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Concentration Phenomena of Two-Vortex Solutions
in a Chern-Simons Model

CHIUN-CHUAN CHEN – CHANG-SHOU LIN – GUOFANG WANG

Abstract. By considering an Abelian Chern-Simons model, we are led to study the
existence of solutions of the Liouville equation with singularities on a flat torus.
A non-existence and degree counting for solutions are obtained. The former result
has an application in the Chern-Simons model.
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1. – Introduction

The Abelian Chern-Simons Higgs model introduced by Hong-Kim-Pac [18]
and Jackiw-Weinberg [19] has the Lagrangian density

(1.1) L(φ, A) = DαφDαφ + 1

4
κεαβγ Fαβ Aγ − V (|φ|)

for a complex scalar (Higgs) field φ coupled with a Chern-Simons gauge field
A on 2+1 dimensional Minkowski space R

1,2. Here Fαβ are the component of
the curvature F of A, Dαφ = ∂αφ − i Aαφ and κ is a coupling parameter. The
Euler-Lagrange equation for the Lagrangian action density L is the following
system

(1.2)

1

2
κεαβγ Fαβ = jγ = i(φDγ φ − φ̄Dγ φ),

Dα Dαφ = −∂V (φ)

∂φ
,

where jγ is the conserved matter current density. We are interested in time-
independent vortex solutions to these field equations (1.2). For such static
configuration, the energy becomes

(1.3) E(φ, A) =
∫

(|DAφ|2 − A2
0|φ|2 − κ A0 F12 + V (|φ|))d2x .
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Varying it w.r.t A0 yields

A0 = −κ

2

F12

|φ|2 ,

(the Gauss law) and E becomes

(1.4) E(φ, A) =
∫ (

|DAφ|2 + κ2

4

|F |2
|φ|2 + V (|φ|)

)
d2x .

With the choice V (φ|) = 1
κ2 |φ|2(1 − |φ|2)2, (1.4) may be rewritten as

(1.5)

E(φ, A) =
∫ (

|(D1 ± D2)φ|2 +
(

κ

|φ| F12 ∓ 2

κ
|φ|(|φ|2 − 1)

)2

± F12 + Im {∂jεjk φ̄Dkφ}
)

d2x .

For this model, see [18] and [19] or [17].
Note that E is gauge invariant in the sense that its value is unaffected under

changing (φ, A) to (eiϑφ, A + ∂ϑ) with real valued ϑ . Following Caffarelli-
Yang [5], we now want to study solutions that are periodic w.r.t. some lattice
on R

2. Such solutions can be interpreted as solutions on a fundamental domain

	 = {τω1 + τ2ω2, 0 < τ1, τ2 < 1}

for the lattice, where ω1 = a, ω2 = ib, and a, b ∈ R, satisfying the so-called ’t
Hooft boundary conditions. See [5], [15] and [24]. Then it leads us to consider
the following energy functional on a flat torus

(1.6) E(φ, A) =
∫

d2x

{
|(D1 + i D2)φ|2 +

(
κ

2

F12

|φ| − 1

κ
|φ|(|φ|2 − 1)

)2
}

+2π N .

The absolute minima of E therefore satisfy the Bogomolny type self-dual system

(1.7)
{

D1φ + i D2φ = 0

κ2 F12 = 2|φ|2(1 − |φ|2).

subject to the ’t Hooft boundary condition. Here φ (A resp.) can be interpreted
as a section (a connection resp.) of a line bundle over a compact flat torus of
degree N . N is the vortex number and the zero points of φ is referred as to
vortex points. There are two types of solutions of (1.7) as κ → 0: (a) |φ|2 → 1
and (b) |φ|2 → 0 in some suitable topology. For the first type solutions, we
refer to [5]. Recently, there has been some interest in finding the second type
solutions with given vortex points. See [16] and [24] for N = 1, 2 and [16],
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[23 for general situations. In this papaer we are interested in the second type
solutions, which resemble “non-topological” solutions in R

2.
Following an approach introduced by Taubes in [28], one can rewrite the

self-dual system (1.7) as a scalar equation. By introducing

φ(x) = exp

[
v(x)

2
+ i

N∑
j=1

arg(x − pj )

]
,

A1 + i A2 = −2i ∂̄ log φ,

we have

(1.8) 
v + 4

κ2
ev(ev − 1) − 4π

N∑
j=1

δpj = 0.

where {p1, . . . , pN } is the set of vortex points of φ, δpj is the Dirac measure
with singularity at pj and v(x) is a real-valued function.

We are interested in the asymptotic behaviors of the second type of solutions
of (1.8), i.e, v(x) → −∞, as κ → 0. Consider the simplest case N = 2 and
p = p1 = p2. Set G(x, p) to be the Green function defined by

(1.9)

{ −
G(x, p) = δp − 1,∫
	

G(x, p)dx = 0,

where for simplicity the volume of 	 is assumed to be 1. By letting

(1.10) u(x) = v(x) + 8πG(x, p),

equation (1.8) can be rewritten as

(1.11) 
u + 4

κ2
h(x)eu(h(x)eu(x) − 1) = 8π on 	,

where
h(x) = exp(−8πG(x, pj )).

Note that u(x) is a smooth solution of (1.11) and h(x) vanishes at p. Inter-
estingly, in [24], Nolasco and Tarantello found that the asymptotic behaviors
of solutions, as κ → 0, might be related to the existence of minimizers of the
following nonlinear functional J

(1.12) J (w) = 1

2

∫
	

| � w|2 − 8π log
(∫

	

hew

)
,

where w ∈ ◦
H 1 = {w ∈ H 1 | ∫

w = 0} and H 1 is the Sobolev space of
functions with L2-integrable first derivatives. More precisely, they constructed
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a sequence of solution uκ of (1.11) such that uκ = wκ + cκ with
∫
	 wκ = 0

and uκ + G(x, p) ≤ 0 on 	, satisfying
(a) J (wκ) → inf ◦

H1
J ,

(b) J attains its infimum on
◦
H 1 if and only if wκ is uniformly bounded on

◦
H 1,

(c) Either (1.12) attains its infimum on
◦
H 1, then wκ → w in Cl(	) ∀l ≥ 0,

with w ∈ ◦
H 1 is a minimizer of J ; or, the infimum of J can not be attained

on
◦
H 1 and

h(x)ewκ(x)∫
	 h(x)ewκ(x)

→ δq in the sense of measure

for some q ∈ 	 and q 
= p.

In the terminology of gauge field, the second alternative in (c) above means
that there exists a sequence of solutions φκ and Aκ such that the flux density
F12(φκ, Aκ) → 4πδq in the sense of measure. Obviously, the second alternative
in (c) indicates that the concentration phenomenon can ocuur in the Chern-
Simons-Higg model. We remark that for non-topological solutions in R

2, a
similar phenomenon also occurs. For more precise statements of the above
results, see [7]. Therefore, it is interesting to know if J attains its infimum or
not. One of our purposes of this paper is to give an answer to this question.

Theorem 1.1. The nonlinear function J cannot attain its infimum on
◦
H 1.

We note that the non-existence of minimizers of J is indeed involved with
a blow-up problem. By the Moser-Trudinger inequality, the nonlinear functional,

(1.13) Jρ(w) = 1

2

∫
	

| � w|2 − ρ log
(∫

	

h(x)ew

)

where h(x) ≥ 0 is a C1 function, is bounded from below as long as ρ ≤ 8π .
One way to look for a minimizer for J is to ask whether a sequence of
minimizers vj of J8π−εj converges or not as εj ↓ 0. It was proved that if vj

blows up at some point q, then h must satisfy −
 log h(q) ≥ 8π , that is, if h
satisfies

(1.14) 
 log h(q) + 8π > 0,

then the sequence of minimizers has a convergent subsequence. Now take our
example h(x) = exp −(4π N G(x, p)). It is easy to see that the blow-up point
q 
= p and


 log h(q) + 8π = 4π(2 − N ).

