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The Lie algebra generated by locally nilpotent derivations
on a Danielewski surface

FRANK KUTZSCHEBAUCH AND MATTHIAS LEUENBERGER

Abstract. We give a full description of the Lie algebra generated by locally
nilpotent derivations (shortly LNDs) on smooth Danielewski surfaces Dp given
by xy = p(z). In case deg(p) � 3 it turns out that it is not equal to the whole Lie
algebra VF!alg(Dp) of volume-preserving algebraic vector fields, thus answering
a question posed by Lind and the first author. We also show an algebraic volume
density property (shortly AVDP) for a certain homology plane (a homogeneous
space of the form SL2(C)/N , where N is the normalizer of the maximal torus)
and a related example.

Mathematics Subject Classification (2010): 32M17 (primary); 32M05, 14R10,
14R20 (secondary).

1. Introduction

In this paper we study (using algebraic methods) the holomorphic automorphism
group Authol(Dp) of a Danielewski surface of the form Dp = {xy = p(z)}. These
surfaces are an object of intensive studies in affine algebraic geometry, see, e.g.,
[4–10,12,20,21] and [22],

The study of these surfaces from the complex analytic point of view started
in the paper of Kaliman and Kutzschebauch [13], where they proved the so-called
density property, or for short DP. This is a remarkable property, discovered in the
1990s by Andersén and Lempert [1, 2] for Euclidean spaces, that to a great extent
compensates for the lack of partition of unity for holomorphic automorphisms. The
terminology was later introduced by Varolin [25]: a Stein manifold X has DP if the
Lie algebra generated by completely integrable holomorphic vector fields is dense
(in the compact-open topology) in the space of all holomorphic vector fields on X .
In the presence of DP one can construct global holomorphic automorphisms of X
with prescribed local properties. More precisely, any local phase flow on a Runge
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domain in X can be approximated by global automorphisms. Needless to say that
this leads to remarkable consequences (see the surveys [15,23]).

If X is equipped with a holomorphic volume form ! (i.e. ! is a nowhere van-
ishing top holomorphic differential form), then one can ask whether a similar ap-
proximation holds for automorphisms and phase flows preserving the !, so-called
volume preserving automorphisms. Under a mild additional assumption the an-
swer is yes in the presence of the volume density property (VDP), which means
that the Lie algebra generated by completely integrable holomorphic vector fields
of !-divergence zero is dense in the space of all holomorphic vector fields of !-
divergence zero. Danielewski surfaces carry a unique nondegenerate algebraic 2-
form !, and we will concentrate on the group Aut!hol(Dp) of volume-preserving
holomorphic automorphisms.

The following definitions are due to Varolin and Kaliman-Kutzschebauch:
Definition 1.1. We say that X has the algebraic density property (ADP) if the Lie
algebra Liealg(X) generated by the set IVF(X) of completely integrable algebraic
vector fields coincides with the space AVF(X) of all algebraic vector fields on X .
Similarly, in the presence of ! we can speak of the algebraic volume density prop-
erty (AVDP). That means X has the AVDP if the Lie algebra Lie!alg(X) generated
by the set IVF!(X) of completely integrable volume presenving algebraic vector
fields coincides with the space AVF!(X) of all volume preserving algebraic vector
fields on X .

It is worth mentioning that ADP and AVDP imply DP and VDP respectively
(where the second implication is not that obvious) and in particular all remarkable
consequences for complex analysis on X .

The study of holomorphic automorphisms of Danielewski surfaces was contin-
ued by Lind and the first author in [19], where shear and overshear automorphisms
were introduced, generalizing this notion introduced by Rudin and Rosay from Eu-
clidean spaces to Danielewski surfaces. Shears are volume-preserving automor-
phisms whereas overshears are not. Note that the algebraic shear vector fields are
(up to a coordinate change) exactly the LNDs (see Theorem 2.15). Generalizing the
results of Andersén and Lempert it was proved in [19] that on a Danielewski sur-
face the group generated by shears and overshears is dense in the path-connected
component of the group Authol(Dp) of holomorphic automorphisms, with respect
to the compact-open topology.

From the proof of DP in [13] it follows that the group generated by shears,
overshears and hyperbolic automorphisms is dense in Authol(Dp). The point in the
above result was to avoid hyperbolic automorphisms. The corresponding general-
ization of the Anderséns-Lempert result in the volume-preserving case, namely the
question whether the group generated by shears is dense in the group Aut!hol(Dp) of
volume-preserving holomorphic automorphisms with respect to the compact-open
topology, remained an unsolved question (see [19, Problem 5.1]).

In the present paper we show that the answer to the “infinitesimal version” of
this question is negative. We prove that the algebraic shear vector fields do not
generate the Lie algebra VF!alg(Dp) of algebraic-volume-preserving vector fields if
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the degree of the defining polynomial p is at least 3. More precisely we prove the
following statement:

Corollary (3.15). For p 2 C[z] with degree n > 3 the Lie algebra generated by
holomorphic shear fields is not dense in the Lie algebra of holomorphic volume-
preserving vector fields.

If the degree is 2 or 1, we prove that the algebraic shear vector fields do gener-
ate the Lie algebra VF!alg(Dp) of algebraic volume preserving vector fields. If the
degree is 1, the Danielewski surface is biholomorphic to C2 and we recover exactly
the Andersén-Lempert result. Our main result is:

Theorem (3.26). A volume-preserving vector field 2 on the Danielewski surface
Dp is a Lie combination of LNDs if and only if its corresponding function f with
i2! = d f is of the form (modulo a constant)

f (x, y, z) =

kX
i=1
j=0

ai j xi z j +

lX
i=1
j=0

bi j yi z j + (pq)0(z)

for a polynomial q 2 C[z].

In the “positive” cases of degree 1 and 2 the proof of the main theorem of
the Andersén-Lempert theory implies the density of the group generated by shears
in the (path-connected component of the) group Aut!hol(Dp) of volume-preserving
holomorphic automorphisms, whereas in the “negative” cases –degree� 3– we can-
not conclude that the group generated by shears is not dense in the group Aut!hol(Dp)
of volume-preserving holomorphic automorphisms. Here we are lacking a quantity
attached to an automorphism which is zero for all shear automorphisms but nonzero
for the hyperbolic automorphisms H f whose function f is not the second derivative
of a function divisible by the defining polynomial p.

The results of our paper are also interesting in connection with the following
open problem formulated in [3]: does a flexible affine algebraic manifold equipped
with an algebraic volume form have the algebraic volume density property?

Remember that an affine algebraic manifold is called flexible if the LNDs on
it generate the tangent space at every point. By Proposition 2.5 this is true for Dp.
Even though Dp has the volume density property the Lie algebra generated by LND
in not the Lie algebra VF!alg(Dp). The additional hyperbolic fields (algebraic C⇤-
actions) are needed to get all of VF!alg(Dp). Thus we do not have a counterexample
to the above problem, but almost a counterexample: we have an example where the
LNDs span the tangent space at each point and at the same time do not generate the
Lie algebra of volume-preserving algebraic vector fields.

The paper is organized as follows. In Section 2 we recall some known facts
for Danielewski surfaces and give certain proofs in order to make the paper self-
contained. We believe that some of these proofs are new.
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In Section 3 we explain how volume-preserving vector fields can be related to
functions on the Danielewski surface and how this relation works with respect to
the Lie bracket. This is a new method, which is afterwards used to prove our main
result, the characterization of the Lie algebra generated by LNDs on a Danielewski
surface.

