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Boundary asymptotic expansions
of analytic self-mappings of the unit disk

VLADIMIR BOLOTNIKOV, MARK ELIN AND DAVID SHOIKHET

Abstract. We present necessary and sufficient conditions for the existence and
for the uniqueness of an analytic self-mapping of the open unit disk having pre-
scribed non-tangential boundary asymptotics at finitely many preassigned bound-
ary points.
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1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C. Given a set
� ⇢ C, we denote by Hol(D,�) the set of holomorphic functions F : D ! �. If
� = C, we will simply write Hol(D) for the set of functions holomorphic in D.

The class Hol(D, D) consisting of holomorphic self-mappings of D is of par-
ticular interest. Functions of this class have been the subject of intensive study for
over a century and have strong analytic, geometric and dynamic properties. In the
interpolation context, it is more convenient to extend the class Hol(D, D) by the
constant unimodular functions. This extended class S (sometimes called the Schur
class) coincides with Hol(D, D) by the maximum modulus principle (alternatively,
S is the closed unit ball of the Hardy space H1(D) of bounded holomorphic func-
tions on D).

Two celebrated problems in complex analysis from early in the last century
are the Nevanlinna-Pick and the Carathéodory-Fejér interpolation problems which
naturally merge into the following combined Nevanlinna-Pick-Carathéodory-Fejér
problem:

Given N distinct points z1, . . . , zN 2 D along with non-negative integers
k1, . . . , kN and the jets {wi, j }

ki
j=0 of complex numbers assigned to each zi ,
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find an F 2 S such that

F ( j)(zi ) = j !wi, j for i = 1, . . . , N and j = 0, . . . , ki ,

or, equivalently, such that

F(z) =

kiX
j=0

wi, j (z � zi ) j + O
⇣
|z � zi |ki+1

⌘
for i = 1, . . . , N . (1.1)

The Carathéodory-Fejér problem (where N = 1) was considered by Schur [29],
Carathéodory [18] and Fejér [20], while the Nevanlinna-Pick problem (ki = 0 for
i = 1, . . . , N ) was studied by Pick [25] and Nevanlinna [24]. Numerous gener-
alizations of these two classical problems (of which the combined problem (1.1)
is the most immediate and straightforward generalization) have been the subject of
much study. Of many different approaches to these and related problems we may
mention [1, 5, 6, 22, 26, 27]. Well-known results on the problem (1.1) include the
following. The problem has a solution if and only if the Pick matrix P (constructed
explicitly in terms of interpolation data) is positive semidefinite; some details are re-
called in Remark 2.5 below. In case P is positive definite, the problem has infinitely
many solutions which can be described in terms of a linear fractional formula. If
P � 0 is singular, the problem has a unique solution which is a Blaschke product
of degree equal to the rank of P . Finally, a solvable problem has a unique solu-
tion with the minimally possible H1-norm and this solution is necessarily a scalar
multiple of a finite Blaschke product.

The objective of this paper is to study the boundary analog of the problem
(1.1) where the interpolation nodes zi are taken on the boundary T of the unit disk
and where the prescribed Taylor expansions (1.1) of an unknown interpolant are
replaced by non-tangential boundary asymptotics up to a certain order. Thus we
are given an N -tuple ⇣ of distinct points on T along with the tuple k of respective
multiplicities, and a doubly-indexed collection s of complex numbers:

⇣ = {⇣1, . . . , ⇣N }, k = {k1, . . . , kN }, s = {si, j }
j=0,...,ki
i=1,...,N , (1.2)

and we are wondering if there exists a function F 2 S which admits the asymptotic
expansions

F(z)=si,0+si,1(z�⇣i )+. . .+si,ki (z�⇣i )
ki

+o
⇣
|z � ⇣i |

ki
⌘

(i = 1, . . . , N ) (1.3)

as z tends to ⇣i non-tangentially?
Observe that the asymptotic equalities (1.3) are equivalent to the existence of

the following non-tangential boundary limits Fj (⇣i ) and the equalities

Fj (⇣i ) := \ lim
z!⇣i

F ( j)(z)
j !

= si, j for j = 0, . . . , ki ; i = 1, . . . , N . (1.4)
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Here and in what follows, the symbol \ limz!⇣ means that z 2 D approaches the
boundary point ⇣ 2 T non-tangentially; the regular notation limz!⇣ will be used if
z tends to ⇣ unrestrictedly inD. We denote by BIP(⇣ , k, s) the following boundary
interpolation problem:

Problem BIP(⇣ , k, s). Given data (1.2), find a function F 2 S satisfying condi-
tions (1.3) or equivalently, conditions (1.4).

We will call the problem determinate if it has only one solution. If the problem
admits more than one solution, it has infinitely many solutions by the convexity of
the solution set; in this case we will call the problem indeterminate. The single-
point Carathéodory-Fejér boundary problem (N = 1) was studied in [10] and in [2]
(in a related class of functions). The infinite case N = 1, k1 = 1 has been recently
settled in [16].

The main objective of this paper is to extend the results from [10] concern-
ing the solvability and determinacy of the problem to the multi-point setting of the
problem BIP(⇣ , k, s). In Section 3, we introduce the Pick matrix and companion
numbers associated with the problem BIP(⇣ , k, s), and formulate the main results
of the paper (the solvability and the determinacy criteria) in terms of these objects.
More specifically, Theorem 3.5 presents necessary and sufficient conditions for the
problem to have infinitely many solutions, in which case (1) the problem has in-
finitely many rational solutions and (2) any solution satisfies certain Carathéodory-
Julia type conditions (these conditions are recalled in Section 2 along with some
other necessary background on the local boundary behavior of Schur-class func-
tions). Theorem 3.6 presents necessary and sufficient conditions for the problem
BIP(⇣ , k, s) to have a unique solution which is necessarily a finite Blaschke prod-
uct of degree equal to the rank of the Pick matrix associated with the problem.
Being combined, Theorems 3.5 and 3.6 cover all the cases in which the problem
has a solution. In Section 4 we recall several special particular cases of the prob-
lem BIP(⇣ , k, s) already known from literature, and then we show in Section 5
that a general case of the problem can always be reduced to a special one. The
formal proofs of the main results are given in Section 6. In Section 7, we make
use of the Cayley transform to derive similar results on boundary interpolation for
Carathéodory-class functions (analytic and with non-negative real part on D).

2. Julia-Wolff-Carathéodory type conditions

Although every function F 2 S admits non-tangential boundary limits at almost all
boundary points, one cannot guarantee the existence of such a limit at a preassigned
point ⇣ 2 T. The situation with the boundary limits of F 0 is even worse: there are
functions F 2 S whose derivatives F 0 have a finite non-tangential boundary limit
at no point on T; see e.g., [30, page 184]. However, there are conditions which
guarantee the existence of finite boundary limits for F and for its derivatives.
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Definition 2.1. Given a point ⇣ 2 T, let us say that a function F 2 S is in the class
S(n)(⇣ ) if

lim inf
z!⇣

@2n�2

@zn�1@ z̄n�1
1� |F(z)|2

1� |z|2
< 1. (2.1)

Condition (2.1) was introduced in [12] and studied later in [15] and [14]; in case
n = 1, it amounts to the classical Julia-Wolff-Carathéodory condition (see, for
example, [30] and [31])

lim inf
z!⇣

1� |F(z)|
1� |z|

< 1.

Condition (2.1) can be equivalently reformulated in terms of the de Branges-Rovn-
yak space H(F) (we refer to [17] for the definition) associated with the function
F 2 S as follows: a function F 2 S belongs to S(n)(⇣ ) if and only if for every
function h fromH(F), the boundary limits h j (⇣ ) exist for j = 0, . . . , n � 1.

As was shown in [21] (and earlier in [3] for inner functions), the latter de
Branges-Rovnyak space property (and therefore, the membership of F in S(n)(⇣ ))
is equivalent to the condition

X
k

1� |ak |2��⇣ � ak
��2n +

Z 2⇡

0

dµ(✓)��⇣ � ei✓
��2n < 1,

where the points ak 2 D and the measure µ come from the inner-outer factorization
of F :

F(z) =

 Y
k

āk
ak

·

z � ak
1� zāk

!
· exp

(
�

Z 2⇡

0

ei✓ + z
ei✓ � z

dµ(✓)

)
.

Several other equivalent characterizations of the class S(n)(⇣ ) are recalled in Theo-
rem 2.2 below. For every point ⇣ 2 T and every integer n � 1, we let

9n(⇣ ) =

2
6666666664

⇣ �⇣ 2 · · · (�1)n�1
✓
n � 1
0

◆
⇣ n

0 �⇣ 3 · · · (�1)n�1
✓
n � 1
1

◆
⇣ n+1

...
. . .

...

0 · · · 0 (�1)n�1
✓
n � 1
n � 1

◆
⇣ 2n�1

3
7777777775

(2.2)

be the n ⇥ n upper triangular matrix with the entries

9r`(⇣ ) =

8><
>:
0 if r > `

(�1)`�1
 

` � 1
r � 1

!
⇣ `+r�1 if r  `

(r, ` = 1, . . . , n). (2.3)
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To a function F admitting the boundary limits Fj (⇣ ) := \ limz!⇣
F ( j)(z)
j ! , for j =

0, . . . , 2n � 1, we associate the structured matrix

PF
n (⇣ ) =

2
64
F1(⇣ ) . . . Fn(⇣ )

...
...

Fn(⇣ ) . . . F2n�1(⇣ )

3
759n(⇣ )

2
64
F0(⇣ ) . . . Fn�1(⇣ )

. . .
...

0 F0(⇣ )

3
75 , (2.4)

where the leftmost factor is a Hankel matrix and the rightmost factor is a Toeplitz
upper triangular matrix. Furthermore, it is well-known that for any F 2 S the
associated kernel

KF (z, �) =

1� F(z)F(�)

1� z�
(2.5)

is positive on D ⇥ D and therefore, the Schwarz-Pick matrix

PFn (z) :=

"
1
i ! j !

@ i+ j

@zi@ z̄ j
1� |F(z)|2

1� |z|2

#n�1
i, j=0

(2.6)

is positive semidefinite for every n � 1 and z 2 D. Given a point ⇣ 2 T, the
boundary Schwarz-Pick matrix is defined by

PFn (⇣ ) := \ lim
z!⇣

PFn (z), (2.7)

provided the non-tangential (finite) limit in (2.7) exists. Thus, once the boundary
Schwarz-Pick matrix PFn (⇣ ) exists, it is positive semidefinite as the limit of positive
semidefinite matrices. It is readily seen from (2.1) that the membership F 2 S(n)(⇣ )
is necessary for the limit (2.7) to exist, since it is necessary for the non-tangential
convergence of the rightmost diagonal entry in PFn (z). In fact, it is also sufficient
due the following theorem established in [12].

