
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XV (2016), 269-307

Bergman-harmonic maps of balls

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Abstract. We study Bergman-harmonic maps between balls 8 : Bn ! BN
extending of class either C2 orM1 to the boundary of Bn . For every holomorphic
(anti-holomorphic) map 8 : Bn ! BN extending smoothly to the boundary
and every smooth homotopy H : 8 ' 9 we prove a Lichnerowicz-type (cf.
[28]) result, i.e., we show that E�✏ (9) � E�✏ (8) + O(✏�n+1). When 8 is
proper, Bergman-harmonic, and C2 up to the boundary, the boundary values map
� : S2n�1 ! S2N�1 is shown to satisfy a compatibility system similar to the
tangential Cauchy-Riemann equations on S2n�1 (and satisfied by the boundary
values of any proper holomorphic map). For every weakly Bergman-harmonic
map8 2 W1(Bn, BN ) admitting Sobolev boundary values � 2 M1(S2n�1, BN )
in the sense of [6], the boundary values � are shown to be a weakly subelliptic
harmonic map of (S2n�1, ⌘) into (BN , h), provided that 8�1

r
h stays bounded

at the boundary of Bn and � has vanishing weak normal derivatives.

Mathematics Subject Classification (2010): 32H40 (primary); 32V20, 35H20,
35J20, 53C43, 58E20 (secondary).

1. Statement of the main results

We study maps 8 : � ! D for smoothly bounded strictly pseudoconvex domains
� ⇢ Cn and D ⇢ CN , with an emphasis on the case � = Bn and D = BN where
Bn = {z 2 Cn

: |z| < 1} is the unit ball, which are either strong or weak solutions
to the Bergman-harmonic map system

⌧g�(8)P ⌘ �1g�8
P

+

⇣
0PQR �8

⌘@8Q

@xa
@8R

@xb
Gab

= 0, 1  P  2N . (1.1)

Here � and D are thought of as endowed with the Bergman metric g� and an a
priori arbitrary Riemannian metric h, respectively. There is an ample mathematical
literature devoted to harmonic maps from the point of view of PDE theory (cf., e.g.,
J. Jost [22] and R. Moser [29]) where the principal part in equations (1.1) is the
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ordinary Laplacian (rather than the Bergman Laplacian 1g�). We are interested
in the regularity up to the boundary of the solution 8 to the Dirichlet problem
⌧g�(8) = 0 in � and 8 = � on @�, supposing that 8 admits a trace on @� in
a suitable sense. As far as C1 regularity up to @� is concerned, the problem has
been taken up by C. R. Graham [20, 21], and by C. R. Graham and J. M. Lee [19],
for scalar-valued maps 8 : � ! R. As ellipticity of 1g� degenerates at the
boundary, new phenomena were shown to arise (cf. op. cit.) i.e. the existence of a
solution 8 2 C1(�, R) to the Dirichlet problem 1g�8 = 0 in � and 8 = � on
@� requires the boundary datum � 2 C1(@�, R) to satisfy certain compatibility
equations C(�) = 0 along @�. By an elementary result in differential geometry,
any holomorphic map between Kählerian manifolds is harmonic. In particular any
holomorphic map 8 : � ! D is harmonic as a map of (�, g�) into (D, h),
provided that h is a Kählerian metric. By a result of A. Lichnerowicz, [28], if the
source and target Kählerian manifolds are compact then any holomorphic map is
actually a stable harmonic map and an absolute minimum in its homotopy class. A.
Lichnerowicz’s result fails for holomorphic maps of balls 8 : Bn ! BN , due to
the lack of compactness. How much of A. Lichnerowicz’s approach does survive
for maps between balls? As an attempt to answer the previous question we obtain
the following result (deferring definitions to the next sections)

Theorem 1.1. Let 8 : Bn ! BN be a C2 map. For every domain � b Bn and
every smooth homotopy H : Bn ⇥ [0, 1] ! BN such that H0 = 8 we set

aM(H) =

Z
M
i⇤M
n
↵(H) ^ ⇤WBn

o

where M = @� and iM : M ! Bn is the inclusion.

i) If 8 2 Hol±(n, N ) then

E�(9) �

��E�(8) ± aM(H)
�� (1.2)

where 9 = H1 : Bn ! BN .
ii) If 9 2 Hol±(n, N ) too, then E�(8) � |E�(9) ⌥ aM(H)|. Consequently if

aM(H) = 0 for some H : 8 ' 9 then aM(H) = 0 for all.
iii) Let H be a smooth homotopy such that

�
(gBN )AB � H

� @H A

@t
@HB
@z j

z j ,
⇣�
gBN

�
AB � H

⌘ @H A

@t
@HB
@z j

z j ,

stay bounded as |z| ! 1. Then��aM✏ (H)
��
 ✏�(n�1)Cn kukL1 Vol

�
M✏ , i⇤✏ ✓

�
(1.3)

where i✏ : M✏ = S2n�1
�p
1� ✏/an

�
,! Bn with an = (⇡n/n!)1/(n+1) and

u = ↵(H)T and Cn = 2n+1(n + 1)n+1/(n � 1)! In particular aM✏ (H) =

O(✏�n+1) as ✏ ! 0.
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So unlike the case in [28] (where � is the whole source manifold and the above
boundary integral vanishes) one only has asymptotic information on

R
M✏ u9✓ as

✏ ! 0, prompting the study of Bergman-harmonic maps 8 : � ! D, extending
to the boundary, through the mathematical analysis of their boundary values. Our
findings in the smooth regularity up to the boundary problem are contained in the
following (cf. Section 6)

Theorem 1.2. Let8 : � ! D be a Bergman-harmonic map of a strictly pseudcon-
vex domain� ⇢ Cn endowed with the Bergman metric g�, into a domain D ⇢ CN

endowed with a Riemannian metric h.
1) Assume that:

i) lim�3z!z0 8(z) 2 D i.e. the limit exists and belongs to D;

ii) lim�3z!z0 0
P
QR(8(z)) = 0PQR(8(z0)) for every boundary point z0 2 @�.

Let � : @� ! D be the boundary values of 8. Then

N
�
�P
�

= �

1
2(n � 1)

⌧b(�)P , 1  P  2N . (1.4)

In particular if � has vanishing normal derivatives then � is subelliptic harmonic
as a map from the pseudohermitian manifold (@�, ✓) into the Riemannian manifold
(D, h).

2) Let D = BN and let h = gD be its Bergman metric. Assume that 8 is
proper and extends smoothly up to the boundary of �. Then the boundary values
map � = (�1, . . . ,�N ) : @� ! S2N�1 satisfies

NX
A=1

�A @b�
A

= 0 (1.5)

where @b is the tangential Cauchy-Riemann operator on @�.

Aside from the technical difficulties arising from allowing more general values
in the Riemannian manifold (D, h), and from dealing with the nonlinear system of
PDEs (1.1) rather than the single linear PDE 1g�8 = 0, Theorem 1.2 is in spirit
rather similar to the result in [19] (and to prove it wemake use of the same geometric
approach employed there, relying on the Graham-Lee connection, followed by an
elementary asymptotic analysis towards @�). A methodologically new result is
obtained in the weakly differentiable case, where we only assume that 8 : Bn !

BN is a Sobolev map, admitting boundary values in the sense of G. Cimmino [9]. To
make sense of L p-boundary values for a function u : � ! R one sets u� : @� !

R, u� = u � ��, which requires the domain� to be ��-contractible i.e. ��(@�) ⇢ �
for every 0 < � < 1, where ��(z) = �z for any z 2 @�. Successively, given
' 2 L p(@�), one requires that u� ! ' in L p(@�) as � ! 1�. Cf. [6, 26], where
this approach is taken in order to formulate and solve the Dirichlet problem with
L p-boundary data for a class of sublaplacians. It is interesting to note that none of
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G. Cimmino’s works (cf. e.g. [10]) is reported on in the classical monograph [18],
and the approach to the generalized solution u 2 W 1(�) to the Dirichlet problem
for a second order elliptic operator is to assume that the boundary datum ' admits
one L2 weak derivative, i.e. ' 2 W 1(�), a case in which the boundary condition
u = ' may be written merely as u � ' 2 W 1

0 (�) (cf. [18, Theorem 8.3, page 181].
Our result is (cf. Section 7):

Theorem 1.3. Let8 2 W 1(Bn , BN ), with n � 3, be a weakly Bergman-harmonic
map admitting L2 boundary values � 2 L2(S2n�1, R2N ). Assume further that
� 2 M1(S2n�1, R2N ) and 8� ! � in M1(S2n�1, R2N ) as � ! 1�.

a) Suppose that:

i) � 2 M1(S2n�1, BN ) i.e. �(z) 2 BN for a.e. z 2 S2n�1;
ii) the Kählerian metric h on BN satisfies 0PQR �8� ! 0PQR �� in L2(S2n�1) as
� ! 1� for any 1  P, Q, R  2N .

Then � is a weakly subelliptic harmonic map of the pseudohermitian manifold
(S2n�1, ⌘) into the Riemannian manifold (BN , h).

b) Suppose that:

iii) h = gBN ;

iv) � 2 M1(S2n�1, S2N�1) i.e. �(z) 2 S2N�1 for almost every z 2 S2n�1;
v) there is Q� 2 L2(S2n�1) such that

lim
�!1�

1�

��8���2
1� �2

= Q� (1.6)

in L2(S2n�1) and Q�(⇣ ) 6= 0 for a.e. ⇣ 2 S2n�1.

Then
�A @b�

A
= 0, 1  A  N , (1.7)

a.e. in S2n�1.
c) Any weakly CR map � : S2n�1 ! S2N�1 is a solution to (1.7).

To make sense of the compatibility equations, the boundary datum is required to
possess one weak derivative along H(S2n�1) in L2(S2n�1, R2N ) (and use is made
of the Sobolev type spacesM1(S2n�1, R2N ) whose local counterparts, for an open
subsetU ⇢ S2n�1 carrying a local frame of H(S2n�1), are familiar from the theory
of Hörmander systems of vector fields, cf. e.g. [34]). When h = gBN we need the
additional assumption (1.6) that the quotient (Q8)� (amply made use of in [32] and
[11–13]) has a L2 limit as � ! 1�. All proper holomorphic maps 8 : B2 ! B3
in J. J. Faran’s list (cf. [16]) may be seen to possess this property. The main novelty
consists in the asymptotic analysis of the weakly Bergman-harmonic map system
(7.1) towards the boundary, leading to the weakly subelliptic harmonic map system
(2.2). Cf. our Section 7 where we also explain the meaning of assumption (v) in
Theorem 1.3.
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2. Calculus on pseudohermitianmanifolds and subelliptic harmonic maps

Subelliptic harmonic maps were first studied by J. Jost and C-J. Xu [23] (to whom
the notion is due) and Z-R. Zhou [36], within the theory of Hörmander systems
of vector fields (cf. e.g. A. Bonfiglioli et al. [7]) and were soon recognized (cf.
E. Barletta et al. [3]) to be local manifestations of pseudoharmonic maps from a
pseudohermitian manifold into a Riemannian manifold (cf. also [15, Chapter IV]).
Precisely, let (M, T1,0(M)) be an oriented CR manifold, of CR dimension n, where
T1,0(M)⇢T (M)⌦C denotes its CR structure. Let H(M)=Re

�
T1,0(M)�T0,1(M)

 
be the Levi distribution, where T0,1(M) = T1,0(M) (here an overbar denotes com-
plex conjugation). It carries the complex structure J : H(M) ! H(M) given by
J (Z+ Z) = i(Z� Z) for every Z 2 T1,0(M). Let ⌘ be a pseudohermitian structure
on M i.e. a globally defined nowhere vanishing C1 section in the conormal bundle
H(M)? ⇢ T ⇤(M), where H(M)?x = {! 2 T ⇤

x (M) : Ker(!) � H(M)x } for every
x 2 M . The Levi form is G⌘(X,Y ) = (d⌘)(X, JY ) for any X,Y 2 H(M). The CR
manifold M , or its CR structure T1,0(M), is nondegenerate (strictly pseudoconvex)
if G⌘ is nondegenerate (positive definite) for some ⌘. If M is nondegenerate then
every pseudohermitian structure ⌘ is a contact form i.e. 9⌘ = ⌘^(d⌘)n is a volume
form on M . The divergence operator div ⌘ div⌘ : X(M) ! C1(M) is then given
by

LX9⌘ = div(X)9⌘ , X 2 X(M).