On the way we use our method based on the duality between volume-preserving
vector fields and functions to prove (a version of) the algebraic volume density
property for D = Sl2(C)/N , where N is the normalizer of the maximal torus N ⇠

=

C⇤ o Z2. The importance of this lies in the fact that the methods (compatible pairs
of globally integrable fields) for proving AVDP recently developed by Kaliman and
the first author do not work for this particular homogeneous space, as explained
in [16]. We also prove AVDP for (D ⇥ C⇤)/Z2 where Z2 acts diagonally. This
is a good exercise, since the proof given in [16] is using very abstract methods.
Comparing our calculations to that proof lets one feel the strength of the method of
semi-compatible vector fields developed in [16].

2. Danielewski surface

Let p 2 C[z] be a polynomial with simple zeros. The variety given by Dp =

{(x, y, z) 2 C3 : xy = p(z)} is called a Danielewski surface. Since p has only
simple zeros Dp is the preimage of a regular value and hence a complex manifold.
Often it is useful to work in one of the two charts C⇤

⇥ C ! Dp : (x, z) 7!�
x, p(z)

x , z
�
or (y, z) 7!

� p(z)
y , y, z

�
, which cover all the points of Dp with x 6= 0

or, respectively, y 6= 0. An important fact is that every regular function f 2 C[Dp]
can be written uniquely as

f (x, y, z) =

kX
i=1
j=0

ai j xi z j +

lX
i=1
j=0

bi j yi z j +

mX
i=0

ci zi (1)

by substituting xy = p(z) successively. As proven in [14] there is an algebraic
volume form ! on Dp, which is unique up to a constant. In the local charts from
before it is given by ! =

dx
x ^ dz and ! = �

dy
y ^ dz, respectively. Here comes the

first well-known fact.

Proposition 2.1. The Danielewski surfaces Dp are simply connected and we have
H2(Dp, C) ⇠

= Cdeg(p)�1.

Proof. It is possible to construct a strong deformation retraction onto a bouquet of
(deg(p) � 1) 2-spheres connecting the zeros of p. First choose a smooth curve
� : [0, 1] ! Cz ⇢ Dp in the z-plane connecting the zeros of p and then retract
Dp onto the spheres around the segments of the path between the zeros. Let ⇢t :

[0, 1] ⇥ Cz ! Cz be a strong deformation retraction onto � . We use this retraction
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to define the strong deformation retraction

Rt : Dp ! {(x, y, z) 2 Dp : z 2 � } : (x, y, z) 7!

✓
p(⇢t (z))
p(z)

x, y, ⇢t (z)
◆

.

Additionally, we define a strong deformation retraction Ht from {(x, y, z) 2 Dp :

z 2 � } onto a bouquet of 2-spheres.

Ht (x, y, z) :=

 
p(z)

t |p(z)|1/2 y
|y| + (1� t)y

, t |p(z)|1/2
y

|y|
+ (1� t)y, z

!

for p(z) 6= 0 and |y| � |p(z)|1/2 and

Ht (x, y, z) :=

 
t |p(z)|1/2

x
|x |

+ (1� t)x,
p(z)

t |p(z)|1/2 x
|x | + (1� t)x

, z

!

for p(z) 6= 0 and |x | � |p(z)|1/2. When p(z) = 0 then either x = 0 or y = 0 (or
both). In this case choose

Ht (x, y, z) := (0, (1� t)y, z) or Ht (x, y, z) := ((1� t)x, 0, z) .

The composition of Rt and Ht is the desired strong deformation retraction from Dp
to the bouquet of 2-spheres, therefore Dp is simply connected and has H2(Dp,C)⇠=

Cdeg(p)�1.

2.1. Vector fields on a Danielewski surface

Let us begin with two equivalent definitions of locally nilpotent derivations:
Definition 2.2. A globally integrable vector field2 is a locally nilpotent derivation
(LND) if its flow  t is an algebraic C+-action, i.e. t 7!  t is an algebraic map.
Equivalently a vector field 2 is an LND whenever for all f 2 C[Dp] there is an
integer N such that 2N ( f ) = 2 � . . . � 2( f ) = 0. For the equivalence of these
definitions see [11, page 31]. The subgroup of Autalg(Dp) generated by flows from
LND is called the special automorphism group SAutalg(Dp).
Definition 2.3. The algebraic vector fields of the Danielewski surface Dp

SFxi := p0(z)xi
@

@y
+ xi+1

@

@z
,

SF y
i := p0(z)yi

@

@x
+ yi+1

@

@z
are called shear fields for all i 2 N0 and the vector fields

HFf := f (z)
✓
x
@

@x
� y

@

@y

◆

are called hyperbolic fields for all f 2 C[z].
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The above vector fields are globally integrable and volume-preserving, and
their flows are

�t1 : (x, y, z) 7!

 
x,

p(z + t xi+1)
x

, z + t xi+1
!

,

�t2 : (x, y, z) 7!

 
p(z + t yi+1)

y
, y, z + t yi+1

!
,

�t3 : (x, y, z) 7!

⇣
et f (z)x, e�t f (z)y, z

⌘
.

Note that p(z+t xi+1)
x =

p(z)+t xi+1(...)
x = y + t xi (. . .). This shows that the shear

fields are locally nilpotent derivations and the hyperbolic fields are not. For t = 1
these automorphisms are called x-(respectively y-) shear automorphisms (for short:
shears), and hyperbolic automorphisms, respectively.

Recall the following definition from [3].
Definition 2.4. M is said to be flexible if the LND-vector fields span the tangent
space in all points of M . For properties of flexible manifolds see [3].
Proposition 2.5 ([17]). A Danielewski surface is flexible.
Proof. The two following LND-vector fields span the tangent space in every point
of Dp where p0(z) 6= 0.

p0(z)
@

@y
+ x

@

@z
, p0(z)

@

@x
+ y

@

@z
.

For the points with p0(z) = 0 we have to use further vector fields. Set ↵k(x, y, z) =�
x, p(z�kx)

x , z � kx
�
and look at the vector field SF y

0 conjugated with ↵k (see the
remark below)

↵⇤

k (SF
y
0 ) = p0(z + kx)

@

@x

+

p(z + kx)p0(z) � p0(z + kx)p(z) � kxp0(z + kx)p0(z)
x2

@

@y

+

✓
�kp0(z + kx) +

p(z + kx)
x

◆
@

@z
.

Assume that p0 has n zeros, then the fields ↵⇤

k (SF
y
0 ) for k = 1, . . . , n together with

the two shear fields from above will span the tangent space at any point.

Remark 2.6. Given a vector field 2 and a holomorphic automorphism � : M !

M then the vector field conjugated by � is given by (�⇤2)p := ((D��1)2)�(p).
The vector field �⇤2 is globally integrable whenever 2 is it. Its flow is � t��1

where  t is the flow of 2. In particular, an LND conjugated by an algebraic au-
tomorphism is an LND again. The interior product by a k-form ! is i(�⇤2)! =

�⇤(i2(��1⇤!)); in particular, if ! is invariant under �, then i(�⇤2)! = �⇤(i2!).
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2.2. The (special) automorphism group

The goal of this subsection is to see that the LNDs are exactly the shear fields and
the shear fields conjugated by shear automorphisms. This result is not new [22], but
in order to make the paper self-contained we give a proof (which to our knowledge
is new).

We begin with the description of the algebraic automorphism group Autalg(Dp).
The following theorem is due to Makar-Limanov; he stated it at the end of the
paper [20] without proving it.

Theorem 2.7 ([20]). Let deg(p) � 3 and let p be generic in the following sense:
no affine automorphism ↵ of C permutes the roots of p. Then the group of all
algebraic automorphisms Autalg(Dp) of Dp is G0 o (H o J ) where G0 = Gx ⇤

Gy is the free product of the subgroups Gx (respectively Gy) generated by the x-
(respectively y-) shear automorphisms, H is the subgroup of algebraic hyperbolic
automorphisms and J is the subgroup consisting of the identity and the involution
I (x, y, z) = (y, x, z).

