, if q � 2d, the maximum is attained for r = d � 1, and we obtain

h2,0 (X) � 2 (dim X � 1) q (X) �

✓
2 dim X � 1

2

◆
,

which coincides with the classical Castelnuovo-de Franchis inequality for surfaces
without irrational pencils. Moreover, this result says that for fixed dimension and
big irregularity, h2,0 behaves asymptotically at least as 2 (d � 1) q. For threefolds,
this bound coincides with the one proven (with slightly more restrictive hypothesis)
by Lombardi in [7], but improves his results in dimension four.
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