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Bergman-harmonic maps of balls

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Abstract. We study Bergman-harmonic maps between balls ® : B, — By
extending of class either C 2 or ! to the boundary of B,,. For every holomorphic
(anti-holomorphic) map ® : B, — By extending smoothly to the boundary
and every smooth homotopy H : & ~ W we prove a Lichnerowicz-type (cf.
[28]) result, i.e., we show that Eq (V) > Eq (P) + O(E_”'H). When & is
proper, Bergman-harmonic, and C 2 up to the boundary, the boundary values map
¢ §2—1 - §2N—1 5 shown to satisfy a compatibility system similar to the
tangential Cauchy-Riemann equations on § 2n=1 (and satisfied by the boundary
values of any proper holomorphic map). For every weakly Bergman-harmonic
map ® € wl(B,, B ) admitting Sobolev boundary values ¢ € om! (521, By)
in the sense of [6], the boundary values ¢ are shown to be a weakly subelliptic
harmonic map of (Szn_l, n) into (B, k), provided that o 1vh stays bounded
at the boundary of B, and ¢ has vanishing weak normal derivatives.

Mathematics Subject Classification (2010): 32H40 (primary); 32V20, 35H20,
35J20, 53C43, 58E20 (secondary).

1. Statement of the main results

We study maps @ : 2 — D for smoothly bounded strictly pseudoconvex domains
Q c C"and D c CV, with an emphasis on the case Q = BB, and D = By where
B, = {z € C" : |z] < 1} is the unit ball, which are either strong or weak solutions
to the Bergman-harmonic map system

(@) = —A, P + (FP cI>)8q)Q OO% b _0 1<p<2N (1.1)
T = — [¢) _— =0, < = . .
8Q 8Q OR 9x@ oxb

Here Q and D are thought of as endowed with the Bergman metric g and an a
priori arbitrary Riemannian metric /4, respectively. There is an ample mathematical
literature devoted to harmonic maps from the point of view of PDE theory (cf., e.g.,
J. Jost [22] and R. Moser [29]) where the principal part in equations (1.1) is the
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ordinary Laplacian (rather than the Bergman Laplacian A,4,). We are interested
in the regularity up to the boundary of the solution @ to the Dirichlet problem
Teo(®) = 0in 2 and ® = ¢ on 92, supposing that ® admits a trace on 92 in
a suitable sense. As far as C* regularity up to 92 is concerned, the problem has
been taken up by C. R. Graham [20,21], and by C. R. Graham and J. M. Lee [19],
for scalar-valued maps ® : Q — R. As ellipticity of A,, degenerates at the
boundary, new phenomena were shown to arise (cf. op. cit.) i.e. the existence of a
solution ® € C*®(R, R) to the Dirichlet problem Ago® =0in Q and ® = ¢ on
92 requires the boundary datum ¢ € C*°(3€2, R) to satisfy certain compatibility
equations C(¢) = 0 along 9Q2. By an elementary result in differential geometry,
any holomorphic map between Kéhlerian manifolds is harmonic. In particular any
holomorphic map ® : 2 — D is harmonic as a map of (2, gg) into (D, h),
provided that 4 is a Kéhlerian metric. By a result of A. Lichnerowicz, [28], if the
source and target Kéhlerian manifolds are compact then any holomorphic map is
actually a stable harmonic map and an absolute minimum in its homotopy class. A.
Lichnerowicz’s result fails for holomorphic maps of balls @ : B, — By, due to
the lack of compactness. How much of A. Lichnerowicz’s approach does survive
for maps between balls? As an attempt to answer the previous question we obtain
the following result (deferring definitions to the next sections)

Theorem 1.1. Let ® : B, — By be a C* map. For every domain Q € B, and
every smooth homotopy H : B,, x [0, 1] — By such that Hy = ® we set

ay (H) = / i, {a(H) A *WB"}
M
where M = 3Q and iy : M — B, is the inclusion.
i) If ® € HolL(n, N) then
Eq(¥) > |Eq(®) + ay (H)| (12)
where WV = Hy : B, — By.
ii) If ¥ € Holy(n, N) too, then Eq(®) > |Eq(V) Fay(H)|. Consequently if

ay(H) =0 for some H : & ~ \V then ay(H) = 0 for all.
iii) Let H be a smooth homotopy such that

dH" 0Hy dHA 0Hg
— 5, — - 7B~
((gIBN)ABOH) 9 07/ z7, ((gIBN)ABO ) ot aZj Zj
stay bounded as |z| — 1. Then
lap, (H)| < € ""DC, |lullp~ Vol (M , i0) (13)

where i : M, = §2"1 (VT =€/ay) — B, with a, = (7" /)Y D and
u = a(H)T and C, = 2"\ (n + )™ /(n — 1) In particular ay, (H) =
O " Hase — 0.
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So unlike the case in [28] (where €2 is the whole source manifold and the above
boundary integral vanishes) one only has asymptotic information on |’ M. uWy as
€ — 0, prompting the study of Bergman-harmonic maps ® : 2 — D, extending
to the boundary, through the mathematical analysis of their boundary values. Our
findings in the smooth regularity up to the boundary problem are contained in the
following (cf. Section 6)

Theorem 1.2. Let © : Q — D be a Bergman-harmonic map of a strictly pseudcon-
vex domain Q@ C C" endowed with the Bergman metric gq, into a domain D ¢ CN
endowed with a Riemannian metric h.

1) Assume that:

1) limgs;— ., ®(2) € D i.e. the limit exists and belongs to D;
i) limgs;— 7, FSR((D(Z)) = FSR(CD(ZO))for every boundary point 7y € 3%2.

Let ¢ : 92 — D be the boundary values of ®. Then

1
N(") = BT (@), 1<P<2N. (14)

In particular if ¢ has vanishing normal derivatives then ¢ is subelliptic harmonic
as a map from the pseudohermitian manifold (02, 0) into the Riemannian manifold
(D, h).

2) Let D = By and let h = gp be its Bergman metric. Assume that ® is
proper and extends smoothly up to the boundary of Q2. Then the boundary values
map ¢ = (¢, ..., ¢N) 1 0Q — SN~ satisfies

N

¢x 0t =0 (1.5)

A=I
where 9y, is the tangential Cauchy-Riemann operator on 3.

Aside from the technical difficulties arising from allowing more general values
in the Riemannian manifold (D, k), and from dealing with the nonlinear system of
PDE:s (1.1) rather than the single linear PDE A,,® = 0, Theorem 1.2 is in spirit
rather similar to the result in [19] (and to prove it we make use of the same geometric
approach employed there, relying on the Graham-Lee connection, followed by an
elementary asymptotic analysis towards 9€2). A methodologically new result is
obtained in the weakly differentiable case, where we only assume that ® : B, —
B is a Sobolev map, admitting boundary values in the sense of G. Cimmino [9]. To
make sense of LP-boundary values for a function u : 2 — R one sets u : 92 —
R, u; = u o8y, which requires the domain 2 to be 8, -contractible i.e. 5, (02) C Q
for every 0 < A < 1, where §,(z) = Az for any z € 9. Successively, given
¢ € LP(0L2), one requires that u; — ¢ in L?(02) as A — 17. Cf. [6,26], where
this approach is taken in order to formulate and solve the Dirichlet problem with
LP-boundary data for a class of sublaplacians. It is interesting to note that none of
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G. Cimmino’s works (cf. e.g. [10]) is reported on in the classical monograph [18],
and the approach to the generalized solution u € W!(Q) to the Dirichlet problem
for a second order elliptic operator is to assume that the boundary datum ¢ admits
one L? weak derivative, i.e. ¢ € WHQ), a case in which the boundary condition
u = ¢ may be written merely asu — ¢ € WO1 (2) (cf. [18, Theorem 8.3, page 181].
Our result is (c¢f. Section 7):

Theorem 1.3. Let ® € W' (B, , By), withn > 3, bea weakly Bergman-harmonic
map admitting L* boundary values ¢ € L*(S*~1, R?N). Assume further that
¢ € M(SZT1 RV and @) — ¢ in M (S, R*N)yasr — 1.

a) Suppose that:

i) ¢ € M (S, By) ie. ¢(z) € By forae. z € S,
ii) the Kdhlerian metric h on By satisfies FSR o®; — [‘SR o in L2(S2~1) as
h— 17 forany1 < P,Q.R <2N.

Then ¢ is a weakly subelliptic harmonic map of the pseudohermitian manifold
(§2n-1 n) into the Riemannian manifold (By, h).
b) Suppose that:

i) h = gn,;
iv) ¢ € MI(S2—1, S2VNy e ¢(z) € SPN7! for almost every z € S 1;
V) thereis Qg € L%(S?"=1YY such that

2
lim ﬂ_Q (1.6)
iol- 1—22  =? '

in L2(S*"~1) and Qy(¢) # 0 fora.e. ¢ € S 1.

Then B
¢z 0pp" =0, 1<A<N, (1.7)

ae.in §?n1,

¢) Any weakly CR map ¢ : §*"~1 — §2N=1js a solution to (1.7).