In the non-generic case denote by 0 the group of the affine automorphisms �
of C permuting the roots of p, i.e. such that p � � = a0 · p, where a0 is a root of
unity (depending on � ). Then 0 induces a group of automorphisms of Dp, which
we denote by 0̃. In this case we denote by J the group generated by 0̃ and I , and
we have again Autalg(Dp) = G0 o (H o J ) with G0 and H as above.

We will give a proof using the following main theorem in [20] .

Theorem 2.8 ([20]). Let deg(p) � 3 and let p be generic as above. Then the group
of algebraic automorphisms of Dp is generated by the following automorphisms:

x-shears: 1 f (x, y, z) =

⇣
x, p(z+x f (x))

x , z + x f (x)
⌘
for f 2 C[z];

Hyperbolic rotations: H�(x, y, z) = (�x, ��1y, z) for � 2 C⇤;
Involution: I (x, y, z) = (y, x, z).

Note that the y-shears are exactly the automorphisms of the form I1 f I .
In the non-generic case or if deg(p) = 2 one has to add (the finite group) 0̃ of

automorphisms coming from symmetries � of p:

� (x, y, z) = (x, µy, � (z)), where � (z) = az + b is such that (p � � )(z) =

µp(z), for some µ 2 C⇤.

Lemma 2.9. For deg(p) � 3 a nontrivial composition of x- and y- shears will
never have a z-coordinate of the form az + b.

Proof. Since compositions of x- (respectively y-) shears are x- (respectively y-)
shears again, Gx and Gy are subgroups and we can assume that the composition
is written in a reduced way (i.e. alternating x- and y- shears). For instance take
an element 1x

fn1
y
fn�1 · · ·1

y
f21

x
f1 (the letter {x, y} denotes whether it is an x- or
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a y-shear). Denote the image of (x, y, z) = (x0, y0, z0) after the first i shears by
(xi , yi , zi ) e.g. for i odd we get

xi = xi�1, yi =

p(zi�1 + xi�1 fi (xi�1))
xi�1

and zi = zi�1 + xi�1 fi (xi�1).

Since we have y =
p(z)
x the elements xi , yi , zi can be seen as unique elements

in C[x, x�1, z]. Therefore it makes sense to speak of the x-degree of such an el-
ement. It is enough to prove that zi has a strictly positive x-degree for i > 0,
and therefore is not of the form az + b. After applying the first shear we see that
z1 = z + x f1(x) is of positive x-degree. More precisely, it has degree deg( f1) +

1. Applying inductively the proceeding shear automorphism a term xi fi+1(xi ) or
yi fi+1(yi ) will be added to zi . If we can see that the x-degree of a such term
is always bigger than all previous ones, then the claim is proven. Indeed the x-
degree of yi fi+1(yi ) is deg(yi )(deg( fi+1) + 1) � deg(yi ) = deg(p)deg(zi�1 +

xi�1 fi (xi�1)) � deg(xi�1) which is by induction deg(p)deg(xi�1)(deg( fi ) + 1) �

deg(xi�1) = deg(xi�1)(deg(p)(deg( fi ) + 1) � 1) > deg(xi�1)(deg( fi ) + 1) =

deg(xi�1 fi (xi�1)). The inequality from the second last step follows from the fact
that deg(p) � 3. The same calculation holds for xi fi+1(xi ). And if the compo-
sition of shear fields starts with a y-shear, then the same calculation holds, when
exchanging x and y.

Proof of Theorem 2.7. In order to prove that Autalg(Dp) = G0 o (H o J ) in the
generic case, we need to verify several things. First we see that Autalg(Dp) =

G0 o H0 where G0 is the group generated by automorphisms of the form 1 f and
I1 f I and H0 is generated by automorphisms H� and I . G0 is indeed normal
since I1 f I and I I1 f I I = 1 f 2 G0 and H�1

� 1 f H� = 1� f (�·) 2 G0. Since
I H� = H�1

� I we have h�1gh 2 G0 for all elements h 2 H0 and g 2 G0. By
the theorem above the subgroups G0 and H0 generate Autalg(Dp). Thus it remains
to check that the intersection is trivial. All elements of H0 fix the z-coordinate,
but no nontrivial element from G0 does so by the previous lemma. Take a look at
the surjective homomorphism Gx ⇤ Gy ! G0 sending a word to its interpretation
in the group. It is injective since by the previous lemma the identity map cannot
be written as a nontrivial composition of shear automorphisms. The subgroup H0
generated by hyperbolic rotations and the involution is equal to H o J . Indeed,
I H� I = H�1

� and therefore the subgroup H generated by hyperbolic rotations is
normal. Moreover, I is orientation reversing and therefore does not belong to H .
The statement in the non generic case is easy to see as well.

Here are some consequences of the theorem; remember that all of them hold just
for deg(p) � 3.
Remark 2.10. In the generic case the group of algebraic volume-preserving au-
tomorphisms is therefore Aut!alg(Dp) = G0 o H . Indeed, shears and hyperbolic
automorphism are volume-preserving and the involution is volume reversing. The
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(non trivial) elements of 0̃ from the non generic case multiply the volume form by a
(non zero) root of unity, so the group can be bigger since it is possible to get an order
two volume-preserving automorphism of the form I �� with � 2 0̃. In this case the
group of volume algebraic volume-preserving automorphisms is G0 o (H o Z2).

Proposition 2.11. The group of special automorphisms SAutalg(Dp) (i.e. the group
generated by all the algebraic C+-actions) is the group G0 ⇠

= Gx ⇤ Gy generated
by the shear automorphisms.

Proof. Take any algebraic one-parameter subgroup  : C ! Autalg(Dp). Since
we have the projection homomorphism Autalg(Dp) = G0 o (H o J ) ! H o J
we get an induced algebraic one-parameter subgroup on H o J and hence on its
connected component H the subgroup of hyperbolic rotations, but this subgroup
has to be trivial since one-parameter subgroups in H can never be algebraic C+

action. Hence  has its image in the shear automorphisms.

Lemma 2.12. A smooth one-parameter subgroup  : C ! Gx ⇤Gy is conjugated
to a one-parameter subgroup  t either in Gx or in Gy .

In order to prove this lemma we need some facts about free groups. Recall that for
two groups G and H any element g in G ⇤H has a unique reduced form with length
denoted by l(g).

Theorem 2.13. A subgroup K of G ⇤ H is conjugated to a subgroup of either G or
H if and only if sup (l(k); k 2 K ) < 1.

Proof. See [24, Theorem 8, page 36].

The following lemma is well known, see e.g. [18]. In order to make the paper more
selfcontained we give the proof.

Lemma 2.14.

(1) Every element in G ⇤ H is conjugated either to an element in either G or H or
to an element of even length > 0.

(2) Two commuting elements of G ⇤ H with length > 0 have either both even or
both odd length.

Proof. (1) Whenever an element has odd length its first and last letter belongs to
the same group, so after conjugating with the inverse of one of these letters either
it is of even length or the length descends by 2, and we can proceed by induction.
(2) Take an element a with even length n and an element b with odd length m, then
either l(ab) = m + n and l(ba) < m + n or l(ab) < m + n and l(ba) = m + n and
hence they cannot commute.