Also there is a unique tangent vector field T 2 X(M) (the Reeb field of (M, ⌘))
such that ⌘(T ) = 1 and (d⌘)(T , · ) = 0. As

T (M) = H(M) � RT (2.1)

the Levi form G⌘ extends to a semi-Riemannian metric g⌘ (the Webster metric of
(M, ⌘)) determined by

g⌘(X,Y ) = G⌘(X,Y ), g⌘(X, T ) = 0, g⌘(T, T ) = 1,

for any X,Y 2 H(M). Once a contact form ⌘ is fixed, there is a unique linear con-
nectionr on M (the Tanaka-Webster connection of (M, ⌘)) such that i) H(M) isr-
parallel, r J = 0 and rg⌘ = 0, ii) Tr(Z ,W ) = 0 and Tr(Z ,W ) = 2iG⌘(Z ,W )T
for any Z ,W 2 T1,0(M), iii) ⌧ � J + J � ⌧ = 0. Cf. e.g. [15], Chapter I. Here Tr is
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the torsion tensor field of r and ⌧ (X) = Tr(T, X) (the pseudohermitian torsion)
for every X 2 X(M).

Let M be a strictly pseudoconvex CR manifold and let P+ be the set of all
contact forms ⌘ such that G⌘ is positive definite (the set of all positively oriented
contact forms on M). For every ⌘ 2 P+ the Webster metric g⌘ is a Riemannian
metric on M . Also there is a constant Cn > 0 (depending only on the CR dimension
n, cf. e.g. [4]) such that d vol(g⌘) = Cn 9⌘ where d vol(g⌘) is the canonical volume
form of the Riemannian manifold (M, g⌘). In particular the divergence operators
with respect to d vol(g⌘) and 9⌘ coincide.

Let (S, h) be a Riemannian manifold, where h is its metric tensor. Given a
relatively compact domain � ⇢⇢ M let Eb,� : C1(M, S) ! R be the functional
defined by

Eb,�(�) =

1
2

Z
�
traceG⌘

�
5H�

⇤h
�
9⌘

for every � 2 C1(M, S). If B is a bilinear form on T (M) then 5H B denotes its
restriction to H(M) ⌦ H(M). When M is compact we write simply Eb = Eb,M .
A map � 2 C1(M, S) is a critical point of Eb,� if

d
dt
�
Eb,�(�t )

 
t=0 = 0

for every smooth 1-parameter variation {�t }|t |<� ⇢ C1(M, S) of � (i.e. �0 = �)
supported in � i.e. Supp(V ) ⇢ �. Here V 2 C(��1T (S)) is the infinitesimal
variation induced by {�t }|t |<� i.e.

Vx =

�
d(x,0)H

�
(@/@t)(x,0) , x 2 M,

H : M ⇥ (��, �) ! S, H(x, t) = �t (x), |t | < �.

A map � 2 C1(M, S) is subelliptic harmonic if it is a critical point of Eb,� for
every domain � b M . Let {Xa : 1  a  2n} be a local G⌘-orthonormal (i.e.
G⌘(Xa , Xb) = �ab) frame of H(M), defined on the domain U ⇢ M of a local
coordinate chart � : U ! Rn+1, such that J X↵ = X↵+n for any 1  ↵  n. Then
{�⇤Xa : 1  a  2n} is a Hörmander system on �(U) (as a mere consequence
of the fact that T1,0(M) is nondegnerate) and, for every subelliptic harmonic map
� : M ! S, the map � � ��1

: �(U) ! S is subelliptic harmonic in the sense
of [23].

Let rh be the Levi-Civita connection of (S, h). Given a C2 map � : M ! S
one sets

�b(�)(X,Y ) =

⇣
��1

r
h
⌘
X
�⇤Y � �⇤rXY, X,Y 2 X(M),

(a pseudohermitian analog to the second fundamental form of �). Here ��1
r
h is

the pullback of r
h by � (a connection in the pullback bundle ��1T (S) ! M).
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From now on we assume, for the sake of simplicity, that M is compact. The Euler-
Lagrange equations of the variational principle � Eb(�) = 0 are ⌧b(�) = 0 where
⌧b(�) 2 C(��1T (S)) is given by

⌧b(�) = traceG⌘
�
5H �b(�)

�
and may be locally represented as

⌧b(�)↵ = �1b�
↵

+

2nX
a=1

⇣
0↵�� � �

⌘
Xa
�
��
�
Xa
�
��
�

for any 1  ↵  dim(S). Here 0↵�� are the Christoffel symbols of h↵� = h(@↵ , @�)

relative to the local coordinate system (y↵) on S, with @↵ ⌘ @/@y↵ . Also 1b ⌘

1b,⌘ is the sublaplacian of (M, ⌘) i.e. the formally self-adjoint, positive, second
order differential operator given by

1bu = �div
⇣
r
Hu
⌘

, u 2 C2(M).

For every u 2 C1(M) the horizontal gradientrHu 2 C(H(M)) isrHu = 5Hru,
where ru is the ordinary gradient of u with respect to the Webster metric i.e.
g⌘(ru, X) = X (u), X 2 X(M), and 5H : T (M) ! H(M) is the projection
associated to the decomposition (2.1). Equations ⌧b(�)↵ = 0 are quasilinear subel-
liptic hence everyC2 (actuallyC0 suffices, cf. C-J. Xu and C. Zuily [35]) subelliptic
harmonic map is C1.

Let U ⇢ M be an open subset. A function u : U ! R is weakly differentiable
on U along the Levi distribution H(M) if there is Yu 2 L1loc(U, H(M)) such that

Z
U
G⌘(Yu , X)9⌘ = �

Z
U
u div(X)9⌘ , X 2 C1

0 (U, H(M)).

Such Yu is uniquely determined, up to a set of measure zero, and denoted by
Yu = r

Hu (the weak horizontal gradient of u). One thinks of r
H as an oper-

ator of Hilbert spaces r
H

: D(rH ) ⇢ L2(U) ! L2(U, H(M)) with domain
D(rH ) = M1(U) consisting of all weakly differentiable u 2 L2(U) such that
r
Hu 2 L2(U, H(M)). Clearly C1

0 (U) ⇢ M1(U) so that r
H is densely de-

fined. Let M1(U, R⌫) consist of all maps � = (�1, . . . ,�⌫) : U ! R⌫ such that
�P 2 M1(U) for every 1  P  ⌫. If j : S ,! R⌫ is a given isometric immersion,
for some ⌫ > dim(S), then M1(U, S) consists of all � 2 M1(U, R⌫) such that
�(x) 2 S for a.e. x 2 U (and clearlyM1(U, S) depends on the immersion j).

For every u 2 M1(M) and X 2 C1(H(M)) we set by definition X (u) =

G⌘(X , r
Hu).

Lemma 2.1. If u, v 2 M1(M) then uv is weakly differentiable along H(M) and
r
H (uv) = vr

Hu + urHv.
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Proof. Clearly vr
Hu + urHu 2 L1loc(H(M)). Let {u⌫}⌫�1 and {v⌫}⌫�1 such that

u⌫ , v⌫ 2 C1(M) and u⌫ ! u, v⌫ ! v in M1(M) as ⌫ ! 1. Then for every
X 2 C1(H(M))Z

M
G⌘

⇣
vr

Hu + urHu , X
⌘
9⌘

= lim
⌫!1

Z
M
G⌘
�
r
Hu , v⌫X

�
9⌘ + lim

⌫!1

Z
M
G⌘
�
r
Hv , u⌫X

�
9⌘

= � lim
⌫!1

⇢Z
M
u div

�
v⌫X

�
9⌘ +

Z
M

v div
�
u⌫X

�
9⌘

�

= � lim
⌫!1

Z
M

�
u
⇥
X
�
v⌫
�
+ v⌫ div(X)

⇤
+ v

⇥
X
�
u⌫
�
+ u⌫ div(X)

⇤ 
9⌘

= �

Z
M

{uX (v) + uv div(X) + vX (u) + vu div(X)} 9⌘

= �

Z
M

n
G⌘
�
u r

Hv + v r
Hu , X

�
+ 2uv div(X)

o
9⌘ .

The tangential Cauchy-Riemann operator is the first-order differential operator @b
given by (@bu)Z = Z(u) for any u 2 C1(U, C) and Z 2 T1,0(M). A C1 function u
is a CR function if @bu = 0 (the tangential Cauchy-Riemann equations). A function
u 2 L1loc(U) is weakly CR ifZ

U
u div(Z)9⌘ = 0, Z 2 C1

0
�
U, T1,0(M)

�
.

Given two CR manifolds M and S a CR map is a C1 map � : M ! N such that
(dx�)T1,0(M)x ⇢ T1,0(S)�(x) for any x 2 M . If S ⇢ CN is a real hypersurface
(thought of as a CR manifold with the induced CR structure T1,0(S) = [T (S) ⌦

C] \ T 1,0(CN )) then a C1 map � = (�1, . . . ,�N ) : M ! S is CR if and only if
each �A is a CR function on M . Also � = (�1, . . . ,�N ) is weakly CR if each �A
is a weakly CR function.

Let U ⇢ M be an open set. A function u 2 L1loc(U) has vanishing weak
normal derivatives if Z

U
u N ( )9⌘ = 0,  2 C1

0 (U).

Here N = �JT and T 2 X(S2n�1) is the Reeb vector field of (M, ⌘).
A map � 2 M1(M, S) is weakly subelliptic harmonic, as a map of the pseu-

dohermitian manifold (M, ⌘) into the Riemannian manifold (S, h), if for any point
x 2 M there is an open neighborhood U ⇢ M carrying a local G⌘-orthonormal
frame {T↵ : 1  ↵  n} ⇢ C1(U, T1,0(M)) such that
Z
U

(
G⌘

⇣
r
H�P , r

H 
⌘

� 2 
nX
↵=1

⇣
0PQR � �

⌘
T↵(�Q)T↵(�R)

)
9⌘ = 0 (2.2)
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for every  2 C1

0 (U). Existence and regularity of weakly subelliptic harmonic
maps were recently studied by L. Capogna and N. Garofalo [8], Z-H. Zhou [37]
(for maps from domains in Rm endowed with Hörmander systems of vector fields)
and by C. Wang [31], for maps from Carnot groups.

3. Bergman-harmonic maps

Let� = {z 2 Cn
: ⇢(z) < 0} be a smoothly bounded strictly pseudoconvex domain

and let K�(z, ⇣ ) be its Bergman kernel. Let g� be the Bergman metric on � i.e.

(g�) jk =

@2 log K�(z, z)
@z j @zk

, 1  j, k  n.

Let D ⇢ CN be a domain endowed with an arbitrary Riemannian metric h. Given
a domain A such that A ⇢ �, the Dirichlet energy functional is

EA(8) =

1
2

Z
A

kd8k
2 d vol(g�)

for every8 2 C2(�, D). Here kd8k : � ! [0,+1) is the Hilbert-Schmidt norm
of d8 i.e. kd8k

2
= traceg� (8⇤h). A C2 map 8 : � ! D is Bergman-harmonic

if
d
dt
�
EA(8t )

 
t=0 = 0

for any A b � and any smooth 1-parameter variation {8t }|t |<� ⇢ C2(�, D) of 8
(i.e. 80 = 8) supported in A i.e. Supp(V ) ⇢ A where V 2 C1(8�1T (�)) is the
infinitesimal variation induced by 8

Vz =

�
d(z,0)F

�
(@/@t)(z,0) , z 2 �,

F : �⇥ (��, �) ! D, F(z, t) = 8t (z), |t | < �.