Theorem 2.2. Let F 2 S , ⇣ 2 T and n 2 N. The following are equivalent:

(1) F 2 S(n)(⇣ );
(2) The boundary Schwarz-Pick matrix PFn (⇣ ) exists;
(3) The non-tangential boundary limits Fj (⇣ ) exist for j = 0, . . . , 2n � 1 and

satisfy
|F0(⇣ )| = 1 and PF

n (⇣ ) � 0,

where PF
n (⇣ ) is the matrix defined in (2.4).

Moreover, if this is the case, then PFn (⇣ ) = PF
n (⇣ ).

We remark that in contrast to the boundary Schwarz-Pick matrix PFn (⇣ ), which
is positive semidefinite whenever it exists, the structured matrix PF

n (⇣ ) defined in
terms of the angular limits Fj (⇣ ) by formula (2.4) does not have to be positive



404 VLADIMIR BOLOTNIKOV, MARK ELIN AND DAVID SHOIKHET

semidefinite and even Hermitian. Theorem 2.2 states in particular, that the posi-
tivity of this structured matrix is an exclusive property of the class S(n)(⇣ ). The
following stronger version of the implication (3) ) (1) in Theorem 2.2 appears
in [15, Theorem 1.7]. It is indeed stronger, since F is not assumed to be in S and
the structured matrix PF

n (⇣ ) is not assumed to be positive semidefinite.
Theorem 2.3. Given F 2 Hol(D) and ⇣ 2 T, let us assume that the non-tangential
boundary limits Fj (⇣ ) exist for j = 0, . . . , 2n � 1 and are such that |F0(⇣ )| = 1
and PF

n (⇣ ) = PF
n (⇣ )⇤. Then F satisfies condition (2.1).

Let us now turn to the multi-point situation. Given a tuple ⇣ = {⇣1, . . . , ⇣N }

of distinct points in T and a tuple d = {d1, . . . , dN } of respective multiplicities, we
may characterize functions from the class

TN
i=1 S(di )(⇣i ), that is, the Schur-class

functions F satisfying the Julia-Wolff-Carathéodory type conditions

lim inf
z!⇣i

@2di�2

@zdi�1@ z̄di�1
1� |F(z)|2

1� |z|2
< 1 for i = 1, . . . , N . (2.8)

To this end, we apply Theorem 2.2 separately to each condition in (2.8) to conclude
that the boundary limits Fj (zi ) exist for all j = 0, . . . , 2di � 1 and i = 1, . . . , N
and are such that |F0(zi )| = 1 and PF

di (⇣i ) � 0 for all i = 1, . . . , N . In fact we
have some more as we will now explain.

Given tuples ⇣ 2 TN and d 2 ZN
+
as above, we introduce the multi-point

analog of the structured matrix (2.4) as the block matrix

PF
d (⇣ ) =

h
PF
i j

iN
i, j=1

(2.9)

with the diagonal blocks PF
ii = PF

di (⇣i ) defined via formula (2.9) and the di ⇥ d j
non-diagonal blocks PF

i j defined entry-wise as follows

h
PF
i j

i
r+1,`+1

=

min{`,r}X
t=0

(` + r � t)!
(` � t)!t !(r � t)!

⇣ r�ti ⇣̄ `�t
j�

1� ⇣i ⇣̄ j
�`+r�t+1

�

X̀
↵=0

rX
�=0

min{↵,�}X
t=0

(↵+��t)!
(↵�t)!t !(��t)!

⇣
��t
i ⇣̄ ↵�t

j F`�↵(⇣i )Fr��(⇣ j )�
1� ⇣i ⇣̄ j

�↵+��t+1 .

(2.10)

Observe that the entries of the block PF
i j are completely determined by the boundary

limits F0(zi ), . . . , Fdi�1(zi ) and F0(z j ), . . . , Fdj�1(z j ). The formula (2.10) is well
justified by the the next result.

Theorem 2.4. Let F 2

TN
i=1 S(di )(⇣i ), where ⇣ = {⇣1, . . . , ⇣N } ⇢ T. Then:

(1) The non-tangential boundary limits Fj (⇣i ) exist and |F0(⇣i )| = 1 for all j =

0, . . . , 2di � 1 and i = 1, . . . , N ;

(2) The matrix PF
d (⇣ ) given by (2.9), (2.10) is positive semidefinite.
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Proof. The first statement follows from Theorem 2.2 applied individually to every
⇣i 2 T. Given a tuple z = {z1, . . . , zN } of distinct points in D and the tuple
d = {d1, . . . , dN } as above, the multi-point counterpart of the Schwarz-Pick matrix
(2.6) is the block matrix

PFd (z) =

h
PFdi ,d j (zi , z j )

iN
i, j=1

(2.11)

with the di ⇥ d j block entries

PFdi ,d j (zi , z j ) =

2
664 1

`!r !
@`+r

@z`@�̄r
1� F(z)F(�)

1� z�̄

����� z = zi
� = z j

3
775
r=0,...,d j�1

`=0,...,di�1

. (2.12)

Since the kernel (2.5) is positive on D ⇥ D for F 2 S , the matrix PFd (z) is pos-
itive semidefinite for every choice of z and d. The straightforward differentiation
in (2.12) gives explicit formulas for the entries in PFdi ,d j (zi , z j ) which have the
same form as in (2.10) but with zi instead of ⇣i and with F ( j)(zi )/j ! rather than
Fj (⇣i ). Taking then the limit as zi ! ⇣i and z j ! ⇣ j non-tangentially for i 6= j
we conclude that the non-diagonal blocks in PFdi ,d j (zi , z j ) converge to the corre-
sponding blocks in PF

d (⇣ ) (which now explains the definition (2.10)). The similar
convergence for the diagonal blocks is guaranteed by Theorem 2.2. Therefore, the
boundary Schwarz-Pick matrix

PFd (⇣ ) = \ lim
z!⇣

PFd (z) (2.13)

exists and equals PF
d (⇣ ). As the limit of positive semidefinite matrices, this matrix

is positive semidefinite as well.

Remark 2.5. The matrix PFk (z) constructed as in (2.12) (with k=(k1+1, . . . , kN+

1) rather than d) plays the central role in solving the interior problem (1.1). The
explicit differentiation in (2.8) shows that this matrix is completely determined by
the Taylor coefficients F ( j)(zi )/j ! of F for j = 0, . . . , ki and i = 1, . . . , N . For
every solution F to the problem (1.1), these Taylor coefficients can be replaced
by the corresponding target values wi, j producing the matrix P =

⇥
Pi j

⇤N
i, j=1 with

(ki + 1) ⇥ (k j + 1) blocks Pi j defined entry-wise by

⇥
Pi j

⇤
r+1,`+1 =

min{`,r}X
s=0

(` + r � s)!
(` � s)!s!(r � s)!

zr�si z̄`�sj�
1� zi z̄ j

�`+r�s+1

�

X̀
↵=0

rX
�=0

min{↵,�}X
s=0

(↵ + � � s)!
(↵ � s)!s!(� � s)!

z��s
i z̄↵�s

j wi,`�↵w j,r���
1� zi z̄ j

�↵+��s+1 .
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This matrix P is called the Pick matrix of the problem (1.1). It is now clear that for
every solution F 2 S to the problem (1.1), the positive semidefinite matrix PFk (z)
equals P . Another conclusion is that the condition P � 0 is necessary for the
problem (1.1) to have a solution. A remarkable fact, though, is that this condition
is also sufficient.

Let us remark that if F is a finite Blaschke product, it is analytic at every point
⇣ 2 T and thus, the boundary limits Fj (⇣ ) amount to the Taylor coefficients of F
at ⇣ . Thus the structured matrix PF

d (⇣ ) is defined for every choice of tuples ⇣ and
d. The following result is known (see e.g., [8, Lemma 2.1]).

Theorem 2.6. Let F be a finite Blaschke product, let ⇣ = {⇣1, . . . , ⇣N } ⇢ T and
let d = {d1, . . . , dN } ⇢ N. Then the matrix PF

d (⇣ ) is positive semidefinite and
rankPF

d (⇣ ) = min{d1 + . . . + dN , deg F}.

3. Problem BIP(⇣ , k, s): main results

We start this section with simple sufficient conditions for the determinacy of the
problem; see [9, Theorem 1.4] for the proof.

Lemma 3.1. If |si,0| < 1 for i = 1, . . . , N , then the problem BIP(⇣ , k, s) has
infinitely many rational solutions.

Lemma 3.1 tells us that if |si,0| < 1 for i = 1, . . . , N , then the problem is
indeterminate no matter what the rest of the data set is. On the other hand, by the
very definition of the class S , conditions |si,0|  1 for i = 1, . . . , N are necessary
for the problem to have a solution. The Julia-Wolff-Carathéodory theorem states
that if a function F 2 S admits finite boundary limits F0(⇣i ) 2 T and F1(⇣i ), then
necessarily

⇣i F1(⇣i )F0(⇣i ) = \ lim
z!⇣i

1� |F(z)|
1� |z|

� 0.

We thus have another necessary condition for the problem BIP(⇣ , k, s) to have a
solution: ⇣i si,1si,0 � 0 whenever |si,0| = 1 and ki � 1 (i.e., si,1 is given).

3.1. The Pick matrix of the problem and the companion numbers

In the previous section we introduced the structured matrix (2.9) in terms of the
boundary limits Fj (⇣i ). Since the problem BIP(⇣ , k, s) prescribes the values of
these limits, we may try to plug them into (2.9) to construct the Pick matrix of
the problem BIP(⇣ , k, s) and then to establish (as in Remark 2.5) the solvability
criterion in terms of this matrix.
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Before to proceed we will mention several distinctions between the interior
problem (1.1) and its boundary counter-part (1.3).

(1) The Pick matrix of the interior problem incorporates all given data (equiva-
lently, the matrix PFk (z) contains all Taylor coefficients of F wewant to match),
while the matrix (2.9) incorporates an even number of boundary derivatives as-
signed to each point ⇣i and therefore, it may miss some data (for example, if
one of ki ’s in (1.2) is even).

(2) The Pick matrix of the interior problem is Hermitian by construction, while the
matrix (2.9) does not have to be Hermitian (unless F satisfies quite restrictive
Julia-Wolff-Carathéodory conditions (2.8)).

(3) Lemma 3.1 shows that the problemBIP(⇣ , k, s)may have solutions regardless
of most of data.

The formal definition of the Pick matrix (given by formulas (3.9)-(3.11) below)
needs some preliminary work. First, we introduce the index set

I = {i : |si,0| = 1 and ki � 1} ⇢ {1, . . . , N } (3.1)

and recall that the conditions

|si,0|  1 for i = 1, . . . , N and ⇣i si,1si,0 � 0 for all i 2 I (3.2)

are necessary for the problem BIP(⇣ , k, s) to have a solution. In what follows, we
assume that these conditions are met. The whole index set {1, . . . , N } can be split
into three disjoint sets I , J , K where I is given in (3.1),

J = {i : |si,0| = 1 and ki = 0} and K = {i : |si,0| < 1}. (3.3)

For every i 2 I , we use the given string {si,0, . . . , si,ki } to define the lower triangular
Toeplitz matrix

Usi,n =

2
6664

si,0 0 . . . 0

si,1 si,0
. . .