Hence if N < 2, then by (1.14), the infimum of J8π can be attained. On
the other hand, for N ≥ 2 (1.14) fails to guarantee the compactness of the
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sequence vj . In general, we may consider vj to be a critical point of Jρj with
limj→+∞ ρj = 8π , that is, vj satisfies

(1.15) 
v + ρ

(
h(x)ev∫

hev
− 1

)
= 0 in M

with ρ = ρj , where M is a compact Riemann surface and vol(M) = 1. Let

λj := max
M

vj − log
(∫

hevj

)
= vj (qj ) − log

(∫
hevj

)
.

Suppose λj → +∞. In [11], the first two authors proved that

(1.16) ρj − 8π = 2

h(qj )

(

 log h(qj ) + 8π − 2K (qj )

)
λj e

−λj + O(e−λj )

holds, where K is the Gaussian curvature. When M is a flat torus and h(x) =
exp −(4π N G(x, p)), we have


 log h(qj ) + 8π − 2K (qj ) = 4π(2 − N ).

Thus, if N 
= 2, we have the important information about the sign of ρj − 8π .
This sign condition is important when we come to the question of compactness
of solutions of (1.15) with ρ = 8π , and the computation of topological degree
of (1.15) for ρ = 8π or ρ > 8π . For the precise definition of topological
degree of (1.15) and related results, see [12] and references therein. Here for
convenience of the reader, we sketch it as follows. It is well-known now that
the set of solutions of equation (1.15) is compactness if ρ 
= 8πm. Hence, in
this case there is a constant C > 0 such that ‖u‖H1 < C for any solution u of
(1.15). Set

T (ρ) = ρ
−1
(

h(x)ev∫
hev

− 1
)

,

which acts on
◦
H 1. The topological degree dρ of (1.15) is defined to be the

Leray-Schauder degree

dρ := deg(I d + T (ρ), BR, 0),

for a large number R, where BR = {v ∈ ◦
H 1 | ‖v‖H1 ≤ R}. For ρ = 8πm, if

the solution space is compact, one can also define the topological degree.
Case N = 2 is again the most delicate situation because (1.16) could not

provide any useful information. Thus, we need to refine our previous estimate
in [11] to prove the following compactness result.
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Theorem 1.2. Suppose h(x) = exp(−8G(x, p)) and M = 	. Then there
exists a constant C such that

|v(x)| ≤ C for x ∈ 	

holds for any solution v of (1.15) with ρ = 8π . Furthermore, the topological degree
for (1.15) with ρ = 8π vanishes.

Theorem 1.1 and Theorem 1.2 strongly suggest that the nonlinear functional
J has no critical points. But so far, it remains an open problem.

Equation (1.15) arises naturally in many models in mathematical physics
and differential geometry. When M is the sphere and ρ = 8π , it is the Nirenberg
problem. In R

2, it also appears in the mean field limit of Euler flows, see [6],
[8] and [22]. Therefore, it is important to study equation (1.15) for a general
parameter ρ ∈ R. In [12], an existence theorem has been studied when h(x) is
strictly positive. In fact, the topological degree for (1.15) has been calculated
when h(x) > 0. Since h(x) vanishes somewhere in many applications, we are
lead naturally to consider that at each p with h(p) = 0, h(x) satisfies

(1.17) h(x) = |x − p|2αh1(x) in a neighborhood of p,

where α > 0 and h1(x) is C1 positive function. The number α is called the
vanishing order of h at p. In this paper, we consider the case ρ ∈ (−∞, 16π).

Theorem 1.3. Let h(x) be a continuous non-negative function on M and (1.17)

holds at any p where h(p) = 0. Suppose the vanishing order at any p with h(p) = 0
is no less than 1. Then for any ρ ∈ (−∞, 8π) ∪ (8π, 16π), there exists a constant
Cρ > 0 such that

|v(x)| ≤ Cρ in M

holds for any solution v of (1.15). Furthermore, the topological degree dρ of (1.15)

is given by

(1.18) dρ =
{

1ρ ∈ (−∞, 8π),

2g − 1 + mρ ∈ (8π, 16π),

where m is the number of {x ∈ M | h(x) = 0} and g is the genus of M.

We note that dρ vanishes for ρ ∈ (8π, 16π) only when g = 0 and N = 1.
Therefore, solutions of (1.15) exist for 8π < ρ < 16π when either M is sphere
and m ≥ 2 or the genus of M ≥ 1. The existence theorem for the latter has
been proved in [2].

In this article, we are also interested in the following related problem

(1.19)





v + ρ
ev∫
	 ev

= 4π

m∑
j=1

njδpj in 	,

v = 0 on ∂	.

where nj is a positive integer and 	 is a bounded smooth domain in R
2. It is

known that for the case m = 0, there exists no solution of (1.19) when 	 is a
ball and ρ ≥ 8π . In fact, it is proved the topological degree of (1.19) vanishes
when ρ ∈ (8π, ∞)\{8kπ | k = 1, 2, . . . } and 	 is simply connected, if m = 0.
In contrast, we have the following result when m ≥ 1.
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Theorem 1.4. Suppose that 	 is a bounded smooth domain in R
2 and m ≥ 1.

Then equation (1.19) always possesses a solution for ρ ∈ (8π, 16π).

The paper is organized as follows. In section 2, the non-existence of mini-
mizers of J is proved. In our proof, we will employ the geometric properties of
the Liouville equation, especially the theory of elliptic functions. The symmetry
property of minimizers also plays a crucial role in our proof. Without a surprise,
we use a variant of the method of moving planes to establish the symmetry
of solutions. Here we remark that the minimality is used in order to start the
process, which is different from the situation for the Dirichlet problem in R

n .
A refined estimate of (1.16) and also the part of, the uniform boundedness in
Theorem 1.2 are proved in Section 3, where again, the Weierstrass ℘ function
plays the essential role. In Section 4, we are going to prove the degree counting
formulas for Theorem 1.2, Theorem 1.3 and Theorem 1.4, where the results in
[11] and [12] are used.

Acknowledgements. Part of this paper was carried out while the third
author was visiting National Center of Theoretical Sciences in Taiwan and
Mathematics Department of Chung Cheng University. He would like to thank
them for warm hospitality. We also would like to thank the referee for his /or
her careful reading.

2. – Non-existence of minimizers

In this section, we are going to prove Theorem 1.1, that is, the non-existence
of minimizers of the functional J of (1.12). We first have to prove some
symmetry property of the Green function G(x, q). Recall that the fundamental
domain 	 of the torus is [− a

2 , a
2 ] × [− b

2 , b
2 ] and G(x, q) denotes the Green

function of −
. Let ω1 = a and ω2 = ib with i = √−1. In the following,
we also use a complex number z = x1 + i x2 to denote a point (x1, x2) in R

2.
When there is no ambiguity, we use G(x) to denote the Green function with
its pole at 0.

Lemma 2.1. Let z = x1 + i x2.
(a) If x2 is fixed, then G(z) is strictly increasing in x1 for − 1

2 a < x1 < 0 and strictly
decreasing in x1 for 0 < x1 < 1

2 a. If x1 is fixed, then G(z) is strictly increasing
in x2 for − 1

2 b < x2 < 0 and strictly decreasing in x2 for 0 < x2 < 1
2 b.

Moreover, G(z) is symmetric with respect to the axis x1 = 0 and the axis
x2 = 0.

(b) G(z) has only three critical points 1
2 (ω1 + ω2),

1
2ω1 and 1

2ω2. All of them are
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non-degenerate. Moreover, 1
2 (ω1 + ω2) is a minimum point, and 1

2ω1 and 1
2ω2 are

saddle points.

Proof. Let z∗ be the reflection point of z with respect to the axis x1 = 0
and

G∗(z) = G(z∗).

Then G∗ is a Green function of −
 also. By the uniqueness of Green’s
function, we have G∗ = G. Hence G is symmetric with respect to the axis
x1 = 0. The same argument implies that G is symmetric with respect to the
line x1 = m a

2 , for any integer m.
Consider Gx1 = ∂G

∂x1
in R

2. Gx1 is a harmonic function for 0 ≤ x1 ≤ a
2

with singularities at mω2, where m is an integer. By the symmetry of G, we
have Gx1 = 0 on axes x1 = 0 and x1 = a

2 except at the singularities.
We claim that

Gx1 < 0 for 0 < x1 <
a

2
.