The first variation formula for the Dirichlet energy is

d
dt
�
E�(8t )

 
t=0 = �

Z
�
h8
�
V, ⌧g�(8)

�
d vol(g�)

where ⌧g�(8)2C(8�1T (D)) is the tension field of8 i.e. ⌧g�(8)= traceg� �g�(8)
and �g�(8) is the second fundamental form of 8

�g�(8)(X,Y ) =

⇣
r
h
⌘8
X
8⇤Y �8⇤r

g�
X Y

for any X,Y 2 X(�). Therefore the Euler-Lagrange equations of the variational
principle associated to E� are ⌧g�(8) = 0 and these may be written locally

�1g�8
P

+ (0PQR �8)
@8Q

@xa
@8R

@xb
Gab

= 0, 1  P  2N , (3.1)
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where 8P
= X P

� 8, 1g� is the Bergman Laplacian, i.e. the Laplace-Beltrami
operator of (�, g�) as a Riemanian manifold, and 0PQR are the Christoffel symbols
of hPQ = h

�
@P , @Q

�
with @P ⌘ @/@X P and 1  P, Q  2N . If (z1, . . . , zn)

and (Z1, . . . , ZN ) are the Cartesian complex coordinates on Cn and CN then z j =

x j + i xn+ j and Z A = X A
+ i X N+A with 1  j  n and 1  A  N . We

set as customary Gab = g�(@a , @b) with @a = @/@xa and 1  a, b  2n. Then⇥
Gab⇤

= [Gab]�1. The Bergman Laplacian is given by

1g�u = �

2nX
a=1

n
Ea (Ea(u)) �

⇣
r
g�
Ea Ea

⌘
(u)
o

, u 2 C2(�), (3.2)

where r
g� is the Levi-Civita connection of (�, g�) and {Ea : 1  a  2n} is a

g�-orthonormal frame of T (�).
Any ±holomorphic (i.e. holomorphic or anti-holomorphic) map 8 : Bn !

BN is Bergman-harmonic, with respect to an arbitrary Kählerian metric h on BN .
The classical theorem in [28] (that±holomorphic maps of compact Kählerian man-
ifolds minimize the Dirichlet energy within their homotopy classes, cf. [28]) fails
to apply, due to lack of compactness of Bn . One may but partially recover Lich-
nerowicz’s result by integrating over a domain � such that � ⇢ Bn . Our finding is
Theorem 1.1 in Section 1 i.e.

E�(9) �

����E�(8) ±

Z
@�
i⇤@�

⇣
↵(H) ^WBn

⌘���� (3.3)

whenever 8 is ±holomorphic and a smooth homotopy H : 8 ' 9 is given. Here
↵(H) is a differential 1-form determined by H (and discovered by A. Lichnerowicz,
cf. op. cit.) and WBn

= �i @@ log KBn (z, z) (the Kähler 2-form of Bn). When
the domain is � = �✏ = {' < �✏} ⇢ Bn we may estimate the boundary integralR
M✏ u 9✓ in inequality (3.3) (where u = ↵(H)(T ) 2 C(Bn) and9✓ = ✓^(d✓)n�1)
to show that E�✏ (9) � E�✏ (8) + O(✏�n+1) as ✏ ! 0. Our calculations rely on
the differential geometric machinery outlined in Section 4 and Section 5 (and due
to [19] and [14]).

4. The method of A. Korányi and H. M. Reimann

By a celebrated result of C. Fefferman (cf. [17]) one has the asymptotic expansion
formula

K�(z, ⇣ ) = C�|r⇢(⇣ )|2 · det L⇢(⇣ ) ·9(z, ⇣ )�(n+1)
+ E(z, ⇣ ), (4.1)

with E 2 C1(�⇥� \1) and

|E(z, ⇣ )|  C 0

�|9(z, ⇣ )|�(n+1)+1/2
| log |9(z, ⇣ )||. (4.2)
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Here L⇢ is the Levi form and 1 = {(z, z) : z 2 @�}. Also

9(z, ⇣ ) = (F(z, ⇣ ) � ⇢(⇣ ))�(|z � ⇣ |) + (1� �(|z � ⇣ |))|z � ⇣ |2,

F(z, ⇣ ) = �

nX
j=1

@⇢

@z j
(⇣ )
�
z j � ⇣ j

�
�

1
2

nX
j,k=1

@2⇢

@z j @zk
(⇣ )
�
z j � ⇣ j

��
zk � ⇣ k

�
,

and �(t) is a C1 cut-off function with �(t) = 1 for |t | < ✏0/2 and �(t) = 0 for
|t | � 3✏0/4. As an elementary consequence of (4.1)-(4.2) if

'(z) = �K�(z, z)�1/(n+1) (4.3)

then '(z) ! 0 and r'(z) 6= 0 as z ! @� hence ' is a defining function for �.
The observation is essentially due to A. Korányi and H.M. Reimann (cf. [25]) al-
though P. Klembeck was the first (cf. [24]) to exploit (4.1)-(4.2) towards geometric
applications. A parallel among the work in [24] and the approach by E. Barletta
(cf. [2]) to Klembeck’s result will be drawn later on in this paper, as a means to
understand the peculiarities of the asymptotic analysis used. As a qualitative conse-
quence of A. Korányi and H.M. Reimann’s observation one may effectively relate
the Kählerian geometry of the interior of � (springing from its Bergman metric
g�) to the contact geometry of the boundary @� (associated to the contact form
✓ =

i
2
�
@ � @

�
'(z)). Neither the Bergman metric g�, nor geometric objects asso-

ciated to it (the Levi-Civita connection r
g� , its curvatures, etc.) stay bounded at

the boundary (for instance g� is O('�1) as ' ! 0). The quantitatively precise
solution is to evaluate g� and r

g� on each leaf of the foliation F by level sets
M✏ = {' = �✏}, 0 < ✏  ✏0, and approach the boundary as ✏ ! 0 (i.e. as
M✏ ! @�) cf. work by C. R. Graham and J. M. Lee [19]. This is a rather old tech-
nique, going back to G. Cimmino (cf. e.g. [9] and [26]) and the actual contribution
of C. R. Graham and J. M. Lee is to compute r

g� in terms of quantities surviving
at the boundary, such as a metric connection (devised by them and referred to by us
as the Graham-Lee connection, cf. also [14]) whose pointwise restriction to each
leaf M✏ is the Tanaka-Webster connection of the leaf, and in terms of derivatives of
the transverse curvature of F . As an application of the methods in [25] and [19]
we study the boundary behavior of Bergman-harmonic maps 8 : Bn ! BN . We
distinguish two cases, as I) limBn3z!z02S2n�1 8(z) 2 BN and BN is endowed with
a Riemannian metric h such that the pullback 8�1

r
h of the Levi-Civita connec-

tion r
h stays bounded at the boundary of Bn , or II) 8 is a proper map extending

smoothly at the boundary and h = gBN (the Bergman metric). In the first case we
show that the boundary values � : S2n�1 ! BN of 8 is a subelliptic harmonic
map (in the sense of J. Jost and C-J. Xu [23]) of the pseudohermitian manifold
(S2n�1, ✓) into the Riemannian manifold (BN , h), provided � has vanishing nor-
mal derivatives. In the second case the boundary values map � : S2n�1 ! S2N�1

is shown to be a solution to the PDEs system �A @b�
A

= 0 where @b is the tan-
gential Cauchy-Riemann operator on S2n�1 (cf. Theorem 1.2 in Section 1). As a
but necessary condition for Bergman-harmonicity, equations (1.5) have of course a
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limited practical use (e.g. may be used to show that the modified Faran maps (5.1)
and (5.11) in Section 5 are not Bergman-harmonic).

5. Smooth maps between balls

A map 8 : Bn ! BN is proper if 8�1(K ) is compact in Bn for any compact
subset K ⇢ BN . For maps extending continuously to the boundary, properness
is equivalent to 8(S2n�1) ⇢ S2N�1. The main examples we keep in mind are
maps 8 =

�
81, . . . ,8N � whose components 8A are polynomials, often monomi-

als cf. [11]-[13], such that 8(S2n�1) ⇢ S2N�1. Two maps 8 and 9 are spheri-
cally equivalent if 8 = ⇣ � 9 � ⇠�1 for some automorphisms ⇠ 2 Hol(Bn) and
⇣ 2 Hol(BN ). Due to the complicated structure of the Bergman-harmonic map
system (here with h = gBN )

� 2
⇣
1� |z|2

⌘ nX
j,k=1

�
� jk � z j zk

� @28A

@z j @zk

+

nX
j=1

1
1� |8|

2

⇣
�AB8C + �AC8B

⌘
E j
�
8B�E j

�
8C�

= 0,

the analysis of particular examples appears as rather involved, too. For instance, the
following modification

8(z, w) =

⇣
|z|2 z ,

p

3 zw , |w|
2w
⌘

, (z, w) 2 B2 , (5.1)

of Faran’s map (z, w) 7! (z3,
p

3 zw, w3), is proper but not holomorphic. Is (5.1)
at least Bergman-harmonic? As announced in Sections 1 and 2, our approach to the
study of Bergman-harmonic maps between strictly pseudoconvex domains, and in
particular balls, is twofold i.e. we adapt a Lichnerowicz-type argument (cf. [28]) to
the case of open Kählerian manifolds (cf. Theorem 1.1) and we study the boundary
behavior of a Bergman-harmonic map (cf. Theorem 1.2).
Theorem 5.1. Let h = gBN . If 8 : Bn ! BN is a Bergman-harmonic map then
U � 8 and ⇣ � 8 � ⇠�1 are Bergman-harmonic for any U 2 U(N ), ⇠ 2 Hol(Bn)
and ⇣ 2 Hol(BN ).

Proof. As Hol(BN ) ⇢ Isom(BN , gBN ) the Hilbert-Schmidt norm of a C2 map
Bn ! BN is a U(N )-invariant. Let � b Bn be a relatively compact subdomain
and let {9t }|t |<� be a smooth 1-parameter variation of9 = U�8 supported in� i.e.
Supp(W ) ⇢ � where W 2 C1(9�1T (Bn)) is the infinitesimal variation induced
by {9t }|t |<� . Then 8t = U�1

� 9t is a 1-parameter variation of 8 supported in
� and E�(9t ) = E�(U � 8t ) = E�(8t ) hence 9 is a critical point of E�. In
general if 9 = ⇣ �8 � ⇠�1 (including the previous case) then kd9k = kd8k � ⇠�1

(because of ⇣ ⇤gBN = gBN ) and E⇠(�)(9) = E�(8) (by a change of variable under
the integral sign, as ⇠ is an isometry of (Bn , gBn )).
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Let Hol±(n, N ) be the set of all ±holomorphic maps Bn ! BN . Let P(n, N )
consist of all proper maps 8 2 Hol+(n, N ) extending holomorphically past the
boundary of Bn . Let P⇤(n, N ) be the quotient of P(n, N ) by the relation of spher-
ical equivalence. By a result of J. J. Faran (cf. [16]) ]

⇥
P⇤(2, 3)

⇤
= 4.

Corollary 5.2. The Dirichlet energy EB2 : P(2, 3) ! R is discrete and the corre-
sponding energy levels are precisely the spherical equivalence classes in P⇤(2, 3).

Let 8 : Bn ! BN be a C1 map. Let dc8 : T (Bn) ⌦ C ! T (BN ) ⌦ C be
the C-linear extension of the differential of 8. We set as customary

@8 : T 1,0
�
Bn
�

! T 1,0
�
BN
�
, @8 = ⇡1,0 �

�
dc8

�
� i1,0 ,

@8 : T 0,1
�
Bn
�

! T 1,0
�
BN
�
, @8 = ⇡1,0 �

�
dc8

�
� i0,1 ,

where ⇡1,0 : T (BN ) ⌦ C ! T 1,0(BN ) is the projection while i1,0 : T 1,0(Bn) !

T (Bn) ⌦ C and i0,1 : T 0,1(Bn) ! T (Bn) ⌦ C are inclusions. Then

k@8k
2

=

�
gBn

� jk
8A
j 8

B
k
�
gBN

�
AB , 8A

j = 8A
j ,

k@8k
2

=

�
gBn

� jk
8A
k 8

B
j
�
gBN

�
AB , 8A

j = 8A
j ,

where 8A
j , 8A

j 2 C1(Bn, C) are given by

(@8) @/@z j = 8A
j @/@Z

A ,
�
@8
�
@/@z j = 8A

j @/@Z
A .

It follows that

E�(8) = E 0

�(8) + E 00

�(8),

E 0

�(8) =

Z
�

k@8k
2 d vol

�
gBn

�
, E 00

�(8) =

Z
�

k@8k
2 d vol

�
gBn

�
,

for every domain � ⇢ Cn such that � ⇢ Bn . The following is immediate:

Lemma 5.3. A C1 map8 : Bn ! BN is±holomorphic if and only if E 00

�(8) = 0
or E 0

�(8) = 0 for every � b Bn .