To make sense of the compatibility equations, the boundary datum is required to
possess one weak derivative along H (§2=1y in L2($?—1, R?N) (and use is made
of the Sobolev type spaces MM! (§2"~1, R?N) whose local counterparts, for an open
subset U C S~ carrying a local frame of H(S?"~!), are familiar from the theory
of Hérmander systems of vector fields, cf. e.g. [34]). When i = gg, we need the
additional assumption (1.6) that the quotient (Q ), (amply made use of in [32] and
[11-13]) has a L? limit as A — 17. All proper holomorphic maps ® : B, — B3
in J. J. Faran’s list (cf. [16]) may be seen to possess this property. The main novelty
consists in the asymptotic analysis of the weakly Bergman-harmonic map system
(7.1) towards the boundary, leading to the weakly subelliptic harmonic map system
(2.2). Cf. our Section 7 where we also explain the meaning of assumption (v) in
Theorem 1.3.
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2. Calculus on pseudohermitian manifolds and subelliptic harmonic maps

Subelliptic harmonic maps were first studied by J. Jost and C-J. Xu [23] (to whom
the notion is due) and Z-R. Zhou [36], within the theory of Hérmander systems
of vector fields (cf. e.g. A. Bonfiglioli et al. [7]) and were soon recognized (cf.
E. Barletta er al. [3]) to be local manifestations of pseudoharmonic maps from a
pseudohermitian manifold into a Riemannian manifold (cf. also [15, Chapter IV]).
Precisely, let (M, T1,0(M)) be an oriented CR manifold, of CR dimension n, where
T1,0(M) C T (M)QC denotes its CR structure. Let H(M)=Re{T1 o(M)®To,1 (M)}
be the Levi distribution, where Ty 1 (M) = T1 0(M) (here an overbar denotes com-
plex conjugation). It carries the complex structure J : H(M) — H(M) given by
J(Z+Z) =i(Z—Z)forevery Z € Ty o(M). Let i) be a pseudohermitian structure
on M i.e. a globally defined nowhere vanishing C* section in the conormal bundle
H(M)*+ c T*(M), where H(M))JC- = {w e T (M) : Ker(w) D H(M),} for every
x € M. The Levi formis G,(X,Y) = (dn)(X, JY) forany X, Y € H(M). The CR
manifold M, or its CR structure 771 o(M), is nondegenerate (strictly pseudoconvex)
if G, is nondegenerate (positive definite) for some 7. If M is nondegenerate then
every pseudohermitian structure 7 is a contact formi.e. W, = n A (dn)" is a volume
form on M. The divergence operator div = div,, : X(M) — C°(M) is then given
by
LxV, =div(X)¥,, X eX(M).

Also there is a unique tangent vector field T € X(M) (the Reeb field of (M, n))
such that n(T) = 1 and (dn)(T, -) = 0. As
T(M)=HM)®RT 2.1)

the Levi form G, extends to a semi-Riemannian metric g, (the Webster metric of
(M, n)) determined by

X, Y)=G,(X,Y), gX, T)=0, g,T,T)=1,

forany X, Y € H(M). Once a contact form 7 is fixed, there is a unique linear con-
nection V on M (the Tanaka-Webster connection of (M, n)) such thati) H(M) is V-
parallel, VJ = 0 and Vg, = 0,ii) Ty(Z, W) = 0 and Ty (Z, W) = 2iG,(Z, W)T
forany Z, W € Ty o(M),iii) to J + J ot = 0. Cf. e.g. [15], Chapter 1. Here Ty is
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the torsion tensor field of V and t(X) = Ty (T, X) (the pseudohermitian torsion)
for every X € X(M).

Let M be a strictly pseudoconvex CR manifold and let Py be the set of all
contact forms 7 such that G, is positive definite (the set of all positively oriented
contact forms on M). For every n € Py the Webster metric g, is a Riemannian
metric on M. Also there is a constant C,, > 0 (depending only on the CR dimension
n,cf. e.g.[4]) such that d vol(g,) = C,, ¥, where d vol(gy,) is the canonical volume
form of the Riemannian manifold (M, g;). In particular the divergence operators
with respect to d vol(g,) and W, coincide.

Let (S, h) be a Riemannian manifold, where 4 is its metric tensor. Given a
relatively compact domain @ CC M let Ep q : C (M, S) — R be the functional
defined by

1
Ep.a(p) = 3 /Q'[ralce(;,7 (Mu¢*h) W,

for every ¢ € C'(M, S). If B is a bilinear form on 7' (M) then [Ty B denotes its
restriction to H(M) ® H(M). When M is compact we write simply E, = Ep y.
Amap ¢ € C'(M, S) is a critical point of Epqif

d

T Eba@n) =0

for every smooth 1-parameter variation {¢;};|<s C CY (M, S) of ¢ (i.e. po = @)
supported in Q i.e. Supp(V) C Q. Here V € C (¢~ 'T(S)) is the infinitesimal
variation induced by {¢;};|<s i.e.

Ve = (dx,0H) (0/01)(x,0), x €M,
H:Mx (=66 — S8, H(x,t)=¢x), |t|] <.

A map ¢ € CY (M, S) is subelliptic harmonic if it is a critical point of Ej o for
every domain Q@ € M. Let {X, : 1 < a < 2n} be a local G,-orthonormal (i.e.
G,(Xa, Xp) = 84p) frame of H(M), defined on the domain U C M of a local
coordinate chart x : U — R such that J Xy = Xg+n forany 1 <« < n. Then
{x«Xs : 1 < a < 2n} is a Hormander system on x (U) (as a mere consequence
of the fact that 77 ¢(M) is nondegnerate) and, for every subelliptic harmonic map
¢ M — S,themap ¢ o x~! : x(U) — S is subelliptic harmonic in the sense
of [23].

Let V" be the Levi-Civita connection of (S, #). Given a C2 map¢ : M — S
one sets

Br@) X, V) = (#7'V") 6.Y —§.VxY, X.¥ € X(M),

(a pseudohermitian analog to the second fundamental form of ¢). Here o1Vl is
the pullback of vh by ¢ (a connection in the pullback bundle o7 IT(S) - M).
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From now on we assume, for the sake of simplicity, that M is compact. The Euler-
Lagrange equations of the variational principle é Ep(¢) = 0 are 7,(¢p) = 0 where
7,(¢) € C(¢p~'T(S)) is given by

7 (¢) = traceg, (T Bp(9))

and may be locally represented as
2n
(@) = —8s¢" + > (T, 0 9) Xa(9”) Xa(97)
a=1

forany 1 <« < dim(S). Here ng are the Christoffel symbols of hyg = h(dy , dp)
relative to the local coordinate system (y*) on S, with 9, = 9/9y*. Also A, =
Ap y is the sublaplacian of (M, n) i.e. the formally self-adjoint, positive, second
order differential operator given by

Apu = —div (VHu> . ueCX(M).

Forevery u € C (M) the horizontal gradient V8 u € C(H(M))is VHu = Iy Vu,
where Vu is the ordinary gradient of u with respect to the Webster metric i.e.
gn(Vu,X) = X(u), X € X(M), and Iy : T(M) — H(M) is the projection
associated to the decomposition (2.1). Equations 75 (¢)* = 0 are quasilinear subel-
liptic hence every C? (actually C? suffices, cf. C-J. Xu and C. Zuily [35]) subelliptic
harmonic map is C*°.

Let U C M be an open subset. A function u : U — R is weakly differentiable
on U along the Levi distribution H (M) if there is Y,, € Ll (U, H(M)) such that

loc
/ Gy(Yy, X)W, = —/ udiv(X)W,, X e CWU, H(M)).
U U

Such Y, is uniquely determined, up to a set of measure zero, and denoted by
Y, = VHy (the weak horizontal gradient of u). One thinks of VH as an oper-
ator of Hilbert spaces VZ : D(VH) c L?>(U) — L*(U, H(M)) with domain
D(VH) = M (U) consisting of all weakly differentiable # € L*(U) such that
VHy e L*(U, HM)). Clearly Co) C MM (U) so that V7 is densely de-
fined. Let 9! (U, RY) consist of all maps ¢ = (¢!,...,¢") : U — RY such that
¢P € Eml(U) forevery 1 < P <v.If j:S§ — RV is a given isometric immersion,
for some v > dim(S), then MM (U, §) consists of all ¢ € M (U, R") such that
¢(x) € Sforae. x € U (and clearly miu, S) depends on the immersion j).

For every u € 9 (M) and X € C®(H(M)) we set by definition X (1) =
Gy (X, Viu).

Lemma 2.1. Ifu, v € MM (M) then uv is weakly differentiable along H(M) and
V) = vvHu +uvhv.
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Proof. Clearly vV +uvHy € LIIOC(H(M)). Let {u,},>1 and {v,},>1 such that
u,, v, € C¥(M) and u, — u, v, — vin M (M) as v — oo. Then for every

X € C*(H(M))
/ Gy (vVHu+uVHu, X) v,
M

= lim [ G,(V#u, v, X)W, + lim [ G,(V*v, u,X) ¥,

V—=>00 M V—>00 M
=_ Ulggo {/M udiv(v, X) ¥, + /M v div(u,X) \I/,]}

=—lim [ {u[X(v)+ v div(X)]+v[X(uy) +uy div(X) ]} @,

V—>00 M

= —/ {uX () + uvdiv(X) +vX @) + vu div(X)} W,
M

:_f {G,,(uvHv+vau,X)+2uvdiv(X)}\p,,. O
M

The tangential Cauchy-Riemann operator is the first-order differential operator 9,
given by (3pu)Z = Z(u) forany u € C'(U,C)and Z € TioM). A C! function u
is a CR function if 3,u = 0 (the tangential Cauchy-Riemann equations). A function
ue Ll (U)isweakly CR if

loc

/ udiv(Z) W, =0, Z e C§(U, T o(M)).
U

Given two CR manifolds M and S a CR map is a C! map ¢ : M — N such that
(dx@)T1,0(M)y C T10(S)p) foranyx € M. If § C CV is a real hypersurface
(thought of as a CR manifold with the induced CR structure 771,0(S) = [T(S) ®
CINT9(CN)) thena C! map ¢ = @', ....,¢") : M — S is CR if and only if
each ¢ is a CR function on M. Also ¢ = (¢', ..., ¢") is weakly CR if each ¢4
is a weakly CR function.

Let U C M be an open set. A function u € L
normal derivatives if

1

1oc(U) has vanishing weak

/UuN(w) W, =0, ¥ eCPU).

Here N = —JT and T € X(5*"~!) is the Reeb vector field of (M, n).

A map ¢ € M (M, S) is weakly subelliptic harmonic, as a map of the pseu-
dohermitian manifold (M, 1) into the Riemannian manifold (S, %), if for any point
X € M there is an open neighborhood U C M carrying a local G-orthonormal
frame {T, : 1 <o <n} C C®(U, T;,0(M)) such that

| {Gn (VHe". v'y) =20 )" (Thro9) Ta<¢>Q)Ta<¢R)} ¥, =0 22)
u a=1
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for every ¥ € C3°(U). Existence and regularity of weakly subelliptic harmonic
maps were recently studied by L. Capogna and N. Garofalo [8], Z-H. Zhou [37]
(for maps from domains in R” endowed with Hormander systems of vector fields)
and by C. Wang [31], for maps from Carnot groups.