...
...

. . .
. . . 0

si,n�1 . . . si,1 si,0

3
7775 (3.4)

and the Hankel matrix

Hsi,n =

2
664
si,1 si,2 . . . si,n
si,2 si,3 . . . si,n+1
...

...
...

si,n si,n+1 . . . si,2n�1

3
775 (3.5)

for every appropriate integer n � 1 (i.e., for every n  ki + 1 in (3.4) and for every
n  (ki + 1)/2 in (3.5)). For every n  (ki + 1)/2 and i 2 I , we then define the
matrix (cf. (2.4))

Psn(⇣i ) =

⇥
psr`(⇣i )

⇤n
r,`=1 = Hsi,n9n(⇣i )Us⇤i,n (3.6)
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with the entries (as it follows from (2.2), (3.4) and (3.5))

psr`(⇣i ) =

X̀
↵=1

 
↵X

�=1
si,r+��19�↵(⇣i )

!
si,`�↵. (3.7)

Remark 3.2. Due to the upper triangular structure of the factors 9n(⇣i ) and Us⇤i,n
in (3.6), it follows that Psk(⇣i ) is the leading submatrix of Psn(⇣i ) for every k < n.
In particular, if Psn(⇣i ) is Hermitian, then Psk(⇣i ) is Hermitian for every k < n.
Remark 3.3. We observe that formula (3.7) defines the numbers psr`(⇣i ) in terms
of s for every pair of indices (r, `) subject to r + `  ki + 1.

The structured matrix Psn(⇣i ) does not have to be Hermitian. However, the
results presented in the previous section indicate that the hermitian case is of par-
ticular interest. This suggests the following construction. Let us define the tuple
d = {d1, . . . , dN } where

di =

(
max

�
n : Psn(⇣i ) = Psn(⇣i )⇤

 
if i 2 I

0 if i 2 J [ K .
(3.8)

Observe that for n = 1, formula (3.6) takes the form Ps1(⇣i ) = ⇣i si,1si,0. Since we
assume that conditions (3.2) are in force, it follows that di > 0 for every i 2 I .
Furthermore, for every i 2 I , the structured matrix Psdi (⇣i ) is Hermitian while the
extended matrix Psdi+1(⇣i ) is not (in case di < ki/2).

We now define the Pick matrix of the problem BIP(⇣ , k, s) by

Psd =

h
Psi j

i
i, j2I

(3.9)

where the di ⇥ di diagonal blocks are given by

Psi i = Psdi (⇣i ) = Hsi,di9di (⇣i )Us⇤i,di (3.10)

and where the di ⇥ d j non-diagonal blocks Psi j =

⇥
psr`(⇣i , ⇣ j )

⇤`=1,...,d j
r=1,...,di are defined

entry-wise by

psr+1,`+1(⇣i , ⇣ j )=
min{`,r}X
s=0

(` + r � s)!
(` � s)!s!(r � s)!

⇣ r�si ⇣̄ `�s
j�

1� ⇣i ⇣̄ j
�`+r�s+1

�

X̀
↵=0

rX
�=0

min{↵,�}X
s=0

(↵ + ��s)!
(↵�s)!s!(��s)!

⇣
��s
i ⇣̄ ↵�s

j si,`�↵s j,r���
1�⇣i ⇣̄ j

�↵+��s+1 .

(3.11)

Remark 3.4. Observe that the matrix Psd is Hermitian by construction, since the
diagonal blocks Psi i = Psdi (⇣i ) are Hermitian due to the choice (3.8) of di while the
non-diagonal blocks satisfy Psi j = Ps⇤j i according to (3.11).
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We also remark that the Pick matrix Psd is non-trivial only if the index set I
in (3.1) is non-empty. In this case we use the numbers (3.8) to break I into three
disjoint parts:

I 0 = {i 2 I : 2di < ki } , I 00 = {i 2 I : 2di = ki } ,

I 000 = {i 2 I : 2di � 1 = ki },
(3.12)

so that, for every i 2 I 000, all data assigned to ⇣i is incorporated in the Hermitian
matrix Psdi (⇣i ). In case i 2 I 00, the matrix Psdi (⇣i ) has the maximally possible size
and incorporates all data assigned to ⇣i but si,ki . Finally, if i 2 I 0, then we have
enough data to construct the extended structured matrix Psdi+1(⇣i ), but this matrix
turns out to be non-Hermitian.

By Remark 3.3, for every i 2 I 0[ I 00 (that is, for every i such that 2di  ki ), we
can use formula (3.7) to define the numbers psdi ,di+1(⇣i ) and p

s
di+1,di (⇣i ) which are

not the entries of Psdi (⇣i ). We then define the companion numbers �i of the problem
BIP(⇣ , k, s) by

�i = ⇣i ·

⇣
psdi+1,di (⇣i ) � psdi ,di+1(⇣i )

⌘
for i 2 I 0 [ I 00. (3.13)

3.2. Main results

The Pick matrix of the boundary interpolation problem and the companion numbers
is all we need to present the main results of this paper. The first theorem gives the
indeterminacy criterion for the problem BIP(⇣ , k, s).
Theorem 3.5. Given the data set (1.2) with |si,0|  1 for i = 1, . . . , N , let I be
defined as in (3.1), let Psd be the Pick matrix defined in (3.9)-(3.11) and let �i be
the companion numbers defined via formulas (3.13) and (3.7). Then the problem
BIP(⇣ , k, s) is indeterminate if and only if either I is empty or the following three
conditions hold:

(1) I 6= ; and ⇣i si,1si,0 > 0 for all i 2 I ;
(2) the matrix Psd is positive definite;
(3) �i > 0 for every i 2 I 0 and �i � 0 for every i 2 I 00.

Furthermore, the indeterminate problem BIP(⇣ , k, s) admits infinitely many ra-
tional solutions. Finally, every solution F of the problem belongs to the classT

i2I S(di )(⇣i ) and does not belong to
S

i2I 0 S(di+1)(⇣i ).

It is seen from Theorem 3.5 that the indeterminacy of the problem does not
depend on the part of data associated with the indices i 2 J [ K . To present the
determinacy criterion, we introduce the notion of a structured extension. We let ei
to be a “coordinate” tuple so that all the integers in d+ei are the same as in d except
for the i-th integer which is equal to di + 1. To construct the extended Pick matrix
Psd+ei , we need some more data beyond (1.2). Namely, we need

(1) si,1, if i 2 J ; (2) si,2di , if i 2 I 00; (3) si,2di , si,2di+1 if i 2 I 000. (3.14)
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We will refer to the matrices Psd+ei as to the structured extensions of Psd. Finally,
let us define the column-vector

Ci = Colk2I

2
6664
ps1,di+1(⇣k, ⇣i )
ps2,di+1(⇣k, ⇣i )

...
psdi ,di+1(⇣k, ⇣i )

3
7775 for all i 2 I 0 [ I 00 [ J, (3.15)

where psr,di+1(⇣k, ⇣i ) is defined for r = 1, . . . , di by formula (3.11) in case k 6= i
or by

psr,di+1(⇣i , ⇣i ) := psr,di+1(⇣i ) =

di+1X
↵=1

 
↵X

�=1
si,r+��19�↵(⇣i )

!
si,di+1�↵ (3.16)

if k = i (cf. (3.7)). Note that the entries of Ci do not appear in Psd but they do appear
in the extended matrix Psd+ei . The next theorem gives the determinacy criterion for
the problem BIP(⇣ , k, s).

Theorem 3.6. The problem BIP(⇣ , k, s) is determinate if and only if:

(1) |si,0| = 1 for every i = 1, . . . , N (i.e., the set K is empty);
(2) 2di 2 {ki , ki + 1} for every i = 1, . . . , N (i.e., the set I 0 is empty);
(3) The matrix Psd is positive semidefinite (singular) and admits positive semidefi-

nite extensions Psd+ei for i = 1, . . . , N .

The third condition can be equivalently replaced by the following three conditions:

(3a) rankPsd = rank
⇥
Psd Ci

⇤
for all i 2 J , where Ci is given by (3.15);

(3b) psdi+1,di (⇣i ) = psdi ,di+1(⇣i ) and rankPsd = rank
⇥
Psd Ci

⇤
for all i 2 I 00;

(3c) rankPsd = rankPsd�ei for all i 2 I 000.

If this is the case, then the unique solution is a Blaschke product of degree equal to
the rank of Psd.

Our further strategy is the following. In the next section we consider two spe-
cial cases of the problem BIP(⇣ , k, s). In Section 5 we present the reduction step
which will be used in Section 6 to prove Theorems 3.5 and 3.6.

4. Special cases

The special case of the problem BIP(⇣ , k, s) where the sets J , K , I 0 , I 00 defined
in (3.12) and (3.3) are all empty has appeared in literature; see e.g., [4, 5, 7, 11, 13,
23,28]. The main feature of this case is that its Pick matrix incorporates all interpo-
lation data and that the solution set admits a nice linear fractional parametrization.
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Although the generic problem BIP(⇣ , k, s) is not of this type, it contains a sub-
problem of this type whenever I 6= ;. Indeed, it is seen from formulas (3.9)–(3.11)
that the matrix Psd is constructed from ⇣i and si,0, . . . , si,2di�1 for all i 2 I . The
boundary interpolation problem associated to this partial data, i.e., with

e⇣ =

�
⇣i
 
i2I ,

ed =

�
di
 
i2I , es =

�
si, j

 j=0,...,2di�1
i2I (4.1)

will be called the Symmetric Boundary Interpolation Problem and will be denoted
by SBIP(e⇣ , ed,es). The term “symmetric” is chosen due to the symmetry relations
(4.5) (see below) satisfied by its data.

SBIP(e⇣ , ed,es): Given the data set (4.1), find all functions F 2 S such that

Fj (⇣i ) := \ lim
z!⇣i

F ( j)(z)
j !

= si, j for j = 0, . . . , 2di � 1; i 2 I, (4.2)

or equivalently, such that

F(z) = si,0 + si,1(z � ⇣i ) + . . . + si,2di�1(z � ⇣i )
2di�1

+ o
⇣
|z � ⇣i |

2di�1
⌘
(4.3)

for all i 2 I as z tends to ⇣i non-tangentially.
By the definition (3.8), the data set (4.1) satisfies conditions

|si,0| = 1 and Psdi (⇣i ) = Psdi (⇣i )
⇤ for all i 2 I (4.4)

which turn out to be equivalent (see [15, Theorem 1.5] for the proof) to equalities2
64
si,0 . . . si,2di�1

. . .
...

0 si,0

3
7592di (⇣i )

2
64
si,0 . . . si,2di�1

. . .
...

