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1. – Introduction

Let X be a smooth complex projective variety. When dim(X) ≥ 3 it is very
hard to classify such varieties in terms of their birational invariants. Surprisingly,
when X has many holomorphic 1-forms, it is sometimes possible to achieve
classification results in any dimension. In [Ka], Kawamata showed that: If X
is a smooth complex projective variety with κ(X) = 0 then the Albanese morphism
a : X −→ A(X) is surjective. If moreover, q(X) = dim(X), then X is birational to
an abelian variety. Subsequently, Kollár proved an effective version of this result
(cf. [Ko2]): If X is a smooth complex projective variety with Pm(X) = 1 for some
m ≥ 4, then the Albanese morphism a : X −→ A(X) is surjective. If moreover,
q(X) = dim(X), then X is birational to an abelian variety. These results where
further refined and expanded as follows:

Theorem 1.1 (cf. [CH1], [CH3], [HP], [Hac2]). If Pm(X) = 1 for some
m ≥ 2 or if P3(X) ≤ 3, then the Albanese morphism a : X −→ A(X) is surjective.
If moreover q(X) = dim(X), then:

(1) If Pm(X) = 1 for some m ≥ 2, then X is birational to an abelian variety.
(2) If P3(X) = 2, then κ(X) = 1 and X is birational to a double cover of its

Albanese variety.
(3) If P3(X) = 3, then κ(X) = 1 and X is birational to a bi-double cover of its

Albanese variety.

In this paper we will prove a similar result for varieties with P3(X) = 4
and q(X) = dim(X). We start by considering the following examples:

Example 1. Let G be a group acting faithfully on a curve C and acting
faithfully by translations on an abelian variety K̃ , so that C/G = E is an
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elliptic curve and dim H 0(C, ω⊗3
C )G = 4. Let G act diagonally on K̃ × C , then

X := K̃ × C/G is a smooth projective variety with κ(X) = 1, P3(X) = 4 and
q(X) = dim(X). We illustrate some examples below:

(1) G = Zm with m ≥ 3. Consider an elliptic curve E with a line bundle
L of degree 1. Taking the normalization of the m-th root of a divisor
B = (m − a)B1 + aB2 ∈ |mL| with 1 ≤ a ≤ m − 1 and m ≥ 3, one obtains
a smooth curve C and a morphism g : C −→ E of degree m. One has
that

g∗ωC =
m−1∑
i=0

L(i)

where L(i) = L⊗i (−� i B
m �) for i = 0, ..., m − 1.

(2) G = Z2. Let L be a line bundle of degree 2 over an elliptic curve E . Let
C −→ E be the degree 2 cover defined by a reduced divisor B ∈ |2L|.

(3) G = (Z2)
2. Let Li for i = 1, 2 be line bundles of degree 1 on an elliptic

curve E and Ci −→ E be degree 2 covers defined by disjoint reduced
divisors Bi ∈ |2Li |. Then C := C1 ×E C2 −→ E is a G cover.

(4) G = (Z2)
3. For i = 1, 2, 3, 4, let Pi be distinct points on an elliptic curve

E . For j = 1, 2, 3 let L j be line bundles of degree 1 on E such that
B1 = P1 + P2 ∈ |2L1|, B2 = P1 + P3 ∈ |2L2| and B3 = P1 + P4 ∈ |2L3|.
Let Cj −→ E be degree 2 covers defined by reduced divisors Bj ∈ |2L j |.
Let C be the normalization of C1 ×E C2 ×E C3 −→ E , then C is a G
cover.

Note that (1) is ramified at 2 points. Following [Be] Section VI.12, one has that
P2(X) = dim H 0(C, ω⊗2

C )G = 2 and P3(X) = dim H 0(C, ω⊗3
C )G = 4. Similarly

(2), (3), (4) are ramified along 4 points and hence P2(X) = P3(X) = 4.

Example 2. Let q : A −→ S be a surjective morphism with connected
fibers from an abelian variety of dimension n ≥ 3 to an abelian surface. Let L
be an ample line bundle on S with h0(S, L) = 1, P ∈ Pic0(A) with P /∈ Pic0(S)

and P⊗2 ∈ Pic0(S). For D an appropriate reduced divisor in |L⊗2⊗P⊗2|, there
is a degree 2 cover a : X −→ A such that a∗(OX ) = OA ⊕ (L⊗P)∨. One sees
that Pi (X) = 1, 4, 4 for i = 1, 2, 3.

Example 3. Let q : A −→ E1 × E2 be a surjective morphism from
an abelian variety to the product of two elliptic curves, pi : A −→ Ei the
corresponding morphisms, Li be line bundles of degree 1 on Ei and P, Q ∈
Pic0(A) such that P, Q generate a subgroup of Pic0(A)/Pic0(E1 × E2) which is
isomorphic to (Z2)

2. Then one has double covers Xi −→ A corresponding to
divisors D1 ∈ |2(q∗

1 L1⊗P)|, D2 ∈ |2(q∗
2 L2⊗Q)|. The corresponding bi-double

cover satisfies

a∗(ωX ) = OA ⊕ p∗
1 L1⊗P ⊕ p∗

2 L2⊗Q ⊕ p∗
1 L1⊗P⊗p∗

2 L2⊗Q

One sees that Pi (X) = 1, 4, 4 for i = 1, 2, 3.

We will prove the following:
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Theorem 1.2. Let X be a smooth complex projective variety with P3(X) = 4,
then the Albanese morphism a : X −→ A is surjective (in particular q(X) ≤
dim(X)). If moreover, q(X) = dim(X), then κ(X) ≤ 2 and we have the following
cases:

(1) If κ(X) = 2, then X is birational either to a double cover or to a bi-double
cover of A as in Examples 2 and 3 and so P2(X) = 4.

(2) If κ(X) = 1, then X is birational to the quotient K̃ × C/G where C is a curve,
K̃ is an abelian variety, G acts faithfully on C and K̃ . One has that either
P2(X) = 2 and C −→ C/G is branched along 2 points with inertia group
H ∼= Zm with m ≥ 3 or P2(X) = 4 and C −→ C/G is branched along 4
points with inertia group H ∼= (Z2)

s with s ∈ {1, 2, 3}. See Example 1.

Notation and conventions. We work over the field of complex numbers.
We identify Cartier divisors and line bundles on a smooth variety, and we
use the additive and multiplicative notation interchangeably. If X is a smooth
projective variety, we let K X be a canonical divisor, so that ωX = OX (K X ), and
we denote by κ(X) the Kodaira dimension, by q(X) := h1(OX ) the irregularity
and by Pm(X) := h0(ω⊗m

X ) the m−th plurigenus. We denote by a: X → A(X)

the Albanese map and by Pic0(X) the dual abelian variety to A(X) which
parameterizes all topologically trivial line bundles on X . For a Q−divisor D we
let �D� be the integral part and {D} the fractional part. Numerical equivalence
is denoted by ≡ and we write D ≺ E if E − D is an effective divisor. If
f : X → Y is a morphism, we write K X/Y := K X − f ∗KY and we often denote
by FX/Y the general fiber of f . A Q-Cartier divisor L on a projective variety
X is nef if for all curves C ⊂ X , one has L .C ≥ 0. For a surjective morphism
of projective varieties f : X −→ Y , we will say that a Cartier divisor L on
X is Y -big if for an ample line bundle H on Y , there exists a positive integer
m > 0 such that h0(L⊗m⊗ f ∗ H∨) > 0. The rest of the notation is standard in
algebraic geometry.

Acknowledgments. The first author was partially supported by NCTS at
Taipei and NSC grant no: 92-2115-M-002-029. The second author was partially
supported by NSA research grant no: MDA904-03-1-0101 and by a grant from
the Sloan Foundation.

2. – Preliminaries

2.1. – The Albanese map and the Iitaka fibration

Let X be a smooth projective variety. If κ(X) > 0, then the Iitaka fibration
of X is a morphism of projective varieties f : X ′ → Y , with X ′ birational to
X and Y of dimension κ(X), such that the general fiber of f is smooth,
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irreducible, of Kodaira dimension zero. The Iitaka fibration is determined only
up to birational equivalence. Since we are interested in questions of a birational
nature, we usually assume that X = X ′ and that Y is smooth.

X has maximal Albanese dimension if dim(aX (X)) = dim(X). We will
need the following facts (cf. [HP], Propositions 2.1, 2.3, 2.12 and Lemma 2.14
respectively).