If this is not true, there exists a global maximum point y = y1 + iy2 with
0 < y1 < a

2 such that Gx1(y) > 0. Since lim infx→0,x1≥0 Gx1(z) ≤ 0, this
contradicts the maximum principle.

A similar argument can be applied to show that Gx2 < 0 for − b
2 < x2 < 0.

Therefore by the symmetry of G, in the fundamental domain the only critical
points of G are ω1+ω2

2 , ω1
2 and ω2

2 .
To show that the Hessian of G at a critical point is not degenerate, we use

the Hopf boundary point lemma. Consider Gx1 in the domain 0 < x1 < a
2 . Then

Gx1(
ω1+ω2

2 ), Gx1(
ω2
2 ), Gx1(

ω1
2 ) are local maxima at the boundary. By the Hopf

boundary point lemma, Gx1x1(
ω1+ω2

2 )>0, Gx1x1(
ω2
2 )>0 and Gx1x1(

ω1
2 )<0. By

a similar argument, we have Gx2x2(
ω1+ω2

2 )>0, Gx2x2(
ω1
2 )>0 and Gx2x2(

ω2
2 )<0.

Since Gx1 = 0 on x1 = 1
2ω1, we have Gx1x2(

ω1+ω2
2 ) = 0 and Gx1x2(

ω2
2 ) = 0.

Similarly, we have Gx1x2(
ω1
2 ) = 0. From these facts, we conclude that G is

non-degenerate at critical points and the proof is complete.
Rewrite the functional J as

(2.1) J (v) = 1

2

∫
	

|∇v|2 + 8π

∫
	

v − 8π log
∫

	

e−8πGev

in H 1(	). It is clear that the Euler-Lagrange equation of J is

(2.2) −
v = 8π

(
e−8πGev∫
	 e−8πGev

− 1

)
.

By applying the symmetry property of the Green function, we obtain the fol-
lowing symmetry property of minimizers of J .
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Lemma 2.2. Suppose v is a minimizer of J in
◦
H 1. Then v satisfies

(2.3) v(x1, −x2) = v(x1, x2) and v(−x1, x2) = v(x1, x2).

Proof. We will apply a variant of the well known method of moving planes
to prove the desired results. First, we note that by using the comparison function
v + tφ, φ ∈ H 1, the minimizer v satisfies

(2.4)
∫

| � φ|2 − 8π

∫
e−8πGevφ2dx∫

e−8πGevdx
+ 8π

(∫
e−8πGevφdx∫
e−8πGevdx

)2

≥ 0

for any φ ∈ H 1. By using (2.4), we could prove Lemma 2.1.
In the following, we only give a proof of v(−x, y) = v(x, y), since the

argument for the other identity is the same.
Let 	± := {(x1, x2) ∈ [−ω1

2 ,
ω1
2 ] × [−ω2

2 ,
ω2
2 ] | ± x1 > 0}. For x ∈ 	+,

let x∗ = −x . We claim that one of the following alternatives holds: (a)
v(x) < v(x∗) for all x ∈ 	+; (b) v(x) > v(x∗) for all x ∈ 	+, and (c)
v(x) = v(x∗) for all x ∈ 	∗.

Assume by contradiction that the claim is not true. Namely, the following
two sets are both nonempty:

D+ = {x ∈ 	+ | v(x) > v(x∗)} and D− = {x ∈ 	+ | v(x) < v(x∗)}.

Set w(x) = v(x) − v(x∗). It is clear that w satisfies

(2.5) 
w(x) + 8πe−8πG(x)c(x)w = 8π(e−8πG(x∗) − e−8πG(x))ev(x∗)+c0 = 0,

where ec0 = (
∫
	 e−8πGev)−1 and c(x) = ev(x)+c0−ev(x∗)+c0

v(x)−v(x∗)
. The last equality in

(4.2) follows from the symmetry of G. Set D∗
− = {x∗ | x ∈ D−} ⊆ 	−. We

define a new function φ in 	 by

(2.6) φ(x) =



w(x), x ∈ D+,

c w(x), x ∈ D∗
−,

0, otherwise,

where c is a positive constant such that

(2.7)
∫

	

e−8πGev+c0φ(x)dx = 0.

Since 1 − e−w − w < 0 for all w > 0, it is easy to check that φ satisfies

(2.8) 
φ + 8πe−8πGev+c0φ




> 0, x ∈ D+
< 0, x ∈ D∗

−
= 0 otherwise.
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For instance, for x ∈ D+ we have

c(x) = ec0

(
ev(x) − ev(x∗)

v(x) − v(x∗)

)
= ev+c0(x)

1 − e−w

w
< ev(x)+c0,

which, by (2.5), implies that 
φ + 8πe−8πGev+c0φ > 0. By (2.8), we have

(2.9) −
∫

	

|∇φ|2 + 8π

∫
	

e−8πGev+c0φ2 > 0,

which yields a contradiction to (2.4). Therefore the claim is proved.
From the claim, to prove the Lemma we only need to exclude cases (a)

and (b). Now assume case (b) happens, i.e.,

(2.10) v(x) > v(x∗) for all x ∈ 	+.

Let λ ∈ (0,
ω1
2 ) and for x ∈ [λ, λ + ω1

2 ] × [−ω2
2 ,

ω2
2 ] set x∗

λ = 2λ − x . We
consider a family of blocks [−ω1

2 + λ,
ω1
2 + λ] × [−ω2

2 ,
ω2
2 ]. Let 	+

λ = [λ,
ω1
2 +

λ] × [−ω2
2 ,

ω2
2 ] and 	−

λ = [−ω1
2 + λ, λ] × [−ω2

2 ,
ω2
2 ]. Set vλ(x) = v(x∗

λ) and
define wλ = v(x) − vλ(x) for x ∈ 	+

λ . It is clear that ωλ satisfies
(2.11)


wλ(x) + 8πe−8πG(x)c(x)wλ = 8π(e−8πG(x∗
λ
) − e−8πG(x))evλ(x), x ∈ 	+

λ ,

where c(x) = ev(x)−evλ(x)

v(x)−vλ(x)
. To apply the maximum principle, we need to check

that the left hand side of (2.11) is non-positive. This follows from Lemma 2.1,
since |x | > |x∗

λ | implies G(x) ≤ G(x∗
λ). By the maximum principle together

with the standard argument of the method of moving planes, it is easy to prove
that for any λ ∈ (0,

ω1
2 ), wλ(x) > 0 for all x ∈ 	+

λ and wω1
2

(x) ≥ 0 for all

x ∈ 	+
ω1
2

. That is,

(2.12) v(x) ≥ v(ω1 − x) for x ∈
[
ω1

2
, ω1

]
×

[
−ω2

2
,
ω2

2

]
.

We show that this yields a contradiction. Let x ∈ (0,
ω1
2 ) × [−ω2

2 ,
ω2
2 ] and

y = ω1 − x . It is clear that y ∈ [ω1
2 , ω1] × [−ω2

2 ,
ω2
2 ]. By (2.10) and periodicity

of v, (2.12) yields

v(y) ≥ v(x) > v(−x) = v(ω1 − x) = v(y),

which is a contradiction. Similarly, we can exclude case (a) and finish the proof
of v(−x1, x2) = v(x1, x2).
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For the rest of the proof, we use the geometric property of the Liouville
equation to get a contradiction. We first recall a classical result of Liouville:
Let D be a simply-connected domain in R

2 and u is a solution of 
u + eu = 0 in
D, then there exists a function f analytic in D such that

(2.13) u(z) = log
4| f ′|2

(1 + | f |2)2
for z ∈ D.

For a domain D and a solution u of 
u + eu = 0 in D, an analytic function
f is called a developing map for u in D, if (2.13) holds.

A straightforward computation shows that if f is a developing map of u
in D, then

(2.14) uzz(z) − 1

2
u2

z (z) = f ′′′(z)
f ′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2

for z ∈ D.

Classically, the right hand side of (2.14) is called the Schwarz derivative of f .
By (2.14), we see that any two developing maps f and f̃ of u has the same
Schwarz derivative. Thus, f and f̃ satisfy

(2.15) f̃ (z) = a f (z) + b

c f (z) + d
for z ∈ D,

where ad − bc = 1. By direct computations, (2.13) together with (2.15) yields

(2.16) f̃ (z) = p f (z) − q̄

q f (z) + p̄
for z ∈ D,

where p, q ∈ C satisfies

(2.17) |p|2 + |q|2 = 1,

i.e.,
(

p −q̄
q p̄

)
∈ P SU (2).