Proof of Lemma 2.12. We first show that for all z 2 C the element  (z) is con-
jugated to a shear automorphism (i.e. is conjugated to an element of either Gx
or Gy). Assume that this is not the case; then a (z)a�1 were of even length for
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some a 2 Gx ⇤ Gy . Since a (z)a�1 and a ( zn )a
�1 commute a ( zn )a

�1 is also
of even length. Therefore l(a (z)a�1) = l((a ( zn )a

�1)n) > n for all n, which
is of course a contradiction. Therefore with Lemma 2.14 we have for each z an
element gz such that g�1

z  (z)gz is a shear automorphism. Now take an element
m + n

p

2+ i(p + q
p

2) 2 Q[

p

2, i]:

 (m+n
p

2+ i(p+q
p

2))=  (1)m (
p

2)n (i)p (i
p

2)q

= g1(g�1
1  (1)g1)mg�1

1 gp

2(g
�1
p

2
 (

p

2)gp

2)
mg�1

p

2

·gi (g�1
i  (i)gi )mg�1

i gip2(g
�1
i
p

2
 (i

p

2)gip2)
mg�1

i
p

2
.

Therefore the length of elements in  (Q[

p

2, i]) is bounded by 2(l(g1) + l(gi ) +

l(gp

2) + l(gip2)) + 4 and hence  (Q[

p

2, i]) is by Lemma 2.12 conjugate to a
subgroup of Gx or Gy . Now, the only thing that remains, is to show that Gx and
Gy are closed in Gx ⇤ Gy . Then we also know that

 (C) =  (Q[

p

2, i]) ⇢  (Q[

p

2, i])

is conjugate to a subgroup of Gx or Gy . To see that for instance Gx is closed we
take any converging sequence of x-shears 1 fn ! ⌘ = (⌘1, ⌘2, ⌘3). So we know
that (z + fn(x))n converges pointwise, hence fn(z) converges, say to f (z). Now
clearly ⌘1(x, y, z) = x and ⌘3(x, y, z) = z + f (x), since ⌘ is algebraic f is a
polynomial and therefore ⌘ = 1 f is an x-shear.

Theorem 2.15 ([22]). The LNDs of the Danielewski surface Dp for deg(p) � 3
are exactly the shear fields and the shear fields conjugated by compositions of shear
automorphisms.

Proof. An algebraic C+-action  : C ! SAutalg(Dp) is by Proposition 2.11 and
Lemma 2.12 conjugated to a one-parameter subgroup in Gx or Gy .

3. Lie combinations of shear fields

In this chapter we will understand which algebraic volume-preserving vector fields
of the Danielewski surface can be written as a Lie combination of the shear
fields 2.3. The main tool for the description will be the 1-forms i2! for volume-
preserving vector fields. Recall that the interior product i2 : �k+1(M) ! �k(M)
is given by i2µ(21, . . . ,2k) := µ(2,21, . . . ,2k). We will also use the Lie
derivative of a differential form µ with respect to a vector field 2, which is given
by L2µ =

d
dt 

t⇤µ |t=0 or the Cartan formula L2µ = (d � i2 + i2 � d)(µ).
The formula i[21,22]µ = L21(i22µ)� i22(L21µ) gives a link between the interior
product and the Lie derivative. Another useful formula L2dµ = dL2µ is a direct
consequence of the Cartan formula.
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3.1. The Lie algebra generated by shear fields is a proper subalgebra
of VF!alg(Dp)

From now onwewill use the one-to-one correspondence between algebraic volume-
preserving vector fields and polynomial functions modulo constants on Dp. For
every volume-preserving vector field 2 holds L!(2) = di2! + i2d! = 0. Since
d! = 0 the 1-form i2! is closed and therefore exact (because Dp is simply con-
nected by Proposition 2.1), hence if2 is algebraic then i2! = d f for some regular
f 2 C[Dp]. This defines a bijection between algebraic volume-preserving vector
fields and polynomial functions modulo constants.

This correspondence is in analogy to the correspondence between symplectic
vector fields and Hamiltonian functions in symplectic geometry (on simply con-
nected symplectic manifolds). In other words, we use the structure of Poisson alge-
bra on the functions on the manifold. This analogy is using the facts that ! is closed
and non-degenerate. If we consider higher dimensional manifolds (not surfaces) the
correspondence will be between volume-preserving vector fields and n � 2 forms,
see [16]. The following lemma gives the functions which corresponding to the shear
fields and hyperbolic vector fields.
Lemma 3.1. For i 2 N0 we have

iSFxi ! = �

dxi+1

i + 1
, iSF yi ! =

dyi+1

i + 1
, iH Fzi ! =

dzi+1

i + 1
.

Proof.

iSFxi !(2) = !(SFxi ,2) =

1
x
dx ^ dz(SFxi ,2)

=

1
x
�
dx(SFxi )dz(2) � dx(2)dz(SFxi )

�

=

1
x
�
� xi+1dx(2)

�
= �xidx(2) = �

dxi+1

i + 1
(2).

iSF yi !(2) = !(SF y
i ,2) = �

1
y
dy ^ dz(SF y

i ,2)

= �

1
y
�
dy(SF y

i )dz(2) � dy(2)dz(SF y
i )
�

= �

1
y
�
� yi+1dy(2)

�
= yidy(2) =

dyi+1

i + 1
(2).

iH Fzi !(2) = !(HFzi ,2) =

1
x
dx ^ dz(HFzi ,2)

=

1
x
�
dx(HFzi )dz(2) � dx(2)dz(HFzi )

�

=

1
x
(zi xdz) = zi dz(2) =

dzi+1

i + 1
(2).
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In general, it is not hard to see that for a given function f the corresponding vector
field 2 is given by

2 =

�
p0(z) fy + x fz

� @
@x

�

�
p0(z) fx + y fz

� @
@y

+

�
y fy � x fx

� @
@z

,

where fx , fy, fz denote the partial derivatives of f . We need to know how to cal-
culate the Lie bracket on the level of functions. An easy calculation shows the
following lemma.

Lemma 3.2. Let 2 be a volume-preserving vector field with i2! = d f and 9 be
another volume-preserving vector field. Then

i[9,2]! = L9(i2!) � i2(L9(!)) = L9(d f ) = dL9( f ).

This lemma also allows us the compute the Lie bracket only in terms of functions
(which is usually called the Poisson bracket):

{ f, g} = p0(z)( fygx � fx gy) + x( fzgx � fx gz) � y( fzgy � fygz).

However we will never use this precise description.
The previous facts allow us to reprove the fact from [16] that Dp has the vol-

ume density property.

Theorem 3.3. The Danielewski surface Dp with the volume form ! satisfies the al-
gebraic volume density property; in fact every algebraic volume-preserving vector
field is a Lie combination of shear fields and hyperbolic fields. Precisely: every
volume-preserving vector field is a linear combination of the vector fields SFxi ,
SF y

i , HFf , [SF
x
i , HFf ] and [SF y

i , HFf ] for i 2 N0 and polynomials f 2 C[z].

Proof. We have to find a Lie combination A of shear fields and hyperbolic fields
for every polynomial function f on Dp such that iA! = d f holds. It is sufficient to
find the corresponding Lie combination for the monomials xi , yi , zi , xi z j and yi z j
for all i, j > 0. The first three are already covered by Lemma 3.1. The correspond-
ing vector fields of the last two monomials are [SFxi�1, HFz j ] and [SF y

i�1, HFz j ].
Indeed:

i
[SFxi�1,HFz j ]! = dLSFxi�1

 
z j+1

j + 1

!
= dxi

1
j + 1

( j + 1)z j = dxi z j .

A similarly calculation shows i
[SF yi�1,HFz j ]

! = dyi z j .

We have now developed the method to show AVDP for the cases mentioned
in the introduction. Let D be the quotient of SL2(C) by the normalizer of the
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maximal torus. Consider G = SL2(C) as a subvariety of C4a1,a2,b1,b2 given by
a1b2 � a2b1 = 1, i.e. matrices

A =


a1 a2
b1 b2

�

are elements of G. Let T ' C⇤ be the torus consisting of the diagonal elements
and N be the normalizer of T in SL2. That is, N/T ' Z2 where the matrix

A0 =


0 �1
1 0

�
2 N

generates the nontrivial coset of N/T .