Proposition 2.1. Let X be a smooth projective variety of maximal Albanese
dimension, and let f : X → Y be the Iitaka fibration (assume Y smooth). Denote by
f∗: A(X) → A(Y ) the homomorphism induced by f and consider the commutative
diagram:

X
aX−−−→ A(X)

f

� f∗
�

Y
aY−−−→ A(Y ).

Then:

a) Y has maximal Albanese dimension;
b) f∗ is surjective and ker f∗ is connected of dimension dim(X) − κ(X);
c) There exists an abelian variety P isogenous to ker f∗ such that the general fiber

of f is birational to P.

Let K := ker f∗ and F = FX/Y . Define

G := ker
(

Pic0(X) → Pic0(F)
)

.

Then

Lemma 2.2. G is the union of finitely many translates of Pic0(Y ) corresponding
to the finite group

G := G/Pic0(Y ) ∼= ker
(

Pic0(K ) → Pic0(F)
)

.

2.2. – Sheaves on abelian varieties

Recall the following easy corollary of the theory of Fourier-Mukai trans-
forms cf. [M]:

Proposition 2.3. Let ψ :F ↪→ G be an inclusion of coherent sheaves on an
abelian variety A inducing isomorphisms Hi (A,F⊗P) → Hi (A,G⊗P) for all
i ≥ 0 and all P ∈ Pic0(A). Then ψ is an isomorphism of sheaves.

Following [M], we will say that a coherent sheaf F on an abelian variety
A is I.T. 0 if hi (A,F⊗P) = 0 for all i > 0 and for all P ∈ Pic0(A). We
will say that an inclusion of coherent sheaves on A, ψ :F ↪→ G is an I.T. 0
isomorphism if F,G are I.T. 0 and h0(G) = h0(F). From the above proposition,
it follows that every I.T. 0 isomorphism F ↪→ G is an isomorphism. We will
need the following result:
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Lemma 2.4. Let f : X −→ E be a morphism from a smooth projective
variety to an elliptic curve, such that K X is E-big. Then, for all P ∈ Pic0(X)tors ,
η ∈ Pic0(E) and all m ≥ 2, f∗(ω⊗m

X ⊗P⊗ f ∗η) is I.T. 0. In particular

deg( f∗(ω⊗m
X ⊗P⊗ f ∗η)) = h0(ω⊗m

X ⊗P⊗ f ∗η).

The proof of the above lemma is analogous to the proof of Lemma 2.6
of [Hac2]. We just remark that it suffices to show that f∗(ω⊗m

X ⊗P) is I.T.
0. The sheaf f∗(ω⊗m

X ⊗P) is torsion free and hence locally free on E . By
Riemann-Roch

h0(ω⊗m
X ⊗P) = h0( f∗(ω⊗m

X ⊗P)) = χ( f∗(ω⊗m
X ⊗P)) = deg( f∗(ω⊗m

X ⊗P)).

2.3. – Cohomological support loci

Let π : X −→ A be a morphism from a smooth projective variety to an
abelian variety, T ⊂ Pic0(A) the translate of a subtorous and F a coherent
sheaf on X . One can define the cohomological support loci of F as follows:

V i (X, T,F) := {P ∈ T |hi (X,F⊗π∗ P) > 0}.

If T = Pic0(X) we write V i (F) or V i (X,F) instead of V i (X, Pic0(X),F).
When F = ωX , the geometry of the loci V i (ωX ) is governed by the following
result of Green and Lazarsfeld (cf. [GL], [EL]):

Theorem 2.5 (Generic Vanishing Theorem). Let X be a smooth projective
variety. Then:

a) V i (ωX ) has codimension ≥ i − (dim(X) − dim(aX (X)));
b) Every irreducible component of V i (X, ωX ) is a translate of a sub-torus of

Pic0(X) by a torsion point (the same also holds for the irreducible components
of V i

m(ωX ) := {P ∈ Pic0(X)|hi (X, ωX⊗P) ≥ m});
c) Let T be an irreducible component of V i (ωX ), let P ∈ T be a point such that

V i (ωX ) is smooth at P, and let v ∈ H 1(X,OX ) ∼= TPPic0(X). If v is not
tangent to T , then the sequence

Hi−1(X, ωX ⊗ P)
∪v−→ Hi (X, ωX ⊗ P)

∪v−→ Hi+1(X, ωX ⊗ P)

is exact. Moreover, if P is a general point of T and v is tangent to T then both
maps vanish;

d) If X has maximal Albanese dimension, then there are inclusions:

V 0(ωX ) ⊇ V 1(ωX ) ⊇ · · · ⊇ V n(ωX ) = {OX } ;

e) Let f : Y −→ X be a surjective map of projective varieties, Y smooth, then
statements analogous to a), b), c) for P ∈ Pic0

tors(Y ) and d) above also hold
for the sheaves Ri f∗ωX . More precisely we refer to [CH3], [ClH] and [Hac5].
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When X is of maximal Albanese dimension, its geometry is very closely
connected to the properties of the loci V i (ωX ). We recall the following two
results from [CH2]:

Theorem 2.6. Let X be a variety of maximal Albanese dimension. The trans-
lates through the origin of the irreducible components of V 0(ωX ) generate a sub-
variety of Pic0(X) of dimension κ(X) − dim(X) + q(X). In particular, if X is of
general type then V 0(X, ωX ) generates Pic0(X).

Proposition 2.7. Let X be a variety of maximal Albanese dimension and G, Y
defined as in Proposition 2.1. Then

a) V 0(X, Pic0(X), ωX ) ⊂ G;
b) For every P ∈ G, the loci V 0(X, Pic0(X), ωX )∩(

P + Pic0(Y )
)

are non-empty;
c) If P is an isolated point of V 0(X, Pic0(X), ωX ), then P = OX .

The following result governs the geometry of V 0(ω⊗m
X ) for all m ≥ 2:

Proposition 2.8. Let X be a smooth projective variety of maximal Albanese
dimension, f : X → Y the Iitaka fibration (assume Y smooth) and G defined as
in Proposition 2.1. If m ≥ 2, then V 0(ω⊗m

X ) = G. Moreover, for any fixed Q ∈
V 0(ω⊗m

X ), and all P ∈ Pic0(Y ) one has h0(ω⊗m
X ⊗Q⊗P) = h0(ω⊗m

X ⊗Q).

We will also need the following lemma proved in [CH2] Section 3.

Lemma 2.9. Let X be a smooth projective variety and D an effective aX -
exceptional divisor on X. If OX (D)⊗P is effective for some P ∈ Pic0(X), then
P = OX .

The following result is due to Ein and Lazarsfeld (see [HP], Lemma 2.13):

Lemma 2.10. Let X be a variety such that χ(ωX ) = 0 and such that aX :
X −→ A(X) is surjective and generically finite. Let T be an irreducible component
of V 0(ωX ), and let πB : X −→ B := Pic0(T ) be the morphism induced by the map
A(X) −→ Pic0(Pic0(X)) −→ B corresponding to the inclusion T ↪→ Pic0(X).

Then there exists a divisor DT ≺ R := Ram(aX ) = K X , vertical with respect
to πB (i.e. πB(DT ) �= B), such that for general P ∈ T , GT := R − DT is a fixed
divisor of each of the linear series |K X + P|.

We have the following useful Corollary:

Corollary 2.11. In the notation of Lemma 2.10, if dim(T ) = 1, then for any
P ∈ T , there exists a line bundle of degree 1 on B such that π∗

B L P ≺ K X + P.

Proof. By [HP] Step 8 of the proof of Theorem 6.1, for general Q ∈ T ,
there exists a line bundle of degree 1 on B such that π∗

B L Q ≺ K X + Q. Write
P = Q + π∗

Bη where η ∈ Pic0(B). Then, since

h0(ωX⊗P⊗π∗
B(L Q⊗η)∨) = h0(πB,∗(ωX⊗Q)⊗L∨

Q) �= 0,

one sees that there is an inclusion π∗
B(L Q⊗η) −→ ωX⊗P .
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Recall the following result (cf. [Hac2], Lemma 2.17):

Lemma 2.12. Let X be a smooth projective variety, let L and M be line bundles
on X, and let T ⊂ Pic0(X) be an irreducible subvariety of dimension t. If for all
P ∈ T , dim |L + P| ≥ a and dim |M − P| ≥ b, then dim |L + M | ≥ a + b + t .