(
For an element S =

(
p −q̄
q p̄

)
∈ P SU (2), sometimes

we denote S f = p f −q̄
q f + p̄ .

)
Thus, we have proved the following result.

Lemma 2.3. Suppose that both f and f̃ are developing maps of u in D, where
u satisfies


u + eu = 0 in D.

Then there exist p, q, ∈ C such that (2.16) and (2.17) hold.

We collect two useful properties concerning the transformation (2.16) in
the followings.
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Lemma 2.4. (a) Any element in P SU (2) is conjugate to
(

eiθ 0
0 e−iθ

)
for some θ .

Namely, for any S =
(

p −q̄
q p̄

)
there exists H =

(
α −β̄

β ᾱ

)
with |α|2 + |β|2 = 1 such

that

H−1SH =
( eiθ 0

0 e−iθ

)
for some θ ∈ R.

(b) Let S1 =
(

eiθ 0
0 e−iθ

)
and S2 =

(
p −q̄
q p̄

)
satisfying

S1S2 = ±S2S1.

Then one of the following three possibilities occurs:
(i) p = 0 and eiθ = ±i ,

(ii) q = 0,
(iii) eiθ = ±1.

Proof. Part (a): It is easy to see that the eigenvalues of S are conjugate
e±iθ for some θ . Unless S = ±id, eiθ 
= e−iθ . So, there exists an eigenvector
(α, β) with |α|2 + |β|2 = 1 such that

pα − q̄β = eiθα and qα + p̄β = eiθβ.

By using the complex conjugate, the other equation for part (a) can be obtained.
Part (b):

S2S1 =
( peiθ −q̄e−iθ

qeiθ p̄e−iθ

)
and S1S2 =

( peiθ −q̄eiθ

qe−iθ p̄e−iθ

)

If S2S1 = S1S2, then qe−iθ = qeiθ . Hence either q = 0 or eiθ = ±1. If
S2S1 = −S1S2, then p = 0 and qeiθ = −qe−iθ . Since q 
= 0, we have
eiθ = ±i .

In the application, we let u = v − 8πG + c0 + log(8π), where v is a
minimizer of J and e−c0 = ∫

	 h(x)ev . Then u satisfies 
u + eu = 8πδ0, where
δ0 is the Dirac measure with singularity at the origin. Now we will prove the
existence of a developing function for u.

Lemma 2.5. Suppose u is a solution of


u + eu = 8πδ0 in 	,

where 	 is the flat torus with the cell [− a
2 , a

2 ]× [− b
2 , b

2 ] and δ0 is the Dirac measure
with singularity at the origin. Then there exists a meromorphic function f in C such
that (2.13) holds for z ∈ C\{nω1 + mω2 | n, m ∈ I . Here I is the set of integers.
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Proof. Lemma 2.5 is a known result. Basically, it was proved in [4] and
[13]. For the convenience of reference, we give a proof here. We consider a
punctured disk D∗ around a singularity, say 0. Let D̃∗ = {z ∈ C | Re(z) < 0}
be the universal cover of D∗ with the covering map z → ez . Consider u in D∗

and lift it to D̃∗. Denoting the lifted function by ũ, we have ũ(z +2π i) = ũ(z).
By the Liouville theorem, we have a locally univalent meromorphic function f
in D̃∗, as a developing map of ũ. Since ũ(z + 2π i) = ũ(z), we have

f (z + 2π i) = p f (z) − q̄

q f (z) + p̄
,

for some p, q ∈ C with |p|2 + |q|2 = 1. See Lemma 2.3. Since any element

in P SU (2) is conjugate to
(

eθ i 0
0 e−θ i

)
, by changing the developing map from

f to H f by an element H in P SU (2), we may assume that

(2.18) f (z + 2π i) = e2π iα f (z),

for some α ∈ [0, 1). Let ψ(z) = e−αz f (z). By (2.18), it is clear that ψ is a
well-defined meromorphic function on D∗ and

(2.19) u = log
4|z|2(α−1)|αψ + zψ ′|2

(1 + |zαψ |2)2
,

in D∗. By Lemma 2.4 of [13], if the origin is an essential singularity of ψ ,
then f takes all values of C infinitely many times except at most one value.
Since

∫
D∗ eu < +∞, we know that ψ at most has a finite pole at 0. Hence,

there is an integer n such that z−nψ(z) = ψ̃(z) is a non-vanishing holomorphic
function in a small neighborhood of 0. Hence we have

(2.20) u = log
4|z|2(α+n−1)|(α + n)ψ̃ + zψ̃ ′|2

(1 + |zα+nψ̃ |2)2
.

Now we apply the discussion above to our solution u. Applying the Liou-
ville Theorem to u, we have a locally univalent (possibly multi-valued) mero-
morphic function f as a developing map of u. Since u = 4 log |z| near 0, from
(2.20) we have α = 0. Hence f is single-valued. By continuation, f can be
globally defined in C. This finishes the proof of Lemma 2.5.

Remark 2.6. Let f be a developing map for u. Then by (2.13), it is easy
to see that at any point nω1 + mω2, n, m ∈ I , either f might be regular and
f ′ has a zero of multiplicity 2, or f might have a pole there of multiplicity 3.
In particular, f ′(z) has no zeros for z ∈ C\{nω1 + mω2 | n, m ∈ I }.

Now we are in the position to complete the proof of Theorem 1.1.
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Proof of Theorem 1.1. In view of Lemma 2.3, the periodicity of u implies
that there are elements S1 and S2 ∈ P SU (2) such that

(2.21) f (ω1 + z) = S1 f (z) and f (ω2 + z) = S2 f (z).

Since f is single-valued, it is easy to show that S1 and S2 commute in
P SU (2), i.e.,

(2.22) S1S2 = ±S2S1.

In fact, we have f (ω1 + ω2 + z) = S1S2 f (z) = S2S1 f (z). One can also assume

that S1 =
(

eiθ 0
0 e−iθ

)
for some θ ∈ R. The reason is following. First, by Lemma

2.4, there exists a ∈ P SU (2) such that a · S1 · a−1 =
(

eiθ 0
0 e−iθ

)
. Second, for

any a ∈ P SU (2), we already know that fa = a f is also a developing map.
Instead of f we consider fa . For fa , by (2.21) we have

fa(ω1 + z) = a · S1 · a−1 fa(z) and fa(ω2 + z) = a · S2 · a−1 fa(z).

The corresponding S̃1 = a · S1 · a−1 has the required form.

Now set S2 =
(

p −q̄
q p̄

)
. In view of (2.22), Lemma 2.4 gives one of three

possibilities:
(i) p = 0 and eiθ = ±i .

(ii) q = 0.
(iii) eiθ = ±1.

We get a contradiction by excluding all three cases.

Case (i). In this case we have

(2.23) f (z + ω1) = − f (z) and f (z + ω2) = − q̄

q f (z)
.

Hence f is an elliptic function, i.e.,

(2.24) f (z + 2ω1) = f (z) and f (z + 2ω2) = f (z).

To get a contradiction, we count the number of poles and zeros. There are two
possibilities: either f has a pole at 0 or f is regular at 0.

For the former case, by Remark 2.6 and (2.24), f ′(z) has zeros only at
ω2, ω1 + ω2 with the multiplicity 2. On the other hand, f ′ has at least poles
at 0 and ω1 of multiplicity 4. Because f ′ is an elliptic function with periods
2ω1 nd 2ω2, it leads to a contradiction.

If f is regular at 0, we assume f (0) = 0 first. Then f ′(z) has at lest
poles at ω2, ω2 + ω1 of multiplicity 4 and f ′(z) exactly has zeros at 0, ω1 of
multiplicity 2. Thus, it yields a contradiction.