Lemma 3.4. The variety D = G/T is isomorphic to the hypersurface xy = z2�1
in C3x,y,z such that the Z2-action is given by (x, y, z) ! (�x,�y,�z).

Proof. Note that the ring of T -invariant regular functions on G is generated by x =

a1b1, y = a2b2, v = a1b2, and z = a2b1 where v = z + 1. Hence X is isomorphic
to the hypersurface xy = z(z + 1) in C3x,y,z,. After a linear isomorphism of C3 we
get the desired form. The formula for the Z2-action (induced by multiplication by
A0) is also a straightforward computation.

Definition 3.5. Let X be an affine algebraic manifold equipped with an algebraic
volume form !. Suppose a finite group 0 acts freely and algebraically on X . We
say that X has the 0-AVDP if the Lie algebra generated by 0-invariant completely
integrable volume-preserving algebraic vector fields on X is equal to the Lie algebra
of all 0-invariant volume-preserving algebraic vector fields on X .

Theorem 3.6. The Danielewski surface D has Z2-AVDP.

Proof. We proceed as in the proof of the previous theorem, The volume form !
is Z2 anti-invariant, i.e., � ⇤! = �!. Thus using the invariant globally integrable
fields SFx2n , SF

y
2n , HF2n n � 0 we have to produce all anti-invariant monomials xi ,

yi , zi for odd i and zi x j , zi y j for i, j � 1, i + j � 3 and odd. The first three are
again covered by Lemma 3.1 for even i .

For the other monomials we have to use the exact form of the the defining
polynomial p(z) = z2 � 1. We obtain the monomials zi x j by induction on i . The
monomials zi y j are then obtained analogously.

Starting the induction with i = 1 consider

i
[SF y0 ,SFx2k ]

!=dSF y
0

 
�

x2k+1

2k + 1

!
=d

 ✓
2z
@

@x
+ y

@

@z

◆ 
�

x2k+1

2k + 1

!!
=�2dzx2k

Suppose by induction hypothesis that all monomials zmxn , m + n odd for m 

i are obtained. In order to produce a monomial zi+1x j , we use the Lie bracket
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of SF y
0 with the field corresponding to the monomial z

i x j+1 (which by induction
hypothesis is obtained). We obtain the polynomial

✓
2z
@

@x
+ y

@

@z

◆ �
zi x j+1

�
= 2zi+1( j + 1)x j + i zi�1yx j+1

= 2zi+1( j + 1)x j + i zi�1(z2 � 1)x j

= (2 j + 2+ i)zi+1x j � i zi�1x j .

The monomial zi�1x j is already obtained by induction hypothesis, thus the induc-
tion step is completed.

We do not get constant functions, they are not needed since they correspond to
the zero field.

In fact the use of Lie brackets is not necessary in the previous theorem, one
can show that linear span is enough.
Remark 3.7. The vector space (instead of Lie algebra) spanned by globally inte-
grableZ2-invariant algebraic vector fields on D is equal to allZ2 invariant algebraic
vector fields. Also the vector space spanned by globally integrableZ2-anti-invariant
algebraic vector fields on D is equal to all Z2 anti-invariant algebraic vector fields1.

This follows from the fact that in the above proof one uses Lie brackets of LND
and maximally one other (hyperbolic) globally integrable field and the following
general fact which holds on any affine algebraic manifold.

Lemma 3.8. If 2 is an LND and 9 a finite sum of globally integrable algebraic
vector field, then the Lie bracket [2,9] is contained in the span of globally inte-
grable algebraic vector fields. In particular the vector space spanned by LNDs is
equal to the Lie algebra generated by LNDs.

Proof. Let �t denote the flow of 2 (which is an algebraic C-action). Then the set
A = {(�t )

⇤(9)} is contained in a finite dimensional subspace of AVF and thus
its span is closed (see Lemma 3.25). Since global integrability is preserved when
applying an automorphisms, all fields in A are in the span of globally integrable
fields. Moreover, the definition

[2,9] = lim
t!0

(�t )
⇤(9) �9

t

shows that the bracket [2,9] is in the closure of the span of A, thus in the span.

Now to the other example: Let X = D ⇥ C⇤ equipped with the volume form
!0 = ! ⇥

d✓
✓ and Z2-action generated by (x, y, z, ✓) 7! (�x,�y,�z,�✓). The

next theorem states that X has Z2-AVDP, the proof technique is very close to the

1 For the anti-invariant case one shows exactly as in the proof above that all anti-invariant fields
are obtained as Lie brackets of one anti-invariant globally integrable field and invariant LND.
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technique we have seen above. For a vector field 2 we again look at the corre-
sponding form i2!0 which is in this situation an anti-invariant closed 2-form. In
order to find all those forms we need to find all anti-invariant exact 2-forms, and
additionally for each cohomology class one representative.

Theorem 3.9 ([16]). The manifold X has Z2-AVDP.

Proof. The volume form !0 is anti-invariant. We wish to find all anti-invariant
closed 2-forms ↵ on X as i�!0 where � is a Lie combination of invariant completely
integrable fields on X . By Proposition 2.1 we have H2(D, C) = C and it is easy
to check that the volume form ! represents the nontrivial class. By the Künneth
formula and since H1(D, C) = 0 we have that H2(X, C) is isomorphic to C and
! (considered as a 2 -form on X) is a generator. Remark that ! = i✓ @

@✓
!0. Thus

subtracting the completely integrable volume-preserving invariant field ✓ @
@✓ from a

given field � we can assume that the form ↵ is exact. It remains to construct all
anti-invariant 1-forms � in the expression d� = i�!0 where � is a Lie combination
of invariant completely integrable fields on X . Of course we have to find all 1-forms
� up to closed ones, since these correspond to the zero vector field.

Since the restrictions of the 1-forms dx , dy and dz from C3 to the tangent
space of D generate the cotangent space of D at any point, all 1-forms on X can be
written as

�=

NX
n=�N

fn(X)✓ndx +

NX
n=�N

gn(X)✓ndy +

NX
n=�N

hn(X)✓ndz +

NX
n=�N

jn(X)✓nd✓

where X = (x, y, z) and fn, gn, hn, jn are regular functions on D which are in-
variant if n is even and anti-invariant if n is odd. Of course this representation of
a 1-form on X is not unique, the relation xdy + ydx = 2zdz holds, but this is
irrelevant for our proof.

We begin by constructing all summands of the fourth sum. First consider the
case of even n. The proof is analogous to the proof of the preceding theorem. The
monomial forms xi✓nd✓ , i even, you construct by inner product of the invariant
completely integrable field ✓n+1SFxi�1 with !0, y

i✓nd✓ comes from ✓n+1SF y
i�1, i

even, and zi✓nd✓ comes from the invariant field ✓n+1HFi�1, i even. Now use in-
ductively Lie brackets with the invariant field SF y

0 to obtain out of the form xi✓nd✓
the forms xi�1z✓nd✓ , xi�2z2✓nd✓ and so on. Thus obtaining all 1- forms xkzl✓nd✓
for k+l even. The forms ykzl✓nd✓ , k+l even, are obtained analogously. Now con-
sider the case n odd. Start with the monomial forms xi✓nd✓ , i odd, you constructed
by inner product of the invariant completely integrable field ✓n+1SFxi�1 with !0,
all the rest goes analogously. Thus we have constructed all anti-invariant 1- formsPN

n=�N jn(X)✓nd✓ , except for jn = constant, but the forms ✓nd✓ are closed and
therefore corresponding to the zero field.