3. Bergman-harmonic maps

Let Q = {z € C" : p(z) < 0} be a smoothly bounded strictly pseudoconvex domain
and let Kq(z, ¢) be its Bergman kernel. Let g be the Bergman metric on 2 i.e.

3*log Kq(z, 2)
g)g=—"7T—"7T—, 1<jk<n.
8 ji 07 07 g

Let D Cc CVNbea domain endowed with an arbitrary Riemannian metric h. Given
a domain A such that A C €2, the Dirichlet energy functional is

1
Ea®) =3 / 14| d vol(ge)
A

for every @ € C%(2, D). Here ||d®| : 2 — [0, +00) is the Hilbert-Schmidt norm
of ddie. ||dd|? = traceg, (P*h). A C? map & : Q — D is Bergman-harmonic
if

d
HEA@)], =0

for any A € 2 and any smooth 1-parameter variation {®;};|<s C C%(Q, D) of @
(i.e. D9 = D) supported in A i.e. Supp(V) C A where V € Cl(@7'T(Q)) is the
infinitesimal variation induced by ®

V. = (deoy F) (3/00 0y, 2 €,
F:Qx(=68,8) > D, F(z,t) =d(z), |t] <3.

The first variation formula for the Dirichlet energy is

d

{Ea@)) o = - /Q B (V, 745 (®)) d vol (ge)

where g, (P) € C(®~'T (D)) is the tension field of ® i.e. Tgqo (P) =traceg, Bg, (P)
and Bg, (P) is the second fundamental form of @

B @)X, 1) = (V') 0,y — 0, Vi

for any X,Y € X(R2). Therefore the Euler-Lagrange equations of the variational
principle associated to Eg are g, (®) = 0 and these may be written locally

apL gk

— —_G®»=0, 1<P<2N, (3.1)
axa Jxb

—Ago @7 + (FSR o @)
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where @ = X o @, Ag,, is the Bergman Laplacian, i.e. the Laplace-Beltrami
operator of (€2, go) as a Riemanian manifold, and Fg r are the Christoffel symbols
of hpg = h(3p, dg) with dp = 3/0X" and 1 < P, Q < 2N. If (z',..., 2"
and (Z', ..., Z"N) are the Cartesian complex coordinates on C" and CN then z/ =
x/ 4 ix"t/ and Z4 = XA +iXNtA with1 < j <nmand1 < A < N. We
set as customary G,p = g9y, dp) With 9, = d/0x* and 1 < a,b < 2n. Then
[G“b] = [Gap]~". The Bergman Laplacian is given by

Aggtt = — i {Ea (Eq(u)) — (v@fEa) (u)} CueCkQ), (32
a=1

where V82 is the Levi-Civita connection of (2, gg) and {E, : 1 < a < 2n}isa
gq-orthonormal frame of 7 (£2).

Any zholomorphic (i.e. holomorphic or anti-holomorphic) map ® : B, —
By is Bergman-harmonic, with respect to an arbitrary Kéhlerian metric 4 on By .
The classical theorem in [28] (that £holomorphic maps of compact Kéhlerian man-
ifolds minimize the Dirichlet energy within their homotopy classes, cf. [28]) fails
to apply, due to lack of compactness of B,,. One may but partially recover Lich-
nerowicz’s result by integrating over a domain €2 such that Q@ C B,,. Our finding is
Theorem 1.1 in Section 1 i.e.

Eq(¥) = (3.3)

Eq(®) :I:/ i’ (cv(H) AWE)
Q2

whenever @ is holomorphic and a smooth homotopy H : ® =~ W is given. Here
o (H) is a differential 1-form determined by H (and discovered by A. Lichnerowicz,
cf. op. cit) and WB = —j 90 log KB, (z, z) (the Kéhler 2-form of B,). When
the domain is Q = Q. = {¢ < —€} C B, we may estimate the boundary integral
fMe u Wy in inequality (3.3) (where u = a(H)(T) € C(En) and Wy = O A(dO)" 1)

to show that Eq (V) > Eq () + O(e™"*1) as € — 0. Our calculations rely on
the differential geometric machinery outlined in Section 4 and Section 5 (and due
to [19] and [14]).

4. The method of A. Koranyi and H. M. Reimann

By a celebrated result of C. Fefferman (cf. [17]) one has the asymptotic expansion
formula

Ka(z,0) =CalVp(@)I* -detL,(¢) - W(z, £) "V + E(z, 0), (4.1)
with E € C®(Q x Q\ A) and

|E(z, 0)| < CqlW(z, O]~ DH/2  log |W(z, £)]. (4.2)
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Here L, is the Levi form and A = {(z, z) : z € d2}. Also
W(z,0) = (F(z,0) — p@)x(z = ¢+ (1 — x(z — ¢I)lz — ¢ I,
— dp N IR i iV(k _ ok
Feo) == =@ -t) -5 3 O = ¢/) (" = &),
j=1

i 5k

2 = dz/ 0z

and x (¢) is a C*° cut-off function with x (¢) = 1 for |¢| < €y/2 and x(¢) = O for
[t] > 3€0/4. As an elementary consequence of (4.1)-(4.2) if

9(2) = —Kal(z, )~/ +D 4.3)

then ¢(z) — 0 and Vg(z) # 0 as z — 9S2 hence ¢ is a defining function for 2.
The observation is essentially due to A. Kordnyi and H.M. Reimann (cf. [25]) al-
though P. Klembeck was the first (c¢f. [24]) to exploit (4.1)-(4.2) towards geometric
applications. A parallel among the work in [24] and the approach by E. Barletta
(cf. [2]) to Klembeck’s result will be drawn later on in this paper, as a means to
understand the peculiarities of the asymptotic analysis used. As a qualitative conse-
quence of A. Kordnyi and H.M. Reimann’s observation one may effectively relate
the Kihlerian geometry of the interior of 2 (springing from its Bergman metric
gq) to the contact geometry of the boundary 92 (associated to the contact form
0 =5 (5 — 8) ©(2)). Neither the Bergman metric gg, nor geometric objects asso-
ciated to it (the Levi-Civita connection V&%, its curvatures, etc.) stay bounded at
the boundary (for instance gq is O(¢~!) as ¢ — 0). The quantitatively precise
solution is to evaluate g and V82 on each leaf of the foliation F by level sets
M, = {9 = —€},0 < € < €y, and approach the boundary as ¢ — 0 (i.e. as
M, — 90R2) ¢f. work by C. R. Graham and J. M. Lee [19]. This is a rather old tech-
nique, going back to G. Cimmino (cf. e.g. [9] and [26]) and the actual contribution
of C. R. Graham and J. M. Lee is to compute V82 in terms of quantities surviving
at the boundary, such as a metric connection (devised by them and referred to by us
as the Graham-Lee connection, cf. also [14]) whose pointwise restriction to each
leaf M. is the Tanaka-Webster connection of the leaf, and in terms of derivatives of
the transverse curvature of F. As an application of the methods in [25] and [19]
we study the boundary behavior of Bergman-harmonic maps ® : B, — By. We
distinguish two cases, as I) limp 5., . com-1 @(2) € By and By is endowed with
a Riemannian metric 4 such that the pullback ®~!V” of the Levi-Civita connec-
tion V” stays bounded at the boundary of B,,, or II) ® is a proper map extending
smoothly at the boundary and & = gp, (the Bergman metric). In the first case we
show that the boundary values ¢ : S*"~! — By of ® is a subelliptic harmonic
map (in the sense of J. Jost and C-J. Xu [23]) of the pseudohermitian manifold
(5?"=1, 9) into the Riemannian manifold (By , &), provided ¢ has vanishing nor-
mal derivatives. In the second case the boundary values map ¢ : §2"~! — §2VN-1
is shown to be a solution to the PDEs system ¢ 3¢ = 0 where 9, is the tan-
gential Cauchy-Riemann operator on $?"~! (¢f. Theorem 1.2 in Section 1). As a
but necessary condition for Bergman-harmonicity, equations (1.5) have of course a
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limited practical use (e.g. may be used to show that the modified Faran maps (5.1)
and (5.11) in Section 5 are not Bergman-harmonic).

5. Smooth maps between balls

Amap ® : B, — By is proper if ®~1(K) is compact in B, for any compact
subset K C By. For maps extending continuously to the boundary, properness
is equivalent to ®(5?*~1) ¢ $?N~!_ The main examples we keep in mind are
maps ¢ = (Cbl, o, N ) whose components ®4 are polynomials, often monomi-
als cf. [11]-[13], such that O (S ¢ §PV-1 Two maps ® and ¥ are spheri-
cally equivalent if ® = ¢ o W o £~! for some automorphisms £ € Hol(B,) and
¢ € Hol(By). Due to the complicated structure of the Bergman-harmonic map
system (here with & = gg,,)

) n 82q>A
—2(1=12P) Y (b - 27 -
| | j,k:1( Jk J k) BZ_] aZk

n
1 e _
+ ; T—er (53¢ +68®5 ) E;(@F)E;(0) =0,

the analysis of particular examples appears as rather involved, too. For instance, the
following modification

Dz, w) = (|z|2z, V3w, |w|2w), (z.w) € By, (5.1)

of Faran’s map (z, w) +— (23, V3zw, wd),is proper but not holomorphic. Is (5.1)
at least Bergman-harmonic? As announced in Sections 1 and 2, our approach to the
study of Bergman-harmonic maps between strictly pseudoconvex domains, and in
particular balls, is twofold i.e. we adapt a Lichnerowicz-type argument (cf. [28]) to
the case of open Kihlerian manifolds (cf. Theorem 1.1) and we study the boundary
behavior of a Bergman-harmonic map (¢f. Theorem 1.2).