0 si,0

3
75 = 92di (⇣i ) (4.5)

for all i 2 I , where the leftmost and the rightmost factors are upper triangular
Toeplitz matrices and 92di (⇣i ) is defined via formula (2.2). By a result from [11],
the matrix equality (4.5) is equivalent to the system of di equalities

jX
r=0

j�rX
`=0

(�1)`
✓
j � `
r

◆
⇣ r�`
i si,r si,` = 1 for j = 0, . . . , 2di � 1.

The following “symmetry” result (see [10, Lemma 3.8]) will be useful for our sub-
sequent analysis.

Lemma 4.1. Let us assume that conditions (4.4) are satisfied and let psr,`(⇣i ) be the
numbers defined via formula (3.7) for

r, ` 2 {1, . . . , 2di � 2}, subject to 2  r + ` + j  2di � 2. (4.6)

Then psr,`(⇣i ) = ps`,r (⇣i ) for all r, ` as in (4.6).
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In other words, relations (4.4) force certain symmetries for the numbers psi j (⇣i )
which are not the entries of Psdi (⇣i ). The next theorem can be found in [13].

Theorem 4.2. If the problem SBIP(e⇣ , ed,es) has a solution, then the Pick matrix
Psd is positive semidefinite. Furthermore:

(1) If Psd is positive definite, then the problem SBIP(e⇣ , ed,es) is indeterminate;
(2) If Psd is positive semidefinite and singular, then there exists a unique function

F 2 S subject to boundary interpolation conditions

Fj (⇣i ) = si, j for j = 0, . . . , 2di � 2; i 2 I. (4.7)

and
(�1)di ⇣ 2di�1i si,0

�
F2di�1(⇣i ) � si,2di�1

�
� 0 for i 2 I. (4.8)

This unique F is a Blaschke product of degree equal to the rank of Psd.

A curious point here is that in case the Pick matrix Psd � 0 is singular, the problem
SBIP(e⇣ , ed,es) may have no solutions. However, if the last condition at each point
is relaxed as in (4.8), then this relaxed problem will have a unique solution. Since
every solution of the problem BIP(⇣ , k, s) also solves the associated symmetric
problem SBIP(e⇣ , ed,es) and since every solution of the problem SBIP(e⇣ , ed,es) sat-
isfies the relaxed interpolation conditions (4.7), (4.8), we can make some conclu-
sions concerning the problem BIP(⇣ , k, s).

Corollary 4.3. Assume that the set I is not empty so that the Pick matrix Psd is
non-trivial. Then:

(1) If the problem BIP(⇣ , k, s) has a solution, then Psd is positive semidefinite;
(2) If Psd � 0 is singular, then the problem BIP(⇣ , k, s) has at most one solution,

which is necessarily a Blaschke product of degree equal to rankPsd.

Recall that the Pick matrix Psd was modeled from its prototype PF
d (⇣ ) by simply

replacing the boundary limits Fj (⇣i ) by the target values si, j . Hence, if F satisfies
interpolation conditions (4.2), then clearly PF

d (⇣ ) = Psd.
Remark 4.4. It can be shown (we refer to [13] for details) that conditions (4.7)
guarantee that all the corresponding entries in PF

d (⇣ ) and Psd are equal except for
the rightmost diagonal entries in the diagonal blocks. For these entries, we have by
(2.4) and (3.7),

pFdi ,di (⇣i ) =

diX
`=1

 X̀
r=1d

Fdi+r�1(⇣i )9r`(⇣i )

!
Fi,di�`(⇣i ),

psdi ,di (⇣i ) =

diX
`=1

 X̀
r=1d

si,di+r�19r`(⇣i )

!
si,di�`,
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and, due to conditions (4.7),

psdi ,di (⇣i ) � pFdi ,di (⇣i ) =

�
si,2di�1 � F2di�1(⇣i )

�
9di ,di (⇣i )si,0

= (�1)di ⇣ 2di�1i si,0
�
F2di�1(⇣i ) � si,2di�1

�
.

We thus conclude that if F satisfies relaxed interpolation conditions (4.7), (4.8),
then PF

d (⇣ )  Psd.
We next recall the linear fractional parametrization of all solutions of the prob-

lem SBIP(e⇣ , ed,es) in the indeterminate case. With the data set (4.1) we associate
the block diagonal matrix T and two column-vectors E and M with the block-
matrix representations

T = diagi2I Jdi (⇣i ), E = Coli2I Edi , M = Coli2I Mi

conformal with (3.9), where the blocks Jdi (⇣i ) 2 Cdi⇥di , and Edi , Mi 2 Cdi are
given by

Jdi (⇣i ) =

2
6664

⇣i 0 . . . 0

1 ⇣i
. . .

...
. . .

. . . 0
0 1 ⇣i

3
7775 , Edi =

2
664
1
0
...
0

3
775 , Mi =

2
664

si,0
si,1
...

si,di�1

3
775 .

It turns out that the Pick matrix Psd satisfies the Stein equality

Psd � TPsdT ⇤

= EE⇤

� MM⇤. (4.9)

We observe that equality (4.9) is a consequence of a particular structure of Psd as
well as of conditions (4.4) and refer to [13, Section 3] for details. We now let

eP := Psd + MM⇤

= TPsdT ⇤

+ EE⇤ (4.10)

where the second equality follows from (4.9). Since Psd is assumed to be positive
definite, the matrixeP is positive definite as well. It follows from (4.10) that
1� M⇤eP�1M = det

⇣
I � MM⇤eP�1

⌘
= det

⇣eP � MM⇤

⌘
· deteP�1

=

detPsd
deteP > 0

and similarly, 1� E⇤eP�1E > 0. We then let

↵ =

q
1� M⇤eP�1M, and � =

q
1� E⇤eP�1E

and introduce the 2⇥ 2 matrix-function

S =


a b
c g

�
(4.11)
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with the entries

a(z) = E⇤
�eP � zPsdT ⇤

�
�1M, (4.12)

b(z) = �
⇣
1� zE⇤

�eP � zPsdT ⇤
�
�1T�1E

⌘
, (4.13)

c(z) = ↵
⇣
1� zM⇤T ⇤

�eP � zPsdT ⇤
�
�1M

⌘
, (4.14)

g(z) = z↵�M⇤
�
Psd

�
�1eP�eP � PsdT ⇤

�
�1T�1E . (4.15)

It was shown in [13, Theorem 6.4] that S is a rational function of McMillan degree
|d| =

P
i2I di which is inner in D; these properties of S follow solely from the

Stein equality (4.9) and the positivity of Psd. Therefore, the entries (4.11)-(4.15)
of S are rational Schur-class functions analytic on T. Some properties of their
Taylor coefficients at the interpolation nodes ⇣i are listed in Theorem 4.5 below
(see Lemma 6.5 in [13] for the proof). In its formulation we use notation f j (z) =

f ( j)(z)/j !.
Theorem 4.5. Let a, b, c, g be defined as in (4.12)-(4.15). Then:
(1) a j (⇣i ) = si, j for j = 0, . . . , 2di � 1 and i 2 I ;
(2) |g(⇣i )| = 1 for i 2 I ;
(3) b j (⇣i ) = c j (⇣i ) = 0 for j = 0, . . . , di � 1 and i 2 I ;
(4) bdi (⇣i ) 6= 0, cdi (⇣i ) 6= 0 and moreover,

⇣
2di
i bdi (⇣i ) = (�1)di�1cdi (⇣i )g(⇣i )si,0; (4.16)

(5) For every z 2 C\{⇣i : i 2 I }, it holds that b(z) 6= 0 and c(z) 6= 0.

The next theorem (see [13, Theorem 1.6] for the proof) describes the solution set
of the problem SBIP(e⇣ , ed,es). In more detail, we first parametrize the solution set
of the relaxed problem (4.7), (4.8) where the last interpolation conditions prescrib-
ing the values of F2di�1(⇣i ) are relaxed to inequalities (4.8), and then we identify
the functions from this solution set for which the equality prevails in (4.8) for ev-
ery fixed i 2 I . We will also identify the functions satisfying the non-tangential
asymptotics

F(z) = si,0 + si,1(z � ⇣i ) + . . . + si,2di�1(z � ⇣i )
2di�1

+ O
⇣
|z � ⇣i |

2di
⌘
(4.17)

which is slightly stronger than that in (4.3).
Theorem 4.6. Let us assume that Psd is positive definite.
(1) A function F belongs to S and satisfies conditions (4.7), (4.8) if and only if it

is of the form

F(z) = TS[E](z) := a(z) +

b(z)c(z)E(z)
1� g(z)E(z)

(4.18)

where the coefficient matrix S is given in (4.11)–(4.15) and where the parame-
ter E is a Schur-class function.
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(2) A function F of the form (4.18) satisfies condition (4.17) for a fixed i 2 I if
and only if the corresponding parameter E 2 S is such that either

E(⇣i ) := \ lim
z!⇣i

E(z) 6= g(⇣i ) (4.19)

or the non-tangential boundary limit E(⇣i ) does not exist.
(3) A function F of the form (4.18) satisfies condition (4.3) for a fixed i 2 I if and

only if the corresponding parameter E 2 S is either as in part (2) or is subject
to equalities

E(⇣i ) = g(⇣i ) and lim inf
z!⇣i

1� |E(z)|
1� |z|

= 1. (4.20)

Remark 4.7. The correspondence E ! F established by formula (4.18) is one-to-
one and the inverse transformation is given by

E(z) = T�1
S [ f ](z) =

F(z) � a(z)
b(z)c(z) + g(z)(F(z) � a(z))

. (4.21)

Therefore, condition (4.20) explicitly describes the dichotomy between condition
(4.3) and a weaker condition (4.17). Although condition (4.17) does not have a
clear interpolation interpretation in general, it gets one while being restricted to
rational Schur functions. In this case, (4.17) is equivalent to (4.3) and therefore,
to conditions (4.2). The formula (4.18) parametrizes all rational solutions of the
problem SBIP(e⇣ , ed,es) if the parameter E runs through the set of all rational Schur
functions satisfying condition (4.19) for every i 2 I ; we refer to [5] for the detailed
treatment of the rational Schur-class boundary interpolation.
Remark 4.8. The coefficient matrix S(⇣ ) is unitary for every ⇣ 2 T (since S is
inner in D). If in addition, ⇣ 62 {⇣i : i 2 I }, then we also have b(⇣ )c(⇣ ) 6= 0
(by part (5) in Theorem 4.5) and therefore |g(⇣ ))| < 1. If F and E are rational
Schur-class functions related as in (4.18), then the n first Taylor coefficients of F
at ⇣ are completely determined by the n first Taylor coefficients of E at ⇣ and vice
versa. Moreover, |F(⇣ | = 1 (respectively |F(⇣ | < 1) if and only if |E(⇣ )| = 1
(respectively |E(⇣ )| < 1). The latter follows from the identity

1� |F(⇣ )|2 =

|b(⇣ )|2
�
1� |E(⇣ )|2

�
|1� g(⇣ )E(⇣ )|2

+


1

b(⇣ )E(⇣ )

1� g(⇣ )E(⇣ )

� �
I � S(⇣ )S(⇣ )⇤

�
2
664

1

b(⇣ )E(⇣ )

1� g(⇣ )E(⇣ )

3
775

(which in turn is a straightforward consequence of equality (4.18)), since b(⇣ ) 6= 0,
1� g(⇣ )E(⇣ ) 6= 0 and since the matrix S(⇣ ) is unitary.
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Remark 4.9. The relaxed interpolation problem (4.7), (4.8) was studied in [11,13,
23] and the linear fractional parametrization of its solution set with the free Schur-
class parameter has been known for a while. Theorem 4.6 also describes the gap
between the problem SBIP(e⇣ , ed,es) and its relaxed version: the strict inequality
holds in (4.8) for a function F of the form (4.18) if and only if the corresponding
parameter E is subject to condition (4.20).