In order to produce the summand in the first sum we introduce the invari-
ant globally integrable volume-preserving vector field V = x✓(x@/@x � y@/@y �
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✓@/@✓) and take the Lie bracket with the vector field corresponding to the 1-form
f (X)✓nd✓ (say n even and f invariant). This produces the 1-form

LV ( f (X)✓nd✓) = V ( f (X)✓n)d✓ � f (X)✓nd(x✓2) = (. . .)d✓ � f (X)✓n+2dx

and therefore we get together with the above all 1-forms of the form f (X)✓ndx
where n is even and f invariant and similarly the ones with n odd and f anti-
invariant. In the identical way we get all 1-forms f (X)✓ndy by taking the invari-
ant vector field W = y✓(x@/@x � y@/@y + ✓@/@✓) instead. The invariant vector
fields xz✓@/@✓ , yz✓@/@✓ and z2✓@/@✓ will help to construct all forms of the form
f (X)✓ndz. Indeed, the calculations

Lxz✓ @
@✓

( f (X)✓nd✓) = (. . .)d✓ + (. . .)dx + x f (X)✓n+1dz,

Lyz✓ @
@✓

( f (X)✓nd✓) = (. . .)d✓ + (. . .)dy + y f (X)✓n+1dz,

Lz2✓ @
@✓

( f (X)✓nd✓) = (. . .)d✓ + 2z f (X)✓n+1dz

show that we get all 1-forms of the form g(X)✓ndz where g(X) is either a multiple
of x , y or z. Hence allowing linear combinations only the constant term ✓ndz is
missing. But since the form ✓ndz + n✓n�1zd✓ is closed the corresponding vector
field also corresponds to �n✓n�1zd✓ and hence is already obtained.

The question we like to investigate in the remaining part of the paper is whether
the hyperbolic vector fields are needed in the proof of Theorem 3.3, or if the shear
fields are enough. In the following section it is shown that the Lie algebra generated
by the shear fields does not contain all the hyperbolic fields. Here are some prelim-
inaries. The proof of the first fact is an easy consequence of the Jacobi identity.

Lemma 3.10. Let M be a set of vector fields. Then the Lie algebra Lie(M)
generated by M is spanned (as a vector space) by elements of the form
[An, [. . . [A2, [A1, A0]] . . .]] with Ai 2 M .

In order to study which polynomials correspond to Lie combinations of shear
fields it is therefore necessary to study functions of the type i[An,[..[A2,[A1,A0]]..]]!,
where the Ai are shear fields.

Lemma 3.11. Let Ai be shear fields for 0 6 i 6 n. Then, the polynomial f with
i[An,[..[A2,[A1,A0]]..]]! = d f is of type (a) x jq(z), (b) y jq(z) or (c) q(z) for some
j > 0 and some polynomial q 2 C[z].

Proof. For n = 0 the claim holds due to Theorem 3.1.
(a) If f = x jq(z), Lemma 3.2 shows

i
[SFxk ,[An[..[A2,[A1,A0]]..]]! = dLSFxk (x jq(z)) = dx j+k+1q 0(z),
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hence the polynomial is again of type (a). Furthermore:

i
[SF yk ,[An[..[A2,[A1,A0]]..]]! = dLSFyk (x jq(z))

= dp0(z)yk j x j�1q(z) + yk+1x jq 0(z)
= dykx j�1( j p0(z)q(z) + xyq 0(z))
= dykx j�1( j p0(z)q(z) + p(z)q 0(z)).

After substituting xy = p(z) this polynomial is also of type (a), (b) or (c), depend-
ing on whether k < j � 1, k > j � 1 or k = j � 1. The other cases are treated
similarly:
(b) If f = y jq(z), then

i
[SFxk ,[An[..[A2,[A1,A0]]..]]! = dxk y j�1( j p0(z)q(z) + p(z)q 0(z)),

i
[SF yk ,[An[..[A2,[A1,A0]]..]]! = dy j+k+1q 0(z).

(c) If f = q(z), then

i
[SFxk ,[An[..[A2,[A1,A0]]..]]! = dxk+1q 0(z),

i
[SF yk ,[An[..[A2,[A1,A0]]..]]! = dyk+1q 0(z).

Lemma 3.12. If case (c) of Lemma 3.11 occurs, that is i[An,[..[A2,[A1,A0]]..]]! = d f
for Ai shear fields, and in addition f = f (z) for some polynomial in z, then f (z) =

(p(z)q(z))0 for some polynomial q in z.

Proof. Consider the vector field [An�1, [..[A2, [A1, A0]..]]. Due to Lemma 3.11
exactly one of the following cases occurs:

i[An�1,[..[A2,[A1,A0]]..]]! =

8><
>:
dx jq(z) (a)
dy jq(z) (b)
dq(z) (c)

for some j > 0 and some q 2 C[z]. If An = SFxk for some k 2 N0, then together
with the calculation in the proof of Lemma 3.11 one gets:

i[An,[An�1[..[A2,[A1,A0]]..]]]! = d f =

8><
>:
dx j+k+1q 0(z) (a)
dxk y j�1( j p0(z)q(z) + p(z)q 0(z)) (b)
dxk+1q 0(z) (c).

Since f is a polynomial in z all cases except (b) with k = j � 1 can be excluded.
Therefore f = xk y j�1( j p0(z)q(z) + p(z)q 0(z)) = p(z)k((k + 1)p0(z)q(z) +

p(z)q 0(z)) = (p(z)k+1q(z))0 for some q 2 C[z]. An identical consideration works
for An = SF y

k .
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Remark 3.13. If we choose k = j + i � 1 instead of k = j � 1 for some i 2 N in
the last step, then the polynomial in the end of the calculation is xi (pq)0 = xi f (z)
(respectively yi f (z)). Hence if f (z) corresponds to a Lie combination of shear
fields, then so does the polynomial xi f (z) (respectively yi f (z)). By permuting
SFxi and SF

y
i the corresponding polynomial switches the sign and x and y get

permuted, hence both xi f (z) and yi f (z) correspond to Lie combinations of shear
fields.

Corollary 3.14. If a hyperbolic vector field is a Lie combination of shear fields,
then it is of the form HF(pq)00 for some q 2 C[z]. In particular if p 2 C[z] with
degree n > 3, then the the hyperbolic vector fields HFzi with i < n� 2 are not Lie
combinations of shear fields.

In addition we can make the following observation:

Corollary 3.15. For p 2 C[z] with degree n > 3 the Lie algebra generated by
holomorphic shear fields is not dense in the Lie algebra of holomorphic volume-
preserving vector fields.

Proof. Formula (1) for a regular function f on Dp can be viewed as a Laurent
expansion of the restriction of f to the open subset x 6= 0 ⇠

= C⇤

x ⇥ Cz with re-
spect to the variable x 2 C⇤ with coefficients being functions of z. Analogously
any holomorphic function g on Dp has such a Laurent expansion with coefficients
holomorphic functions in z

g =

1X
i=�1

ai (z)xi .

We have established that the regular function f corresponding under i2! = d f
to an algebraic vector field 2 which is a Lie combination of algebraic shear fields
satisfy the special condition a0(z) = (hp)0, i.e., the absolute term a0(z) (which is
unique associated to 2 up to a constant) is the derivative of a function divisible
by the defining polynomial p. The condition that a function g on C⇤

⇥ C has an
absolute term which is up to a constant the derivative of a function divisible by the
defining polynomial p is closed in c.-o. topology. More explicitly, let z1, . . . , zn be
the distinct simple zeros of p, then the condition is equivalent to the equality of all
the expressions

(z j � z1)
Z z j

z1

Z
|x |=1

g(x, z)
dz ^ dx

x
j = 2, 3, . . . , n.