Lemma 2.13. Let T be a 1-dimensional component of V 0(ωX ), E := T ∨ and
π : X −→ E the induced morphism. Then P|F

∼= OF for all P ∈ T .

Proof. Let GT , DT be as in Lemma 2.10, then for P ∈ T we have |K X +
P| = GT +|DT + P| and hence the divisor DT + P is effective. It follows that
(DT + P)|F is also effective. However DT is vertical with respect to π and
hence DT |F

∼= OF . By Lemma 2.9, one sees that P|F
∼= OF .

3. – Kodaira dimension of Varieties with P3(X) = 4, q(X) = dim(X)

The purpose of this section is to study the Albanese map and Iitaka fibration
of varieties with P3 = 4 and q = dim(X). We will show that: 1) the Albanese
map is surjective, 2) the image of the Iitaka fibration is an abelian variety (and
hence the Iitaka fibration factors through the Albanese map), 3) we have that
κ(X) ≤ 2.

We begin by fixing some notation. We write

V0(X, ωX ) = ∪i∈I Si

where Si are irreducible components. Let Ti denote the translate of Si passing
through the origin and δi := dim(Si ). For any i, j ∈ I , let δi, j := dim(Ti ∩ Tj ).

Recall that V0(X, ωX ) ⊂ G → Ḡ := G/Pic0(Y ). For any η ∈ Ḡ, we fix
once and for all Sη a maximal dimensional component which maps to η. In
particular, T0 denotes the translate through the origin of a maximal dimensional
component S0 ⊂ V 0(X, ωX )∩ Pic0(Y ). If X is of maximal Albanese dimension
with q(X) = dim(X), then its Iitaka fibration image Y is of maximal Albanese
dimension with q(Y ) = dim(Y ) = κ(X). Moreover, by Proposition 2.7, one has
δi ≥ 1, ∀i �= 0.

We denote by Pm,α := h0(X, ω⊗m
X ⊗α) for α ∈ Pic0(X). Now let Qi

(Qη resp.) be a general element in Si (Sη resp.), we denote by Pm,i :=
h0(X, ω⊗m

X ⊗Qi ) (Pm,η resp.). We remark that it is convenient to choose Qi

(Qη resp.) to be torsion so that the results of Kollár on higher direct images
of dualizing sheaves will also apply to the sheaf ωX⊗Qi . Proposition 2.8 can
be rephrased as

(1) Pm,α = Pm,α+β ∀α ∈ Pic0(X), β ∈ Pic0(Y ), m ≥ 2.

Notice that if α /∈ G then also α + β /∈ G and so both numbers are equal to 0.
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By Lemma 2.12 one has, for any η, ζ ∈ Ḡ,

(2)




P2,η+ζ ≥ P1,η + P1,ζ + δη,ζ − 1,

P2,2η ≥ 2P1,η + δη − 1,

P3,η+ζ ≥ P1,η + P2,ζ + δη − 1.

Here δη = δi and δη,ζ = δi, j if Tη, Tζ are represented by Ti , Tj respectively.
The following lemma is very useful when κ ≥ 2.

Lemma 3.1. Let X be a variety of maximal Albanese dimension with κ(X) ≥ 2.
Suppose that there is a surjective morphism π : X → E to an elliptic curve E, and
suppose that there is an inclusion ϕ : π∗L → ω⊗m

X ⊗P for some m ≥ 2, P|F = OF

where F is a general fiber of π and L is an ample line bundle on E. Then the
induced map L → π∗(ω⊗m

X ⊗P) is not an isomorphism, rank(π∗(ω⊗m
X ⊗P)) ≥ 2

and h0(X, ω⊗m
X ⊗P) > h0(E, L).

Proof. By the easy addition theorem, κ(F) ≥ 1. Hence by Theorem
1.1, Pm(F) ≥ 2 for m ≥ 2. The sheaf π∗(ω⊗m

X ⊗P) has rank equal to
h0(F, ω⊗m

X ⊗P|F ) = h0(F, ω⊗m
F ) ≥ 2. Therefore, L → π∗(ω⊗m

X ⊗P) is not
an isomorphism. Since they are non-isomorphic I.T.0 sheaves, it follows that
h0(π∗(ω⊗m

X ⊗P)) > h0(L).

Corollary 3.2. Keep the notation as in Lemma 3.1. If there is a morphism
π ′ : X → E ′ and an inclusion π ′∗L ′ ↪→ ωX⊗P∨ for some ample line bundle L ′ on
E ′ and P ∈ Pic0(X) with P|F ′ = OF ′ , then for all m ≥ 2

Pm+1(X) ≥ 2 + h0(X, ω⊗m
X ⊗P) > 2 + h0(E ′, L ′).

Proof. The inclusion π ′∗L ′ ↪→ ωX⊗P∨ induces an inclusion

π ′∗L ′⊗ω⊗m
X ⊗P ↪→ ω⊗m+1

X .

By Riemann-Roch, one has

Pm+1(X)≥h0(E ′, L ′⊗π ′
∗(ω

⊗m
X ⊗P))≥ h0(E ′, π ′

∗(ω
⊗m
X ⊗P))+rank(π ′

∗(ω
⊗m
X ⊗P)).

By Proposition 2.7, there exists α ∈ Pic0(Y ) such that h0(ω⊗m−1
X ⊗P⊗2⊗α) �= 0

and hence there is an inclusion

π ′∗L ′ ↪→ ω⊗m
X ⊗P⊗α.

By Proposition 2.8 and Lemma 3.1,

h0(X, ω⊗m
X ⊗P) = h0(X, ω⊗m

X ⊗P⊗α) > h0(E ′, L ′).

Remark 3.3. Let X be a variety with κ(X) ≥ 2. Suppose that there is
a 1-dimensional component Si ⊂ V 0(ωX ). We often consider the induced map
π : X → E := T ∨

i . It is easy to see that π factors through the Iitaka fibration.
By Corollary 2.11 and Lemma 2.13, there is an inclusion ϕ : π∗L → ωX⊗P
for some P ∈ Pic0(X) with P|F = OF and some ample line bundle L on
E . In what follows, we will often apply Lemma 3.1 and Corollary 3.2 to this
situation.

Lemma 3.4. Let X be a variety of maximal Albanese dimension with κ(X) ≥ 2
and P3(X) = 4. Then for any ζ �= 0 ∈ Ḡ, one has P2,ζ ≤ 2.
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Proof. If P2,ζ ≥ 3, then by (2) and Proposition 2.7, one sees that δ−ζ = 1.
Let π : X −→ E := T ∨

−ζ be the induced morphism. Then there is an ample
line bundle L on the elliptic curve E and an inclusion L −→ π∗(ωX⊗Q−ζ ).
By Corollary 3.2, P3(X) ≥ 2 + P2,ζ ≥ 5 which is impossible.

Theorem 3.5. Let X be a smooth projective variety with P3(X) = 4, then the
Albanese morphism a : X −→ A is surjective.

Proof. We follow the proof of Theorem 5.1 of [HP]. Assume that a : X −→
A is not surjective, then we may assume that there is a morphism f : X −→ Z
where Z is a smooth variety of general type, of dimension at least 1, such
that its Albanese map aZ : Z −→ S is birational onto its image. By the proof
of Theorem 5.1 of [HP], it suffices to consider the cases in which P1(Z) ≤ 3
and hence dim(Z) ≤ 2. If dim(Z) = 2, then q(Z) = dim(S) ≥ 3 and since
χ(ωZ ) > 0, one sees that V 0(ωZ ) = Pic0(S). By the proof of Theorem 5.1 of
[HP], one has that for generic P ∈ Pic0(S),

P3(X) ≥ h0(ωZ⊗P) + h0(ω⊗3
X ⊗ f ∗ω∨

Z⊗P) + dim(S) − 1 ≥ 1 + 2 + 3 − 1 ≥ 5.

This is a contradiction, so we may assume that dim(Z) = 1. It follows that
g(Z) = q(Z) = P1(Z) ≥ 2 and one may write ωZ = L⊗2 for some am-
ple line bundle L on Z . Therefore, for general P ∈ Pic0(Z), one has that
h0(ωZ⊗L⊗P) ≥ 2 and proceeding as in the proof of Theorem 5.1 of [HP],
that h0(ω⊗3

X ⊗ f ∗(ωZ⊗L)∨⊗P) ≥ 2. It follows as above that

P3(X)≥h0(ωZ⊗L⊗P)+h0(ω⊗3
X ⊗ f ∗(ωZ⊗L)∨⊗P)+dim(S)−1≥2+2+2−1≥5.