Aparticular case of the symmetric boundary interpolation problem is the bound-
ary Nevanlinna-Pick problem studied in [28].

The problem BNPP. Given points ⇣i 2 @D and given complex numbers si,0 and
si,1 subject to conditions

|si,0| = 1 and ⇣i si,1si.0 � 0 for i = 1, . . . ,M,

find all functions F 2 S such that

F0(⇣i ) = si,0 and F1(⇣i ) = si,1 for i = 1, . . . ,M. (4.22)

Formulas (3.9)-(3.11) adapted to the present simple setting tell us that the Pick
matrix of the problem BNPP is equal to

P =

⇥
Pi j

⇤M
i, j=1 , where Pi j =

8><
>:

⇣i si,1si.0 if i = j,
1� si,0s j,0
1� ⇣i⇣ j

if i 6= j. (4.23)

The problem BNPP is indeterminate if and only if the Pick matrix (4.23) is positive
definite. In this case one can construct the functions (4.12)-(4.15) and then use part
(3) in Theorem 4.6 to get the description of all solutions to the problem BNPP. In
particular, all rational solutions of the problem are of the form (4.18) where E is a
rational Schur-class function satisfying condition (4.19) for every i 2 {1, . . . ,M}.

The symmetric interpolation problem is a special case of problemBIP(⇣ , k, s)
where the Pick matrix contains all data and where the positivity of this matrix is
necessary and sufficient for the existence of a solution. We now turn to another
extremal case where the Pick matrix is null-dimensional.

Theorem 4.10. Let us assume that the set I (3.1) is empty. Then the problem
BIP(⇣ , k, s) has infinitely many rational solutions.

Proof. By the assumption, J [ K = {1, . . . , N }. We may assume without loss
of generality that J = {1, . . . ,M} and K = {M + 1, . . . , N }. Observe that all
non-diagonal entries in the matrix (4.23) are specified. We now let si,1 := ⇣ i si,0r
for every i 2 J where r > 0 is large enough to make the matrix (4.23) positive
definite. Then the Nevanlinna-Pick problem (4.22) has infinitely many rational so-
lutions which are parametrized by formula (4.18) with the parameter E an arbitrary
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rational Schur-class function such that E(⇣i )g(⇣i ) 6= 1 for every i 2 J . In particular,
every parameter E satisfying conditions

E(⇣i ) = 0 for i 2 J, (4.24)

leads via formula (4.18) to a rational solution F to the Nevanlinna-Pick problem
(4.22). In particular, F(⇣i ) = si,0 for every i 2 J .

By Remark 4.8, the Taylor coefficients Fj (⇣i ) = si, j ( j = 0, . . . , ki , i 2 K )
determine those of E :

E j (⇣i ) = ci, j for j = 0, . . . , ki and i 2 K . (4.25)

Thus, the numbers ci, j are uniquely determined by the corresponding si, j ’s. The
explicit formula for ci, j is not that important. However, since |si,0| < 1, we also
have |ci,0| < 1 (by Remark 4.8). By Lemma 3.1, there are infinitely many rational
Schur-class functions satisfying conditions (4.24) and (4.25). Every such E leads
via formula (4.18) to a rational solution F of the problem BIP(⇣ , k, s).

5. Reduction

In Section 4 we discussed two extremal cases of the problem BIP(⇣ , k, s). The
generic case is such that the Pick matrix exists (i.e., is non-trivial) but does not in-
corporate all of interpolation data. We thus assume that the set (3.1) is not empty
and we still assume that the Pick matrix Psd defined in (3.9)-(3.11) is positive def-
inite. We then show that the original problem can be reduced to a problem with a
fewer number of interpolation conditions and we will see that the new problem is
either of the same type as the one discussed in Theorem 4.10 or it does not have a
solution.

Every solution F to the problem BIP(⇣ , k, s), if it exists, also solves the max-
imal symmetric subproblem SBIP(e⇣ , ed,es) and therefore it is of the form (4.18) for
some E 2 S (by Theorem 4.6). Making use of the numbers di ’s defined in (3.8) and
of the rational functions (4.12)-(4.15), we construct the polynomials A, B, C and
G such that (we recall notation f j (⇣i ) := f ( j)(⇣i )/j !)

A j (⇣i ) = si,2di+ j � a2di+ j (⇣i ),

Bj (⇣i ) = bdi+ j (⇣i ),

C j (⇣i ) = cdi+ j (⇣i ),

G j (⇣i ) = g j (⇣i ) for j = 0, . . . , ki � 2di ; i 2 I 0 [ I 00 [ J [ K .

(5.1)

We may think of the polynomials A, B, C , D as of the unique polynomials of
degree at most N�1+

PN
i=1(ki �2di ) solving the Hermite-Lagrange interpolation

problems (5.1). Observe that in view of statements (1) and (3) in Theorem 4.5,
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conditions (5.1) are equivalent to the following relations

a(z) + (z � ⇣i )
2di A(z) =

kiX
j=0

si, j (z � ⇣i )
j
+ O

⇣
|z � ⇣i |

ki+1
⌘

, (5.2)

b(z) = (z � ⇣i )
di B(z) + O

⇣
|z � ⇣i |

ki+1
⌘

, (5.3)

c(z) = (z � ⇣i )
di C(z) + O

⇣
|z � ⇣i |

ki+1
⌘

, (5.4)

g(z) = G(z) + O(|z � ⇣i |)
ki�2di+1, (5.5)

as z ! ⇣i for i 2 I 0 [ I 00 [ J [ K . We next define the rational function

R(z) =

A(z)
B(z)C(z) + G(z)A(z)

. (5.6)

Evaluating (5.6) at z = ⇣i , making use of (5.1) and taking into account Remark 4.8
we arrive at the following result.

Lemma 5.1. It holds that

Ri,0 := R(⇣i ) =

si,0 � a(⇣i )
b(⇣i )c(⇣i ) + g(⇣i )(si,0 � a(⇣i ))

for every i 2 J [ K .

Moreover |R(⇣i )| = 1 for i 2 J (i.e., if |si,0| = 1) and |R(⇣i )| < 1 for i 2 K (i.e.,
if |si,0| < 1).

We now pass to the interpolation nodes ⇣i where i 2 I 0 [ I 00. Since

B(⇣i )C(⇣i ) = bdi (⇣i )cdi (⇣i ) 6= 0

by statement (4) in Theorem 4.5, the numerator and the denominator in (5.6) cannot
have a common zero at ⇣i for i 2 I 0 [ I 00. Thus, R(z) is analytic at ⇣i if and only if

B(⇣i )C(⇣i ) + G(⇣i )A(⇣i ) = bdi (⇣i )cdi (⇣i ) + g(⇣i )
�
si,2di � a2di (⇣i )

�
6= 0. (5.7)

Remark 5.2. If condition (5.7) is satisfied for some i 2 I 0 [ I 00, then

Ri,0 := R(⇣i ) =

g(⇣i )
�
si,2di � a2di (⇣i )

�
(�1)di�1⇣ 2ni |cdi (⇣i )|2si,0 + si,2di � a2di (⇣i )

6= g(⇣i ). (5.8)

Proof. Evaluating (5.6) at z = ⇣i gives, on account of (5.1),

R(⇣i ) =

si,2di � a2di (⇣i )
bdi (⇣i )cdi (⇣i ) + g(⇣i )

�
si,2di � a2di (⇣i )

� ,
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and substituting (4.16) into the right-hand side part of the latter equality gives

R(⇣i ) =

si,2di � a2di (⇣i )
(�1)n�1⇣̄ 2dii g(⇣i )si,0|cdi (⇣i )|2 + g(⇣i )(si,2di � a2di (⇣i ))

which is equivalent to the second equality in (5.8) since |g(⇣i )| = 1 (by part (1) in
Theorem 4.5). Since si,0 6= 0 (as i 2 I ) and cdi (⇣i ) 6= 0 (by part (3) in Theorem
4.5), the inequality in (5.8) follows.

Theorem 5.3. Let us assume that the set I (3.1) is not empty and that the Pick ma-
trix Psd defined in (3.9)-(3.11) is positive definite. Let A, B, C , G be the polynomials
solving Hermite interpolation problems (5.1) and let R be given by (5.6).

(1) If the problem BIP(⇣ , k, s) admits a solution, then (5.7) holds for every i 2

I 0 [ I 00.
(2) If condition (5.7) is satisfied for every i 22 I 0 [ I 00, then a function F is a

solution of the problem BIP(⇣ , k, s) if and only if it is of the form (4.18) for
some E 2 S such that
(a) For every i 2 I 0 [ I 00 [ J [ K ,

E(z) = R(z) + o
�
|z � ⇣i |

ki�2di �. (5.9)

(b) For every i 2 I 000, the boundary limit E(⇣i ) either satisfies condition (4.19)
or conditions (4.20) or does not exist.

Proof. Let F be a solution to the problem BIP(⇣ , k, s). Then it also solves the
maximal symmetric subproblem SBIP(e⇣ , ed,es) and therefore it is of the form (4.18)
for some E 2 S with the properties listed in part (2b) (by Theorem 4.6). By (5.2),
the asymptotic equalities (1.3) for i 2 I 0 [ I 00 [ J [ K can be equivalently written
as

F(z) = a(z) + (z � ⇣i )
2di A(z) + o

�
|z � ⇣i |

ki
�

(i 2 I 0 [ I 00 [ J [ K ). (5.10)

Substituting (5.10) and (5.3)-(5.5) into (4.21) (which is equivalent to (4.18)) gives

E(z) =

A(z) + o
�
|z � ⇣i |

ki�2di
�

B(z)C(z) + G(z)A(z) + o
�
|z � ⇣i |ki�2di

� (5.11)

as z ! ⇣i non-tangentially for i 2 I 0 [ I 00 [ J [ K . Since A, B, C , G are
polynomials, the limit (as z tends to ⇣i ) of the expression on the right hand side of
(5.11) exists (finite of infinite) and therefore the limit E(⇣i ) exists as well. Since
E is a Schur-class function, this limit is finite and therefore, (5.7) holds for every
i 2 I 0 [ I 00 [ J [ K . Asymptotic equalities (5.9) follow from (5.6) and (5.11) due
to (5.7).
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It remains to prove the “if” part in statement (2) of the theorem. To this end, let
us assume that conditions (5.7) are met for every i 2 I 0 [ I 00, so that R is analytic
at ⇣i for every i 2 I 0 [ I 00. It is also analytic at ⇣i for every i 2 J [ K , by Lemma
5.1. Note also that

G(⇣i )R(⇣i ) = g(⇣i )R(⇣i ) 6= 1 for every i 2 I 0 [ I 00 [ J [ K . (5.12)

Indeed, if i 2 I 0 [ I 00, then (5.12) follows from Remark 5.2 since |g(⇣i )| = 1. If
i 2 J [ K then |g(⇣i )| < 1 (see Remark 4.8), |R(⇣i )|  1 (see Remark 5.1), and
(5.12) follows as well.