If f (0) 
= 0, then f is regular at ω1, ω2 and ω1 + ω2 and f has only
simple poles somewhere. Clearly, f ′ has exactly zeros of multiplicity 2 at 0,
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ω1, ω2, ω1+ω2. Hence f ′ has exactly four poles of multiplicity 2, due to the fact
that f is an elliptic function in [0, 2ω1]×[0, 2ω2]. Therefore, f has exactly four
simple poles. From here, we deduce that the total multiplicity of the solution
z of f (z) = f (0) is four. Since 0 is a solution of f (z) = f (0) of multiplicity
3, there is a unique z0 
= 0 satisfying f (z0) = f (0) and f ′(z0) 
= 0. To get
a contradiction, we apply the symmetry property of v. Since v(−x) = v(x),
we have u(−x) = u(x). Therefore f (−z) is also a developing map for u, by
(2.15),

(2.25) f (−z) = p f (z) − q̄

q f (z) + p̄

for some p, q ∈ C with |p|2 + |q|2 = 1. Hence

(2.26) f (0) = p f (0) − q̄

q f (0) + p̄

Since f (z0) = f (0), (2.25) yields,

(2.27)

f (−z0) = p f (z0) − q̄

q f (z0) + p̄

= p f (0) − q̄

q f (0) + p̄

= f (0)

Thus, z0 = −z0 mod 2ω1 and 2ω2, which implies z0 = ω1, ω2 or ω1 +ω2. But
this yields a contradiction to f ′(z0) 
= 0, because f ′(ωj ) = 0, for j = 1, 2, 3,
where ω3 = ω1 + ω2. This contradiction finishees the proof of case (i).

Case (ii). In this case, we have

(2.28) f (z + ω1) = e2iθ1 f (z) and f (z + ω2) = e2iθ2 f (z).

As before, either f has a pole at 0 or f (z) is regular at 0. We consider the
first situation first. Since | f ′| has no zeros in [0, ω1] × [0, ω2] and is periodic
with respect to ω1 and ω2, we have | f ′(z)| ≥ C > 0 for z ∈ C , for some
positive constant C . Hence f ′ is a constant, which is also impossible.

If f is regular at 0, and f (0) = 0, we can replace f by 1
f and use the

same argument as above to yield a contradiction.
Now it remains tp discuss the most delicate situation, when f is regular at

0 and f (0) 
= 0. By (2.28), f (z)
f ′(z) is an elliptic function on the torus [0, ω1] ×

[0, ω2]. Since 0 is the only pole of f (z)
f ′(z) with multiplicity 2, f (z)

f ′(z) = A1℘(z)+A2

for some A1, A2 ∈ C where ℘(z) is the Weierstrass elliptic function. For a
discussion on elliptic functions, see [1]. Thus, f (z)

f ′(z) has two zeros only. We
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note that the zero of f (z)
f ′(z) comes from either the zeros of f or the poles of

f . Let z0 be zero of f (z)
f ′(z) . Clearly, z0 must be a simple zero of f

f ′ . Thus,

z0 
= ω1
2 , ω2

2 ,
ω1+ω2

2 .
Since ℘(−z) = ℘(z) and ℘(z̄) = ℘(z), f (z)

f ′(z) satisfies

(2.29)
f (−z)

f ′(−z)
= f (z)

f ′(z)

and

(2.30) Ā3
f (z̄)

f
′
(z̄)

= A3
f (z)

f ′(z)
+ B,

where |A3| = 1 and A3, B ∈ C. From (2.29), we know that if z0 is a zero of
f
f ′ , then −z0 is another zero of f

f ′ . So z0 + nω1 + mω2 and −z0 + nω1 + mω2

are all possible zeros and poles of f , where n, m ∈ I .
Since f (−z) is a covering map for u, we have

(2.31) f (−z) = p1 f (z) − q̄1

q1 f (z) + p̄1
,

with |p1|2 + |q1|2 = 1. By direct computations, (2.31) yields

(2.32)
f (z)

f ′(z)
= f (−z)

f ′(−z)
= −(q1 f (z) + p̄1)(p1 f (z) − q̄1)

f ′(z)

Thus, we have
p1q1 = 0 and 1 = |q1|2 − |p1|2.

Therefore,
p1 = 0 and |q1| = 1,

and (2.31) is reduced to

f (−z) = e2iθ3

f (z)

for some θ3 ∈ [0, π). For simplicity, we may assume f (0) = 1 after multiplying
f by a complex unit eiα . Then the identity above becomes

(2.33) f (−z) = 1

f (z)
.

Since v(−x1, −x2) = v(x1, x2), f (z̄) is also a developing map for u. Thus,

f (z̄) = p2 f (z) − q̄2

q2 f (z) + p̄2
.
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By (2.30), we have

A3
f (z)

f ′(z)
+ B = Ā3

f (z̄)

f ′(z̄)

= Ā3
(p2 f (z) − q̄2)(q2 f (z) + p̄2)

f ′(z)

and

(2.34) B f ′(z) = Ā3(p2 f (z) − q̄2)(q2 f (z) + p̄2) − A3 f (z).

We claim B = 0, because if B 
= 0, then f (z) can directly be solved from
(2.34) and the explicit expression of f clearly yields a contradiction to (2.28).
Since the argument is elementary, we only give a sketch of the proof for the
case when the polynomial Ā3(p2ω − q̄2)(q2ω + p̄2) − A3ω of the right hand of
(2.34) is of order 2 and has two different roots. For other cases, the proof is
simpler and we omit it here. For our situations, f (z) can be solved by

(2.35) log
f (z) − a1

f (z) − b1
= B1z + B2,

where a1 
= b1 and B1 
= 0 because B 
= 0. Here a1, b1 are two roots of
Ā3(p2ω − q̄2)(q2ω + p̄2) − A3ω = 0. Thus a1 
= 0, b1 
= 0 because we assume
p2q2 
= 0. Now by solving (2.35), we have

f (z) = b1 A4eB1z − a1

A4eB1z − 1
,

where A4 = eB2 
= 0. By using (2.28), we obtain

eB1ω1 = 1 and eB1ω2 = 1,

which is impossible.
Thus, we have B = 0 and then

p2q2 = 0 and Ā3(|p2|2 − |q2|2) = A3.

Hence,

either p2 = 0, |q2| = 1 and A3 = ±i,

or q2 = 0, |p2| = 1 and A3 = ±1.

The first case implies

(2.36) f (z̄) = e2iθ4

f (z)
.
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By putting z = 0, we have e2iθ4 = | f (0)|2 = 1. Thus,

(2.37) f (z̄) = 1

f (z)
.

To get a contradiction, we claim f (z) has no poles on the line ω1
2 + i t , for

t ∈ R. The claim can be proved as follows. By (2.33) and (2.37), for any
t ∈ R, we have

f (−i t) = 1

f (i t)
= 1

f (i t)
,

which implies f (i t) is a real for all t ∈ R. Then (2.28) yields e2iθ2 = ±1.
If e2iθ2 = 1, then f (0) = f (ω2). Thus, f has a pole on (0, ω2). Otherwise,

there exists a i t0 ∈ (0, ω2) such that f ′(i t0) = 0, which yields a contradiction
that f ′ can have zero only at nω1 + mω2. Now suppose f has a pole at i t0.
Then i t0 is a zero of f (z)

f ′(z) . By the argument above, i t0 
= ω2
2 , and −i t0 is

also a zero of f
f ′ . Thus, i t0 and −i t0 are the only zeros of f (z)

f ′(z) on the torus

[0, ω1] × [0, ω2]. Therefore, f
f ′ has no zeros on ω1

2 + i t, t ∈ R. If e2iθ2 = −1,
then f (ω2) = − f (0). If f has a pole on (0, ω2), then the argument above
show f (z)

f ′(z) has all zeros on [0, ω2], and the claim is proved. If f does not have

a pole on (0, ω2), then f has a zero on (0, ω2), say at i t0. Since i t0 
= ω2
2 ,

we have ω2 − i t0 
= i t0 is another zero of f
f ′ . Thus, f (z)

f ′(z) has no zeros on
ω1
2 + i t, t ∈ R. The claim is proved.

Together with (2.33), we have

f (
ω1

2
+ i t) = 1

f
(−ω1

2 − i t
)

= f
(

−ω1

2
+ i t

)

= e2iθ1 f
(

ω1

2
+ i t

)
,

that is,

(2.38) f
(

ω1

2
+ i t

)
e−iθ1 = e−iθ1 f

(
ω1

2
+ i t

)
,

which implies g(t) := f (
ω1
2 + i t)e−iθ1 is a real-valued function for t ∈ R.