Theorem 5.1. Let h = gp,. If ® : B, — By is a Bergman-harmonic map then
Uo®and ¢ o®o& ! are Bergman-harmonic for any U € U(N), & € Hol(B,)
and ¢ € Hol(By).

Proof. As Hol(By) C Isom(By, gg,) the Hilbert-Schmidt norm of a C 2 map
B, — By is a U(N)-invariant. Let Q € B, be a relatively compact subdomain
and let {W; }|;|<s be a smooth 1-parameter variation of ¥ = U o® supported in 2 i.e.
Supp(W) C Q where W € C L(w~1T7(B,)) is the infinitesimal variation induced
by {W:}jsj<s. Then &; = U 1oy, isa 1-parameter variation of @ supported in
Qand Eq(V;) = Eq(U o ®;) = Eq(®P;) hence W is a critical point of Eq. In
general if U = ¢ o ® 0 £7! (including the previous case) then ||dW| = ||d®| o £ !
(because of £*gg, = gBy) and E¢(q)(V) = Eq(®) (by a change of variable under
the integral sign, as £ is an isometry of (B, , gg,)). O
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Let Holy (1, N) be the set of all holomorphic maps B,, — By. Let P(n, N)
consist of all proper maps ® € Hol;(n, N) extending holomorphically past the
boundary of B,,. Let P*(n, N) be the quotient of P(n, N) by the relation of spher-
ical equivalence. By a result of J. J. Faran (cf. [16]) # [P*(2,3)] = 4.

Corollary 5.2. The Dirichlet energy Eg, : P(2,3) — R is discrete and the corre-
sponding energy levels are precisely the spherical equivalence classes in P*(2, 3).

Let ® : B, > By beaC>® map. Letd“® : T(B,)  C > T(By) ® C be
the C-linear extension of the differential of ®. We set as customary

30 : T"(B,) - T"O(By), 3P =m0 (d°®)oir,
30 : T"'(B,) - T'O(By), 90 =m0 (d®)oio,

where m10 : T(By) ® C — T19By) is the projection while i10: T7.9B,) -
T, ® Candip : 7%1(B,) - T(B,) ® C are inclusions. Then

ik

la®|* = (gB,)"" 7 @

, @

(gJBN)A

A
J
130)* = (g8,)" @2 ®F (g8,) ,

|

el

| i
AR
~

P

|
k>| ~.| >|

~

where d>}f‘ , CID? € C® (B, C) are given by
@) 8/0z/ = @t 0/0z*, (9®) 9/07 = c1>§ 3/9Z4 .
It follows that
Eq(®) = Eq(®) + Eg(®),

Eq(®) = / [a®|* d vol(gs,), E&H(®P) = / 10®|1% d vol(gs, ),
Q Q

for every domain  C C" such that @ C B,,. The following is immediate:

Lemma 53. A C*® map ® : B, — By is Tholomorphic if and only if E4(®) =0
or Eq(®) = 0 for every Q € B,.

Let us set Kq(®) = fQ (||8d>||2 - ||5<I>||2) dvol(gg,). If WEr and WEN are
the Kihler 2-forms of the Kéhlerian manifolds (B,, gg,) and (By, gg,) then let
WB | &*WBN) : B, — R be defined by

(WE " WEY) = (g8,)" (g5,)" W™ (E; . Er) (0"W™) (Eg, Ey).
One easily checks that

13| — 90> = (W, o*WEN), (5.2)
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Let{H; :0 <t <1} Cc C*(B,, By) be a smooth 1-parameter family of maps. As
dWEN =0

8 * ]BN _ * aHt BN
E(H,W )_H,d IR, (5.3)
Moreover we set
! 3H, | @
Ol(H):f H[*{—JWN}dZ
0 at

If D ¢ CV is convex then any two maps ®, W : Q — D are homotopic.
Proof of Theorem 1.1. (i) By integrating in (5.3)
Hf WEN — HFWEN = d a(H). (5.4)
Consequently (by (5.2) and (5.4))
Kq(H)) — Ko(Ho)
= / {(W]Bn , HfWEN) — (B H(;“W]BN)} dvol(gg,)
Q
= f W A (H;‘WBN — H(;“WBN> = / WE A xd a(H)
Q Q
= / (d a(H)) Ax WP = / d (oe(H) A *WB")
Q Q
i.e. (by Stokes’ theorem)

Ka(H)) — Ko (Ho) =/ a(H) A xWBn (5.5)
I

because

W= - 0! (WB")n_l 6)

yields d (x)V®n) = 0. Finally (by (5.5))
Eq(¥) = Eq(V) + EQ(¥) = |Eq(V) — EG(V)|
= [Ke(W)| = |[Ka(®) +an(H)| =
|Eq(®) +ap(H)| if @ is + holomorphic
{|Eg;(c1>) —ap(H)| if ®is — holomorphic
= |Eq(®) £ayn(H)|.

(i1) Let H, = H,_, for every 0 < 1. Then (by a change of variable) a(I:I ) =
—a(H) yielding (by (1.2)) Eq(® |[Eq(¥) Fapy(H)| for every Q € B,. If

1 <
) =
there exist homotopies H : ® >~ W and H' : ® >~ W such that ay (H) = 0 and
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ay(H') # 0 then Eq(®) = Eq(W¥) and, say for @ and ¥ both holomorphic and
ay(H) >0, Eq(V) > Eq(®) + apy(H'), a contradiction.

(iii) We set Q¢ = {z € B,, : ¢(z) < —¢} forevery 0 < € < ¢y. Here ¢(z) =
an (Izl2 — 1) and we rely on notations and conventions detailed in Section 4 and
Section 6. Let M, = 9. Let {w/ : 1 < Jj < n} be complex valued local (1, 0)-
forms dual to the complex vector fields (6.16) i.e. ol (Ey) = 8,{ and w/ (Ep) = 0.
If {6 : 1 < a < n — 1} is an adapted coframe of T o(F) i.e. 0%(Wp) = 8%,
9"‘(Wg) = 0and 0%(T) = 0 then

W — _n—l—lea’ o n+1

@ 2fe
Consequently the Kihler 2-form of (B, gg,) is given by (cf. (6.3)-(6.5))

L - 2i(n+1) = l—rg -
WB — 2iN /Al =T 2 0% A Q% — o A g b .
; ¢ Xa: 20 0

a¢.

Then (as i} d¢ = 0)

WP =2i(n 4+ e Y 0% 67 (5.7)
o
Moreover
n—1
(Z 0% A 95) — l-(ﬂ—l)(n—2)50[1 81 o O B Qu1-+Cn—1 A QBI-HBH—I ,
o
R L NP e
Therefore (by (5.6)-(5.7))
i (*WIB%,,> —e D¢, l-(n—l)2 gl-(n=1) QT...(n—l) (5.8)

with C, = 2n +2)"1/(n — 1)!
Lemma 54. u = a(H)T extends continuously to the boundary of B,,.
Proof. The real 1-form a(H) is given by

1
a(H), X = /O Wj‘?}y(z)((d(z,,)H)(a/az)(z,t), (dH)X ) dr

forevery X € T;(2) and z € 2. Hence (by T =i z; 8/dz/ + complex conjugate)

1 dHA [ .0H% dHx
= = H) J B _z7 B
OH- [ .0H®? dH?B
- H) Az — -3 dt
+<(gJBN)AB © 97 (Z FRVRRRY 0z )}

hence u(z) stays finite as B, 3 z — §2"~1. O
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Finally (by (5.8))

apy,(H) = Cni(”_1)2e_”+1/ u Wy
Me

yielding the estimate (1.3) with |u||pec = sup, ., lu(z)| and (by Wy = =l —
1)!d vol(gg)) with

Vol(Me , i}6) = / Wy =2"""n— Dlwy—1 (1 — €/a,)? V2 = 0(1)

€

where w,,_1 is the “area” of §2"~ 1. O

Theorem 5.5. i) Let H,(z, w) = (tz, N1 =122, V2 =12 zw, wz)for every0 <

t <1land(z,w) € By. Then H : By x [0, 1] — By is a homotopy of Faran’s maps
joo® = Hyand ji oV = H

O w) = (2 V22w, w?), Ww) = (2w, v, ($59)
such that each H; is a proper holomorphic map and
((s2) 50 H) OH (9Hg 0l (5.10)
88J)a8° ) o "oz TV ow '

stays bounded at the boundary of By. Here jy, j1 : Bz — B4 are the injections
Jjo(Z) =0, Z) and j1(Z) = (Z,, 0, Z>, Z3), Z € B3. In particular ayo(H) =
0 for every domain Q € B;.

ii) Let Hi(z,w) = (tz, V1 =12 |z|*, ¥2 =12 zw, |w|?), (z, w) € By. Then
H : By x [0, 1] = By is a smooth homotopy H : joo ® >~ ji oW of

Dz, w) = (|Z|2, \/Ezw, |w|2), Yz, w) = (z, zw, |w|2), (5.11)

by proper C* non Ltholomorphic maps H;,0 <t < 1. None of the maps (5.11) is
Bergman-harmonic. The functions

<( ) H) dHA ( OHp N dHg
=0 w s
8Bs) AB o \" oz dw

as well as (5.10) stay bounded at the boundary of B,,. The boundary integral in
(1.2) vanishes i.e. ayo(H) = 0.