This is a contradiction and so a : X −→ A is surjective.

Proposition 3.6. Let X be a smooth projective variety with P3(X) = 4, q(X) =
dim(X), then

(1) X is not of general type and
(2) if κ(X) ≥ 2, then

V 0(ωX ) ∩ f ∗Pic0(Y ) = {OX }.
Proof. If κ(X) = 1, then clearly X is not of general type as otherwise

X is a curve with P3(X) = 5g − 5 > 4. We thus assume that κ(X) ≥ 2. It
suffices to prove (2) as then (1) will follow from Theorem 2.6.

If all points of V 0(ωX ) ∩ f ∗Pic0(Y ) are isolated, then the above statement
follows from Proposition 2.7. Therefore, it suffices to prove that δ0 = 0. (Recall
that δ0 is the maximal dimension of a component in Pic0(Y ).)

Suppose that δ0 ≥ 2. Then by (2) and Proposition 2.8, one has

P2 ≥ 1 + 1 + δ0 − 1 ≥ 3, P3 ≥ 3 + 1 + δ0 − 1 ≥ 5

which is impossible.
Suppose now that δ0 = 1, i.e. there is a 1-dimensional component S0 ⊂

V 0(ωX ) ∩ f ∗Pic0(Y ). Let π : X −→ E := T ∨
0 be the induced morphism. By
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Corollary 2.11, for some general P ∈ S0, there exists a line bundle of degree
1 on E and an inclusion π∗L −→ ωX⊗P . By Lemma 2.13, P|FX/E

∼= OFX/E .

We consider the inclusion ϕ : L⊗2 −→ π∗(ω⊗2
X ⊗P⊗2). By Lemma 3.1,

one sees that h0(ω⊗2
X ⊗P⊗2) ≥ 3, and rank(π∗(ω⊗2

X ⊗P⊗2)) ≥ 2. So

P3(X) = h0(ω⊗3
X ⊗P⊗3) ≥ h0(ω⊗2

X ⊗P⊗2⊗π∗L)

= h0(π∗(ω⊗2
X ⊗P⊗2)⊗L) ≥ deg(π∗(ω⊗2

X ⊗P⊗2)) + rank(π∗(ω⊗2
X ⊗P⊗2))

≥ 3 + 2

and this is the required contradiction.

Proposition 3.7. Let X be a smooth projective variety with P3(X) = 4,
q(X) = dim(X), and f : X −→ Y be a birational model of its Iitaka fibration.
Then Y is birational to an abelian variety.

Proof. Since X, Y are of maximal Albanese dimension, K X/Y is effective.
If h0(ωY ⊗P) > 0, it follows that h0(ωX⊗ f ∗ P) > 0 and so by Proposition 3.6,
f ∗ P = OX . By Proposition 2.1, the map f ∗ : Pic0(Y ) −→ Pic0(X) is injective
and hence P = OY . Therefore V 0(ωY ) = {OY } and by Theorem 2.6, one has
κ(Y ) = 0 and hence Y is birational to an abelian variety.

We are now ready to describe the cohomological support loci of varieties
with κ(X) ≥ 2 explicitly. Recall that by Proposition 2.7, for all η �= 0 ∈ Ḡ,
δη ≥ 1.

Theorem 3.8. Let X be a smooth projective variety with P3(X) = 4, q(X) =
dim(X) and κ(X) ≥ 2. Then κ(X) = 2 and Ḡ ∼= (Z2)

s for some s ≥ 1.

Proof. The proof consists of following claims:

Claim 3.9. If κ(X) ≥ 2 and T ⊂ V 0(ωX ) is a positive dimensional
component, then T + T ⊂ Pic0(Y ), i.e. Ḡ ∼= (Z2)

s .

Proof of Claim 3.9. It suffices to prove that 2η = 0 for 0 �= η ∈ Ḡ.
Suppose that 2η �= 0, we will find a contradiction.

We first consider the case that δη ≥ 2 and δ−2η ≥ 2. Then by (2), P2,2η ≥
1 + 1 + δη − 1 ≥ 3, and P3 ≥ 3 + 1 + δ−2η − 1 ≥ 5 which is impossible.

We then consider the case that δη ≥ 2 and δ−2η = 1. Again we have
P2,2η ≥ 3. We consider the induced map π : X → E := T ∨

−2η and the inclusion
ϕ : π∗L → ωX⊗Q−2η where E is an elliptic curve and L is an ample line
bundle on E . It follows that there is an inclusion

π∗L⊗(ωX⊗Qη)
⊗2 → ω⊗3

X ⊗Q⊗2
η ⊗Q−2η.

By Lemma 3.1, one has that rank(π∗(ωX⊗Qη)
⊗2) ≥ 2. By Proposition 2.8,

Riemann-Roch and Lemma 2.4

P3(X) = h0(ω⊗3
X ⊗Q⊗2

η ⊗Q−2η) ≥ h0(π∗L⊗(ωX⊗Qη)
⊗2)

= h0((ωX⊗Qη)
⊗2) + rank(π∗(ωX⊗Qη)

⊗2) ≥ P2,2η + 2 ≥ 5,

which is impossible.
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Lastly, we consider the case that δη = 1. There is an induced map π :
X → E := T ∨

η and an inclusion π∗L → ωX⊗Qη. Hence there is an inclusion
ϕ : π∗L⊗2 → (ωX⊗Qη)

⊗2. By Lemma 3.1, we have P2,2η ≥ 3. We now
proceed as in the previous cases.

Therefore, any element η ∈ Ḡ is of order 2 and hence Ḡ ∼= (Z2)
s .

Claim 3.10. If there is a surjective map with connected fibers to an elliptic
curve π : X −→ E and an inclusion π∗L −→ ωX⊗P for an ample line bundle
L on E and P ∈ Pic0(X) (in particular if δi = 1 for some i �= 0 cf. Corollary
2.11). Then κ(X) = 2.

Proof of Claim 3.10. Since K X is effective, there is also an inclusion L →
π∗(ω⊗2

X ⊗P). By Lemma 3.1, one has rank(π∗(ω⊗2
X ⊗P))≥2, h0(π∗(ω⊗2

X ⊗P))≥ 2.

Consider the inclusion

π∗(ω⊗2
X ⊗P)⊗L −→ π∗(ω⊗3

X ⊗P⊗2).

Since
P3(X) = h0(π∗(ω⊗3

X ⊗P⊗2)) ≥ h0(π∗(ω⊗2
X ⊗P)⊗L)

≥ deg(π∗(ω⊗2
X ⊗P)) + rank(π∗(ω⊗2

X ⊗P)),

it follows that

deg(π∗(ω⊗2
X ⊗P)) = rank(π∗(ω⊗2

X ⊗P)) = 2

and the above homomorphism of sheaves induces an isomorphism on global
sections and hence is an isomorphism of sheaves (cf. Proposition 2.3). There-
fore,

P3(F) = h0(ω⊗3
F ⊗P⊗2) = 2.

By Theorem 1.1, it follows that κ(F) = 1 and by easy addition, one has that

κ(X) ≤ κ(F) + dim(E) = 2.

Claim 3.11. For all i �= 0, P1,i = 1.

Proof of Claim 3.11. If P1,i ≥ 2, then by (2),

4 ≥ P2 ≥ 2P1,i + δi − 1.

It follows that δi = 1. Let E = T ∨ and π : X −→ E be the induced
morphism. We follow Lemma 2.10 and let L := π∗(OX (DT )⊗Qi ). The sheaf
L is torsion free and hence locally free. Since DT is vertical, L is of rank
1, i.e. a line bundle. There is an inclusion π∗L −→ ωX⊗Qi and one has
h0(E, L) = h0(ωX⊗Qi ) ≥ 2. Consider the inclusion π∗L⊗2 −→ ω⊗2

X ⊗Q⊗2
i .

By Lemma 3.1, one sees that

P3 ≥ P2,2i = h0(ω⊗2
X ⊗Q⊗2

i ) > h0(E, L⊗2) ≥ 4,

which is impossible.
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Claim 3.12. If κ(X) = dim(S) for some component S of V 0(ωX ), then
κ(X) = 2.