Let us set K�(8) =

R
�

�
k@8k

2
� k@8k

2� d vol(gBn ). IfWBn andWBN are
the Kähler 2-forms of the Kählerian manifolds (Bn, gBn ) and (BN , gBN ) then let
hWBn , 8⇤WBN

i : Bn ! R be defined by
⌦
WBn , 8⇤WBN

↵
=

�
gBn

� jk �gBn
�rsWBn�E j , Er

� �
8⇤WBN

��
Ek , Es

�
.

One easily checks that

k@8k
2
� k@8k

2
=

⌦
WBn , 8⇤WBN

↵
. (5.2)
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Let {Ht : 0  t  1} ⇢ C1(Bn, BN ) be a smooth 1-parameter family of maps. As
dWBN

= 0
@

@t

⇣
H⇤

t WBN
⌘

= H⇤

t d
✓
@Ht
@t

cWBN

◆
. (5.3)

Moreover we set
↵(H) =

Z 1

0
H⇤

t

⇢
@Ht
@t

cWBN

�
dt.

If D ⇢ CN is convex then any two maps 8, 9 : � ! D are homotopic.

Proof of Theorem 1.1. (i) By integrating in (5.3)

H⇤

1 WBN
� H⇤

0 WBN
= d ↵(H). (5.4)

Consequently (by (5.2) and (5.4))

K�(H1) � K�(H0)

=

Z
�

n⌦
WBn , H⇤

1WBN
↵
�

⌦
WBn , H⇤

0WBN
↵o

d vol(gBn )

=

Z
�
WBn

^ ⇤

⇣
H⇤

1WBN
� H⇤

0WBN
⌘

=

Z
�
WBn

^ ⇤ d ↵(H)

=

Z
�
(d ↵(H)) ^ ⇤WBn

=

Z
�
d
⇣
↵(H) ^ ⇤WBn

⌘

i.e. (by Stokes’ theorem)

K�(H1) � K�(H0) =

Z
@�
↵(H) ^ ⇤WBn (5.5)

because
⇤WBn

=

1
(n � 1)!

⇣
WBn

⌘n�1
(5.6)

yields d
�
⇤WBn

�
= 0. Finally (by (5.5))

E�(9) = E 0

�(9) + E 00

�(9) �

��E 0

�(9) � E 00

�(9)
��

=

��K�(9)
��
=

��K�(8) + aM(H)
��
=

=

(��E 0

�(8) + aM(H)
�� if 8 is + holomorphic��E 00

�(8) � aM(H)
�� if 8 is � holomorphic

=

��E�(8) ± aM(H)
��.

(ii) Let H̃t = H1�t for every 0  t  1. Then (by a change of variable) ↵(H̃) =

�↵(H) yielding (by (1.2)) E�(8) � |E�(9) ⌥ aM(H)| for every � b Bn . If
there exist homotopies H : 8 ' 9 and H 0

: 8 ' 9 such that aM(H) = 0 and
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aM(H 0) 6= 0 then E�(8) = E�(9) and, say for 8 and 9 both holomorphic and
aM(H 0) > 0, E�(9) � E�(8) + aM(H 0), a contradiction.

(iii) We set �✏ = {z 2 Bn : '(z) < �✏} for every 0 < ✏  ✏0. Here '(z) =

an
�
|z|2 � 1

�
and we rely on notations and conventions detailed in Section 4 and

Section 6. Let M✏ = @�✏ . Let {! j
: 1  j  n} be complex valued local (1, 0)-

forms dual to the complex vector fields (6.16) i.e. ! j (Ek) = �
j
k and !

j (Ek) = 0.
If {✓↵ : 1  ↵  n � 1} is an adapted coframe of T1,0(F) i.e. ✓↵(W�) = �↵� ,
✓↵(W�) = 0 and ✓↵(T ) = 0 then

!↵ =

s
�

n + 1
'

✓↵ , !n =

s
n + 1
2 f '

@'.

Consequently the Kähler 2-form of (Bn, gBn ) is given by (cf. (6.3)-(6.5))

WBn
= �2i

nX
j=1

! j
^ ! j

=

2i(n + 1)
'

(X
↵

✓↵ ^ ✓↵ �

1� r'
2'

@' ^ @'

)
.

Then (as i⇤✏ @' = 0)

i⇤✏WBN
= 2i(n + 1)✏�1

X
↵

✓↵ ^ ✓↵. (5.7)

Moreover X
↵

✓↵ ^ ✓↵

!n�1
= i (n�1)(n�2)�↵1 �1 . . . �↵n�1 �n�1 ✓

↵1...↵n�1
^ ✓�1...�n�1 ,

✓↵1...↵n�1 = ✓↵1 ^ . . . ^ ✓↵n�1 .

Therefore (by (5.6)-(5.7))

i⇤✏
⇣
⇤WBn

⌘
= ✏�(n�1) Cn i (n�1)

2
✓1...(n�1) ^ ✓1...(n�1) (5.8)

with Cn = (2n + 2)n+1/(n � 1)!
Lemma 5.4. u = ↵(H)T extends continuously to the boundary of Bn .
Proof. The real 1-form ↵(H) is given by

↵(H)z X =

Z 1

0
WBn

Ht (z)

⇣�
d(z,t)H

�
(@/@t)(z,t) , (dzHt )X

⌘
dt

for every X 2 Tz(�) and z 2 �. Hence (by T = i z j @/@z j + complex conjugate)

u =

Z 1

0

⇢⇣�
gBN

�
AB � H

⌘ @H A

@t

✓
z j
@HB
@z j

� z j
@HB
@z j

◆

+

⇣�
gBN

�
AB � H

⌘ @HA
@t

✓
z j
@HB

@z j
� z j

@HB

@z j

◆�
dt

hence u(z) stays finite as Bn 3 z ! S2n�1.
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Finally (by (5.8))

aM✏ (H) = Cni (n�1)
2
✏�n+1

Z
M✏
u9✓

yielding the estimate (1.3) with kukL1 = supz2Bn |u(z)| and (by 9✓ = 2n�1(n �

1)! d vol(g✓ )) with

Vol
�
M✏ , i⇤✏ ✓

�
=

Z
M✏
9✓ = 2n�1(n � 1)!!n�1 (1� ✏/an)(2n�1)/2 = O(1)

where !n�1 is the “area” of S2n�1.

Theorem 5.5. i) Let Ht (z, w) =

⇣
t z,

p

1� t2 z2,
p

2� t2 zw, w2
⌘
for every 0 

t  1 and (z, w) 2 B2. Then H : B2⇥ [0, 1] ! B4 is a homotopy of Faran’s maps
j0 �8 = H0 and j1 �9 = H1

8(z, w) =

⇣
z2,

p

2 zw, w2
⌘

, 9(z, w) =

⇣
z, zw, w2

⌘
, (5.9)

such that each Ht is a proper holomorphic map and

⇣�
gB4

�
AB � H

⌘ @H A

@t

✓
z
@HB
@z

+ w
@HB
@w

◆
(5.10)

stays bounded at the boundary of B2. Here j0 , j1 : B3 ! B4 are the injections
j0(Z) = (0, Z) and j1(Z) = (Z1 , 0, Z2 , Z3), Z 2 B3. In particular a@�(H) =

0 for every domain � b B2.
ii) Let Ht (z, w) = (t z,

p

1� t2 |z|2,
p

2� t2 zw, |w|
2), (z, w) 2 B2. Then

H : B2 ⇥ [0, 1] ! B4 is a smooth homotopy H : j0 �8 ' j1 �9 of

8(z, w) = (|z|2,
p

2 zw, |w|
2), 9(z, w) = (z, zw, |w|

2), (5.11)

by proper C1 non ±holomorphic maps Ht , 0  t  1. None of the maps (5.11) is
Bergman-harmonic. The functions

⇣�
gB4

�
AB � H

⌘ @H A

@t

✓
z
@HB
@z

+ w
@HB
@w

◆
,

as well as (5.10) stay bounded at the boundary of Bn . The boundary integral in
(1.2) vanishes i.e. a@�(H) = 0.

Homotopies H in Theorem 5.5 are examples satisfying the basic assumption
in (iii) of Theorem 1.1.
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Proof of Theorem 5.5. One notes that

@H A

@t
HA = t |z|2

⇣
1� |z|2 � |w|

2
⌘

,

@H A

@t
@HA
@z

z = t |z|2
⇣
1� 2|z|2 � |w|

2
⌘

,
@H A

@t
@HA
@w

w = �t |z|2|w|
2 ,

HB @HB
@z

z = t2|z|2 + 2
�
1� t2

�
|z|4 +

�
2� t2

�
|z|2|w|

2 ,

HB @HB
@w

w =

�
2� t2

�
|z|2|w|

2
+ 2|w|

4 ,

�
gBN

�
AB � H =

N + 1
1� |H |

2

(
�AB +

HAH
B

1� |H |
2

)
,

(with N = 4) hence
⇣�
gB4

�
AB � H

⌘ @H A

@t

✓
z
@HB
@z

+ w
@HB
@w

◆
=

t |z|2
�
|z|2 + |w|

2
� 1

�2
�
1� |H |

2�2 (5.12)

tending to
�
2� t2|z0|2

�
�2 as B2 3 (z, w) ! (z0, w0) 2 S2n�1. Moreover (as

(5.12) is real) ↵(H) = 0 and (by (ii) in Theorem 1.1) EA(9) = EA(8) (also
aM(H 0) = 0 for any other smooth homotopy H 0

: 8 ' 9). The Proof of (ii) in
Theorem 5.5 is similar and omitted.

6. Boundary values of Bergman-harmonic maps

From now on we shall assume that 8 : � ! D is a map extending smoothly up
to the boundary of � and analyze (3.1) in the limit as z ! @�. The first step
is to relate r

g� to the Graham-Lee connection, a linear connection defined on a
one-sided neighborhood of @� which we proceed to recall (cf. [14, 19]).

Let M✏ = {z 2 � : '(z) = �✏} with ✏ > 0 be the level hypersurfaces of '
(given by (4.3)). There is ✏0 > 0 such that M✏ is a smooth strictly pseudoconvex
CR manifold, of CR dimension n � 1, for every 0 < ✏  ✏0. Therefore there is a
one-sided neighborhood of V ⇢ � of the boundary, carrying a foliation F whose
leaf space is V/F = {M✏ : 0 < ✏  ✏0}. Let H(F) ! V and T1,0(F) !

V be respectively the bundles whose portions over a leaf L 2 V/F are the Levi
distribution and the CR structure of L . Cf. [15] for the main notions and conventions
in CR and pseudohermitian geometry. Then

T1,0(F) \ T0,1(F) = {0}, T0,1(F) ⌘ T1,0(F),

Z ,W 2 C1
�
T1,0(F)

�
=) [Z ,W ] 2 C1

�
T1,0(F)

�
,

H(F) = Re
�
T1,0(F) � T0,1(F)

 
.



286 ELISABETTA BARLETTA AND SORIN DRAGOMIR

By a result of J.M. Lee and R. Melrose [27], there is a unique complex vector field
⇠ of type (1, 0) on V such that

@'(⇠) = 1, @@' (⇠, Z) = 0, Z 2 T1,0(F).

The transverse curvature of F is r = 2 @@' (⇠, ⇠). Again by a result in [27] the
transverse curvature is smooth up to the boundary i.e. r 2 C1(�). Let us set
N = ⇠ + ⇠ and T = i

�
⇠ � ⇠

�
. Then T (') = 0 i.e. T 2 T (F). Note that
T (F) = H(F) � RT . (6.1)

Let us set ✓ =
i
2
�
@ � @

�
' so that the pullback of ✓ to each leaf L 2 V/F is a

contact form on L . We shall need the tensor field g✓ given by
g✓ (X,Y ) = (d✓)(X, JY ), g✓ (X, T ) = 0, g✓ (T, T ) = 1,

for any X,Y 2 H(F). Here J denotes the complex structure of Cn . Up to a sign
change the contact forms induced by ✓ on the leaves of F are positively oriented
hence g✓ is a Riemannian metric on the bundle T (F) (a tangential Riemannian
metric for F ). The pullback of g✓ to a leaf of F is the Webster metric of that leaf.
Let us also set

L✓ (Z ,W ) = �i(d✓)(Z ,W ), Z ,W 2 T1,0(F).