Homotopies H in Theorem 5.5 are examples satisfying the basic assumption
in (iii) of Theorem 1.1.
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Proof of Theorem 5.5. One notes that

IH*
= Hy =11z (1= 12 = [wl?).

ot
dHA OHy ) 5 »\  OHA9Hy
————=z=tz]" (1 =2|z|" — ) —— AW = —t|z*|w|*,
oo =1 (1= 2P = AW =tz
BBHE__ 2, 12 2 4 2 2 2
H r 2=z  +2(1 = 7)lz* + (2 — 17) Iz |w|?,
dHy
HP B = (2 2) |z |lw]* + 2w[*,
ow
N +1 HzH®
—oH=——15 —A__1,
(gBN)ABO 1—|H|2{ AB + 1—|H|2}

(with N = 4) hence

2(1,12 2 2
JHA (_BHB _8HB> _ HzP(lelP + w? — 1) 5.12)

((813%4)A§°H> 3; \* 97 Y ow (1—|H|2)2

tending to (2 — z‘2|z()|2)_2 as By o (z, w) — (20, wo) € S¥~1. Moreover (as
(5.12) is real) w(H) = 0 and (by (ii) in Theorem 1.1) E4(V) = E4(P) (also
ay(H') = 0 for any other smooth homotopy H' : & >~ W). The Proof of (ii) in
Theorem 5.5 is similar and omitted. O

6. Boundary values of Bergman-harmonic maps

From now on we shall assume that ® : 2 — D is a map extending smoothly up
to the boundary of 2 and analyze (3.1) in the limit as z — 9. The first step
is to relate V82 to the Graham-Lee connection, a linear connection defined on a
one-sided neighborhood of €2 which we proceed to recall (c¢f. [14,19]).

Let M = {z € Q : ¢(z) = —e} with € > 0 be the level hypersurfaces of ¢
(given by (4.3)). There is €9 > 0 such that M, is a smooth strictly pseudoconvex
CR manifold, of CR dimension n — 1, for every 0 < € < €y. Therefore there is a
one-sided neighborhood of V C Q of the boundary, carrying a foliation F whose
leaf space is V/F = {M : 0 < € < ¢p}. Let H(F) — V and T o(F) —
V be respectively the bundles whose portions over a leaf L € V/F are the Levi
distribution and the CR structure of L. Cf. [15] for the main notions and conventions
in CR and pseudohermitian geometry. Then

T1,0(F) NTo 1 (F) ={0}, To,1(F)=To(F),
Z, W e C®(Tio(F)) = [Z, W] € C®(T1,0(F)),
H(F) =Re{T1o(F) & To,1(F)}.
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By a result of J.M. Lee and R. Melrose [27], there is a unique complex vector field
& of type (1,0) on V such that

dp() =1, 809 (,2)=0, ZeTioF).

The transverse curvature of F is r = 290¢ (£, ). Again by a result in [27] the
transverse curvature is smooth up to the boundary i.e. r € C*(£2). Let us set
N=§t+&andT =i(§ —&). ThenT(p) =0ie. T € T(F). Note that
T(F)=H(F)®RT. (6.1)
Let us set 0 = IZ (3 - 8) @ so that the pullback of 6 to each leaf L € V/F is a
contact form on L. We shall need the tensor field gg given by
go(X,Y) =(dO)X,JY), g(X,T)=0, go(T,T)=1,

for any X, Y € H(F). Here J denotes the complex structure of C". Up to a sign
change the contact forms induced by 6 on the leaves of F are positively oriented
hence gp is a Riemannian metric on the bundle 7'(F) (a tangential Riemannian
metric for F). The pullback of gy to a leaf of F is the Webster metric of that leaf.
Let us also set

Lo(Z, W) =—i(d0)(Z, W), Z,W € Tio(F).

The Graham-Lee connection of (V, F) is the unique linear connection V on V
obeying to the axioms i) T7,0(F) is parallel with respect to V,ii) VLy =0, VT =
0, VN = 0 and iii) the torsion tensor field 7y of V is pure i.e.
Tv(Z, W) =0, Tv(Z,W)=2iLe(Z, W)T,
Iv(N, W) =rW +it(W),

t(Tio(F) C Toa(F), t(N)=—-JVir—2T,
forany Z, W € T o(F) where ©(X) = Ty (T, X) forevery X € T(V). Here viy
(the horizontal gradient of r) is given by

VAr =TIyVr, go(Vr,X)=X(@r), X eT(F),
and Iy : T(F) — H(F) is the projection associated to the direct sum decompo-
sition (6.1). Mere differentiation of ¢(z) = —K (z, z)~/®+D yields

ntl {’; (3¢ ADg) (X, JY) — (dO)(X, JY)} (6.2)

ga(X,Y) =
for any X, Y € T(V). The identity (6.2) together with the decompositions (6.1)
and T(V) = T(F) @ RN leads to
ga(x.v) = -1
ga(X, T)=0, go(X,N)=0, X e H(F), 64)

1
¢a(T,N) =0, go(T.T) = ga(N, N) = ”g; , (6.5)

g (X, Y), X,Y e H(F), (6.3)
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where f = ¢/(1 —r¢). Then

®
n—+1

Véuy =

{—v”u + FIT@T + N(u)N]} (6.6)

forevery u € C (Q). As a consequence of equations (6.3)-(6.5) the connections
V82 and V are related by

VY =VxY +{f g0t X, Y) + go(X, b))} T — {go(X, Y)

6.7)
+f 80 (X, JpTY)} N,
VT =1X — % JpX — g {(X("T + (JpX)(r)N}, (6.8)
VN = —% X +tdpX + g {(UpX)(r)T — X (r)N}, (6.9)
VX =VrX — % JpX — g {X()T + (JpbX)(r)N}, (6.10)
VX =VyX — %X + g {(LX)(r)T — X(r)N}, (6.11)
1 f 4 2

VT = ) JpyVHr — £ {(N(r) + el ?) T + T(r)N} , (6.12)

1 4 6
ngWQN = J,Vir - i {(N(r) 4+ —= - > +4r2) T + T(r)N} , (6.13)
2 2 9

viﬂT:—%vHr—g {T(r)T—(N(r)—F%—%r—I—MZ)N}, (6.14)
1 4 2
V;"VQN:—EVHrJrg {T(r)T—(N(r)—i-E—;T)N}, (6.15)

forany X,Y € H(F). Here J, : T(F) — T(F) is the bundle morphism defined
by J,X = JX forevery X € H(F) and J,T = O (so that Jb2 =—14+6®Ton
T (F)). At this point we may prove Theorem 1.2. Let (W, : | <o <n—1}bea
local orthonormal (i.e. gg (W, , WF) = 8q4p) frame of T o(F) and let us set

@ 2fe
Ey= |—FW,, E,= , 6.16
o n+l o n n+15 ( )

so that (by (6.3)-(6.5)) {E; : 1 < j < n} is a local orthonormal frame of 7'-0(V)
(the holomorphic tangent bundle over V). Then the Bergman Laplacian (3.2) may
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be written as

n

8 8
Agatt = = Y| EjEju+ EjEju— (VEEES ) u - (v,;;z;,) ul

j=1

n—1
- nil 2 {WaWau + WaWau (vﬁ;ZWa—)u _ (vg”v‘z_wa)u}
2fe
o B e (VEE) (V%)
or, by (6.7)-(6.15),
% 2¢0(n —1) fo { 2 2 H
A, =— A N— N 4+T2 4V 2N} 6.17
se = T T ntl HITHVIr+ 2Ny (6.17)

where Ay is given by

n—1
Apu ==Y " (WoWa + WaWa — Vi, Wa — Vi, Wa ) u

a=1

For any z € V the definition of (Apu)(z) does not depend upon the choice of local
orthonormal frame {Wy : | <o < n— 1} of T} o(F) at z. Also A, restricts to each

leaf of F as the sublaplacian of the leaf. If [(gQ)j E] = [(gg) j;] then
3 [ + @] 1 [e0 - @]
-
1 ik jk 1 ik Jk
=@ = g2 [ + @]
so that

a0l 9k a<1>Qac1>R T

22( QRoCI>> i (09)E; (oF).

Proof of Theorem 1.2. The Bergman-harmonic map system (3.1) may be written
(by (6.16))

n—1
—Ap®F +2 TP o®) Wy (@) We(dF) +2(n — HN(@F)
o;( or ) (6.18)

—f{N2 F T2 4 vHr 2rN}(<I>P) _4f (I‘SR o c1>) E(DO)E(DR) =0
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hence,as ¢ — 0
n—1
~8p9" +2) (Thg 0 @) Wa($9) Wa(#®) + 201 = DN(9") = 0.
a=1

Consequently one may express the normal derivatives of ¢ in terms of purely tan-
gential quantities (a typical non-elliptic phenomenon)

1
N@") = 30D w ()"

which is (1.4) in Theorem 1.2. To prove statement (2) one observes that if F' A=
&4 4+ i®N*4 forevery 1 < A < N then

i (roro®) E; (92) E; (oF) = {Eﬁ )’:jg gi ~ ;‘]’+ A 619

where y (@) = Yi_, (vfc o @) Ej (FP) E; (F€) and

vie = (ep)2F 9 (gp) 5 /0Z€

are the complex coefficients of V82 (the Levi-Civita connection of (D, gp)). Iden-
tity (6.19) is an elementary consequence of

A N+A A A A
Fge =Tg Nic = Thipnic = (1/2) (VBC + VEE) ;

N+A A N+A . A A
Uec” =T nic=—Tnipnic = (1/20) (VBC - Vgg) ;

forany 1 < A, B,C < N. Thus (by (6.17)) the Bergman-harmonic map system
(3.1) becomes

CAFA L2 — 1N (FA) —f {N2 + T2+ VHr 2rN} (FA)

B 2(n(/—)|— 1) i(yéqcod)> E, (FB>EJ (FC) —0.
=

(6.20)

If D =By and h = gp then

N +1 ZAZp 4B 1-1Z)? AB A—B
N (g o ZAZE ) :7(5 — 747 )
(gIBN)AB 1 — |Z|2 ( AB + 1— |Z|2) (gBN) N+1

so that |
A A7~ A7~
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Consequently, by (6.16),
003 e o) 11 (1) (1)
(6.21)

= (s Fet 58 ) {Z We (FP) Wa (F€) ~ 276 () g(pc)}

where a, = (n"/n!)l/(”H). Also if 2 = {¢ < 0} and D = {¢ < 0} then for every
proper map ® : Q — D one adopts the notation

@ (P(2))
= Cn - 5 Qy
Qol@) =Can = 0= 2€ (6.22)

Cn,N = (Ny)l/(N-‘rl) (n!)—l/(n-i-l) nn/(i’H—l)—N/(N-‘rl) ,

agreeing with (3.1) in [12, page 85], when Q = B, and D = By . Let us substitute
from (6.21) into (6.20) and take the limit as ¢ — O in the resulting equation. We
obtain