Since g(2ω2) = g(0) and f (z) has no poles on the line ω1
2 + i t , there exists

i t0 ∈ [0, ω2] such that

f ′
(

ω1

2
+ i t0

)
= 0,
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which yields a contradiction to the fact that f ′ can have zeros only at nω1+mω2.
For the second case, we have

q2 = 0, |p2| = 1 and A3 = ±1.

In this case, we have

(2.39) f (z̄) = e2iθ5 f (z).

Since f (0) = 1, it yields

(2.40) f (z̄) = f (z)

In particular, we have
f (t) ∈ R for all t ∈ R.

Hence by (2.28), e2iθ1 = ±1, and

(2.41) f (z + 2ω1) = f (z).

By using the same argument as above, we can prove that f has no poles on
the line ω2

2 + t, t ∈ R. Now consider

f
(

ω2

2
+ t

)
= f

(
−ω2

2
+ t

)
= f

(
ω2

2
+ t

)
e−2iθ2 = f

(
ω2

2
+ t

)
e2iθ2

Thus,

f
(

ω2

2
+ t

)
e−iθ2 = f

(
ω2

2
+ t

)
eiθ2 = f

(
ω2

2
+ t

)
e−iθ2,

that is

f
(

ω2

2
+ t

)
e−iθ2 ∈ R for all t ∈ R.

Since f (
ω2
2 ) = f (

ω2
2 + 2ω1), there exists t0 ∈ (0, 2ω1) such that

f ′
(

ω2

2
+ t0

)
= 0,

which yields a contradiction. It completes the proof for case (ii).

Case (iii). In this case, S1 = ±id. Hence f satisfies

(2.42) f (z + ω1) = f (z) for z ∈ C.

By Lemma 2.4, there exists a H =
(

p −q̄
q p̄

)
such that

H S2 H−1 =
( eiθ 0

0 e−iθ

)
for some θ ∈ R.

Replace f by H f , still denote it by f . It is obvious that (2.42) still holds.
Furthermore, f satisfies

(2.43) f (z + ω2) = e2iθ f (z)

Therefore, case (iii) is reduced to case (ii), and the proof of Theorem 1.1 is
completed.
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3. – A refined estimate

In this section, we consider a sequence of solution vj of

(3.1) 
vj + ρ

(
h(x)evj∫
h(x)evj

− 1

)
= 0 in 	,

where h(x) = e−8πG(x) and limj→+∞ ρj = 8π. Set uj = vj − log(
∫

h(x)evj ).
Then uj satisfies

(3.2) 
uj + ρj (h(x)euj − 1) = 0 in 	.

In this section, we always assume

(3.3) λj = max
	

uj = uj (pj ) → +∞

as j → +∞ and limj→+∞ pj = p0. Then it is well-known that p0 is a critical
point of h. By Lemma 2.1, we have p0 = ωk/2 for some k = 1, 2, 3, where
w3 = 1

2 (ω1 + ω2). The main purpose of this section is to prove

Theorem 3.1. Let vj be a sequence of blow-up solutions of (3.1) and ωk/2 is
the only blow-up point of vj for some k ∈ {1, 2, 3}. Then there exists a constant ck

such that
ρj − 8π = (ck + o(1))e−λj .

Furthermore both c1 and c2 are positive and c3 is negative.

To prove Theorem 3.1, we should recall some estimates from [11]. Let
uj , λj and pj be defined in (3.2) and (3.3). Then Li [20] proved that there
exist constants c and δ0 such that

(3.4)
∣∣∣∣uj (x) − λj + 2 log

(
1 + ρj h(pj )

8
eλj |x − pj |2

)∣∣∣∣ ≤ c

for |x − pj | ≤ δ0. Let G̃ be regular part of the Green function G(x, p),

(3.5) G̃(x, p) = G(x, p) + 1

2π
log |x − p|

and

(3.6) ϕ(p) = G̃(p, p).

Since 	 has the flat metric, ϕ(p) is a constant function in 	. To understand
more precisely behavior of uj in ball B(p0, δ0), we let

(3.7) ηj (x) = uj (x) − Uj (x) − ρj (G̃(x, pj ) − ϕ(pj )),
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where

(3.8) Uj (x) = λj − 2 log

(
1 + ρj h(pj )e

λj

8
|x − qj |2

)

and

(3.9) �Uj (pj ) = � log h(pj ).

This shifting of center qj from pj is very important for our refined estimates,
because it can give us the following sharp estimate.

(3.10) |ηj (x)| ≤ O(λj e
−λj ) for |x − p0| ≤ δ0.

Lemma 3.1. Let ηj (x) be defined as in (3.7). Then ηj satisfies the following
equation

(3.11) 
ηj (x) + ρj h(pj )e
Uj (x) Hj (x, ηj ) = 0 for x ∈ 	,

where Hj (x, t) is defined by

Hj (x, t) = h(x)

h(pj )
et+ρj (G̃(x,pj )−ϕ(pj )) − 1.

Proof. (3.11) can be proved by a straightforward computation.
Note 
G̃(x, pj ) = 1 for x ∈ 	. Thus, we have


ηj (x) = ρj h(pj )e
Uj (x) − ρj h(x)euj

= −ρj h(pj )e
Uj (x)

(
h(x)

h(pj )
euj −Uj − 1

)

= −ρj h(pj )e
Uj (x)

(
h(x)

h(pj )
eηj (x)+ρj (G̃(x,pj )−ϕ(pj )) − 1

)

where the last identity follows from (3.7).

Lemma 3.2. Let vj and ρj be a pair of solutions of (3.1). Then

(3.12) ρj − 8π = 8

πh(p0)

(∫
	

H(x, 0)

|x − p0|4 dx −
∫

	c

dx

|x − p0|4 + o(1)

)
e−λj ,

where H(x, 0) is defined by

(3.13) H(x, 0) = h(x)

h(p0)
e8π(G̃(x,p0)−ϕ(p0)) − 1

and 	c = R
2\	.
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Proof. We first recall

ρj h(x)euj (x) = ρj h(pj )e
Uj + ρj h(pj )e

Uj Hj (x, ηj (x)).

Then

ρj =
∫

	

ρj heuj (x)dx

=
∫

	

ρj h(pj )e
Uj dx +

∫
	

ρj h(pj )e
Uj Hj (x, ηj (x))dx

= 8π −
∫

	c
ρj h(pj )e

Uj dx +
∫

	

ρj h(pj )e
Uj Hj (x, ηj (x))dx

By the explicit expression of Uj , we have

(3.14)
∫

	c
ρj h(pj )e

Uj (x)dx =
(

8

πh(p0)

∫
	c

dy

|y − p0|4 + o(1)

)
e−λj .

For the second integral, we apply a useful trick from [11]. Set

(3.15) ψj (x) = 1 − aj |x − qj |2
1 + aj |x − qj |2 ,

where

(3.16) aj = ρj h(pj )

8
eλj .

We use ψj (x) as a comparison function because it satisfies


ψj + ρj h(pj )e
Uj (x)ψj = 0 in R

2.

Thus, together with (3.11),

∫
∂	

(
ψj

∂ηj

∂ν
− ηj

∂ψj

∂ν

)
dσ = −

∫
	

ρj h(pj )e
Uj (x)(Hj (x, ηj (x)) − ηj )ψj dx .