The Graham-Lee connection of (V,F) is the unique linear connection r on V
obeying to the axioms i) T1,0(F) is parallel with respect to r, ii) rL✓ = 0, rT =

0, rN = 0 and iii) the torsion tensor field Tr of r is pure i.e.
Tr(Z ,W ) = 0, Tr(Z ,W ) = 2i L✓ (Z ,W )T,

Tr(N ,W ) = rW + i ⌧ (W ),

⌧ (T1,0(F)) ⇢ T0,1(F), ⌧ (N ) = �JrHr � 2rT,

for any Z ,W 2 T1,0(F) where ⌧ (X) = Tr(T, X) for every X 2 T (V ). Here r
Hr

(the horizontal gradient of r) is given by
r
Hr = 5Hrr, g✓ (rr, X) = X (r), X 2 T (F),

and 5H : T (F) ! H(F) is the projection associated to the direct sum decompo-
sition (6.1). Mere differentiation of '(z) = �K (z, z)�1/(n+1) yields

g�(X,Y ) =

n + 1
'

⇢
i
'

�
@' ^ @'

�
(X, JY ) � (d✓)(X, JY )

�
(6.2)

for any X,Y 2 T (V ). The identity (6.2) together with the decompositions (6.1)
and T (V ) = T (F) � RN leads to

g�(X,Y ) = �

n + 1
'

g✓ (X,Y ), X,Y 2 H(F), (6.3)

g�(X, T ) = 0, g�(X, N ) = 0, X 2 H(F), (6.4)

g�(T, N ) = 0, g�(T, T ) = g�(N , N ) =

n + 1
' f

, (6.5)
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where f ⌘ '/(1� r'). Then

r
gu =

'

n + 1

n
�r

Hu + f [T (u)T + N (u)N ]
o

(6.6)

for every u 2 C1(�). As a consequence of equations (6.3)-(6.5) the connections
r
g� and r are related by

r
g�
X Y = rXY + { f g✓ (⌧ X,Y ) + g✓ (X, JbY )} T � {g✓ (X,Y )

+ f g✓ (X, Jb⌧Y )} N ,
(6.7)

r
g�
X T = ⌧ X �

1
f
JbX �

f
2

{X (r)T + (JbX)(r)N } , (6.8)

r
g�
X N = �

1
f
X + ⌧ JbX +

f
2

{(JbX)(r)T � X (r)N } , (6.9)

r
g�
T X = rT X �

1
f
JbX �

f
2

{X (r)T + (JbX)(r)N } , (6.10)

r
g�
N X = rN X �

1
'
X +

f
2

{(JbX)(r)T � X (r)N } , (6.11)

r
g�
N T = �

1
2
JbrHr �

f
2

⇢✓
N (r) +

4
'2

�

2r
'

◆
T + T (r)N

�
, (6.12)

r
g�
T N =

1
2
JbrHr �

f
2

⇢✓
N (r) +

4
'2

�

6r
'

+ 4r2
◆
T + T (r)N

�
, (6.13)

r
g�
T T = �

1
2

r
Hr �

f
2

⇢
T (r)T �

✓
N (r) +

4
'2

�

6r
'

+ 4r2
◆
N
�

, (6.14)

r
g�
N N = �

1
2

r
Hr +

f
2

⇢
T (r)T �

✓
N (r) +

4
'2

�

2r
'

◆
N
�

, (6.15)

for any X,Y 2 H(F). Here Jb : T (F) ! T (F) is the bundle morphism defined
by JbX = J X for every X 2 H(F) and JbT = 0 (so that J 2b = �I + ✓ ⌦ T on
T (F)). At this point we may prove Theorem 1.2. Let {W↵ : 1  ↵  n � 1} be a
local orthonormal (i.e. g✓ (W↵ , W�) = �↵�) frame of T1,0(F) and let us set

E↵ =

r
�

'

n + 1
W↵ , En =

r
2 f '
n + 1

⇠, (6.16)

so that (by (6.3)-(6.5)) {E j : 1  j  n} is a local orthonormal frame of T 1,0(V )
(the holomorphic tangent bundle over V ). Then the Bergman Laplacian (3.2) may
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be written as

1g�u = �

nX
j=1

n
E j E ju + E j E ju �

⇣
r
g�
E j
E j

⌘
u �

⇣
r
g�
E j
E j
⌘
u
o

=

'

n + 1

n�1X
↵=1

n
W↵W↵u + W↵W↵u �

⇣
r
g�
W↵W↵

⌘
u �

⇣
r
g�
W↵W↵

⌘
u
o

�

2 f '
n + 1

n
⇠⇠u + ⇠⇠u �

⇣
r
g�
⇠ ⇠

⌘
u �

⇣
r
g�
⇠
⇠
⌘
u
o

or, by (6.7)-(6.15),

1g� = �

'

n + 1
1b +

2'(n � 1)
n + 1

N �

f '
n + 1

n
N2 + T 2 + r

Hr + 2r N
o
(6.17)

where 1b is given by

1bu = �

n�1X
↵=1

�
W↵W↵ + W↵W↵ � rW↵W↵ � rW↵W↵

�
u.

For any z 2 V the definition of (1bu)(z) does not depend upon the choice of local
orthonormal frame {W↵ : 1  ↵  n� 1} of T1,0(F) at z. Also1b restricts to each

leaf of F as the sublaplacian of the leaf. If
h
(g�) jk

i
=

h
(g�) jk

i
�1
then

h
Gab

i
=

0
BBB@
1
4

h
(g�) jk + (g�) jk

i
�

1
4i

h
(g�) jk � (g�) jk

i

1
4i

h
(g�) jk � (g�) jk

i 1
4

h
(g�) jk + (g�) jk

i

1
CCCA

so that
⇣
0PQR �8

⌘ @8Q

@xa
@8R

@xb
Gab

= 2
⇣
0PQR �8

⌘ @8Q

@z j
@8R

@zk
(g�) jk

= 2
nX
j=1

⇣
0PQR �8

⌘
E j
⇣
8Q

⌘
E j
⇣
8R

⌘
.

Proof of Theorem 1.2. The Bergman-harmonic map system (3.1) may be written
(by (6.16))

�1b8
P

+ 2
n�1X
↵=1

⇣
0PQR �8

⌘
W↵(8

Q)W↵(8
R) + 2(n � 1)N (8P)

� f
n
N2 + T 2 + r

Hr + 2r N
o
(8P) � 4 f

⇣
0PQR �8

⌘
⇠(8Q)⇠(8R) = 0

(6.18)
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hence, as ' ! 0

�1b�
P

+ 2
n�1X
↵=1

⇣
0PQR �8

⌘
W↵

�
�Q
�
W↵

�
�R
�
+ 2(n � 1)N

�
�P
�

= 0.

Consequently one may express the normal derivatives of � in terms of purely tan-
gential quantities (a typical non-elliptic phenomenon)

N (�P) = �

1
2(n � 1)

⌧b(�)P

which is (1.4) in Theorem 1.2. To prove statement (2) one observes that if F A
=

8A
+ i8N+A for every 1  A  N then

nX
j=1

⇣
0PQR �8

⌘
E j
⇣
8Q

⌘
E j
⇣
8R

⌘
=

(
Re � A(8) if P = A,

Im � A(8) if P = N + A,
(6.19)

where � A(8) =

Pn
j=1

�
� ABC �8

�
E j
�
FB� E j

�
FC
�
and

� ABC = (gD)AE @ (gD)BE /@ZC

are the complex coefficients of rgD (the Levi-Civita connection of (D, gD)). Iden-
tity (6.19) is an elementary consequence of

0ABC = 0N+A
B,N+C = �0AN+B,N+C = (1/2)

⇣
� ABC + � AB C

⌘
,

0N+A
BC = 0AB,N+C = �0N+A

N+B,N+C = (1/2i)
⇣
� ABC � � AB C

⌘
,

for any 1  A, B,C  N . Thus (by (6.17)) the Bergman-harmonic map system
(3.1) becomes

�1bF A
+ 2(n � 1) N

⇣
F A
⌘

� f
n
N2 + T 2 + r

Hr + 2r N
o ⇣

F A
⌘

�

2(n + 1)
'

nX
j=1

⇣
� ABC �8

⌘
E j
⇣
FB
⌘
E j
⇣
FC
⌘

= 0.
(6.20)

If D = BN and h = gD then

�
gBN

�
AB =

N + 1
1� |Z |

2

 
�AB +

Z AZB
1� |Z |

2

!
,
�
gBN

�AB
=

1�|Z |
2

N + 1

⇣
�AB � Z AZ B

⌘
,

so that
� ABC =

1
1� |Z |

2

⇣
�AB ZC + �AC Z B

⌘
.
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Consequently, by (6.16),

n + 1
an

Q8
nX
j=1

⇣
� ABC �8

⌘
E j
⇣
FB
⌘
E j
⇣
FC
⌘

=

⇣
�AB FC + �AC FB

⌘(n�1X
↵=1

W↵

⇣
FB
⌘
W↵

⇣
FC
⌘

� 2 f ⇠
⇣
FB
⌘
⇠
⇣
FC
⌘) (6.21)

where an ⌘ (⇡n/n!)1/(n+1). Also if � = {' < 0} and D = {'̃ < 0} then for every
proper map 8 : � ! D one adopts the notation

Q8(z) = Cn,N
'̃ (8(z))
'(z)

, z 2 �,

Cn,N ⌘ (N !)1/(N+1) (n!)�1/(n+1) ⇡n/(n+1)�N/(N+1) ,

(6.22)

agreeing with (3.1) in [12, page 85], when � = Bn and D = BN . Let us substitute
from (6.21) into (6.20) and take the limit as ' ! 0 in the resulting equation. We
obtain ⇣

�AB �C + �AC �B

⌘ n�1X
↵=1

W↵

⇣
�B
⌘
W↵

⇣
�C
⌘

= 0 (6.23)

for any 1  A  N . Let us contract with �A in (6.23). Then (by the constraint
�B8B = 1)

n�1X
↵=1

���W↵

⇣
�C
⌘
�C

���2 = 0

or W↵

�
�C
�
�C = 0 thus yielding

PN
A=1 �A @b�A = 0 which is (1.5) in Theorem

1.2. The “disappearance” of the second order terms in (6.21), leading to the linear
first-order system (1.5), may be thought of as a rather curious phenomenon. An
inspection of work in [2] provides a heuristic explanation. As recalled in Section 3,
exploiting Fefferman’s expansion formula for the Bergman kernel towards geomet-
ric applications is already present in the work by P. Klembeck [24], who proved that
the holomorphic sectional curvature of g� tends to to the (constant) holomorphic
sectional curvature of gBn

kg(� ) ! �

4
n + 1

, z ! @�, (6.24)

for every holomorphic plane � ⇢ Tz(�) i.e. dimR � = 2 and Jz(� ) = � . P. Klem-
beck’s work is previous to the discovery of the Graham-Lee connectionr and relies
on a direct asymptotic evaluation of the sectional curvature, resulting into rather in-
volved calculations. Curvature is computed in terms of g jk(z) and their derivatives,
and an approximate inverse of [g jk(z)] is devised in the process, as a matrix asymp-
totically equivalent to [g jk(z)] as z ! @�. A simpler differential geometric proof
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of Klembeck’s result, making use of (6.7)-(6.15), is due to E. Barletta [2], who
proves that

kg(� ) =

gz(R
g
z (X,Y )Y, X)

gz(X, X)gz(Y,Y ) � gz(X,Y )2

= �

'(z)
n + 1

(
�4k✓ (� ) +

4
f (z)

� 2 f (z)
Az(X, X)2 + Az(X, Jz X)2

g✓,z(X, X)2

)

where k✓ is a pseudohermitian analog to the notion of holomorphic sectional curva-
ture introduced by S. M. Webster [33]. The latter is devised to be 1 for the sphere,
as well as Riemannian sectional curvature, and a priori one expects that k✓ should
contribute to get �4/(n+ 1) at the boundary. Since k✓ and A (the pseudohermitian
sectional curvature and torsion of the leaves of F ) stay finite at the boundary (and
give respectively the pseudohermitian sectional curvature and the pseudohermitian
torsion of (@�, i⇤@�✓) in the limit as z ! @�) and f (z) ! 0, '(z)/ f (z) ! 1 as
z ! @�, it follows that (6.24) holds yet k✓ (� ) gives no quantitative contribution
to the result. Similarly, in the asymptotic analysis of the Bergman-harmonic map
system for C1 maps8 : � ! BN , elimination of O('�2) coefficients followed by
approaching the boundary with ' ! 0 “kills” second order terms (only terms with
O('�2) coefficients may “survive” at the boundary) and one is left with equations
(1.5).