Proof of Claim 3.12. Let Q be a general point in S, and T be the translate
of S through the origin. By Proposition 3.7, one sees that the induced map
X → T ∨ is isomorphic to the Iitaka fibration. We therefore identify Y with
T ∨. We assume that dim(S) ≥ 3 and derive a contradiction. First of all, by (2)

P3(X) = h0(ω⊗3
X ⊗Q⊗2) ≥ h0(ω⊗2

X ⊗Q) + dim(S)

and so h0(ω⊗2
X ⊗Q) = 1 and dim(S) = 3.

Let H be an ample line bundle on Y and for m a sufficiently big and
divisible integer, fix a divisor B ∈ |mK X − f ∗ H |. After replacing X by an
appropriate birational model, we may assume that B has simple normal crossings
support. Let L = ωX⊗OX (−�B/m�), then L ≡ f ∗(H/m) + {B/m} i.e. L is
numerically equivalent to the sum of the pull back of an ample divisor and a
k.l.t. divisor and so one has

hi (Y, f∗(ωX⊗L⊗Q)⊗α) = 0 for all i > 0 and α ∈ Pic0(Y ).

Comparing the base loci, one can see that h0(ωX⊗L⊗Q) = h0(ω⊗2
X ⊗Q) = 1

(cf. [CH1], Lemma 2.1 and Proposition 2.8) and so

h0(Y, f∗(ωX⊗L⊗Q)⊗α) = h0( f∗(ωX⊗L⊗Q)) = 1 ∀α ∈ Pic0(Y ).

Since f∗(ωX⊗L⊗Q) is a torsion free sheaf of generic rank one, by [Hac] it is
a principal polarization M .

Since one may arrange that � B
m � ≺ K X , there is an inclusion ωX⊗Q ↪→

ωX⊗L⊗Q. Pushing forward to Y , it induces an inclusion

ϕ : f∗(ωX⊗Q) ↪→ M.

Therefore, f∗(ωX⊗Q) is of the form M⊗IZ for some ideal sheaf IZ . However,
h0(Y, f∗(ωX⊗Q)⊗P) = h0(M⊗P⊗IZ ) > 0 for all P ∈ Pic0(Y ) and M is a
principal polarization. It follows that IZ = OY and thus f∗(ωX⊗Q) = M .
Therefore, one has an inclusion

f ∗M⊗2 ↪→ (ωX⊗Q)⊗(ωX⊗L⊗Q) ↪→ ω⊗3
X ⊗Q⊗2.

It follows that

4 = P3(X) = h0(X, ω⊗3
X ⊗Q⊗2) ≥ h0(Y, M⊗2) ≥ 2dim(S).

This is the required contradiction.
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Claim 3.13. Any two components of V 0(ωX ) of dimension at least 2 must
be parallel.

Proof of Claim 3.13. For i = 1, 2, let pi : X −→ T ∨
i be the induced

morphism. Assume that δ1, δ2 ≥ 2 and T1, T2 are not parallel. By Lemma 2.10,
one may write K X = Gi +Di where Di is vertical with respect to pi : X −→ T ∨

i
and for general P ∈ Si , one has |K X + P| = Gi + |Di + P| is a 0-dimensional
linear system (see Claim 3.11).

Recall that we may assume that the image of the Iitaka fibration f : X −→
Y is an abelian variety. Pick H an ample divisor on Y and for m sufficiently
big and divisible integer, let

B ∈ |mK X − f ∗ H |.

After replacing X by an appropriate birational model, we may assume that B
has normal crossings support. Let

L := ωX

(
−

⌊
B

m

⌋)
≡

{
B

m

}
+ f ∗

(
H

m

)
.

It follows that

hi ( f∗(ωX⊗L⊗P)⊗α) = 0 for all i > 0, α ∈ Pic0(Y ), P ∈ Pic0(X).

The quantity h0(ωX⊗L⊗P⊗ f ∗α) is independent of α ∈ Pic0(Y ). For some
fixed P ∈ S1 as above, and α ∈ Pic0(T ∨

1 ), one has a morphism

|D1 + P + α| × |D1 + P − α| −→ |2D1 + 2P|

and hence h0(OX (2D1)⊗P⊗2) ≥ 3. Similarly for some fixed Q ∈ S2, and
α′ ∈ Pic0(T ∨

2 ), one has a morphism

|D2 + Q + α′| × |K X + L − Q + 2P − α′| −→ |K X + L + D2 + 2P|

and hence h0(ωX (D2)⊗L⊗P⊗2) ≥ 3. It follows that since h0(ω⊗3
X ⊗P⊗2) = 4,

there is a 1 dimensional intersection between the images of the 2 morphisms
above which are contained in the loci

|2D1 + 2P| + 2G1 + K X , |K X + L + D2 + 2P| +
⌊

B

m

⌋
+ G2.

It is easy to see that for all but finitely many P∈Pic0(X), one has h0(ωX⊗P)≤1.
So there is a 1 parameter family τ2 ⊂ Pic0(T ∨

2 ) such that for α′ ∈ τ2, one has
that the divisor DQ+α′ = |D2+Q+α′| is contained in DP+α + DP−α +2G1+K X

where α ∈ τ1 a 1 parameter family in Pic0(T ∨
1 ). Let D∗

Q+α′ be the components
of DQ+α′ which are not fixed for general α′ ∈ τ2, then D∗

Q+α′ is not contained
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in the fixed divisor 2G1 + K X and hence is contained in some divisor of the
form D∗

P+α + D∗
P−α and hence is T ∨

1 vertical.
If Pic0(T ∨

1 ) ∩ Pic0(T ∨
2 ) = {OX }, then D∗

Q+α′ is a-exceptional, and this is
impossible by Lemma 2.9.

If there is a 1-dimensional component � ⊂ Pic0(T ∨
1 ) ∩ Pic0(T ∨

2 ). Let
E = �∨ and π : X −→ E be the induced morphism. The divisors D∗

Q+α′ are
E-vertical. We may assume that π has connected fibers. Since the D∗

Q+α′ vary
with α′ ∈ τ2, for general α′ ∈ τ2, they contain a smooth fiber of π . So for
general α′ ∈ τ2 there is an inclusion π∗M −→ ωX⊗Q⊗π∗α′ where M is a
line bundle of degree at least 1. By Claim 3.10, one has κ(X) = 2 and hence
T1, T2 are parallel.

If there is a 2-dimensional component � ⊂ Pic0(T ∨
1 ) ∩ Pic0(T ∨

2 ), then
δ1 = δ2 ≥ 3. By (2), one sees that P2,Q1+Q2 ≥ 3. By Lemma 3.4, this is
impossible.

By Claim 3.10, if there is a one dimensional component, then κ(X) = 2.
Therefore, we may assume that δi ≥ 2 for all i �= 0. By Claim 3.13, since
δi ≥ 2 for all i �= 0, then Si , Sj are parallel for all i, j �= 0. By Theorem
2.6, for an appropriate i �= 0, κ(X) = dim(Si ) and so by Claim 3.12, one has
κ(X) = 2.

4. – Varieties with P3(X) = 4, q(X) = dim(X) and κ(X) = 2

In this section, we classify varieties with P3(X) = 4, q(X) = dim(X) and
κ(X) = 2. The first step is to describe the cohomological support loci of these
varieties. We must show that the only possible cases are the following (which
corresponds to Examples 2 and 3 respectively):

(1) Ḡ ∼= Z2, V0(X, ωX ) = {OX } ∪ Sη, δη = 2.
(2) Ḡ ∼= Z2

2, V0(X, ωX ) = {OX } ∪ Sη ∪ Sζ ∪ Sη+ζ , δη = δζ = 1, δη+ζ = 2.

Using this information, we will determine the sheaves a∗(ωX ) and this will
enable us to prove the following:

Theorem 4.1. Let X be a smooth projective variety with P3(X) = 4, q(X) =
dim(X) and κ(X) = 2, then X is one of the varieties described in Examples 2 and 3.

Proof. Recall that f : X −→ Y is a morphism birational to the Iitaka
fibration, Y is an abelian surface and f = q ◦ a where q : A −→ Y .

Claim 4.2. One has that f∗ωX = OY .

Proof of Claim 4.2. By Proposition 3.6, one has that V 0(ωX )∩ f ∗Pic0(Y )=
{OX }. By the proof of [CH3] Theorem 4, one sees that f∗ωX

∼= OY ⊗H 0(ωX ).
Since h0(ωX |FX/Y )=1, it follows that rank( f∗ωX )=1 and hence f∗ωX

∼=OY .
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Claim 4.3. Let S1, S2 be distinct components of V 0(ωX ) such that S1∩S2 �=
∅, then S1 ∩ S2 = P and

f∗(ωX⊗P) = L1 � L2⊗Ip

where Y = E1 × E2 and Li are line bundles of degree 1 on the elliptic curves
Ei and p is a point of Y .