By noting

ψj = −1 + 2

1 + aj |x − qj |2 ,

we have ∫
	

ρj h(pj )e
Uj Hj (x, 0)(−ψj )dx

=
∫

	

ρj h(pj )e
Uj Hj (x, 0)dx − 2

∫
	

ρj h(pj )e
Uj

1 + aj |x − p0|2 Hj (x, 0)dx .
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By (3.13), we have

h(pj )Hj (x, 0) = exp{log(h) + ρ[G̃(x, pj ) − ϕ(pj )]} − h(pj )

= h(pj )




2∑
k=1

bk(xk − pj,k) + 1

2

2∑
i,k=1

Bik(xi − pj,i )(xk − pj,k)

+1

2

[
2∑

k=1

bk(xk − pj,k)

]2

 + O(|x − pj |3),

where b = (b1, b2) = �[log(h) + ρj G̃(x, pj )] at x = pj , (Bik) is the Hessian
of log(h) + ρj G̃(x, pj ) at x = pj and pj = (pj,1, pj,2). Since

B11 + B22 = 
[log(h) + ρj G̃(x, pj )] = 8π − ρj ,

|b| ≤ c λj e
−λj and |pj − qj | ≤ c e−λj ,

we have for any δ > 0,

ρj

∫
B(pj ,δ)

h(pj )e
Uj (x) Hj (x, 0)dx = e−λj (o(1) + oδ(1)),

where oδ(1) → 0 as δ ↓ 0 and o(1) → 0 as j → +∞. Thus,

(3.18) ρj

∫
	

h(pj )e
Uj (x) Hj (x, 0)dx = 8

πh(p0)
e−λj

(∫
	

H(x, 0)

|x − p0|4 dx + o(1)

)
.

By using the scaling x ′ = e
λj
2 x , we can obtain

(3.19)
∫

	

eUj (x)

1 + aj |x − p0|2 Hj (x, 0)dx = O(λj e
− 3

2 λj ).

By (3.11), Hj (x, ηj (x)) − ηj = Hj (x, 0) + Hj (x, 0)ηj + O(|ηj |2). Thus it is
easy to see the integration of Hj (x, 0)ηjψj and |ηj |2ψj is bounded by o(1)e−λj .
(3.18) and (3.19) give

(3.20)
∫

∂	

(
ψj

∂ηj

∂ν
− ηj

∂ψj

∂ν

)
dσ = 8

πh(p0)
e−λj

(∫
	

H(x, 0)

|x − p0|4 dx + o(1)

)
.

Since ψj + 1 and �ψj = O(e−λj ), we have∫
	

ρj h(pj )e
Uj Hj (x, ηj (x))dx

= −
∫

∂	

∂ηj

∂ν
dσ

=
∫

∂	

(
ψj

∂ηj

∂ν
− ηj

∂ψj

∂ν

)
dσ + o(e−λj )

= 8

πh(p0)
e−λj

(∫
	

H(x, 0)

|x − p0|4 dx + o(1)

)
.

Together with (3.14), this completes the proof of Lemma 3.2.
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Set

(3.21) l(p0) =
∫

	

h(x)e8π(G̃(x,p0)−ϕ(p0)) − h(p0)

|x − p0|4 −
∫

	c

h(p0)

|x − p0|4

where by Lemma 3.2, l(p0) = ck if p0 = ωk
2 . Clearly, the integral of (3.21) is

interpreted as

l(p0)

= lim
r→0

[∫
	\Br (p0)

h(x)e8π(G̃(x,p0)−ϕ(p0))

|x − p0|4 −
∫

R2\Br (p0)

h(p0)

|x − p0|4
]

= lim
r→0

e−8πϕ(p0)

[∫
	\Br (p0)

e8π(G(x,p0)−G(x)) −
∫

R2\Br (p0)

e8π(ϕ(p0)−G(p0))

|x − p0|4
]

.

To compute l(p0), we should give a geometric interpretation of the integral.
Note 4π(G(x, p0) − G(x)) is a doubly-periodic harmonic function in R

2 and
has a singularity −2 log |x − p0| at p0 and 2 log |x | at 0. Thus,

4π(G(x, p0) − G(x)) = log |℘(x − p0) − ℘(p0)| + a constant,

where ℘ is the Weierstrass elliptic function. In other words,

(3.23) e8π(G(x,p0)−G(x)) = e8π(ϕ(p0)−G(p0))|℘(z − p0) − ℘(p0)|2,
where z = x1 + i x2. Thus,

l(p0) = e−8πG(p0) lim
r→0

[∫
	\Br (p0)

|℘(z − p0) − ℘(p0)|2 −
∫

R2\Br (p0)

1

|x − p0|4
]

.

Set σ(z) to denote the antiderivative of ℘(z − p0) − ℘(p0). Then

(3.24) l(p) = e−8πG(p0) lim
r→0

[∫
	\Br (p0)

|σ ′(z)|2 −
∫

R2\Br (p0)

1

|x − p0|4
]
.

Clearly,
∫
	\Br (p0) |σ ′(x)|2 can be interpreted as the area of the image of 	\Br (p0)

under σ(z), where σ(z) has a singularity at p0. Also, the second integral
is the area of the image of R

2\Br (p0) under the map 1
z−p0

. Let � be the
closed curve which is the image of ∂	 under σ(z). By a straightforward
computation, the image of ∂ Br (p0) under σ(z) is contained in the annulus

{y | 1
r − cr2 ≤ |y| ≤ 1

r + cr2} for some c > 0. Let
◦
� be the union of bounded

components of R
2\�. Thus,

(3.25)
l(p0) = e−8πG(p0) { the area of the components of

◦
� which is covered

by σ(z) minus the area of
◦
�}.
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Note the component covered by σ(z) has to be counted in the multiplicity
of the covering by σ(z). In the following, we will show that � is actually a

rectangle and the interior
◦
� of � could not be covered by σ(z) when p0 = ω3

2 ,
and each point of � is covered by σ(z) at least twice when p0 = w1

2 of ω2
2 .

Therefore l(p0) > 0 if p0 = ω1
2 or ω2

2 and l(p0) < 0 if p0 = ω3
2 . Clearly,

Theorem 3.1 follows readily from our claim.
To prove our claim, without loss of generality, we may consider the fun-

damental cell to be the rectangle which has p0 as its center. By the ele-
mentary theory of ℘, ℘(z − p0) is real-valued for z ∈ ∂	. Furthermore,
℘(z − p0) − ℘(p0) ≥ 0 for z ∈ ∂	 and p0 = ω2

2 , ℘(z − p0) − ℘(p0) ≤ 0 for
z ∈ ∂	 and p0 = ω1

2 , and ℘(z − p0)−℘(p0) < 0 for z − p0 = ±ω1
2 + i t , t ∈ R

and ℘(z − p0) − ℘(p0) > 0 z − p0 = ±ω2
2 + t , t ∈ R if p0 = ω3

2 . From this
fact, it is easy to see that σ maps ∂	 1-1 and onto a rectangle �.

Now we consider the case p0 = ω3
2 . In this case, the origin is at the corner

of ∂	. Since σ(z) = σ(0)+ ℘′′(p0)

6 z3 + O(|z|4) and ℘ ′′(p0) is negative number,
{z = reiθ | 0 ≤ θ < π

2 , 0 ≤ r < r0} is mapped onto the outside of � at the
corner σ(0). See Figure 1 below. We claim that σ(	) = R

2\�. Note that for
each Q ∈ R

2\�, there exists a unique point q ∈ 	◦, the interior of 	 such that
σ(Q) = q. Now suppose σ(	) ⊃ R

2\�. Then there exists a sequence of point

qn ∈ ◦
�, the interior of �, and Qn ∈ 	 such that qn = σ(Qn) → σ(0). By

Figure 1 below, |Qn| ≥ r0. Let Q be a limit point of Qn . Then σ(Q) = σ(0)

and Q 
= 0. Thus Q 
∈ ∂	 because σ is 1-1 on ∂	. Then the image of a
neighborhood of Q also covers a neighborhood of σ(0). In particular, any point
in a neighborhood of σ(0) outside of � contains at least two preimages, which
yields a contradiction. Thus, our claim is proved when p0 = ω3

2 .

0

ω3

2

σ(0)

σ

Fig. 1.

For the case p0 = ω1
2 , we have 0 on the line of ∂	, but not at the corner.

Since σ(z) = σ(0) + ℘(p0)

6 z3 + O(|z|4) and ℘ ′′(p0) > 0 is real, {z = reiθ | 0 ≤
r < r0 and − π

2 ≤ θ ≤ π
2 } is mapped into

◦
� and covers each image twice.

See Figure 2.
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0

ω3

2

σ(0)

σ

Fig. 2.

Clearly, the image of 	 under σ must at least cover each point in
◦
� twice.

Therefore our claim is proved. The proof for the case p0 = ω2
2 is similar. Hence

the proof of Theorem 3.1 is completed.