Since holomorphic shear fields are limits (in c.-o. topology) of algebraic shear fields
the holomorphic function corresponding to a Lie combination of holomorphic shear
fields has an absolute term of the same form. Thus for p with degree � 3 the Lie
algebra generated by holomorphic shear fields is contained in the closed proper
subset of the Lie algebra of holomorphic volume-preserving vector fields defined
by the above condition on the absolute term.
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3.2. Description of the Lie algebra generated by shear fields
After negating the question whether every volume-preserving vector field is a Lie
combination of shear fields, in the this section it will be investigated which vector
fields exactly are Lie combination of such ones. Concretely, all of the volume-
preserving vector fields whose absolute term of the corresponding function is of the
special form described in Lemma 3.12 are a Lie combination of shear fields. This
proof is following the same concept developed in [19] where it was used in order
to prove the fact that the shear fields and another class of (non volume-preserving)
vector fields called overshear fields do generate the Lie algebra of algebraic vector
fields of Dp.
Lemma 3.16. The following equalities hold:

i
[SFxi ,SF yi ]

! = d(pi p0) (3.1)

i
[SFx0 ,[SFx0 ,SF y1 ]]

! = d(pp0)0 (3.2)

i
[SFxik�1,...[SF

x
i2�1

,[SFxi1�1,HFf ]]...]
! = d(xi1+...+ik f (k�1)) (3.3)

i
[HFfk ,...[HFf2 ,[SF

x
i ,HFf1 ]]...]! = (i + 1)k�1d(xi+1 f1 f2 . . . fk). (3.4)

Proof. The following calculations are according to Theorem 3.1 and Lemma 3.2:

i
[SFxi ,SF yi ]

! = dLSFxi

 
yi+1

i + 1

!
(3.1)

= dp0(z)xi yi

i
[SFx0 ,SF y1 ]

! = dyp0(z) (3.2)

i
[SFx0 ,[SFx0 ,SF y1 ]]

! = dLSFx0
�
yp0(z)

�
= dp0(z)p0(z) + xyp00(z)
= d(p(z)p0(z))0

i
[SFxi1�1,HFf ]

! = dxi1 f (3.3)

i
[SFxi2�1,[SF

x
i1�1

,HFf ]]! = dLSFxi2�1(x
i1 f )

= xi1+i2 f 0

i
[SFxik�1,...[SF

x
i2�1

,[SFxi1�1,HFf ]]...]
! = dLSFxik�1

(xi1+i2+...+ik�1 f (k�2))

= d(xi1+i2+...+ik f (k�1))

i
[SF yi ,HFf1 ]

! = dxi+1 f1 (3.4)

i
[HFf2 ,[SF

x
i ,HFf1 ]]! = dLHFf2 (x

i+1 f1)

= (i + 1)xi+1 f1 f2
i
[HFfk ,...[HFf2 ,[SF

x
i ,HFf1 ]]...]! = dLHFfk ((i + 1)k�2xi+1 f1 . . . fk�1)

= d((i + 1)k�1xi+1 f1 . . . fk).
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Corollary 3.17. The previous lemma shows:

[SFxi , SF y
i ] =HF(pi p0)0 (3.5)⇥

SFx0 , [SFx0 , SF y
1 ]

⇤
=HF(pp0)00 (3.6)h

SF y
i1+···+ik�1, [SF

x
ik�1, . . . [SF

x
i1�1, HFf ] . . .]

i
= HF(pi1+···+ik f (k�1))00 (3.7)⇥

SF y
i , [HFfk , . . . [SF

x
i , HFf1] . . .]

⇤
=HF(i+1)k�1(pi+1 f1 f2··· fk)00 . (3.8)

Lemma 3.18. Let n = deg(p); then for every q 2 C[z] the vector field HF(pnq)00

is a Lie combination of shear fields.

Proof. In a first step one observes that every polynomial xnq corresponds to a Lie
combination of shear fields. Truly due to Lemma 3.16(3.3) the polynomials xn f (k)

for k = 0, . . . , n � 1 correspond to a Lie combination of shear fields, if HFf
were already such a combination. According to Corollary 3.17(3.5) it is possible
to choose for f the polynomials p00, (pp0)0, (p2 p0)0, . . . (i.e. polynomials of degree
n � 2, 2n � 2, 3n � 2, . . .). Therefore after differentiating up to n times there
is a polynomial for every degree. Hence they build a basis for C[z] and every
polynomial q 2 C[z] can be substituted in xnq. After taking the Lie bracket with
the shear field SF y

n�1 the vector field becomes HF(pnq)00 .

Let n = deg p and W ⇢ C[z] be a vector space with

(i) (pi )00 2 W 8i 2 N
(ii) (pp0)00 2 W
(iii) (pnq)00 2 W 8q 2 C[z]
(iv) f1, .., fk 2 W =) (p f1 . . . fk)00 2 W 8k 2 N.

Now, we show that W contains all polynomials of the type (pq)00. Since the vector
space of all f with HFf a Lie combination of shear fields is a vector space with
properties (i)-(iv), every vector field HF(pq)00 would be a such combination.

In a first step it is shown that the algebra AW = span{ f1 · · · fk : fi 2 W, 1 

i  k 2 N} generated by W is equal to C[z]. Then it is allowed to substitute all
polynomials in (iv) and hence the claim is proven.

Lemma 3.19. There is no element a 2 C, such that f (a) = 0 for all f 2 AW .

Proof. Suppose there is such an a, then p00(a) = 0 and p(a)p00(a) + p0(a)2 = 0
((i) with i = 1 and i = 2) would hold, and hence p0(a) = 0. Since p has no double
zero point it follows that p(a) 6= 0. Due to (iii) (pnq)00(a) = (pn)00q + 2(pn)0q 0

+

pnq 00(a) = 0 holds for all q 2 C[z]. The first summand vanishes due to (i), the
second due to p0(a) = 0, therefore it remains pnq 00(a) = 0. So it would be true
that q 00(a) = 0 for all q 2 C[z] what is clearly a contradiction.
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Lemma 3.20. There is no element a 2 C such that f 0(a) = 0 for all f 2 AW .

Proof. Suppose there is such an a. (i) with i = 1, 2, 3 shows that p000(a) = 0,
(p2)000(a)=2(p(a)p000(a)+3p0(a)p00(a))=0 and 0=(p3)000(a) = 3(p(a)2 p000(a)+
6p(a)p0(a)p00(a) + 2p0(a)3). The second equation shows that p0(a)p00(a) = 0
and therefore due to the third equation we have p0(a) = 0 and hence p(a) 6= 0.
Furthermore (iii) shows (pnz)000(a) = (pn)000(z)z+3(pn)00(z) |z=a= 0 and since the
first summand vanishes (pn)00(a) = 0 remains. Altogether we have (pnq)000(a) =

((pn)000q+ 3(pn)00q 0
+ 3(pn)0q 00

+ pnq 000)(a) = p(a)nq 000(a) = 0 or q 000(a) = 0 for
all q 2 C[z], what is again a contradiction.

Lemma 3.21. There are no elements a 6= b 2 C, such that f (a) = f (b) for all
f 2 AW .