Let us assume that E is a Schur-class function subject to asymptotic equalities
(5.9) and let F be defined by formula (4.18). Then F 2 S since E 2 S and the
coefficient matrix (4.11) is inner. Substituting (5.9), (5.3)-(5.5) into (4.18) we get

F(z)=a(z)+
⇥
(z�⇣i )

2di B(z)C(z)+o
�
|z�⇣i |

k
i
�⇤

·

⇥
R(z)+o

�
|z�⇣i |

ki�2di
�⇤

1�

⇥
G(z) + o

�
|z � ⇣i |ki�2di

�⇤
· [R(z) + o(|z � ⇣i |ki�2di )]

=a(z) +

(z � ⇣i )
2di B(z)C(z)R(z) + o

�
|z � ⇣i |

ki
�

1� G(z)R(z) + o
�
|z � ⇣i |ki�2di

�
=a(z) +

(z � ⇣i )
2di B(z)C(z)R(z)

1� G(z)R(z)
+ o

⇣
|z � ⇣i |

ki
⌘

,

(5.13)

where the last equality follows by (5.12). Now we substitute formula (5.6) for
R into (5.13) and arrive at (5.10) which is equivalent to equalities (1.3) for i 2

I 0 [ I 00 [ J [ K . On the other hand, if i 2 I 000, then equalities (1.3) hold due
to assumptions from part (2b) of the theorem according to Theorem 4.6. Thus, F
solves the problem BIP(⇣ , k, s), which completes the proof.

Corollary 5.4. Let F be of the form (4.18) for some function E 2 S . Then for a
fixed i 2 I 0 [ I 00, the boundary limit F2di (⇣i ) exists if and only if the boundary limit
E(⇣i ) exists and is not equal to g(⇣i ). In this case,

F2di (⇣i ) = a2di (⇣i ) +

(�1)di�1⇣ 2dii |cdi (⇣i )|2si,0E(⇣i )

g(⇣i ) � E(⇣i )
. (5.14)

Proof. Simultaneous existence of the limits follows from Theorem 5.3. Since
E(⇣i ) = R(⇣i ) by (5.9), we have from (5.8),

E(⇣i ) =

g(⇣i )
�
F2di (⇣i ) � a2di (⇣i )

�
(�1)di�1⇣ 2dii |cdi (⇣i )|2si,0 + F2di (⇣i ) � a2di (⇣i )

.

Solving the latter equality for F2di (⇣i ) gives (5.14).
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Now we take another look at formula (5.8). If we will think of

{si, j : j = 0, . . . , 2di � 1, i 2 I 000} (5.15)

as of given numbers satisfying conditions |si,0| = 1 and Psd > 0, then for each
i 2 I 000, the formula (5.8) establishes a linear fractional map Yi : si,2di 7! Ri,0 on
the Riemann sphere (recall that the entries g(⇣i ), cdi (⇣i ) and a2di (⇣i ) in (5.8) are
uniquely determined by ⇣i and the fixed numbers (5.15)). The only value of the
argument si,2di in (5.8) which does not satisfy condition (5.7) is

s0i,2di = a2di (⇣i ) � bdi (⇣i )cdi (⇣i )g(⇣i ).

One can see from (5.7) that

Yi
⇣
s0i,2di

⌘
= 1 and Yi (1) = g(⇣i ).

Thus, if we consider Yi as a map from C \ {s0i,2di } into C, then condition (5.7) and
inequality in (4.10) will be satisfied automatically. Still assuming that ⇣i and si, j in
(5.15) are fixed, we can define two linear functions

si,2di 7! psdi+1,di (⇣i ) and si,2di 7! psdi ,di+1(⇣i )

by the formula (3.7). Indeed, letting (r, `) = (di + 1, di ) and (r, `) = (di , di + 1)
in (3.7) and taking into account that

9nn(⇣ ) = (�1)n�1⇣ 2n�1 and 9n+1,n+1(⇣ ) = (�1)n⇣ 2n+1

(according to formula (2.3)), we get

psdi+1,di (⇣i ) = (�1)di�1⇣ 2di�1i si,2di si,0 + 8i ,

psdi ,di+1(⇣i ) = (�1)di ⇣ 2di+1i si,2di si,0 + 7i ,
(5.16)

where the terms

8i =

di�1X
r=1

rX
`=1

si,di+`9`r (⇣i )si,di�r +

di�1X
`=1

si,di+`9`di (⇣i )si,0,

7i =

diX
r=1

rX
`=1

si,di+`�19`r (⇣i )si,di+1�r +

diX
`=1

si,di+`�19`,di+1(⇣i )si,0

(5.17)

are completely determined from ⇣i and si,0, . . . , si,2di�1. We next establish the
formula relating the companion numbers (3.13) and the numbers Ri,0 given by (5.8).
This formula shows in particular, that the companion numbers are necessarily real.
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Lemma 5.5. For a fixed i 2 I 0[I 00, let Ri,0, psdi+1,di (⇣i ) and p
s
di ,di+1(⇣i ) be defined

by formulas (5.8), (5.17) for some fixed si,2di . Then

�i := ⇣i ·

⇣
psdi+1,di (⇣i ) � psdi ,di+1(⇣i )

⌘
=

|cdi (⇣i )|2
�
1� |Ri,0|2

�
|g(⇣i ) � Ri,0|2

. (5.18)

Proof. Let us substitute the constant unimodular function E(z) ⌘ �g(⇣i ) into
(4.18):

h(z) := TS[�g(⇣i )](z) = a(z) �

b(z)c(z)g(⇣i )
1+ g(z)g(⇣i )

.

Since E is a unimodular constant function and since the matrix S of coefficients in
(4.18) is inner, it follows that h is a rational inner function, i.e., a finite Blaschke
product. Since E(z) ⌘ �g(⇣i ) satisfies condition (4.19), the function h solves the
problem SBIP(e⇣ , ed,es) by Theorem 4.6. Thus, in particular,

h j (⇣i ) = si, j for j = 0, . . . , 2di � 1 (5.19)

and therefore Phdi (⇣i ) = Psdi (⇣i ) where the matrices Phn(⇣i ) and Psdi (⇣i ) are defined
via formulas (2.4) and (3.6), respectively. The extended matrix Phdi+1(⇣i ) is positive
semidefinite, since h is a finite Blaschke product. In particular, the (di + 1, di ) and
(di , di + 1) entries in this matrix are complex conjugates of each other:

phdi+1,di (⇣i ) = phdi ,di+1(⇣i ). (5.20)

These entries are defined via formula (3.7) with si, j replaced by h j (⇣i ). By (5.19),

phdi+1,di (⇣i ) = (�1)di�1⇣ 2di�1i h2di (⇣i )si,0 + 8i ,

phdi ,di+1(⇣i ) = (�1)di ⇣ 2di+1i h2di (⇣i )si,0 + 7i

where 8i and 7i are the same as in (5.17). Substituting the two latter equalities
into (5.20) we have, after simple rearrangements,

8i � 7 i = (�1)di ⇣ 2di�1i h2di (⇣i )si,0 + (�1)di ⇣ 2di+1i h2di (⇣i )si,0. (5.21)

The formula for h2di (⇣i ) can be obtained from Corollary 5.4 by plugging E(⇣i ) =

�g(⇣i ) into (5.14):

h2di (⇣i ) = a2di (⇣i ) +

(�1)di
2

⇣
2di
i |cdi (⇣i )|2si,0.

On the other hand, we have from (5.8),

si,2di = a2di (⇣i ) +

(�1)di�1⇣ 2dii |cdi (⇣i )|2si,0Ri,0
g(t0) � Ri,0

,
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and we conclude from the two last equalities that

⇣
2di
i si,0(si,2di � h2di (⇣i )) = (�1)di�1|cdi (⇣i )|2

"
Ri,0

g(⇣i ) � Ri,0
+

1
2

#

=

(�1)di�1|cdi (⇣i )|2

2
·

g(⇣i ) + Ri,0
g(⇣i ) � Ri,0

.

(5.22)

Now we make subsequent use of (3.13), (5.16), (5.21) and (5.22) to get

�i := ⇣i
⇣
psdi+1,di (⇣i ) � psdi ,di+1(⇣i )

⌘

= (�1)di�1
h
⇣
2di
i si,2di si,0 + ⇣

2di
i si,2di si,0

i
+ ⇣i

⇥
8i � 7 i

⇤
= (�1)di�1

h
⇣
2di
i si,0(si,2di � h2di (⇣i )) + ⇣

2di
i si,0

⇣
si,2di � h2di (⇣i )

⌘i

= |cdi (⇣i )|2 · Re

 
g(⇣i ) + Ri,0
g(⇣i ) � Ri,0

!

=

��cdi (⇣i )��2
⇣
1�

��Ri,0��2⌘��g(⇣i ) � Ri,0
��2

which completes the proof.

6. Proof of the main results

We are now able to complete the proofs of Theorems 3.5 and 3.6.

Proof of Theorem 3.5. We will check all possible cases for the given data set (1.2).
We assume that |si,0|  1 since otherwise the problem BIP(⇣ , k, s) has no solu-
tions.

Case 1: Assume that the set I defined in (3.1) is empty. Then the problem is
indeterminate and has infinitely many rational solutions by Lemma 3.1.

If I 6= ;, then conditions (3.2) and Psd � 0 are necessary for the problem
BIP(⇣ , k, s) to have a solution.

Case 2: If Psd � 0 is singular, the problem BIP(⇣ , k, s) has at most one solution
(by Corollary 4.3) and, therefore, cannot be indeterminate.

Case 3: Let us assume that Psd > 0 and that

�i > 0 for every i 2 I 0 and �i � 0 for every i 2 I 00. (6.1)
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We will show that in this case the problem BIP(⇣ , k, s) is indeterminate. By The-
orem 5.3, it suffices to verify that there are infinitely many rational functions E 2 S
satisfying conditions

E j (⇣i ) = R j (⇣i ) for i 2 I 0 [ I 00 [ J [ K ; j = 0, . . . , ki � 2di , (6.2)
E(⇣i ) = 0 for i 2 I 000, (6.3)

where R is the rational function constructed as in (5.6). Indeed, conditions (6.2)
are equivalent to non-tangential asymptotic equalities (5.9), while equalities (6.3)
guarantee that conditions (4.19) are satisfied.