(3;; Ay ¢>§) i W, (¢B) Wy (¢C) —0 (6.23)
a=1

forany 1 < A < N. Let us contract with ¢ in (6.23). Then (by the constraint
pPog=1)
n—1 2
2 W (¢) ¢
a=1
or Wy (¢€) ¢z = 0 thus yielding >"Y_, ¢5 954 = 0 which is (1.5) in Theorem
1.2. The “disappearance” of the second order terms in (6.21), leading to the linear
first-order system (1.5), may be thought of as a rather curious phenomenon. An
inspection of work in [2] provides a heuristic explanation. As recalled in Section 3,
exploiting Fefferman’s expansion formula for the Bergman kernel towards geomet-
ric applications is already present in the work by P. Klembeck [24], who proved that
the holomorphic sectional curvature of g tends to to the (constant) holomorphic
sectional curvature of gg,

=0

kg(o) — _niﬂ’ 7 — 082, (6.24)
for every holomorphic plane o C 7;(S2) i.e. dimr o = 2 and J;(0) = o. P. Klem-
beck’s work is previous to the discovery of the Graham-Lee connection V and relies
on a direct asymptotic evaluation of the sectional curvature, resulting into rather in-
volved calculations. Curvature is computed in terms of g jE(Z) and their derivatives,
and an approximate inverse of [g % (z)] 1s devised in the process, as a matrix asymp-

totically equivalent to [gji(z)] as z — 0%2. A simpler differential geometric proof
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of Klembeck’s result, making use of (6.7)-(6.15), is due to E. Barletta [2], who
proves that

g:(RE(X, Y)Y, X)

kg(o) = 5
gZ(Xa X)gZ(Ya Y) - gZ(X7 Y)
@ | 4 A(X, X)* + A(X, J.X)?
= g | @t g T @ g0..(X, X)?

where kg is a pseudohermitian analog to the notion of holomorphic sectional curva-
ture introduced by S. M. Webster [33]. The latter is devised to be 1 for the sphere,
as well as Riemannian sectional curvature, and a priori one expects that kg should
contribute to get —4/(n + 1) at the boundary. Since ky and A (the pseudohermitian
sectional curvature and torsion of the leaves of JF) stay finite at the boundary (and
give respectively the pseudohermitian sectional curvature and the pseudohermitian
torsion of (32, i5,0) in the limit as z — 9%2) and f(2) — 0, ¢(2)/f(z) — 1as
7 — 0%, it follows that (6.24) holds yet ky (o) gives no quantitative contribution
to the result. Similarly, in the asymptotic analysis of the Bergman-harmonic map
system for C°> maps ® : 2 — By, elimination of O (¢~?) coefficients followed by
approaching the boundary with ¢ — 0 “kills” second order terms (only terms with
O(p~?) coefficients may “survive” at the boundary) and one is left with equations
(1.5). O

The Bergman kernel of Q = B,, is given by

nlag~"

Kg,(z,¢) = — T
(] _Zé_) +1

Thus ¢(z) = a, (]z|* — 1) and F is the foliation of B, \ {0} by spheres

h”*@ﬁfﬁﬁy0§e<w} (6.25)

Moreover T1,0(F) is locally the span of {Ty, = 9/9z% — (zo/zZn) /07" 1 1 <a <
n — 1} hence . '
£ =(1/a) 1zl 2/ 8/d2

and the transverse curvature of F is r = (1/ay) |z|72. In particular 7'(r) = 0 and
X(r) = 0 for every X € H(F) (with the corresponding simplification of (6.7)-
(6.15)). Compatibility relations (1.5) become

a4 oA
CDX (Zn ﬁ —z* ﬁ) =0. (626)

If n = 2 then (6.26) is the single equation & (w ADA /97 — 2 E)CIDA/BE) =0 (and
the proper map (5.1) is not Bergman-harmonic).
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7. Bergman-harmonic maps with 9t!-boundary data

Let W!(B,) be the Sobolev space of all L? functions u : B, — R possessing
weak L? derivatives. Let W' (B, , By) consist of all maps ® = (&', ..., V) :
B, — By c R?M such that ®” ¢ W!(B,) forevery I < P < 2N. A map
® € WI(B,, By) is weakly Bergman-harmonic if

ap2 gk
/B {g (Vg@”, Vg\IJ> 7 (FSR ° cp) S G“b} dvol(g) =0 (7.1)

for any ¥ € C(‘)>o (B,), where g = gp,. For ones needs in this section wi(B,)

consists of all u € L?(B,) admitting a weak gradient V&u € L*(T(B,). Hence
for each u € W!(B,) there exist functions (Véu)* € L2(B,) such that V8y =
(V8u)* 9/0x? and we set by definition
ou a
@ = (ngl) Gab
and observe that

/a—ullldvol(g):/ u (<) wavole), wecCEE,
B, 8x”

B, 3xb

where (3/0x)*h = —0h/0x? — hdivg(9/0x), h € Cé (B,,), is the formal adjoint
of 3/9x“. In particular

ap 002 9OF

axe 9xb

Letu : B, - Rand 0 < A < 1. As B, is §;-contractible the function u) :
S 5 R, us(¢) = u(rhe), ¢ € $"~1,is well defined. If u € L?(B,,) then

— (vgch, vgch).

1
lul3, = /0 W2 o gon-1y 2 (7.2)

Given ® : B, — By and 0 < A < 1let ®; : S 1 — By, ®3(2) = ®(10),
¢ € §27=1 Following [9] a weakly Bergman-harmonic map ® € W' (B, , By) is
said to have L2 boundary values if there is ¢ € L2(§?"=1 | R?N) such that ®;, — ¢
in L2($?"~1 R?N) as A — 1. Cf. also [6] and [26].

Proof of Theorem 1.3. We seek for the compatibility conditions satisfied by ¢ on
§2=1 Asa consequence of (6.7)-(6.15)

divg(X) = trace|{Y € H(F) — VyX}, (7.3)
dive(T) =0, (74)
divg(ny = —20 =D _ 2 (75)

f ®
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for every C! section X in H (F), where F is the foliation of B, \ {0} by the spheres
(6.25) and divy is the divergence operator with respect to the volume form d vol(g).
Indeed if V = B, \ {0} then

_ 1
_an+(p,

2

r E————
(an + ¢)*

1
f=— @ty No)=-

In particular N (r) + 2r2 =0 and equations (6.7)-(6.15) with T = 0 become

VSY = VxY + go(X, JpY)T — go(X, Y)N, (7.6)
véT ! X, VEN ! X (7.7)
—_ —— b N = —— N .
X S X f
1 . 1
ViX=VrX——JX, VEX=VyX-—X, (7.8)
f @

8 2 8 2

V8T =—(=+r|T, ViN=—(=-r]T, (7.9)

® %

8 2 8 2

ViT=(=-r|N, VEN=—(=+r]N. (7.10)

® %
Consequently
¢ 1(1 i 1 iay,
VEX =VeX — 1= X — < /X =VeX — —1X — XV, (1.11)
2 le f 2¢ an + ¢
8 : 2 £ g 2 £
VET =i(-=&+r&), ViN=—=§-r&. (7.12)
@ ®

Let {Wy : 1 <« < n — 1} be alocal gy-orthonormal frame of 7} o(F). Then (by

(7.6) ~
Vi, X = Vw,X =289 (Wa, X) &, (7.13)

so that, by (7.11) and (7.13),

n—+1
%

g (Vi X0 Wa) = =" (Vw, X, Wa), g (VEX,E) =0,

as H(F) is V-parallel. Thus

dng(X) — i {g <vlgEjX’ Ej) +g (V§7X’ EJ)}
j=1
n—1

% g g
1 2 (8 (VX W) g (Vi X W)

a=1

T Tax
+ 210 g (vix B) v (vix . 6))
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yielding (7.3). Similarly, by (7.7) and (7.12),

i(n+1) g = iln+1)
g(Vg T,W—): : g(V T,g):- :
We * of 5 o> f
yielding (7.4). Finally, by (7.7) and (7.12),
n—+1 _ n—+1
g(Vé’ N,W_)Z , g(VgN,$>=——,
Wl TE) T of : 02 f

(as g (£,&) = [(n+ 1)/2]p~" f~!) and a calculation similar to the above leads to
(7.5). Formulae (7.3)-(7.5) may be used to compute the weak V&8 gradient of each
ue Wi(B,)

/ g (V8u, Y) dvol(g) = —/ udivg (Y) d vol(g), (7.14)
B, n
forevery Y € C3°(T (B,)). By T (V) = H(F)ORT®RN there exista, b € L2(V)
and X, € L2(H(F)) such that V8u = X, + aT + bN hence (by (6.3)-(6.5))

n+1

Véu, T) =
g (Vu. T) afﬂf

or

/ g (V8u, yofT) dvol(g) = (n + 1)/ ay dvol(g)
B, By,

for every y € C3°(B,). Thus (by (7.14),(74) and T (¢) = T(f) =0)

/ ay dvol(g) = —L udivg (yofT) dvol(g)
n n +1 Bf’l
| (7.15)
i /Bn uf T(y)dvol(g).
As 2(1 + 1)
N@ =2 N(H)="—"
—rg
one has
Nyof) —yR2n—-De+4fl=¢f Niy) + 20y rf —n+1).
hence, by (7.14) and (7.5),
/ by dvol(g) :—;‘/‘ udive (yofN) dvol(g)
B, n+1/Jg,
(7.16)

1 n—1
i fwer{voen (=) v favorce.
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Finally, by (6.3)-(6.5), (7.14) and (7.3),

/ g(Xy,, Y)dvol(g) = —/ udive (Y) d vol(g)

" B (7.17)

= —/ utrace {Z € H(F) — Vz(Y)} dvol(g)

forevery Y € C3°(H(F)). Let ® € W!(B,, By) be a weakly Bergman-harmonic
map. Then (by (7.15)-(7.17) with u = ®* and (6.6)) for any ¥ e Co°(By)

1
/ g (VgCDP, vgw) dvol(g) = — od?
’ n+1) Jg, .18

% {Ablll—i—f T2(W) + f |:N2(llf) +2 <r — HT) N(\If):| }dvol(g).