Proof. Suppose there are two such elements a, b 2 C. (iv) shows that
(pnzi )00 |z=a= (pnzi )00 |z=b for all i 2 N0. Since (pnzi )00 =(pn)00zi+2i(pn)0zi�1+
i(i�1)pnzi�2 one gets the system of linear equations, which summarizes the equa-
tions for i = 0, . . . , 5:

0
BBBBBBBBBB@

1 1 0 0 0 0

a b 1 1 0 0

a2 b2 2 a 2 b 2 2

a3 b3 3 a2 3 b2 6 a 6 b

a4 b4 4 a3 4 b3 12 a2 12 b2

a5 b5 5 a4 5 b4 20 a3 20 b3

1
CCCCCCCCCCA

·

0
BBBBBBBBBB@

(pn)00(a)

�(pn)00(b)

2(pn)0(a)

�2(pn)0(b)

(pn)(a)

�(pn)(b)

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

0

0

0

0

0

0

1
CCCCCCCCCCA

.

The determinant of this matrix is 4(a � b)9 and therefore nonzero for a 6= b and
hence it is shown that the coefficient vector is the zero vector and in particular
p(a) = p(b) = 0 and therefore p0(a) 6= 0 6= p0(b).

Due to (ii) we have (pp0)00(a) = p(a)p000(a) + 3p0(a)p00(a) = p(b)p000(b) +

p0(b)p00(b) and since p(a) = p(b) = 0 and p00(a) = p00(b) (due to (i)) p0(a) =

p0(b) holds. With (iv) (k = 1) follows (pp00)00(a) = p(a)p0000(a) + 2p0(b)p000(b) +

p00(b)2 = p(b)p0000(b) + 2p0(b)p000(a) + p00(b)2 and hence p000(a) = p000(b). Using
(iv) inductively one gets that p(l)(a) = p(l)(b) for all l. Indeed, a simple calculation
shows that:

W 3 P :=

0
B@p(p(p · · · (p| {z }

j

p00)00 . . . )00)00

1
CA

00

=

X
i1+...+i j+1=2 j+2

i1...i j+1

↵I · p(i1)
· · · p(i j+1)

with aI 2 N. After inserting a (respectively b) all summands with i1 = 0 vanish
due to p(a) = p(b) = 0. Assume that p(l)(a) = p(l)(b) for all l  j + 1, so
all the summands with i j+1  j + 1 have on both sides of the equation P(a) =
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P(b) the same value and hence vanish as well. For this reason only the equation
↵I p0(a) j p( j+2)(a) = ↵I p0(b) j p( j+2)(b) remains and it follows inductively that
p(l)(a) = p(l)(b) for all l. This is a contradiction since the (n � 1)-st derivative of
a polynomial of degree n is a polynomial of degree one with a nonzero slope.

Proposition 3.22. The algebra AW generated by W is equal to C[z].

Proof. The previous two lemmas show that there is a k 2 N and polynomials
q1, . . . , qk 2 AW such that the map

F : C ! Ck
: z 7! (q1(z), . . . , qk(z))

is an injective and immersive embedding. To achieve injectivity take the ideal in
C[x, y] generated by the polynomials q(x) � q(y) with q 2 Aw which is finitely
generated by polynomials q1(x) � q1(y),. . . , qk(x) � qk(y). Now we see that there
are no c1 6= c2 such that qi (c1) = qi (c2) for all i , otherwise we would have q(c1) =

q(c2) for all q 2 AW which is not possible due to Lemma 3.21. To guarantee
immersivity we add for each cusp singularity (finite number!) a polynomial q 2 AW
whose derivative does not vanish at this point (Lemma 3.20).

Now take any polynomial function g on C and regard it as a regular function
on C in Ck (embedded by F). This function extends to a regular function G on Cn ,
hence G = a0 +

P
I aI z

i1
1 . . . zikk . So if we pull back G we get g(z) = G(F(z)) =

a0 +

P
I aI q1(z)i1 . . . qk(z)ik so the algebra generated by q1, . . . , qk and constants

is C[z]. Now the algebra generated by W is C[z] or a subspace with codimension
1 and an ideal hence in the second case W is a principle ideal generated by a poly-
nomial (z � a). But this case cannot occur since a would be a common root of all
elements of W what is impossible (Lemma 3.19).

Now we know that a hyperbolic field HFf is a Lie combination of shear fields
if and only if f = (pq)00 for some polynomial q. In Theorem 3.3 it was shown that
every volume-preserving vector field is a linear combination of the vector fields
SFxi , SF

y
i , HFf , [SF

x
i , HFf ] and [SF y

i , HFf ] for i 2 N0 and polynomials f 2

C[z]. To understand which vector fields are Lie combinations of shear fields it
remains to study the vector fields [SFxi , HFf ] and [SF y

i , HFf ].

Proposition 3.23. All the vector fields [SFxi , HFf ] and [SF y
i , HFf ] for i 2 N0

and polynomials f 2 C[z] are Lie combinations of shear fields.

Proof. Since i
[SFxi�1,HFf ]! = dxi f it suffices to see that the polynomial xi f (z)

corresponds for every i 2 N and every f 2 C[z] to a Lie combination of shear
fields. In the proof of Lemma 3.18 we saw that this is true for i � n = deg p.
So we already have every xnz j for j 2 N. If one takes the Lie bracket with the
vector field SF y

0 one gets with the calculation in the proof of Lemma 3.11 (a) the
polynomial xi ((i + 1)p0(z)z j + j p(z)z j�1) for i = n � 1. Since every polynomial
(p(z)z j )0 corresponds to a Lie combination of shear fields, so does the polynomial
xi (p(z)z j )0 = xi (p0(z)z j + j p(z)z j�1) (due to Remark 3.13). After a suitable
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linear combination of this two polynomials it follows that xi p0(z)z j and xi p(z)z j�1
correspond to a Lie combination of shear fields for all j . Therefore every xi f (z)
with f (z) 2 (p) [ (p0) ⇢ C[z] belongs to a Lie combination. Since p and p0

have no common zeros it is true that (p) [ (p0) = C[z] and the claim is shown for
i = n � 1. Repeat the same procedure for i = n � 2, . . . , 1 and the claim is shown
for every i 2 N.

Now we have to make the final step allowing not only shear fields but also
LND in our Lie combination. Since LND are shears conjugated by compositions of
shear automorphisms (see Theorem 2.15) the following lemma will do the job.

Lemma 3.24. Let � : Dp ! Dp be a shear automorphism and let 2 be a Lie
combination of shear fields. Then �⇤2 is a Lie combination of shear fields.

The proof of this lemma follows immediately from the following general fact.

Lemma 3.25. Let2 be an LNDwith flow �t and9 any algebraic vector field. Then
for any fixed t the vector field (�t )

⇤(9) is contained in the Lie algebra generated
by 2 and 9.

Proof. Since 2 is an LND the Taylor expansion of (�t )
⇤(9) with respect to the

variable t around t0 = 0

(�t )
⇤(9)=9 + t[2,9] +

1
2
t2
⇥
2, [2,9]

⇤
+ . . . +

1
n!
tn
⇥
2, [2 . . . [2,9]] . . .

⇤

is a polynomial in t . This implies the claim.

Thus we can now prove the main result.

Theorem 3.26. A volume-preserving vector field2 on the Danielewski surface Dp
is a Lie combination of LND if and only if its corresponding function f with i2! =

d f is of the form (modulo constants)

f (x, y, z) =

kX
i=1
j=0

ai j xi z j +

lX
i=1
j=0

bi j yi z j + (pq)0(z)

for a polynomial q 2 C[z].

Proof. By Proposition 3.22 together with Lemma 3.16 (3.4) and Proposition 3.23
the Lie algebra generated by shear fields consists exactly of those volume-preserving
fields described in the theorem. By Theorem 2.15 any LND 2 is conjugated to a
shear field S by an automorphism which is a finite composition of shear automor-
phisms = ↵m�. . .�↵1. Thus by Lemma 3.242 =  ⇤S = ↵⇤

1(. . .↵
⇤

m�1(↵
⇤

mS) . . .)
is contained in the Lie algebra generated by shear fields.
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