The Bergman kernel of � = Bn is given by

KBn (z, ⇣ ) =

n!⇡�n

�
1� z · ⇣

�n+1 .

Thus '(z) = an
�
|z|2 � 1

�
and F is the foliation of Bn \ {0} by spheres

n
S2n�1

⇣p
1� ✏/an

⌘
: 0  ✏ < an

o
. (6.25)

Moreover T1,0(F) is locally the span of {T↵ ⌘ @/@z↵ � (z↵/zn) @/@zn : 1  ↵ 

n � 1} hence
⇠ =

�
1/an

�
|z|�2 z j @/@z j

and the transverse curvature of F is r = (1/an) |z|�2. In particular T (r) = 0 and
X (r) = 0 for every X 2 H(F) (with the corresponding simplification of (6.7)-
(6.15)). Compatibility relations (1.5) become

8A

✓
zn
@8A

@z↵
� z↵

@ A

@zn

◆
= 0. (6.26)

If n = 2 then (6.26) is the single equation 8A
�
w @8A/@z � z @8A/@w

�
= 0 (and

the proper map (5.1) is not Bergman-harmonic).
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7. Bergman-harmonic maps withM1-boundary data

Let W 1(Bn) be the Sobolev space of all L2 functions u : Bn ! R possessing
weak L2 derivatives. Let W 1(Bn , BN ) consist of all maps 8 = (81, . . . ,82N ) :

Bn ! BN ⇢ R2N such that 8P
2 W 1(Bn) for every 1  P  2N . A map

8 2 W 1(Bn , BN ) is weakly Bergman-harmonic if
Z

Bn

⇢
g
⇣
r
g8P , r

g9
⌘

�9
⇣
0PQR �8

⌘ @8Q

@xa
@8R

@xb
Gab

�
dvol(g) = 0 (7.1)

for any 9 2 C1

0 (Bn), where g = gBn . For ones needs in this section W 1(Bn)

consists of all u 2 L2(Bn) admitting a weak gradient r
gu 2 L2(T (Bn). Hence

for each u 2 W 1(Bn) there exist functions (rgu)a 2 L2(Bn) such that r
gu =

(rgu)a @/@xa and we set by definition

@u
@xb

=

�
r
gu
�a Gab

and observe thatZ
Bn

@u
@xb

9 d vol(g) =

Z
Bn
u
✓
@

@xb

◆
⇤

9 d vol(g), 9 2 C1

0 (Bn),

where (@/@xa)⇤h = �@h/@xa � h divg(@/@xa), h 2 C10(Bn), is the formal adjoint
of @/@xa . In particular

Gab @8
Q

@xa
@8R

@xb
= g

⇣
r
g8Q , r

g8R
⌘

.

Let u : Bn ! R and 0 < � < 1. As Bn is ��-contractible the function u� :

S2n�1 ! R, u�(⇣ ) = u(�⇣ ), ⇣ 2 S2n�1, is well defined. If u 2 L2(Bn) then

kuk2Bn =

Z 1

0
�2n�1 ku�k2L2(S2n�1) d�. (7.2)

Given 8 : Bn ! BN and 0 < � < 1 let 8� : S2n�1 ! BN , 8�(⇣ ) = 8(�⇣ ),
⇣ 2 S2n�1. Following [9] a weakly Bergman-harmonic map 8 2 W 1(Bn , BN ) is
said to have L2 boundary values if there is � 2 L2(S2n�1 , R2N ) such that8� ! �
in L2(S2n�1, R2N ) as � ! 1. Cf. also [6] and [26].

Proof of Theorem 1.3. We seek for the compatibility conditions satisfied by � on
S2n�1. As a consequence of (6.7)-(6.15)

divg(X) = trace
�
Y 2 H(F) 7! rY X

 
, (7.3)

divg(T ) = 0, (7.4)

divg(N ) = �

2(n � 1)
f

�

4
'

(7.5)
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for every C1 section X in H(F), where F is the foliation of Bn \ {0} by the spheres
(6.25) and divg is the divergence operator with respect to the volume form d vol(g).
Indeed if V = Bn \ {0} then

r =

1
an + '

, f =

1
an

(an + ')', N (r) = �

2
(an + ')2

.

In particular N (r) + 2r2 = 0 and equations (6.7)-(6.15) with ⌧ = 0 become

r
g
XY = rXY + g✓ (X, JbY )T � g✓ (X,Y )N , (7.6)

r
g
XT = �

1
f
JbX , r

g
X N = �

1
f
X, (7.7)

r
g
T X = rT X �

1
f
JbX, r

g
N X = rN X �

1
'
X, (7.8)

r
g
N T = �

✓
2
'

+ r
◆
T, r

g
T N = �

✓
2
'

� r
◆
T, (7.9)

r
g
T T =

✓
2
'

� r
◆
N , r

g
N N = �

✓
2
'

+ r
◆
N . (7.10)

Consequently

r
g
⇠ X = r⇠ X �

1
2

⇢
1
'
X �

i
f
JbX

�
= r⇠ X �

1
2'

⇢
X �

ian
an + '

JbX
�

, (7.11)

r
g
⇠ T = i

✓
�

2
'
⇠ + r ⇠

◆
, r

g
⇠ N = �

2
'
⇠ � r ⇠ . (7.12)

Let {W↵ : 1  ↵  n � 1} be a local g✓ -orthonormal frame of T1,0(F). Then (by
(7.6))

r
g
W↵ X = rW↵ X � 2 g✓ (W↵, X) ⇠ , (7.13)

so that, by (7.11) and (7.13),

g
⇣
r
g
W↵ X , W↵

⌘
= �

n + 1
'

g✓
�
rW↵ X , W↵

�
, g

⇣
r
g
⇠ X , ⇠

⌘
= 0,

as H(F) is r-parallel. Thus

divg(X) =

nX
j=1

n
g
⇣
r
g
E j
X , E j

⌘
+ g

⇣
r
g
E j
X , E j

⌘o

= �

'

n + 1

n�1X
↵=1

n
g
⇣
r
g
W↵ X , W↵

⌘
+ g

⇣
r
g
W↵ X , W↵

⌘o

+

2 f '
n + 1

n
g
⇣
r
g
⇠ X , ⇠

⌘
+ g

⇣
r
g
⇠
X , ⇠

⌘o
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yielding (7.3). Similarly, by (7.7) and (7.12),

g
⇣
r
g
W↵T , W↵

⌘
=

i(n + 1)
' f

, g
⇣
r
g
⇠ T , ⇠

⌘
= �

i(n + 1)
'2 f

,

yielding (7.4). Finally, by (7.7) and (7.12),

g
⇣
r
g
W↵N , W↵

⌘
=

n + 1
' f

, g
⇣
r
g
⇠ N , ⇠

⌘
= �

n + 1
'2 f

,

(as g
�
⇠, ⇠

�
= [(n + 1)/2]'�1 f �1) and a calculation similar to the above leads to

(7.5). Formulae (7.3)-(7.5) may be used to compute the weak r
g gradient of each

u 2 W 1(Bn) Z
Bn
g
�
r
gu , Y

�
d vol(g) = �

Z
Bn
u divg(Y ) d vol(g), (7.14)

for every Y 2 C1

0 (T (Bn)). By T (V ) = H(F)�RT�RN there exist a, b 2 L2(V )

and Xu 2 L2(H(F)) such that rgu = Xu + aT + bN hence (by (6.3)-(6.5))

g
�
r
gu , T

�
= a

n + 1
' f

or Z
Bn
g
�
r
gu , �' f T

�
d vol(g) = (n + 1)

Z
Bn
a� d vol(g)

for every � 2 C1

0 (Bn). Thus (by (7.14), (7.4) and T (') = T ( f ) = 0)
Z

Bn
a� d vol(g) = �

1
n + 1

Z
Bn
u divg (�' f T ) d vol(g)

= �

1
n + 1

Z
Bn
u ' f T (� ) d vol(g).

(7.15)

As
N (') = 2, N ( f ) =

2(1+ r')

1� r'
,

one has

N (�' f ) � � [2(n � 1)' + 4 f ] = ' f N (� ) + 2'� (r f � n + 1) .

hence, by (7.14) and (7.5),Z
Bn
b� d vol(g) =�

1
n + 1

Z
Bn
u divg (�' f N ) d vol(g)

=�

1
n + 1

Z
Bn
u' f

⇢
N (�' f )+2

✓
r�

n � 1
f

◆
�

�
d vol(g).

(7.16)
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Finally, by (6.3)-(6.5), (7.14) and (7.3),Z
Bn
g(Xu , Y ) d vol(g) = �

Z
Bn
u divg(Y ) d vol(g)

= �

Z
Bn
u trace {Z 2 H(F) 7! rZ (Y )} d vol(g)

(7.17)

for every Y 2 C1

0 (H(F)). Let8 2 W 1(Bn , BN ) be a weakly Bergman-harmonic
map. Then (by (7.15)-(7.17) with u = 8P and (6.6)) for any 9 2 C1

0 (Bn)Z
Bn
g
⇣
r
g8P , r

g9
⌘
d vol(g) = �

1
(n + 1)

Z
Bn
'8P

⇥

⇢
1b9+ f T 2(9) + f


N2(9) + 2

✓
r �

n � 1
f

◆
N (9)

��
d vol(g).

(7.18)

It is the proper place to describe our technique of “approaching” the boundary ofBn
in equations (7.1), with the expectation of obtaining equations (2.2) at the boundary,
provided that the boundary datum � has vanishing weak normal derivatives. The ba-
sic idea in the asymptotic analysis of the pointwise equations (6.18) was to approach
the boundary by traveling with the leaves ' = �✏ as ✏ ! 0+. The integral counter-
part of this technique is of course to write (7.1) in polar coordinates, allowing some
freedom in the radial part (cf. our choice of � below). The main technical difficulty,
given a test function  on S2n�1, is to produce a family of test functions {9�}0�1
on Bn reducing to  in the angular (as opposed to radial) part of the integral (7.1),
as � ! 1�. The naive solution is to set 9(z) =  (z/|z|) for each z 2 Bn . This is
infinite at the origin, so one should cut off a suitable neighborhood of 0 2 Bn , and
its support does not lie entirely in Bn [points in {⇣ 2 S2n�1 :  (⇣ ) 6= 0} belong to
the support of 9], so one should cut off a one-sided neighborhood of the boundary,
as well. The solution would be to set 9�(z) =  (z/|z|)��(|z|), where �� is the
square wave ��(t) = 1 for ✏0 < t < � and ��(t) = 0 elsewhere. Yet 9� isn’t
smooth, so one should replace �� by a C1 cut-off function supported in a slightly
larger interval, containing [✏0 , �].

Let  2 C1(S2n�1), ✏0 > 0, and ✏0 < � < 1 be arbitrarily fixed. Next let
{��⌫ }⌫�1 ⇢ C1

0 (R) such that 0  ��⌫ (t)  1, and ��⌫ (t) = 1 for ✏0 < t < � and
��⌫ (t) = 0 for t  ✏0 � 1/⌫ and t � �+ 1/⌫. Moreover we set

9�⌫ (z) =

8>><
>>:
 

✓
z
|z|

◆
��⌫ (|z|) for ✏0 �

1
⌫

< |z| < �+

1
⌫

0 otherwise

for every z 2 Bn . Then {9�⌫ }⌫�1 ⇢ C1

0 (Bn) hence (by (7.1) with 9 = 9�⌫ )

I P1 (9�⌫ ) � I P2
�
9�⌫
�

= 0, 1  P  2N , (7.19)
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where

I P1 (9) ⌘

Z
Bn
g
⇣
r
g8P , r

g9
⌘
d vol(g), I P2 (9) ⌘

Z
Bn
9 0P(8) d vol(g),

0P(8) ⌘

⇣
0PQR �8

⌘ @8Q

@xa
@8R

@xb
Gab .