Proof of Claim 4.3. Assume that P ∈ S1 ∩ S2. Since κ(X) = 2, by
Proposition 2.7, the Ti are 1-dimensional. Let πi : X −→ Ei := T ∨

i be the
induced morphisms. There are line bundles of degree 1, Li on Ei and inclusions
π∗

i Li −→ ωX⊗P (cf. Corollary 2.11).
We claim that rank(π1,∗(ωX⊗P)) = 1 . If this were not the case, then by

Lemma 2.13

P1(FX/E1) = rank(π1,∗(ωX⊗P)) ≥ 2, P2(FX/E1) = rank(π1,∗(ω⊗2
X ⊗P)) ≥ 3

and so
P3(X) = h0(ω⊗3

X ⊗P⊗2) ≥ h0(ω⊗2
X ⊗P⊗π∗

1 L1)

= h0(π1,∗(ω⊗2
X ⊗P)⊗L1)

≥ rank(π1,∗(ω⊗2
X ⊗P)) + deg(π1,∗(ω⊗2

X ⊗P))

and therefore

rank(π1,∗(ω⊗2
X ⊗P)) = 3, deg(π1,∗(ω⊗2

X ⊗P)) = 1.

Since rank(π1,∗(ωX )) = rank(π1,∗(ωX⊗P)), one has

deg(π1,∗(ω⊗2
X ⊗P)) ≥ deg(π1,∗(ωX )⊗L1) ≥ rank(π1,∗(ωX )) ≥ 2,

which is impossible. Therefore, we may assume that

rank(πi,∗(ωX⊗P)) = 1 f or i = 1, 2.

For any Pi ∈ Si , one has that Pi⊗P∨ = π∗
i αi with αi ∈ Pic0(Ei ). One sees

that

h0(ωX⊗Pi ) = h0(πi,∗(ωX⊗P)⊗αi ) = h0(πi,∗(ωX⊗P)) = h0(ωX⊗P).

If h0(ωX⊗P) ≥ 2, then we may assume that L1 := π1,∗(ωX⊗P) is an ample line
bundle of degree at least 2. From the inclusion φ : L⊗2

1 −→ π1,∗(ω⊗2
X ⊗P⊗2),

one sees that h0(ω⊗2
X ⊗P⊗2) = 4 and φ is an I.T. 0 isomorphism (cf. Lemma

2.4) and so
P2(FX/E1) = h0(ω⊗2

X ⊗P⊗2|F ) = 1.

By Theorem 1.1, κ(FX/E1) = 0 and hence by easy addition, κ(X) ≤ 1 which
is impossible. Therefore we may assume that h0(ωX⊗P) = 1.

The coherent sheaf f∗(ωX⊗P) is torsion free of generic rank 1 on Y and
hence is isomorphic to L⊗I where L is a line bundle and I is an ideal sheaf
cosupported at finitely many points. Let qi : Y −→ Ei , so that πi = qi ◦ f .
Since

1 = rank(πi,∗(ωX⊗P)) = rank(qi,∗(L⊗I)) = rank(qi,∗L),

one sees that L .FY/Ei = 1 and it easily follows that L = L1 � L2 where
Li = qi,∗(L) is a line bundle of degree 1 on Ei . Clearly, I is the ideal sheaf
of a point.
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We will now consider the case in which Ḡ = Z2. Let B be the branch
locus of a : X −→ A. The divisor B is vertical with respect to q : A −→ Y
and hence we may write B = q∗ B̄. Let g ◦ h : X −→ Z −→ A be the Stein
factorization of a. Then Z is a normal variety and g is finite of degree 2 and so
g∗OZ = OA ⊕ M∨ where M is a line bundle and the branch locus B is a divisor
in |2M |. The map FZ/Y −→ FA /Y is étale of degree 2 and so M = q∗L⊗P
where P is a 2-torsion element of Pic0(X). Let ν : A′ −→ A be a birational
morphism so that ν∗ B is a divisor with simple normal crossings support. Let
B ′ = ν∗ B − 2� ν∗ B

2 � and M ′ = ν∗(M)(−� ν∗ B
2 �). Let Z ′ be the normalization

of Z ×A A′, and g′ : Z ′ −→ A′ be the induced morphism. Then g′ is finite of
degree 2, Z ′ is normal with rational singularities and g′

∗(OZ ′) = OA′ ⊕ (M ′)∨.
Let X̃ be an appropriate birational model of X such that there are morphisms
α : X̃ −→ A′, v : X̃ −→ X , ã : X̃ −→ A and β : X̃ −→ Z ′. For all n ≥ 0,
one has that β∗(ω⊗n

X̃
) ∼= ω⊗n

Z ′ . It follows that

α∗(ω⊗m
X̃

) = ω⊗m
A′ ⊗(M ′⊗m−1 ⊕ M ′⊗m

).

Therefore
a∗(ωX ) = ã∗(ωX̃ )

= ν∗(ωA′ ⊕ ωA′⊗M ′)

= OA ⊕ ν∗
(

ωA′⊗ν∗(q∗L)

(
−

⌊
ν∗ B

2

⌋))

= OA ⊕ q∗L⊗P⊗I
(

B

2

)
.

Claim 4.4. If Ḡ = Z2, then for any P ∈ V 0(ωX ), one has

f∗(ωX⊗P) �= L1 � L2⊗Ip

where Y = E1 × E2 and Li are ample line bundles of degree 1 on Ei and p
is a point of Y .

Proof of Claim 4.4. If f∗(ωX⊗P) = L1 � L2⊗Ip, then B
2 is not log

terminal. By [Hac3] Theorem 1, one sees that since B
2 is not log terminal, one

has that � B
2 � �= 0 and this is impossible as then Z is not normal.

Combining Claim 4.3 and Claim 4.4, one sees that if Ḡ = Z2, then
V0(X, ωX ) = {OX } ∪ Sη with δη = 2. We then have the following:

Claim 4.5. If Ḡ = Z2, then h0(X, ωX⊗P) = 1 for all P ∈ Sη.

Proof of Claim 4.5. It is clear that h0(X̃ , ωX̃⊗P) = h0(A′, ωA′⊗M ′⊗P)

for all P ∈ Sη, and h0(X̃ , ωX̃⊗P) = 1 for general P ∈ Sη.
If h0(X̃ , ωX̃⊗Q0) ≥ 2 for some Q0 ∈ Sη, then h0(X̃ , ωX̃⊗Q0) = 2 as

otherwise h0(ω⊗2
X̃

⊗Q⊗2
0 ) ≥ 3 + 3 − 1 which is impossible.
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Consider the linear series |K A′ + M ′ + Q0|. Let µ : Ã → A′ be a log
resolution of this linear series. We have

µ∗|K A′ + M ′ + Q0| = |D| + F,

where |D| is base point free and F has simple normal crossings support. There
is an induced map φ|D| : Ã → P1 such that |D| = φ∗

|D||OP1(1)|. We have an
inclusion

ϕ1 : φ∗
|D||OP1(2)| + G ↪→ µ∗|2K A′ + 2M ′ + 2Q0|.

For all α ∈ Pic0(Y ), there is a morphism

ϕ2 : µ∗|K A′ + M ′ + Q0 +α|+µ∗|K A′ + M ′ + Q0 −α| −→ µ∗|2K A′ +2M ′ +2Q0|.
Notice that h0(A′, ω⊗2

A′ ⊗M ′⊗2⊗Q⊗2
0 ) ≤ h0(X, ω⊗2

X ⊗Q⊗2
0 ) ≤ 4.

Since h0(P1,O
P1(2)) = 3, ϕ1 has a 2-dimensional image. Since α varies in a

2-dimensional family, ϕ2 also has 2-dimensional image. In particular, there is a
positive dimensional family N ⊂ Pic0(Y ) such that for general α ∈ N , one has

D±α + F±α ∈ µ∗|K A′ + M ′ + Q0 ± α|
where G = Fα + F−α and Dα + D−α ∈ φ∗

|D||OP1(2)|. Since G is a fixed divisor,
it decomposes in at most finitely many ways as the sum of two effective divisors
and so we may assume that Fα, F−α do not depend on α ∈ N .