It is the proper place to describe our technique of “approaching” the boundary of B,,
in equations (7.1), with the expectation of obtaining equations (2.2) at the boundary,
provided that the boundary datum ¢ has vanishing weak normal derivatives. The ba-
sic idea in the asymptotic analysis of the pointwise equations (6.18) was to approach
the boundary by traveling with the leaves ¢ = —e as € — 0. The integral counter-
part of this technique is of course to write (7.1) in polar coordinates, allowing some
freedom in the radial part (cf. our choice of A below). The main technical difficulty,
given a test function v on $?*~!, is to produce a family of test functions {W*}o<; <1
on B, reducing to v in the angular (as opposed to radial) part of the integral (7.1),
as A — 17 . The naive solution is to set W(z) = ¥ (z/|z|) for each z € B,,. This is
infinite at the origin, so one should cut off a suitable neighborhood of 0 € B,,, and
its support does not lie entirely in B, [points in {¢ € $2"~! : ¥ (¢) # 0} belong to
the support of W], so one should cut off a one-sided neighborhood of the boundary,
as well. The solution would be to set W*(z) = ¥ (z/|z])x*(z]), where x* is the
square wave x*(t) = 1 foreg < t < A and x*(¢) = O elsewhere. Yet W* isn’t
smooth, so one should replace x* by a C* cut-off function supported in a slightly
larger interval, containing [eg, A].

Let y € C®(5?" 1), g > 0,and €y < A < 1 be arbitrarily fixed. Next let
{x}}v=1 C C°(R) such that 0 < x/(t) < 1,and x/(t) = 1 forep <t < A and
Xvk(t) =0fort <e—1/vandt > A+ 1/v. Moreover we set

z 1 1
v (H) x(zl)  for o — =~ <lel<a+ -
Wh(z) =

0 otherwise
for every z € B,. Then {W}},>; C C°(By) hence (by (7.1) with ¥ = 2]

Py —1f (vr)=0, 1<P<2N, (7.19)
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where

1F () E/B g(VgCDP, Vg\y) dvol(g), If(w) E/B W P (d)dvol(g),
AL Hok
FP(CD)E< QR0<D> — = G,

Consider the vector field W : C" \ {0} — $?"~! given by W(z) = z/|z| for every
z € C"\ {0}. Then
(A %)) (@) = xo (12) Ap (¥ 0 W)(2),
T?(¥)): = xy (12D T> (Y o W),

A /
L)'(:Z') VW),

() (Izh)

nlzl

(Xv) (IZI)} v (W(2),

N, = x 1z Ny o W), +

N2y, = x2(|z) N2(¥ o W), + 2-22 "2 N(yr o W),

1 /i
+W{(XU) (Iz]) — | |

for every g — 1/v < |z] < A 4 1/v. Note that
A+1/v A
lim XN G dt = / G (1) dt (7.20)

V=00 Jeo—1/v €

for any G € L*(0, 1). Indeed

A+1/v A
/ xj(r)G(r)dz—/ G() di

0o—1/v €

<

A+1/v
/ xXH)G(t) dt
A

/0 xHOG (@) dt| +

0o—1/v

and for instance

/ ' X (OG(t)dt

0o—1/v

€
5/ G0\ di
60 1/v

||G”L2(O 1)—>O Vv — OQ.

f

Let d o; be the volume element on S2*~!1(¢) for every 0 < t < 1 (sothatdo; =
dvol(gy)). Note that

o) =an (P =1). f00) =a*(?=1),
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forany 0 <t < 1and ¢ € $?"~!. Then

1
/ 0 @7 (ApW)) dvo(g) = / dt / 0(2) T (2) (Ap¥H) (2) doy (2)
0 |z|=t

n

A+1/v
—a [ (1) o /S O () AW 0 W)(t5) don (§)

0o—1/v

so that, by (7.2),

lim [ ¢®" (ApW¥})dvo(g)

V—> 00 Bn
" (7.21)
—a, [ (R 1) [ OF @ Muw o W) don o).
€ N
To legitimate applying (7.20) let us set
G@t) =111 - 1)/ OF Ap(y o W) d oy
S2n71
so that
2
2n—1
2
<2 | of Loy 1800 0 Wl gy
and, by (7.33),
AL 0 Wil o gon1y < 2" IARY 72 gon 1) -
Finally if n > 3 then, by (7.2),
/ GOPd < 18 gy [ @7
ie. G e L*0,1). Similar to (7.21)
lim | @f®” T%(¥))dvol(g)
V—> 00 Bn
(7.22)

A 2
- a,%/ (2 1) /2 L OTXW o WD) don (©).

€0

Moreover

/¢f¢P{N2(\y3)+2(r—”;l)N( }dvol(g) ZJ ©)

n
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where
A+1/v
JEw) = an/ 2N = )y dt
e—1/v
x /2 1 q>,”(;){ant2(z2 — )N (¢ o W)(t2)
§n=
+2(2 = )N 0 W)10) | dor (@),
A+1/v
I = f 22 (2 = 1) (x}) (1) dt
e—1/v

x / <1>{’(g){2anz2(t2 — )N o W)(10)
§2n—1
+ (2 =204+ 1) ¥ (@)} dor 0,

A+1/v y
I3 ) = f AR = 1) () fs TV @) (©).

o—1/v
Clearly, as in (7.21)-(7.22) above,

A
lim JlP(v) = an/ tzn_l(l‘2 — 1) dt
V—>00

€0

x /:S’Zn—l cbf(f){antz(l‘z - 1)N2(1// o W)(tt) (7.23)
+2(2 = n)NW o W)(;g)} doy(2),

To compute the remaining lim,,_, o Jl.P (v) we need the explicit construction of XCX
ie.

X0 ) =h(14+ v —e)h(l+v(L—1),

g() exp(—1/t?) t>0

MO = o red =0 g(’):{o £ <0.

Then
lim JP(v) =0, ie{23).

V—=>00

We may conclude that

- P a2(pn n—1

2
_ 2n—1(,2 P 20,2 200 o (7.24)
_a”_/ " " = 1) di /znl ®/ (¢) {ant (1> = 1)N*(y o W)(10)

€0 N

) N(\pﬁ)} d vol(g)

+2(2 = )N 0 W)10) | don (©).
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By gathering the information in (7.18), (7.21)-(7.22) and (7.24) we get

: P (\yh
Jm (%)

an A n—
Z—an r? 1(f2—1)dt/S2nl of )] Apw 0 W)(10)

€ (7.25)
+ant?(1* = D)[T>( o W)(t0) + N* (¢ o W)(t0)]
+2(2 —n) N o W)(tg)} doy (0).
Finally
A
lim 1 (v) = / > dr /2 Y P (®)(t¢) doy () (7.26)
V—00 € §2n—

so that, taking the limit of (7.19) as v — oo and replacing from (7.25)-(7.26),
A
f e de / {@=ner@[asw o wan
€0 Sn—

+ant*(t? = 1)(T* (¥ 0o W)(tL) + N2 (Y 0 W)(10)) (7.27)

n—+

dan

1
+2(2 =) Nw o W) |+ == v (@) TP (@)10) | dor (6) = 0

for every ¢g < A < 1. The reason one used an arbitrary A € (€p, 1) in the con-
struction of Xﬁ‘ (t) becomes apparent now, for the fundamental lemma of calculus

applies in the L? context i.e. if G(A) = fe}(‘) g(t)dt with g € L?(0, 1) then G’ = g

in distributional sense i.e. Tc’; = T, where Tg(y) = fol G(A) y (L) dA is the distri-
bution associated to G. Indeed if {g,},>1 C Cgo (0, 1) is such that limy 00 gy = &

in L2(0, 1) then

1 A
T&(J/)z—TG(V/)z—UlgrolofO )/()»)d/\/ gv(t)dt

0

1
= lim fo y (1) gu(%)d = Ty(y)

for every y € C3°(0, 1). Differentiation (in distributional sense) with respect to A
in (7.27) gives

/Sznl {2 = Dol @A o W)G0)

+aph? (A2 = 1) (T 0 W) + N2 (¥ 0 W)(1D)) (7.28)

n

1
+202 = n) N o WD) | + " () TP (@) 00 | don ) =0,

a
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Moreover

2a, n—1
PP (@)(h) = == (32 = 1) Y Tl p(02(0) Wa(90),,, War(0),.
a=1

4a2 3
n in1 K02 = 1) T R(@2(0)) 5(99), E(05),,

hence (7.28) simplifies to

fS {cbf (©) Ap(r 0 W)(5)

—29(@©) Z L or(®1(0)) W (PC)(W0) Wy (fDR)(M)} doy(¢)

7.29
+ 2()\2 —n) /Szn_l O () N o W)(A0) doy(0) (72

+and?(32 - 1) fs et @ [TPw o wan + N w o wao)]
+ 4V O Th( @) E@D GO E@N (D)) don() =0

and one has finally a manner to approach the boundary (since B, > 1 — §2*~!
as A — 17). The fact that the various parametric integrals in (7.29) have a limit as
A — 17 is proved in Lemmas 7.1 and 7.2, as a consequence of the basic Cimmino-
like assumption that CD{’ has a limit in 9 (§2"~1) as » — 1~ (of course a limit
in L?(5?"~1) suffices for the linear part of the integrand in (7.29), ¢f. Lemma 7.1
below).