4. – Counting the topological degree

In this section, we want to count the topological degree for ρ = 8π and
ρ ∈ (8π, 16π). In [12], the topological degree has been computed when the
potential h(x) is a positive function. For our case, h(x) always satisfies (1.17)
at vanishing points. It is clear that for a sequence of blow-up solution vj of
(1.15) p0 is the only blow-up point. If h(x) vanishes at p0, then ρj must satisfy

lim
j→+∞

ρj = 8π(1 + α).

where 2α is the vanishing order of h at p0. Therefore, if we are restricted to
the situation ρ < 8π(1+α), then the blow-up can occur at some non-vanishing
point of h. Thus, the results in [12] can be applied to our work here. For the
sake of convenience, we quote some useful results from [12] in the followings:

(1) Let M be a compact Riemann surface, h(x) a positive C2 function in
M\{p1, . . .,pm} and log(h(x))+4πϕ(x) a Morse function in M\{p1, . . .,pm}
where ϕ(x) is the regular part of the Green function. Then at any critical
point p of log h + 4πϕ(x) where h(p) > 0, there exists only a sequence
of blow-up solution vj of (1.15) with ρ = ρj such that limj→+∞ ρj = 8π

and p is the only blow-up point of vj .
(2) The topological index for the solution vj can be counted as (−1)indp log(h)+4πϕ

if ρj < 8π , and −(−1)indp log(h)+4πϕ if ρj > 8π . Here indp log(h) is the
Morse index of log(h) at the critical point p.

(3) Suppose h(x) satisfies


 log h(p)+8π−2K (p) 
= 0, and p is a critical point of log h(x)+4πϕ(x).
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Then

(4.1) ρj − 8π = 2

h(p)
(
 log h(p) + 8π − 2K (x) + o(1))λj e

−λj ,

where K (x) is the Gaussian curvature

λj = max
	

vj − log

(∫
h(x)evj

)
.

For the proof of (1)–(3), we refer to [11] and [12].
Now we are in the position to complete the proof of Theorem 1.2 and

Theorem 1.3.

Proof of Theorem 1.2. By Lemma 2.1, the potential h(x) = e−8πG(x) is a
Morse function and has only three critical points ω1

2 ,
ω2
2 and ω3

2 . Furthermore,
indph = 1 if p = ω1

2 , or ω2
2 and indph = 0 if p = ω3

2 . By Theorem 3.1, we
have proved the uniform boundedness of all solutions of (1.15) when ρ = 8π .
Together (1) and (2) prove that there only exists a sequence of blow-up solution
vj such that ρj < 8π and limj→+∞ ρj = 8π . This is the case with p = ω3

2 .
Thus, the index of vj is 1. Let dρ denote the topological degree of (1.15). It
is known that dρ = 1 if ρ < 8π . Thus

d8π = dρ − the index of vj = 1 − 1 = 0.

This completes the proof of Theorem 1.2.

Theorem 3.1 actually allows us to calculate the degree of (1.15) when
h(x) vanishes only at one point. By Theorem 3.1, we know there are only two
sequences of blow-up solutions of (1.15) with the blow-up point p = ω1

2 or
p = ω2

2 . Since the Hessian of h(x) has one negative eigenvalue and ρj > 8π ,
the topological index of each blow-up solution is equal to 1. Thus for ρ <

(8π, 16π),
dρ = d8π + 2 = 2.

For the general case, we follow a similar way of calculation.

Proof of Theorem 1.3. Let M be a compact Riemann surface and g be the
genus. Without loss of generality, we assume M has constant Gauss curvature.
Hence the regular part ϕ(x) is a constant on M . If the genus of M is greater
than 1, we first choose a positive Morse function h(x) in M\{p1, . . . , pm} and
h(pj ) = 0 for j = 1, 2, . . . , m, and then replace it by hε(x) for some ε > 0
such that

(4.2) 
hε(x) + 8π − 2K (p) > 0 for x ∈ M\{p1, . . . , pm}.
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For convenience, we denote hε(x) by h0(x). If M is the sphere, the Gaus-
sian curvature K = 4π . Thus, we choose a positive Morse function h0 or
M\{p1, . . . , pm} with h0(pj ) = 0 such that

(4.3) 
 log h0(x) 
= 0 for any critical point x 
= pj of h.

Let

(4.4) h0(x) = |x − pj |2αj h j (x) j = 1, 2, . . . , m,

where α0 = min(α1, . . . , αm) > 0. We let 8π < ρ < min(16π, 8π(1 + α0)). It
is known that dρ is independent of ρ. For any critical point ql 
∈ {p1, . . . , pm}
of h(x), there exists a blow-up solution vj (3.15) with ρ = ρj such that ql is
the blow-up point. Furthermore, ρj 
= 8π due to (4.2) and (4.3). Hence, d8π

is well-defined and d8π = dρ = 1 for any ρ ∈ (0, 8π).
If M 
= S2, then by (2) above, vj has the index −(−1)indql h . Thus, for

8π < ρ < min(16π, (1 + α0)),

dρ = d8π −
∑

l

(−1)indql h0,

where ql, l = 1, . . . , N are the critical points of h0. By the Morse Theorem,

2 − 2g − m = χ(M\{p1, . . . , pm)) =
∑

l

(−1)indql h0 .

Thus,
dρ = m + 2g − 1.

If M = S2, then

(4.5) 1 = dρ′ = d8π +
∑
�−

(−1)indq h0

and
dρ = d8π −

∑
�+

(−1)indq h0,

where ρ ′ <8π , 8π <ρ < min(16π, 8π(1+α0)) and �± = {x ∈ M\{p1, . . . , pl} |

h0(x) > 0 (or < 0) and x is a critical point of h0}. Thus

(4.6) dρ = 1 −
∑

�−∪�+
(−1)indq h0 = 1 − χ(M\{p1, . . . , pm}) = m − 1.

It is easy to see that for some h(x) which vanishes exactly at p1, . . . , pm

we can deform ht (x) by ht (x) = h(t)t h0(t)1−t . And it is easy to see for some
16π > ρ1 > 8π , there is a constant c > 0 such that ‖v(x)‖L∞ ≤ c for any
solution of (1.15) with h = ht and 8π < ρ < ρ1. Thus, the degree dρ is
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invariant for 0 ≤ t ≤ 1. Since the vanishing order of h ≥ 1, dρ is the same for
ρ ∈ (8π, 16π). Thus, dρ = m + 2g − 1 is proved.

In a similar way, we can compute the degree for the Dirichlet problem.
As before, we let G(x, y) be the Green function with singularity at y and set
the regular part ϕ to be

ϕ(x) = G(x, y) + 1

2π
log |x − y| at x = y.

It is known that

(4.7) ϕ(x) → −∞ as x → ∂	.

Proof of Theorem 1.4. Let h(x) = exp −4π(
∑m

j=1 nj G(x, pj )). Then we
want to compute the topological degree of the following equation

(4.8)


 
u + ρ

h(x)eu(x)∫
	 h(x)eudx

= 0 in 	,

u = 0 on ∂	.

As before, a function h0(x) ∈ C2(	\{p1, . . . , pm} is chosen so that log h0(x)+
4πϕ(x) is a Morse function, h0(pj ) = 0 and (1.17) holds for each pj . We also
require that h0 satisfies

(4.9) 
 log h0(x) 
= 0 at any critical point of log h0(x) + 4πϕ(x).

Thus, by (4.9) the uniform boundedness of solutions of (4.8) with h = h0 and
ρ = 8π is obtained, and then d8π is well-defined. In a similar way, (4.7) and
(4.8) are treated. We have, for 8π < ρ < 8π(1 + α0),

dρ = 1 −
∑
�

(−1)indq (log h0+4πϕ) = 1 − χ(	\{p1, . . . , pm}) = g + m,

where � = {x | �(log h0 +4πϕ)(x) = 0} and g is the number of holes inside 	.
Here we note that log h0 + 4πϕ(x) → −∞ as x → ∂	 and the Morse theorem
can be applied as well. Then we can deform h0 to our original h(x) and obtain
the degree dρ = g + m for our equation and ρ ∈ (8π, 16π). Since m ≥ 1, we
have dρ 
= 0. Hence the existence follows readily.
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