Take any α �= α′ ∈ N with Fα = Fα′ . One has that Dα = φ∗
|D| H is

numerically equivalent to Dα′ = φ∗
|D| H

′. It follows that H and H ′ are numeri-
cally equivalent on P1 hence linearly equivalent. Thus Dα and Dα′ are linearly
equivalent which is a contradiction.

Claim 4.6. If Ḡ = Z2, then a : X −→ A has generic degree 2 and is
branched over a divisor B ∈ |2 f ∗�| where OY (�) is an ample line bundle of
degree 1. Furthermore, a∗(OX ) ∼= OA ⊕ q∗OY (�)⊗P where P /∈ Pic0(Y ) and
P⊗2 = OA. See Example 2.

Proof of Claim 4.6. For all α ∈ Pic0(Y ) and P ∈ Sη, one has that

h0(ωX⊗P⊗α) = h0(ωA′⊗M ′⊗P⊗α) = 1.

The sheaf q∗ν∗(ωA′⊗M ′⊗P) is torsion free of generic rank 1 and

h0(q∗ν∗(ωA′⊗M ′⊗P)⊗α) = 1 for all α ∈ Pic0(Y ).

Following the proof of Proposition 4.2 of [HP], one sees that higher cohomolo-
gies vanish. By [Hac], q∗ν∗(ωA′⊗M ′⊗P) is a principal polarization OY (�).
From the isomorphism ν∗(ωA′⊗M ′⊗P) ∼= L̄⊗I( B̄

2 ), one sees that L̄ = OY (�)

and I( B̄
2 ) = OY . Therefore, ν∗(ωA′⊗M ′⊗P) ∼= q∗OY (�). It follows that

a∗(ωX ) ∼= OA ⊕ q∗OY (�)⊗P.

From now on we therefore assume that Ḡ �= Z2.

Claim 4.7. V 0(ωX ) has at most one 2-dimensional component.

Proof of Claim 4.7. Let Sη, Sζ be 2-dimensional components of V 0(ωX )

with η �= ζ . Since κ(X) = 2, one has δη,ζ = 2. Thus by (2), P2,η+ζ ≥ 3. By
Lemma 3.4, this is impossible.
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Claim 4.8. Let S1, S2 be two parallel 1-dimensional components of V 0(ωX ),
then S1 + Pic0(Y ) = S2 + Pic0(Y ).

Proof of Claim 4.8. Let Pi ∈ Si , π : X −→ E := T ∨
1 = T ∨

2 the induced
morphism and Li ample line bundles on Ei with inclusions φi : π∗Li −→
ωX⊗Pi . By Lemma 2.12, one sees that h0(ω⊗2

X ⊗P1⊗P2) ≥ 2. If it were equal,
then the inclusion

L1⊗L2 −→ π∗(ω⊗2
X ⊗P1⊗P2)

would be an I.T. 0 isomorphisms and this would imply that P2(FX/E ) = 1
and hence that κ(X) ≤ 1. So h0(ω⊗2

X ⊗P1⊗P2) ≥ 3. By Lemma 3.4, this is
impossible.

Claim 4.9. If Ḡ �= Z2, let Sη be a 2-dimensional component of V 0(ωX ),
then h0(ωX⊗P) = 1 for all P ∈ Sη. In particular f∗(ωX⊗P) is a principal
polarization.

Proof of Claim 4.9 Let f : X −→ (Tη)
∨ be the induced morphism. Then

f is birational to the Iitaka fibration of X i.e. (Tη)
∨ = Y . By Claim 4.7,

V 0(ωX ) has at most one 2-dimensional component, and so there must exist
a 1-dimensional component Sζ of V 0(ωX ). Let π : X −→ E := T ∨

ζ be the
induced morphism. There is an ample line bundle L on E and an inclusion
π∗L −→ ωX⊗Qζ for some general Qζ ∈ Sζ .

Assume that P ∈ Sη and h0(ωX⊗P) ≥ 2. If rank(π∗(ωX⊗P)) = 1,
then π∗(ωX⊗P) is an ample line bundle of degree at least 2 and hence
h0(π∗(ωX⊗P)⊗α) ≥ 2 for all α ∈ Pic0(E). It follows that

h0(ω⊗2
X ⊗P⊗Qζ ) ≥ h0(ωX⊗P⊗π∗L) = h0(π∗(ωX⊗P)⊗L) ≥ 3.

By Lemma 3.4, this is impossible.
Therefore, we may assume that rank(π∗(ωX⊗P)) ≥ 2. Proceeding as above,
since

h0(π∗(ωX⊗P)⊗L) ≥ rank(π∗(ωX⊗P)) + deg(π∗(ωX⊗P)),

it follows that π∗(ωX⊗P) is a sheaf of degree 0. Since h0(π∗(ωX⊗P)⊗α) > 0
for all α ∈ Pic0(E), By Riemann-Roch one sees that also h1(π∗(ωX⊗P)⊗α) > 0
for all α ∈ Pic0(E). By Theorem 2.5, this is impossible.

Finally, the sheaf f∗(ωX⊗P) is torsion free of generic rank 1 on Y and
hence, by [Hac], it is a principal polarization.

Claim 4.10. Assume that Ḡ �= Z2. Then, for any P ∈ V 0(ωX ) − Pic0(Y )

one has that f∗(ωX⊗P) is either:

i) a principal polarization on Y ,
ii) the pull-back of a line bundle of degree 1 on an elliptic curve or

iii) of the form L � L ′⊗Ip where L , L ′ are ample line bundles of degree 1 on
E, E ′, Y = E × E ′ and p is a point of Y .

In particular, there are no 2 distinct parallel components of V 0(ωX ).
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Proof of Claim 4.10. By Claim 4.9, we only need to consider the case
in which all the components of (P + Pic0(Y )) ∩ V 0(ωX ) are 1-dimensional. By
Claim 4.3, we may also assume that these components are parallel.

For any 1 dimensional component Si of (P+Pic0(Y ))∩V 0(ωX ), Pi ∈ Si and
corresponding projection πi : X −→ Ei := T ∨

i , one has rank(πi,∗(ωX⊗Pi )) = 1
and hence πi,∗(ωX⊗Pi ) = Li is an ample line bundle of degree at least 1 on
Ei . If this were not the case, then By Lemma 2.13,

rank(πi,∗(ωX⊗Pi )) = h0(ωF ) ≥ 2

and so
rank(πi,∗(ω⊗2

X ⊗Pi )) = h0(ω⊗2
F ) ≥ 3.

From the inclusion (cf. Corollary 2.11)

π∗
i Li −→ ωX⊗Pi −→ ω⊗2

X ⊗Pi ,

one sees that h0(ω⊗2
X ⊗Pi ) ≥ 2 (cf. Lemma 3.1).

By Lemma 2.4, deg(πi,∗(ω⊗2
X ⊗Pi )) ≥ 2. By Riemann-Roch, one has

h0(L⊗πi,∗(ω⊗2
X ⊗Pi )) ≥ deg(πi,∗(ω⊗2

X ⊗Pi )) + rank(πi,∗(ω⊗2
X ⊗Pi )) ≥ 5.

This is a contradiction and so rank(πi,∗(ωX⊗Pi )) = 1.
Since we assumed that all components of V 0(ωX ) ∩ (P + Pic0(Y )) are

parallel, then one has πi = π , E = Ei are independent of i . Let q : Y −→ E .
Since there are injections

Pic0(E) + P1 = S1 ↪→ P1 + Pic0(Y ) ↪→ Pic0(X),

we may assume that q has connected fibers. The sheaf f∗(ωX⊗P1) is torsion
free of rank 1, and hence we may write f∗(ωX⊗P1) ∼= M⊗I where M is a
line bundle and I is supported in codimension at least 2 (i.e. on points). Since
rank(π∗(ωX⊗P1)) = 1, one has that h0(M |FY/E ) = 1.

For general α ∈ Pic0(Y ), one has that V 0(ωX ) ∩ P1 + α + Pic0(E) = ∅
and so the semi-positive torsion free sheaf π∗(ωX⊗P1⊗α) must be the 0-sheaf.
In particular h0(M⊗α|FY/E ) = 0. It follows that deg(M |FY/E ) = 0 and hence

M |FY/E = OFY/E . One easily sees that h0(M⊗α) = 0 for all α ∈ Pic0(Y ) −
Pic0(E) and hence

V 0(ωX ) ∩ (P1 + Pic0(Y )) = P1 + Pic0(E) = T1.