Consider the vector field W : Cn
\ {0} ! S2n�1 given by W (z) = z/|z| for every

z 2 Cn
\ {0}. Then�
1b9

�
⌫

�
(z) = ��⌫ (|z|)1b( � W )(z),

T 2(9�⌫ )z = ��⌫ (|z|) T 2( � W )z ,

N (9�⌫ )z = ��⌫ (|z|) N ( � W )z +

�
��⌫
�
0

(|z|)
an|z|

 (W (z)),

N2(9�⌫ )z = ��⌫ (|z|) N2( � W )z + 2
(��⌫ )0(|z|)
an|z|

N ( � W )z

+

1
a2n |z|2

⇢
(��⌫ )00(|z|) �

1
|z|

(��⌫ )0(|z|)
�
 (W (z)),

for every ✏0 � 1/⌫ < |z| < �+ 1/⌫. Note that

lim
⌫!1

Z �+1/⌫

✏0�1/⌫
��⌫ (t)G(t) dt =

Z �

✏0

G(t) dt (7.20)

for any G 2 L2(0, 1). Indeed�����
Z �+1/⌫

✏0�1/⌫
��⌫ (t)G(t) dt �

Z �

✏0

G(t) dt

�����


����
Z ✏0

✏0�1/⌫
��⌫ (t)G(t) dt

����+
�����
Z �+1/⌫

�
��⌫ (t)G(t) dt

�����
and for instance����

Z ✏0

✏0�1/⌫
��⌫ (t)G(t) dt

���� 

Z ✏0

✏0�1/⌫
|G(t)| dt



1
p

⌫
kGkL2(0,1) ! 0, ⌫ ! 1.

Let d �t be the volume element on S2n�1(t) for every 0 < t  1 (so that d�1 =

d vol(g⌘)). Note that

'(t⇣ ) = an
⇣
t2 � 1

⌘
, f (t⇣ ) = ant2

⇣
t2 � 1

⌘
,
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for any 0 < t < 1 and ⇣ 2 S2n�1. Then
Z

Bn
' 8P �1b9

�
⌫

�
d vo(g) =

Z 1

0
dt
Z

|z|=t
'(z)8P(z) (1b9

�
⌫ )(z) d�t (z)

= an
Z �+1/⌫

✏0�1/⌫
t2n�1

⇣
t2 � 1

⌘
��⌫ (t)

Z
S2n�1

8P
t (⇣ )1b( � W )(t⇣ ) d�1(⇣ )

so that, by (7.2),

lim
⌫!1

Z
Bn
' 8P (1b9

�
⌫ ) d vo(g)

= an
Z �

✏0

t2n�1
⇣
t2 � 1

⌘ Z
S2n�1

8P
t (⇣ )1b( � W )(t⇣ ) d�1(⇣ ).

(7.21)

To legitimate applying (7.20) let us set

G(t) = t2n�1
�
t2 � 1

� Z
S2n�1

8P
t 1b( � W )t d �1

so that

|G(t)|2  t2(2n�1)
✓Z

S2n�1

���8P
t

��� |1b( � W )t | d �1
◆2

 t2(2n�1)
���8P

t

���2
L2(S2n�1)

k1b( � W )tk
2
L2(S2n�1)

and, by (7.33),

t2n�1 k1b( � W )tk
2
L2(S2n�1)  t2n�5 k1b k

2
L2(S2n�1) .

Finally if n � 3 then, by (7.2),
Z 1

0
|G(t)|2 dt  k1b k

2
L2(S2n�1)

���8P
���2
L2(Bn)

< 1

i.e. G 2 L2(0, 1). Similar to (7.21)

lim
⌫!1

Z
Bn
' f8P T 2

�
9�⌫
�
d vol(g)

= a2n
Z �

✏0

t2n+1
⇣
t2 � 1

⌘2 Z
S2n�1

8P
t (⇣ )T 2( � W )(t⇣ ) d�1(⇣ ).

(7.22)

Moreover
Z

Bn
' f8P

⇢
N2
�
9�⌫
�
+ 2

✓
r �

n � 1
f

◆
N
�
9�⌫
��

d vol(g) =

3X
i=1

J Pi (⌫)



298 ELISABETTA BARLETTA AND SORIN DRAGOMIR

where

J P1 (⌫) = an
Z �+1/⌫

✏0�1/⌫
t2n�1

�
t2 � 1

�
��⌫ (t) dt

⇥

Z
S2n�1

8P
t (⇣ )

n
ant2

�
t2 � 1

�
N2( � W )(t⇣ )

+ 2
�
t2 � n

�
N ( � W )(t⇣ )

o
d� (⇣ ),

J P2 (⌫) =

Z �+1/⌫

✏0�1/⌫
t2n�2

�
t2 � 1

��
��⌫
�
0

(t) dt

⇥

Z
S2n�1

8P
t (⇣ )

n
2ant2

�
t2 � 1

�
N ( � W )(t⇣ )

+

�
t2 � 2n + 1

�
 (⇣ )

o
d�1(⇣ ),

J P3 (⌫) =

Z �+1/⌫

✏0�1/⌫
t2n�1

�
t2 � 1

�2�
��⌫
�
00

(t)
Z
S2n�1

8P
t (⇣ ) (⇣ ) d�1(⇣ ).

Clearly, as in (7.21)-(7.22) above,

lim
⌫!1

J P1 (⌫) = an
Z �

✏0

t2n�1
�
t2 � 1

�
dt

⇥

Z
S2n�1

8P
t (⇣ )

n
ant2

�
t2 � 1

�
N2( � W )(t⇣ )

+ 2
�
t2 � n

�
N ( � W )(t⇣ )

o
d�1(⇣ ),

(7.23)

To compute the remaining lim⌫!1 J Pi (⌫) we need the explicit construction of ��⌫
i.e.

��⌫ (t) = h
�
1+ ⌫(t � ✏0)

�
h
�
1+ ⌫(�� t)

�
,

h(t) =

g(t)
g(t) + g(1� t)

, g(t) =

(
exp(�1/t2) t > 0
0 t  0.

Then
lim
⌫!1

J Pi (⌫) = 0, i 2 {2, 3}.

We may conclude that

lim
⌫!1

Z
Bn
' f8P

⇢
N2
�
9�⌫
�
+ 2

✓
r �

n � 1
f

◆
N
�
9�⌫
��

d vol(g)

= an
Z �

✏0

t2n�1
�
t2 � 1

�
dt
Z
S2n�1

8P
t (⇣ )

n
ant2

�
t2 � 1

�
N2( � W )(t⇣ )

+2
�
t2 � n

�
N ( � W )(t⇣ )

o
d�1(⇣ ).

(7.24)
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By gathering the information in (7.18), (7.21)-(7.22) and (7.24) we get

lim
⌫!1

I P1
�
9�⌫
�

= �

an
n + 1

Z �

✏0

t2n�1
�
t2 � 1

�
dt
Z
S2n�1

8P
t (⇣ )

n
1b( � W )(t⇣ )

+ ant2
�
t2 � 1

�⇥
T 2( � W )(t⇣ ) + N2( � W )(t⇣ )

⇤
+ 2

�
t2 � n

�
N ( � W )(t⇣ )

o
d�1(⇣ ).

(7.25)

Finally

lim
⌫!1

I P2 (⌫) =

Z �

✏0

t2n�1 dt
Z
S2n�1

 (⇣ )0P(8)(t⇣ ) d�1(⇣ ) (7.26)

so that, taking the limit of (7.19) as ⌫ ! 1 and replacing from (7.25)-(7.26),Z �

✏0

t2n�1 dt
Z
S2n�1

n�
t2 � 1

�
8P
t (⇣ )

h
1b( � W )(t⇣ )

+ ant2
�
t2 � 1

��
T 2( � W )(t⇣ ) + N2( � W )(t⇣ )

�

+ 2
�
t2 � n

�
N ( � W )(t⇣ )

i
+

n + 1
an

 (⇣ )0P(8)(t⇣ )
o
d�1(⇣ ) = 0

(7.27)

for every ✏0 < � < 1. The reason one used an arbitrary � 2 (✏0 , 1) in the con-
struction of ��⌫ (t) becomes apparent now, for the fundamental lemma of calculus
applies in the L2 context i.e. if G(�) =

R �
✏0
g(t) dt with g 2 L2(0, 1) then G 0

= g
in distributional sense i.e. T 0

G = Tg where TG(� ) =

R 1
0 G(�) � (�) d� is the distri-

bution associated to G. Indeed if {g⌫}⌫�1 ⇢ C1

0 (0, 1) is such that lim⌫!1 g⌫ = g
in L2(0, 1) then

T 0

G(� ) = �TG(� 0) = � lim
⌫!1

Z 1

0
� 0(�) d�

Z �

✏0

g⌫(t)dt

= lim
⌫!1

Z 1

0
� (�) g⌫(�) d� = Tg(� )

for every � 2 C1

0 (0, 1). Differentiation (in distributional sense) with respect to �
in (7.27) givesZ

S2n�1

n�
�2 � 1

�
8P
� (⇣ )

h
1b( � W )(�⇣ )

+ an�2
�
�2 � 1

��
T 2( � W )(�⇣ ) + N2( � W )(�⇣ )

�

+ 2
�
�2 � n

�
N ( � W )(�⇣ )

i
+

n + 1
an

 (⇣ )0P(8)(�⇣ )
o
d�1(⇣ ) = 0.

(7.28)
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Moreover

0P(8)(�⇣ ) = �

2an
n + 1

�
�2 � 1

� n�1X
↵=1

0PQR
�
8�(⇣ )

�
W↵

�
8Q�

�⇣
W↵

�
8R�

�⇣

+

4a2n
n + 1

�2
�
�2 � 1

�2
0PQR

�
8�(⇣ )

�
⇠
�
8Q�

�⇣
⇠
�
8R�

�⇣

hence (7.28) simplifies to
Z
S2n�1

⇢
8P
� (⇣ )1b( � W )(�⇣ )

� 2 (⇣ )
n�1X
↵=1

0PQR
�
8�(⇣ )

�
W↵

�
8Q�(�⇣ )W↵

�
8R�(�⇣ )

�
d�1(⇣ )

+ 2
�
�2 � n

� Z
S2n�1

8P
� (⇣ ) N ( � W )(�⇣ ) d�1(⇣ )

+ an�2
�
�2 � 1

� Z
S2n�1

n
8P
� (⇣ )

h
T 2( � W )(�⇣ ) + N2( � W )(�⇣ )

i

+ 4 (⇣ )0PQR(8�(⇣ )) ⇠(8
Q)(�⇣ ) ⇠(8R)(�⇣ )

o
d�1(⇣ ) = 0

(7.29)

and one has finally a manner to approach the boundary (since Bn 3 �⇣ ! S2n�1
as � ! 1�). The fact that the various parametric integrals in (7.29) have a limit as
� ! 1� is proved in Lemmas 7.1 and 7.2, as a consequence of the basic Cimmino-
like assumption that 8P

� has a limit in M1(S2n�1) as � ! 1� (of course a limit
in L2(S2n�1) suffices for the linear part of the integrand in (7.29), cf. Lemma 7.1
below).

Lemma 7.1.

lim
�!1�

Z
S2n�1

8P
� (⇣ )1b( � W )(�⇣ ) d�1(⇣ ) =

Z
S2n�1

�P(1b ) d�1 , (7.30)

lim
�!1�

Z
S2n�1

8P
� (⇣ ) N ( � W )(�⇣ ) d�1(⇣ )=

an � 1
an

Z
S2n�1

�P N ( ) d�1 , (7.31)

lim
�!1�

Z
S2n�1

8P
� (⇣ )

h
T 2( � W )(�⇣ ) + N2( � W )(�⇣ )

i
d �1(⇣ )

=

Z
S2n�1

�P

T 2( ) +

2� an
a2n

N ( ) �

1� an
an

N2( )

�
d�1 .

(7.32)

Proof. One has

X ( � W )�⇣ =

1
�
X ( )⇣ , X2( � W )�⇣ =

1
�2

X2( )⇣ ,
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for any X 2 T (F), hence

1b( � W )(�⇣ ) = �

1
�2

X
↵

�
(W↵W↵ )(⇣ ) + (W↵W↵ )(⇣ )

��
⇥
(rW↵W↵)( )(⇣ ) + (rW↵W↵)( )(⇣ )

⇤ 
.

(7.33)

Then (7.30) is a consequence of
����
Z
S2n�1

8P
� (⇣ )1b( � W )(�⇣ ) d�1(⇣ ) �

Z
S2n�1

�P(⇣ ) (1b )(⇣ ) d�1(⇣ )
����



1
�2

���8P
� � �P

���
L2(S2n�1)

⇥

 Z
S2n�1

"
nX
↵=1

|(W↵W↵ ) (⇣ ) + (W↵W↵ ) (⇣ )|

+�
nX
↵=1

���
rW↵W↵

�
( )(⇣ ) +

�
rW↵W↵

�
( )(⇣ )

��
#2
d�1(⇣ )

1
A

1
2

+ O(1� �).