By Lemma 5.1, |R(⇣i )| = 1 for every i 2 J and |R(⇣i )| < 1 for every i 2 K .
By relation (5.18) in Lemma 5.5 and due to assumptions (6.1), |R(⇣i )| = 1 for every
i 2 I 00 and |R(⇣i )| < 1 for every i 2 I 0. Hence we see from (6.2) that for every
i 2 I 00 [ J , there is only one interpolation condition at ⇣i assigning a unimodular
boundary value R0(⇣i ) to the unknown interpolant E . At all other points (that is, for
i 2 I 0 [ I 000 [ K ), there is one or more interpolation conditions but in any event,
the prescribed boundary value for E at ⇣i is less than one in modulus. Therefore,
the interpolation problem with conditions (6.2), (6.3) is of the type considered in
Theorem 4.10. It has infinitely many rational solutions E , and every such E leads
via formula (4.18) to a rational solution F of the problem BIP(⇣ , k, s).
Case 4: Let us assume that Psd > 0 and that at least one of the conditions in (6.1)
fails to be in force.

If �i < 0 for some i 2 I 0 [ I 00, then we conclude from formula (5.18) that
|Ri,0| = |R(⇣i )| > 1 and therefore conditions (6.2) cannot be matched by a Schur-
class function E . Then the problem BIP(⇣ , k, s) has no solutions by Theorem 5.3.

If �i = 0 for some i 2 I 0, then the problem BIP(⇣ , k, s) also has no solutions.
To see this, we recall a result from [15] (see Theorem 1.8 there):

Let F 2 S admit the non-tangential boundary limits Fj (⇣i ) for j=0,. . . , 2di
which are such that

|F0(⇣i )| = 1, PF
di (⇣i ) � 0 and pFdi+1,di (⇣i ) = pFdi ,di+1(⇣i ). (6.4)

If the boundary limit F2di+1(⇣i ) exists then necessarily PF
di+1(⇣i ) � 0.

Since i 2 I 0, we have ki > 2di (by definition (3.12) of I 0). Let us assume that F
is a solution to the problem BIP(⇣ , k, s). Since ki > 2di , we have enough data to
construct Psdi+1(⇣i ) which must be equal to PF

di+1(⇣i ). By the assumptions of the
current case, conditions (6.4) are met and the limit Fi,2di+1(⇣i ) exists. Therefore,
the matrix PF

di+1 = Psdi+1 is positive semidefinite which contradicts to the choice
(3.8) of di .

All possible cases have been verified. We see that the problem BIP(⇣ , k, s) is
indeterminate only in cases (1) and (3). In case (3), any solution F of the problem
belongs to

T
i2I S(di )(⇣i ), by Theorem 2.3. Finally, if for some i 2 I 0, there existed
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an F 2 S(di+1)(⇣i ) solving the problem BIP(⇣ , k, s), then the structured matrix
Psdi+1 would be positive semidefinite which would contradict the choice of di . Thus,
every solution of the problem does not belong to S(di+1)(⇣i ) for every i 2 I 0. This
completes the proof of Theorem 3.5.

Proof of Theorem 3.6. By the proof of the previous theorem, the determinacy may
occur only if the Pick matrix Psd is positive semidefinite (singular). The unique
solution (if exists) is a Blaschke product F of deg F = rankPsd by Corollary 4.3.
Necessity. Let us assume that the problem BIP(⇣ , k, s) is determinate and that F
(deg F = rankPsd) is its only solution. Since a finite Blaschke product is unimodu-
lar on T, the necessity of condition (1) in Theorem 3.6 follows.

We next observe that for every i 2 I 0, the matrix Psdi+1(⇣i ) exists and is not
Hermitian. On the other hand, for a finite Blaschke product F , the matrix PF

di+1(⇣i )
is positive semidefinite by Theorem 2.6. As a solution of the problem BIP(⇣ , k, s),
the function F must satisfy the equality PF

di+1(⇣i ) = Psdi+1(⇣i ) which is not the
case. Therefore, no finite Blaschke product solves the problem in case I 0 6= ;. This
proves the necessity of condition (2).

Making use of the Taylor coefficients of F we define the requested numbers
in (3.14) by letting si, j = Fj (⇣i ). Then the extended matrix Psd+ei will be equal to
PF
d+ei (⇣ ) which in turn is positive semidefinite for every i 2 {1, . . . , N } by Theo-
rem 2.6. Thus Psd admits a positive semidefinite extension Psd+ei for i = 1, . . . , N
and condition (3) is also necessary.

Since F is a solution of the problemBIP(⇣ , k, s), we have PF
d (⇣ ) = Psd. Since

the latter matrices are singular, we have deg F < d1 + . . . + dN , and we conclude
from Theorem 2.6 that for every i 2 I 000,

rankPsd�ei = rank
⇣
PF
d�ei (⇣ )

⌘
= min{d1 + . . . + dN � 1, deg F}

= deg F = rankPFd(⇣ ) = rankPsd

which proves the necessity of condition (3c).
On the other hand, for every i 2 I 00 [ J (and up to an appropriate re-indexing

the blocks), the extended matrix PFd+ei (⇣ ) is necessarily of the form

PF
d+ei (⇣ ) =

 Psd Ci
C⇤

i pFdi+1,di+1(⇣i )

�
.

Since the latter matrix is positive semidefinite, conditions (3a) and (3b) follow.

Sufficiency of conditions (1), (2), (3): Since Psd is singular, there is only one func-
tion F 2 S (a finite Blaschke product) satisfying the relaxed conditions (4.7), (4.8).
It remains to show that conditions (1), (2), (3) in Theorem 3.6 are sufficient for this
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only candidate to satisfy conditions (1.4). Since K [ I 0 = ;, it remains to show that
conditions (1.4) are met for every i 2 I 000 [ I 00 [ J .

Case 1: Let r 2 I 00 [ I 000. By condition (3), there exist a number sr,2dr+1 (if r 2 I 00
in which case sr,2dr is already specified in (1.2)) or two numbers sr,2dr and sr,2dr+1
(if r 2 I 000) so that the extended Pick matrix Psd+er is positive semidefinite (and
singular). Then by Theorem 4.2, there exists a unique function B 2 S satisfying
conditions (4.7) for every i 2 I , conditions (4.8) for i 2 I \{r}, and three additional
conditions

B2dr�1(⇣r ) = sr,2dr�1, B2dr (⇣r ) = sr,2dr ,

(�1)dr+1⇣ 2dr+1r sr,0(B2dr+1(⇣r ) � sr,2dr+1) � 0.
(6.5)

Clearly, B satisfies all the conditions in (4.7), (4.8) (as well as F does) and therefore,
by the uniqueness, B ⌘ F . Therefore F satisfies additional conditions (6.5). If
r 2 I 00, this means that all conditions in (1.4) are satisfied for i = r . If r 2 I 000, then
the number sr,2dr is not specified, but in this case the first equality in (6.5) along
with (4.7) means that F satisfies all conditions in (1.4) for i = r .

Case 2: Let r 2 J . By condition (3), there exists a number sr,1 so that the extended
Pick matrix Psd+er is positive semidefinite (and singular). Again by Theorem 4.2,
there exists a unique function B 2 S satisfying conditions (4.7), (4.8) for i 2 I and
two additional conditions

B0(⇣r ) = sr,0, �⇣r sr,0(B1(⇣r ) � sr,1) � 0.

By the same argument as in Case 1, B ⌘ F and therefore F satisfies all interpolation
conditions in (3.4) for i = r . This completes the proof of the asserted sufficiency.

Sufficiency of conditions (1), (2), (3a), (3b), (3c): As in the preceding proof we
will show that the only function F 2 S (a finite Blaschke product) satisfying the
relaxed conditions (4.7), (4.8) satisfies conditions (1.4) for every i 2 J [ I 00 [ I 000.

We first show that conditions (3a) and (3b) guarantee that Psd admits a positive
semidefinite extension Psd+ei for every i 2 J [ I 00. Indeed, up to an appropriate
re-indexing of the blocks, the extended matrix Psd+ei is necessarily of the form

Psd+ei =


Psd Ci
Di psdi+1,di+1(⇣i )

�
(6.6)

where Ci is defined as in (3.15), where Di is the row-vector given by

Di = Rowk2I
⇥
psdi+1,1(⇣i , ⇣k) · · · psdi+1,di (⇣i , ⇣k)

⇤
.

It follows from formula (3.11) that

psr,di+1(⇣k, ⇣i ) = psdi+1,r (⇣i , ⇣k) for every k 6= i. (6.7)
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If i 2 J , then equalities (6.7) hold for every k 2 I and therefore Di = C⇤

i . On
the other hand, if i 2 I 00, then it follows from (6.7) and Lemma 4.1 that Di = C⇤

i
if and only if the rightmost entry in Di and the bottom entry in Ci are complex-
conjugates of each other. But this is guaranteed by condition (3b) in Theorem 3.6.
Thus, formula (6.6) takes the form

Psd+ei =


Psd Ci
C⇤

i psdi+1,di+1(⇣i )

�
for i 2 J [ I 00. (6.8)

According to (3.7),

psdi+1,di+1(⇣i ) =

di�1X
r=1

rX
`=1

si,di+`9`,r (⇣i )si,di+1�r

+

diX
`=1

si,di+`9`,di+1(⇣i )si,di+1�r + (�1)di ⇣ 2di+1i si,2di+1si,0.

Since the coefficient of si,2di+1 in (6.7) is nonzero, formula (6.7) shows that, by an
appropriate choice of si,2di+1, we can make psdi+1,di+1(⇣i ) be equal to any positive
number. If this number is large enough, then the matrix (6.8) is positive semidefinite
if and only if Psd � 0 and rankPsd = rank

⇥
Psd Ci

⇤
. The positivity of Psd � 0

is assumed while the rank equality is guaranteed by conditions (3a) and (3b) in
Theorem 3.6. Thus, Psd admits a positive semidefinite extension Psd+ei for every
i 2 J [ I 00 which implies (as we have seen in the preceding proof) that F satisfies
interpolation conditions (3.4) for all i 2 J [ I 00.

It remains to show that F also satisfies conditions F2di�1(⇣i ) = si,2di�1 (rather
than inequalities (4.8)) for every i 2 I 000. We will argue via contradiction: let us
assume that

(�1)di ⇣ 2di�1r si,0
�
F2di�1(⇣i ) � si,2di�1

�
> 0.