Lemma 7.1.

lim [ ® @) Ap(f 0 W)(RE) do1 () = /S 9" @eyydor.  (730)

A—>17 Jg2n—

lim /Sznl Y () N o W)(R) doi(¢) = o

r—1-

lim [ @7 [T2<w o W) + N2 0 W)()| d1(©)

A—=17 Jg2n—1

= / o [ N%ﬁ)} doy .
§2n—1 an

Proof. One has

-1 »
/Sznl ¢" N(¥)doy, (7.31)

n

(7.32)

1
XWoWhe=5XW:, XYoWy = —xz(w;,
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for any X € T(F), hence

1
Ap( o WI(AY) = =3 {(Wa Way) () + (WeWo ) (£) 733

=2 [(Vw, W) (W) (£) + (Vi W) () ()]} -

Then (7.30) is a consequence of

’ /S OO A 0 WD) don () - /S PO @A (©) doy @‘

=g lo-o

L2(s2n71)
x ( /S i [Z |(Wa W) (£) + (W W) (0)]
n—1 P

1
2

n 2
1 (Y, Wa) (@) + (Vg Wa) (1&)(;)@ dm(;“)) +0(1 - 1).
a=1

Similarly (7.31)-(7.32) follow from

a,r — 1
N(WOW)M = TN(W)g“,
n
N2 0 Wyse = 2% Ny — -0 2y 7
o = — - — ,
" a2yt a2 ¢
and the estimates
a, — 1

‘/S () N (W 0 W)(k¢) o (¢) -

ah — 1
< ZE o @F = 67| asaar, INGOIl 252ty + O(1 = ),

/ " N(y) doy
SZn—l

n

anA

and

‘/Sznl @7 (¢) [Tz(x/f o W)(AE) + N*(¥ o W)(A;)] doi(0)

- P2 + 229 Ny - L%y
LT | TP+ TN W) - — N W) | doy

=5 () 25 CHZZT INW) 25201y
L= @t iy, |of — o7 L O(1— ).
ankz L2(§2n—1) L2(§2n—1) ]
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Lemma 7.2. Let ® € W'(B,, By) be a Bergman-harmonic map into (By , h)
with trace ¢ on S*"~1. Let us assume the following

)¢ € M1 By) ie. ¢ € M(S? 1, R?N) and ¢(z) € By for ae
z € B,

i) lim,_, - FSR o®d, = rgR o¢in L*(§*" 1.

Then
lim_ / <F5R o q)A) Wy (CI)Q))L Wa(d)R))L doy
Al Sl (7.35)
= . (Fheee) was?) wete*) o

foreveryl < P <2Nandl1 <a <n-—1

Proof. Let X € H(F),u € W![B,) and € C®(S*"~!). Then for every 0 <
A<landv>1

At+1/v
/ X (u) W d vol(g) =/
B, €

; 210 di / X@) Y ) dor(©)
o—1/v -

A
> [ [ X@e v© do@). v o
€ San—
and
/ X (u) W) dvol(g) = — / udivg () X) d vol(g)
n B

n

A+1/v A1)y
=— / 1224y / w X (Y)doy — /
e—1/v §2n—1 €

2y M (t)dr f urdiv(X)do
o—1/v 2nl
A 1
—>—f tzn_ldt/ u,{—X(W)—l—l//diV(X)} doy, v— oo

€ s2n—1 t

Hence

/ 2"1dt/ {X(u)tw o [;X(w +wdiv(X>“ doy =0
€0 S2n—1

and differentiation with respect to A (in the distribution sense) yields

1
/ Xy ¥ dot = — / s [—X(x/x) +wdiv(X>} doy
§2n—1 s2n—1 A

for every O < A < 1. Subtraction of

/ Xu)ydor =
§2n—1

(7.36)

—/ uy div(y X) d oy
§2n—1
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from (7.36) leads to
X)) =2 X))+ (A —1)div(X). (7.37)

Let us extend both sides of (7.37) by C-linearity. Then (7.37) holds for every X €
H(F) ® C. Next, by (7.37) with X € {W,, Wg},

fsznl (FSR o cpk) Wa(90), Wa(@R), d o
- /S (Por o) Wa(@2) Wa(9F)d o

- 52 /S (Foro®r—Thro9) [Wa(®P) — Wal0?)]

< [Wal@f) - Walo")] o

e [ (b= Thue0) (69 - Wa(60)] Wl

HWa(92) [ Wa(@f) = Walo") |} don

2
T2 /Sh_l (FSR o®;, —Tjpo ¢>) W (62)Wx(oF)d oy + 01 — 1)

and

/Sznl (FSR o®, —Thro ¢) [Wa(¢§) - Wo,(qbQ)]

x [ We(@F) - Wa((bR)] dm‘
1
= 5 FSR ° qD)‘ B FSR © ¢ L2(s2n—1)
X ” Wa(@?) - Wa(d)Q) L2(S2”71) + H Wa—(CI))If) - Wa—(¢R) L2(s2n1)} ’ D

Lemma 7.2 is proved. Statement (a) in Theorem 1.3 follows from Lemmas 7.1 and

7.2 by taking the limit as A — 17 in (7.29).
To prove statement (b) one sums (7.28) for P = Ato (728)for P = A+ N

multiplied by i = +/—1 so to obtain, by (6.19),
<A2 - 1) /SZH FA {Ab(w o W)y +2 (,\2 - n) N@W o W),
Fann? (xz — 1) [T%p o W)s + N2(¥ o W)A]} doy (7.38)

2t 1) / ¥y A (@), doy = 0.
n SZn—l

a

+
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Identity (6.21) for Q = B, gives

n+1 4
D) —
@ Y (P |F|2—1

[ (), (7), —200 (2 1) (72) 7 (), |

Note that (7.38)-(7.39) are the L2 analogs to the partial differential equations (6.20)-
(6.21). In the pointwise version of (7.38) one may (after substitution from (7.39)) i)
simplify 22 — 1, ii) eliminate |F;, ¢ )|2 — 1, and iii) approach the boundary with
A — 17. A different kind of asymptotic analysis should be conducted in the
case at hand (because F) () depends on the variable of integration). This prompts
our assumption on the existence of the limit (1.6) and L? convergence is seen to
suffice. A remark on the nature of our hypothesis (v) in Theorem 1.3 is in or-
der. If Qg is the quotient defined by (6.22) with Q@ = B, and D = By then
(Qo), = (1 —|Fl?) /(1 —22) is assumed to have a L? limit Qy € L?(S*"~1)
as A — 17. To give an example, each proper holomorphic map ® : B, — B3 in
Faran’s list (c¢f. [16]) has this property.

(64 (Fuye + 68 (Fuyg]
(7.39)

Pz, w), (z,w) € Br|Qp(z, w), (z,w) € s3

(13, V3zw, w3) 3(1—z]*w]?)

(2. vaow, w?) 2
(z. zw, w?) I+ |w]?
©, z, w) 1

Assumptions such as the existence of lim,_, gon—1 (1 — [®(2)]) / (1 — |z]) — in our
context lim, _, ;- A(X) where A(A) = (1 — |Fy|) / (1 — L) — proved useful in exis-
tence results for non-tangential limits lim,_, ¢20—1 ®(2), ¢f. e.g. [30] (cf. also [1]
for generalizations to maps of strictly pseudoconvex domains). Here (Q¢); =
AW)B() and L?-limy_, - ®; = ¢ yields i) L?-lim,_, ;- B(A) = 1 and ii) L?-
lim; _, |- (Qo);, exists if and only if L>-lim; _, ;- A()) exists. Let 6= 5(d—9) (zz+
ww) and ©y = ’5 (5 — 8) |Z|?, Z = (Z1, Z», Z3), be the canonical contact forms
on S and S°. Let ¢ : S° — S° be the boundary values of & € P (2, 3). The dila-
tion M(¢) = A(¢; 6y, Og) € C(S3, R) is given by $p*Og = A(¢) 6. A parallel
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of the table above to calculations in [5] shows that Q, = A(¢) for every map in
Faran’s list. This is a curious phenomenon, lacking an explanation as yet, relating
the dilation of ¢ (a quantity of metric nature) to the quotient Q4 (accounting for
regularity of sorts e.g. existence of angular derivatives).

Going back to the proof of (b) in Theorem 1.3 let us replace from (7.39) into
(7.38) and take the limit as A — 1~. We obtain

§2n—1

v Q' (8£¢§+ 3é¢§> 3w (qu) Wy (¢C) doy =0

for every ¢ € C®(S 1), Let A € {1,..., N} be a fixed index. As ¢z €
L?(S?"~1) there is a sequence {Yvh>1 C C> (5?1 such that lim,_, o ¥, = oy
in L2(5?"~1). Then

0= 0, (5805 +50g) Y Wa (¢7) Wa (¢°) don

§2n—1

= 0;' 05 (8505 +5205) D Wa (67) Wa (6°) dor. v — o0,

§2n—1

and contraction over A yields

/Sznl 0, d50c ) Wa <¢’B> W (¢C> doy = 0.

By Lemma 2.1 and the constraint ¢X¢A = 1 one has %Wg(d)c) = —qu Wa(de),
hence

/;2,,_1 Q¢_’l Xa: ‘WE(%)(bC‘Z dop =0.

Finally (as Oy > 0O a.e. on §2n=1y Wg((ﬁg)d)c = 0ae. on S for every 1 <
a<n-—1. L]

Let us prove (c) in Teorem 1.3. If ¢ : $?*~! — §2¥~! is a weakly CR map
then each ¢4 is a weakly CR function i.e.

/ ¢ div(Z)doy =0, Z e C®(T1 05" ™).

S2n—1

Let {Ty : 1 < a < n — 1} be alocal G,-orthonormal frame of TI,O(SZ”_I), defined
on the open set U C $?*~!. Then for every ¢ € C3°(U) and every sequence
{Yv}v=1 C CS°(U) such that lim,_, o ¥, = Yy in L2(U)

0= / ¢ div(Y, Tz) doy = — f Gy(VH ", YuTz) doy
U U

—)/ @[/Q‘)XTO(—(qﬁA)dG], v — 0.
U
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At this point we may contract over A and replace ¥ by ¢, Ty (9,) where {¢,},>1 C
CSO(U) is chosen such that ¢, — q)B in L2(U) as v — oo, with B € {1,..., N}
fixed. One has

0= /U 00 Tu@y) 65 To(") doy

— /quB To(¢5)075 Ta(0?) doy, v — o0,

so that, by contraction over B, fU ’¢X Ta(¢>A)|2 doy =0i.e. gb;Ta(qﬁA) =0ae.
inU. -
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