Similarly (7.31)-(7.32) follow from

N ( � W )�⇣ =

an�� 1
an�2

N ( )⇣ ,

N2( � W )�⇣ =

2� an�
a2n�4

N ( )⇣ �

1� an�
an�2

N2( )⇣ ,

(7.34)

and the estimates����
Z
S2n�1

8P
� (⇣ ) N ( � W )(�⇣ ) d�1(⇣ ) �

an � 1
an

Z
S2n�1

�P N ( ) d�1
����



an�� 1
an�2

��8P
� � �P

��
L2(S2n�1) kN ( )kL2(S2n�1) + O(1� �),

and ����
Z
S2n�1

8P
� (⇣ )

h
T 2( � W )(�⇣ ) + N2( � W )(�⇣ )

i
d �1(⇣ )

�

Z
S2n�1

�P

T 2( ) +

2� an
a2n

N ( ) �

1� an
an

N2( )

�
d�1

����


⇢
1
�

���T 2( )
���
L2(S2n�1)

+

|2� an�|
a2n�4

kN ( )kL2(S2n�1)

+

|1� an�|
an�2

���N2( )
���
L2(S2n�1)

� ���8P
� � �P

���
L2(S2n�1)

+ O(1� �).
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Lemma 7.2. Let 8 2 W 1(Bn, BN ) be a Bergman-harmonic map into (BN , h)
with trace � on S2n�1. Let us assume the following:

i) � 2 M1(S2n�1, BN ) i.e. � 2 M1(S2n�1, R2N ) and �(z) 2 BN for a.e.
z 2 Bn;

ii) lim�!1� 0
P
QR �8� = 0PQR � � in L2(S2n�1).

Then
lim
�!1�

Z
S2n�1

⇣
0PQR �8�

⌘
W↵

�
8Q�

�
W↵

�
8R�

�
d�1

=

Z
S2n�1

⇣
0PQR � �

⌘
W↵

�
�Q
�
W↵

�
�R
�
d�1

(7.35)

for every 1  P  2N and 1  ↵  n � 1.

Proof. Let X 2 H(F), u 2 W 1(Bn) and  2 C1(S2n�1). Then for every 0 <
� < 1 and ⌫ � 1
Z

Bn
X (u)9�⌫ d vol(g) =

Z �+1/⌫

✏0�1/⌫
t2n�1��⌫ (t) dt

Z
S2n�1

X (u)(t⇣ ) (⇣ ) d�1(⇣ )

!

Z �

✏0

t2n�1dt
Z
S2n�1

X (u)(t⇣ ) (⇣ ) d�1(⇣ ), ⌫ ! 1,

andZ
Bn
X (u)9�⌫ d vol(g) = �

Z
Bn
u divg

�
9�⌫ X

�
d vol(g)

=�

Z �+1/⌫

✏0�1/⌫
t2n�2dt

Z
S2n�1

ut X ( )d�1�
Z �+1/⌫

✏0�1/⌫
t2n�1��⌫ (t)dt

Z
S2n�1

ut div(X)d�1

! �

Z �

✏0

t2n�1dt
Z
S2n�1

ut
⇢
1
t
X ( ) +  div(X)

�
d �1 , ⌫ ! 1.

Hence
Z �

✏0

t2n�1dt
Z
S2n�1

⇢
X (u)t  + ut


1
t
X ( ) +  div(X)

��
d �1 = 0

and differentiation with respect to � (in the distribution sense) yields
Z
S2n�1

X (u)�  d �1 = �

Z
S2n�1

u�

1
�
X ( ) +  div(X)

�
d �1 (7.36)

for every 0 < � < 1. Subtraction ofZ
S2n�1

X (u�) d �1 = �

Z
S2n�1

u� div( X) d �1
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from (7.36) leads to

X (u�) = � X (u)� + (�� 1) div(X). (7.37)

Let us extend both sides of (7.37) by C-linearity. Then (7.37) holds for every X 2

H(F) ⌦ C. Next, by (7.37) with X 2 {W↵ , W↵},Z
S2n�1

⇣
0PQR �8�

⌘
W↵

�
8Q�

�
W↵

�
8R�

�
d �1

�

Z
S2n�1

⇣
0PQR � �

⌘
W↵

�
�Q
�
W↵

�
�R
�
d �1

=

1
�2

Z
S2n�1

⇣
0PQR �8� � 0PQR � �

⌘ h
W↵

�
8
Q
�

�
� W↵

�
�Q
�i

⇥

h
W↵

�
8R
�

�
� W↵

�
�R
�i
d �1

+

1
�2

Z
S2n�1

⇣
0PQR �8� � 0PQR � �

⌘ nh
W↵

�
8
Q
�

�
� W↵

�
�Q
�i

W↵

�
�R
�

+W↵

�
�Q
� h
W↵

�
8R
�

�
� W↵

�
�R
�io

d �1

+

2
�2

Z
S2n�1

⇣
0PQR �8� � 0PQR � �

⌘
W↵

�
�Q
�
W↵

�
�R
�
d �1 + O(1� �)

and����
Z
S2n�1

⇣
0PQR �8� � 0PQR � �

⌘ h
W↵

�
8
Q
�

�
� W↵

�
�Q
�i

⇥

h
W↵

�
8R
�

�
� W↵

�
�R
�i
d �1

���


1
2

���0PQR �8� � 0PQR � �
���
L2(S2n�1)

⇥

⇢���W↵

�
8
Q
�

�
� W↵

�
�Q
����

L2(S2n�1)
+

���W↵

�
8R
�

�
� W↵

�
�R
����

L2(S2n�1)

�
.

Lemma 7.2 is proved. Statement (a) in Theorem 1.3 follows from Lemmas 7.1 and
7.2 by taking the limit as � ! 1� in (7.29).

To prove statement (b) one sums (7.28) for P = A to (7.28) for P = A + N
multiplied by i =

p

�1 so to obtain, by (6.19),
⇣
�2 � 1

⌘ Z
S2n�1

F A
�

n
1b( � W )� + 2

⇣
�2 � n

⌘
N ( � W )�

+an�2
⇣
�2 � 1

⌘ h
T 2( � W )� + N2( � W )�

io
d�1

+

2(n + 1)
an

Z
S2n�1

 � A(8)� d�1 = 0.

(7.38)
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Identity (6.21) for � = Bn gives

n + 1
an

� A(8)�=

�2 � 1
|F�|2 � 1

h
�AB (F�)C + �AC (F�)B

i

⇥

"
n�1X
↵=1

W↵

⇣
FB
⌘
�
W↵

⇣
FC
⌘
�

� 2an�2
⇣
�2 � 1

⌘
⇠
⇣
FB
⌘
�
⇠
⇣
FC
⌘
�

#
.

(7.39)

Note that (7.38)-(7.39) are the L2 analogs to the partial differential equations (6.20)-
(6.21). In the pointwise version of (7.38) one may (after substitution from (7.39)) i)
simplify �2 � 1, ii) eliminate |F�(⇣ )|2 � 1, and iii) approach the boundary with
� ! 1�. A different kind of asymptotic analysis should be conducted in the
case at hand (because F�(⇣ ) depends on the variable of integration). This prompts
our assumption on the existence of the limit (1.6) and L2 convergence is seen to
suffice. A remark on the nature of our hypothesis (v) in Theorem 1.3 is in or-
der. If Q8 is the quotient defined by (6.22) with � = Bn and D = BN then
(Q8)� =

�
1� |F�|2

�
/
�
1� �2

�
is assumed to have a L2 limit Q� 2 L2(S2n�1)

as � ! 1�. To give an example, each proper holomorphic map 8 : B2 ! B3 in
Faran’s list (cf. [16]) has this property.

8(z, w), (z, w) 2 B2 Q�(z, w), (z, w) 2 S3

⇣
z3 ,

p

3zw, w3
⌘

3
�
1� |z|2|w|

2�

⇣
z2 ,

p

2zw, w2
⌘

2

�
z, zw,w2

�
1+ |w|

2

(0, z, w) 1

Assumptions such as the existence of limz!S2n�1 (1� |8(z)|) / (1� |z|) – in our
context lim�!1� A(�) where A(�) = (1� |F�|) / (1� �) – proved useful in exis-
tence results for non-tangential limits limz!S2n�1 8(z), cf. e.g. [30] (cf. also [1]
for generalizations to maps of strictly pseudoconvex domains). Here (Q8)� =

A(�)B(�) and L2-lim�!1� 8� = � yields i) L2-lim�!1� B(�) = 1 and ii) L2-
lim�!1� (Q8)� exists if and only if L2-lim�!1� A(�) exists. Let ✓0= i

2
�
@�@

�
(zz+

ww) and 20 =
i
2
�
@ � @

�
|Z |

2, Z = (Z1, Z2, Z3), be the canonical contact forms
on S3 and S5. Let � : S3 ! S5 be the boundary values of 8 2 P(2, 3). The dila-
tion �(�) = �(�; ✓0 , 20) 2 C1(S3, R) is given by �⇤20 = �(�) ✓0. A parallel
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of the table above to calculations in [5] shows that Q� = �(�) for every map in
Faran’s list. This is a curious phenomenon, lacking an explanation as yet, relating
the dilation of � (a quantity of metric nature) to the quotient Q� (accounting for
regularity of sorts e.g. existence of angular derivatives).

Going back to the proof of (b) in Theorem 1.3 let us replace from (7.39) into
(7.38) and take the limit as � ! 1�. We obtainZ

S2n�1
 Q�1

�

⇣
�AB�B + �AC�B

⌘X
↵

W↵

⇣
�B
⌘
W↵

⇣
�C
⌘
d�1 = 0

for every  2 C1(S2n�1). Let A 2 {1, . . . , N } be a fixed index. As �A 2

L2(S2n�1) there is a sequence { ⌫}⌫�1 ⇢ C1(S2n�1) such that lim⌫!1 ⌫ = �A
in L2(S2n�1). Then

0 =

Z
S2n�1

 ⌫ Q�1
�

⇣
�AB�B + �AC�B

⌘X
↵

W↵

⇣
�B
⌘
W↵

⇣
�C
⌘
d�1

!

Z
S2n�1

Q�1
� �A

⇣
�AB�B + �AC�B

⌘X
↵

W↵

⇣
�B
⌘
W↵

⇣
�C
⌘
d�1 , ⌫ ! 1,

and contraction over A yieldsZ
S2n�1

Q�1
� �B�C

X
↵

W↵

⇣
�B
⌘
W↵

⇣
�C
⌘
d�1 = 0.

By Lemma 2.1 and the constraint �A�
A

= 1 one has �CW↵(�
C) = ��CW↵(�C),

hence Z
S2n�1

Q�1
�

X
↵

���W↵(�C)�C
���2 d�1 = 0.

Finally (as Q� > 0 a.e. on S2n�1) W↵(�C)�C = 0 a.e. on S2n�1 for every 1 

↵  n � 1.
Let us prove (c) in Teorem 1.3. If � : S2n�1 ! S2N�1 is a weakly CR map

then each �A is a weakly CR function i.e.Z
S2n�1

�A div(Z) d �1 = 0, Z 2 C1
�
T1,0(S2n�1)

�
.

Let {T↵ : 1  ↵  n � 1} be a local G⌘-orthonormal frame of T1,0(S2n�1), defined
on the open set U ⇢ S2n�1. Then for every  2 C1

0 (U) and every sequence
{ ⌫}⌫�1 ⇢ C1

0 (U) such that lim⌫!1 ⌫ =  �A in L
2(U)

0 =

Z
U
�A div( ⌫T↵) d�1 = �

Z
U
G⌘
�
r
H�A ,  ⌫T↵

�
d�1

!

Z
U
 �A T↵

�
�A
�
d�1 , ⌫ ! 1.
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At this point we may contract over A and replace  by '⌫ T↵('⌫) where {'⌫}⌫�1 ⇢

C1

0 (U) is chosen such that '⌫ ! �B in L2(U) as ⌫ ! 1, with B 2 {1, . . . , N }

fixed. One has

0 =

Z
U
'⌫ T↵('⌫)�A T↵

�
�A
�
d�1

!

Z
U
�B T↵

�
�B
�
�A T↵

�
�A
�
d�1 , ⌫ ! 1,

so that, by contraction over B,
R
U
���A T↵(�A)��2 d�1 = 0 i.e. �A T↵(�

A) = 0 a.e.
in U .
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