Write the matrices Psd and PF
d (⇣ ) in the block form as

Psd =

Psd�ei B
B⇤ psdi ,di (⇣i )

�
, PF

d (⇣ ) =

"
PF
d�ei (⇣ ) B
B⇤ pFdi ,di (⇣i )

#
.

The equality of non-diagonal entries in the two latter matrices as well as inequalities

PF
d�ei (⇣ )  Psd�ei and pFdi ,di (⇣i ) < psdi ,di (⇣i ) (6.9)

were discussed in Remark 4.4 above. Since the matrix PF
d (⇣ ) is positive semidefi-

nite, the matrix
eP :=

Psd�ei B
B⇤ pFdi ,di (⇣i )

�
� PF

d (⇣ )
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is also positive semidefinite and by the standard Schur complement argument,

pFdi ,di (⇣i ) � X⇤Psd�ei X (6.10)

where X is any column-vector solving the equation Psd�ei X = B. The same Schur
complement argument applied to the positive semidefinite matrix Psd decomposed
as above, gives on account of (6.10) and (6.9),

rankPsd = rankPsd�ei + psdi ,di (⇣i ) � X⇤Psd�ei X
> rankPsd�ei + pFdi ,di (⇣i ) � X⇤Psd�ei X � rankPsd�ei

which contradicts the assumption in condition (3c) in Theorem 3.6. This completes
the proof.

7. Boundary interpolation for Carathéodory-class functions

Let us say that a function H is of the Carathéodory class C if H is analytic and
<H(z) � 0 on D. By the Herglotz representation theorem, for every H 2 C, there
exists a unique positive measure µ on T such that

H(z) =

Z
T

ei✓ + z
ei✓ � z

dµ(✓) + ic, c = =h(0). (7.1)

The Carathéodory-class analog of the boundary interpolation problem BIP(⇣ , k, s)
is the following.
Problem BIPC(⇣ , k, h). Given the data set

⇣ = {⇣1, . . . , ⇣N }, k = {k1, . . . , kN }, h = {hi, j }
j=0,...,ki
i=1,...,N , (7.2)

find a function H 2 C such that

Hj (⇣i ) := \ lim
z!⇣i

H ( j)(z)
j !

= hi, j for j = 0, . . . , ki ; i = 1, . . . , N . (7.3)

This problem is equivalent to the problemBIP(⇣ , k, s) due to the Cayley transform

C : H(z) ! F(z) =

H(z) � 1
H(z) + 1

(7.4)

establishing a one-to-one correspondence between the sets C and S\{1}. We will
use this correspondence to translate Theorems 3.5 and 3.6 to the Carathéodory-class
setting.

We first remark that the inverse Cayley transform of a finite Blaschke product
of degree k is a Carathéodory-class function whose associated measure µ(✓) is
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discrete with k atoms. On the other hand, the preimage of the class S(n)(⇣ ) defined
in (2.1) is the class C(n)(⇣ ) which is defined as the set of all functions H 2 C such
that

lim inf
z!⇣

@2n�2

@zn�1@ z̄n�1
H(z) + H(z)
1� |z|2

< 1

or equivalently, the set of all Carathéodory-class functions with the associated mea-
sure µ satisfying the condition

R
@D

dµ(✓)
|ei✓�⇣ |

2n < 1.
It follows from (7.4) that a function H solves the problemBIPC(⇣ , k, h) if and

only if its Cayley transform F solves the problem BIP(⇣ , k, s), where the numbers
si, j are given by

si,0 =

hi,0 � 1
hi,0 + 1

, si, j =

1
hi,0 + 1

·

 
hi, j �

j�1X
k=0

si,khi, j�k

!
( j � 1). (7.5)

Thus, the problem BIPC(⇣ , k, h) has a solution if and only if the Schur-class
problem BIP(⇣ , k, s) with the data set s = {si, j } defined as in (7.5) has a so-
lution, and hence, Theorem 3.5 provides the indeterminacy criteria for the prob-
lem BIPC(⇣ , k, h) in terms of the numbers (7.5). However, it is desirable to
get the answer directly in terms of h = {hi, j }. To this end, we first observe the
equalities

1� |si,0|2 =

4<hi,0
|hi,0 + 1|2

and ⇣i si,1si,0 = �

⇣i hi,1
|hi,0 + 1|2

which imply the equivalences

|si,0| = 1 , < hi,0 = 0, |si,0| < 1 , < hi,0 > 0.
⇣i si,1si,0 � 0 , ⇣i hi,1  0.

(7.6)

We next define the matrices Hhi,n =

⇥
hi,`+r�1

⇤n
`,r=1 and

Qhn(⇣i ) =

h
qhr,`(⇣i )

i
= �Hhi,n9n(⇣i ) (7.7)

with the entries

qhr,`(⇣i ) = �

X̀
↵=1

hi,r+↵�19↵`(⇣i ) (7.8)

for all appropriate integers n � 0 (see formulas (2.2) and (2.3)).
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Proposition 7.1. Let the tuples h = {hi, j } and s = {si, j } be related as in (7.5)
and let Uhi,n , Psn(⇣i ) and Qhn(⇣i ) be defined via formulas (3.5), (3.6), and (7.5),
respectively. Let us assume that <hi,0 = 0 so that |si,0| = 1. Then:

(1) The matrixQhn(⇣i ) is Hermitian if and only if Psn(⇣i ) is Hermitian in which case
they are related by

Qhn(⇣i ) =

1
2

·

⇣
I + Uh>i,n

⌘
Psn(⇣i )

⇣
I + Uhi,n

⌘
. (7.9)

(2) If Qhn(⇣i ) and Psn(⇣i ) are Hermitian, then the numbers qhn+1,n(⇣i ), qhn,n+1(⇣i )
defined via formula (7.8) and psn+1,n(⇣i ), p

s
n,n+1(⇣i ) defined via formula (3.7)

are related by

qhn+1,n(⇣i ) � qhn,n+1(⇣i ) = |hi,0 + 1|2 ·

⇣
psn+1,n(⇣i ) � psn,n+1(⇣i )

⌘
. (7.10)

ByUh>i,n andUhi,n in formula (7.9) we mean the transpose and the complex conjugate
matrices of Uhi,n . The proof of the above statements is straightforward and will be
omitted.

We now repeat the construction from Section 3 adapted to the present
Carathéodory-class setting. Conditions < hi,0 � 0 and ⇣i hi,1  0 (whenever
< hi,0 = 0) are necessary for the problem BIPC(⇣ , k, h) to have a solution and
we assume that these conditions are met. We then break the index set {1, . . . , N }

into three disjoint sets

I = {i : < hi,0 = 0 and ki � 1}, J = {i : < hi,0 = 0 and ki = 0},
K = {i : < hi,0 > 0}.

(7.11)

We then use the structured matrices Qhn(⇣i ) to define the tuple d = {d1, . . . , dN }

where

di =

(
max

�
n : Qhn(⇣i ) = Qhn(⇣i )⇤

 
if i 2 I

0 if i 2 J [ K ,
(7.12)

and we use this tuple to further split I into the three disjoint sets I 0, I 00, I 000 as in
(3.12). We next define the Pick matrix of the problem BIPC(⇣ , k, h) by

Qhd =

h
Qhi j

i
i, j2I

(7.13)

where the di ⇥ di diagonal blocks are given by

Qsi i = Qhdi (⇣i ) = �Hhi,di9di (⇣i ) (7.14)



BOUNDARY ASYMPTOTIC EXPANSIONS 431

and the di ⇥ d j non-diagonal blocks Qhi j =

⇥
qhr`(⇣i , ⇣ j )

⇤`=1,...,d j
r=1,...,di are defined entry-

wise by

qhr+1,`+1(⇣i , ⇣ j ) =

rX
↵=0

min{`,↵}X
�=0

(↵ + ` � �)!

(` � �)!�!(↵ � �)!

⇣
`��
i ⇣̄

↵��
j hi,r�↵

(1� ⇣i ⇣̄ j )↵+`��+1

+

X̀
↵=0

min{r,↵}X
�=0

(↵ + r � �)!

(r � �)!�!(↵ � �)!

⇣
↵��
i ⇣̄

r��
j h j,`�↵

(1� ⇣i ⇣̄ j )↵+r��+1 .

It follows from part (1) in Proposition 7.1 and from the equivalences (7.6), that
if the tuples h and s are related as in (7.5) then the integers defined in (7.12) and
(3.8) are equal and, therefore, the block decompositions (7.13) and (3.9) of the
corresponding Pick matrices are conformal.
Proposition 7.2. Let the tuples h = {hi, j } and s = {si, j } be related as in (7.5), let
Qhd and Psd be the Pick matrices of the corresponding problems BIPC(⇣ , k, h) and
BIP(⇣ , k, s), and let

Uhd = diagi2IUhi,di
be the diagonal block-matrix decomposed conformally with (7.13) and (3.9) and
whose diagonal blocks Uhi,di are difined via formula (3.4). Then

Qhd =

1
2

·

⇣
I + Uh>d

⌘
Psd

⇣
I + Uhd

⌘
. (7.15)

The equality of the diagonal blocks in (7.15) follows from (7.9). The equality of
non-diagonal blocks follows by a long but straightforward verification. Observe
that by the equality (7.9), the matrix Qhd is positive semidefinite if and only if Psd is
positive semidefinite, and since the matrix I + Uhd is invertible, it follows that Qhd
and Psd are of the same rank. Finally, we define the companion numbers �i of the
problem BIPC(⇣ , k, h) by

�i = ⇣i ·

⇣
qhdi+1,di (⇣i ) � qhdi ,di+1(⇣i )

⌘
for i 2 I 0 [ I 00 (7.16)

and observe that in view of (7.10), they are related to the numbers (3.13) as follows:
�i = |hi,0+1|2 ·�i . On account of the above observations we arrive at the following
Carathéodory-class counterpart of Theorem 3.5.
Theorem 7.3. Given the data set (7.2) with < hi,0 � 0 for i = 1, . . . , N , let I be
defined as in (7.11), let Qhd be the Pick matrix defined in (7.13) and let �i be the
companion numbers given defined via formulas (7.16) and (7.8). Then the problem
BIPC(⇣ , k, s) is indeterminate if and only if either I is empty or the following
conditions hold:

(1) I 6= ; and ⇣i hi,1 < 0 for all i 2 I ;
(2) the matrix Qhd is positive definite;
(3) �i > 0 for every i 2 I 0 and �i � 0 for every i 2 I 00.
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Furthermore, the indeterminate problem BIPC(⇣ , k, s) admits infinitely many ra-
tional solutions. Finally, every solution H of the problem belongs to the classT

i2I C(di )(⇣i ) and does not belong to
S

i2I 0 C(di+1)(⇣i ).

Here is the uniqueness criterion; we skip the rank conditions in its formulation.

Theorem 7.4. The problem BIPC(⇣ , k, h) is determinate if and only if:

(1) < hi,0 = 0 for every i = 1, . . . , N (i.e., the set K is empty);
(2) 2di 2 {ki , ki + 1} for every i = 1, . . . , N (i.e., the set I 0 is empty);
(3) The matrix Qhd is positive semidefinite (singular) and admits positive semidef-

inite extensions Qhd+ei for i = 1, . . . , N .

The associated measure for the unique solution is discrete with the number of atoms
equal to rankQhd.
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