By Proposition 2.3, one has that q∗L1 and f∗(ωX⊗P1) are isomorphic if and
only if the inclusion q∗L1 −→ f∗(ωX⊗P1) induces isomorphisms

Hi (Y, q∗L1⊗α) −→ Hi (Y, f∗(ωX⊗P1)⊗α)
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for i = 0, 1, 2 and all α ∈ Pic0(Y ). If α ∈ Pic0(Y ) − Pic0(E), then both groups
vanish and so the isomorphism follows. If α ∈ Pic0(E), we proceed as follows:
Let p : A −→ E and W ⊂ H 1(A,OA) a linear subspace complementary to the
tangent space to T1. By Proposition 2.12 of [Hac2], one has isomorphisms

Hi (a∗(ωX⊗P1)⊗p∗α) ∼= H 0(a∗(ωX⊗P1)⊗p∗α)⊗ ∧i W
∼= H 0(q∗(L1⊗α))⊗ ∧i W
∼= Hi (q∗L1⊗α).

Pushing forward to Y , one obtains the required isomorphisms.

Claim 4.11. If Ḡ �= Z2, then Ḡ = (Z2)
2 and

V0(X, ωX ) = {OX } ∪ Sα ∪ Sζ ∪ Sξ

with δα = 2, δζ = δξ = 1.

Proof of Claim 4.11. We have seen that V 0(ωX ) has at most one 2-
dimensional component and there are no parallel 1-dimensional components.
Since Ḡ �= Z2, then there are at least two 1-dimensional components of V 0(ωX ).
We will show that given two one dimensional components contained in Q1 +
Pic0(Y ) �= Q2 + Pic0(Y ), then(

Q1 + Q2 + Pic0(Y )
)

∩ V 0(ωX )

does not contain a 1-dimensional component. Grant this for the time being.
Then, by Proposition 2.7, it follows that Q1 + Q2 + Pic0(Y ) is a 2-dimensional
component of V 0(ωX ). If |Ḡ| > 4, this implies that there are at least two
2-dimensional components, which is impossible, and so |Ḡ| = 4 and the claim
follows.

Suppose now that there are three 1-dimensional components of V 0(ωX ), say
S1, S2, S3, contained in Q1 + Pic0(Y ), Q2 + Pic0(Y ), Q3 + Pic0(Y ) respectively
with Q1 + Q2 + Q3 ∈ Pic0(Y ). By Claim 4.10, these components are not
parallel to each other. We may assume that πi : X → Ei := S∨

i factors through
f : X → Y and that Y is an abelian surface. Let qi : Y −→ Ei be the induced
morphisms.

Let Q1, Q2, Q3 be general torsion elements in S1, S2, S3 and

G := f∗(ω⊗2
X ⊗Q2⊗Q3), F := f∗(ω⊗3

X ⊗Q1⊗Q2⊗Q3).

From the inclusions π∗
i Li −→ ωX⊗Qi , one sees that we have inclusions

ϕ : q∗
2 L2 ⊗ q∗

3 L3 → G, ψ : q∗
1 L1 ⊗ q∗

2 L2 ⊗ q∗
3 L3 → F

where Li are ample line bundles on Ei respectively. Since F is torsion free of
generic rank one, we may write

F = q∗
1 L1 ⊗ q∗

2 L2 ⊗ q∗
3 L3⊗N⊗I
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where N is a semi-positive line bundle on Y and I is an ideal sheaf cosupported
at points. If N is not numerically trivial (or if FY/E1 · q∗

i Li > 1 for i = 2 or
i = 3), then N is not vertical with respect to one of the projections qi , say q1.
Then

rank(q1,∗(F)) = FY/E1 · (q∗
1 L1 + q∗

2 L2 + q∗
3 L3 + N ) ≥ 3.

On the other hand, from the inclusion ϕ, one sees that rank(q1,∗(G)) ≥ 2. Con-
sider the inclusion of I.T. 0 sheaves L1 −→ q1,∗(G⊗α) with α = Q1⊗Q∨

2 ⊗Q∨
3 ∈

Pic0(Y ). Since it is not an isomorphism, one sees that

h0(G) = h0(G⊗α) > h0(L1) ≥ 1.

From the inclusion

ρ : L1⊗q1,∗(G) −→ q1,∗(F) = π1,∗(ω⊗3
X ⊗Q1⊗Q2⊗Q3)

one sees that by Riemann-Roch

h0(G) + rank(q1,∗(G)) ≤ h0(ω⊗3
X ⊗Q1⊗Q2⊗Q3) = P3(X)

and therefore
h0(G) = 2, rank(q1,∗(G)) = 2.

In particular, ρ is an I.T. 0 isomorphism. So, rank(q1,∗(F)) = rank(q1,∗(G)) = 2
which is a contradiction. Therefore, we have that

N ∈ Pic0(Y ) and q∗
2 L2.FY/E1 = q∗

3 L3.FY/E1 = 1.

Since deg(Li ) = 1, one has q∗
i Li ≡ FY/Ei . Since (q∗

1 L1 ⊗ q∗
2 L2 ⊗ q∗

3 L3)
2 ≥ 8,

we have that q∗
2 L2 · q∗

3 L3 ≥ 2. Since

h0(q∗
2 L2 ⊗ q∗

3 L3) ≤ h0(G) = 2,

one sees that q∗
2 L2.q∗

3 L3 = 2 and hence I = OY .
Now let G′ := f∗(ω⊗2

X ⊗Q1⊗Q3). Proceeding as above, one sees that

rank(q2,∗G′) ≥ FY/E2 · (q∗
1 L1 + q∗

3 L3) = 3, h0(q2,∗G′) > h0(L2) = 1.

By Riemann Roch, one has that

P3(X) = h0(ω⊗3
X ⊗Q1⊗Q2⊗Q3) ≥ h0(L2⊗q2,∗G′) ≥ 5

which is the required contradiction.

Claim 4.12. If Ḡ ∼= (Z2)
2, then Y = E1 × E2 and there are line bundles

Li of degree 1 on Ei , projections pi : A −→ Ei and 2−torsion elements
Q1, Q2 ∈ Pic0(X) that generate Ḡ, such that

a∗(OX ) ∼= OA ⊕ M∨
1 ⊕ M∨

2 ⊕ M∨
1 ⊗M∨

2
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with

M1 = p∗
1 L1⊗Q∨

1 , M2 = p∗
2 L2⊗Q∨

2 and M3 = M1⊗M2.

In particular X is birational to the fiber product of two degree 2 coverings
Xi −→ A with P3(Xi ) = 2.

Proof of Claim 4.12. By Claim 4.11, the degree of a : X −→ A is |Ḡ| = 4
and there are two non parallel 1-dimensional components of V 0(ωX ) say S1, S2
such that S1 + Pic0(Y ) �= S2 + Pic0(Y ). Let Ei := T ∨

i and qi : Y −→ Ei ,
πi : X −→ Ei be the induced morphisms. Then there are inclusions π∗

i Li −→
ωX⊗Qi where Qi ∈ Si . Moreover, by Claim 4.11, Q1+Q2+Pic0(Y ) ⊂ V 0(ωX ).
By Claim 4.9, one has that

L := f∗(ωX⊗Q1⊗Q2)

is an ample line bundle of degree 1. Moreover,

V 0(ωX ) = {OX } ∪ S1 ∪ S2 ∪ (Q1 + Q2 + Pic0(Y )).

From the inclusion

q∗
1 L1⊗q∗

2 L2⊗L −→ f∗(ω⊗3
X ⊗Q⊗2

1 ⊗Q⊗2
2 )

and the equality 4 = P3(X) = h0(ω⊗3
X ⊗Q⊗2

1 ⊗Q⊗2
2 ), one sees that

L2 = 2, L .q∗
i Li = q∗

1 L1.q
∗
2 L2 = 1.

By the Hodge Index Theorem, one sees that since

L2(q∗
1 L1 + q∗

2 L2)
2 = (

L .(q∗
1 L1 + q∗

2 L2)
)2

then the principal polarization L is numerically equivalent to q∗
1 L1 + q∗

2 L2.
Therefore,

(Y, q∗
1 L1⊗q∗

2 L2) ∼= (E1, L1) × (E2, L2),

and one sees that

L = q∗
1 (L1⊗P1)⊗q∗

2 (L2⊗P2), Pi ∈ Pic0(Ei ).

We have inclusions

L −→ f∗(ωX⊗Q1⊗Q2) −→ f∗(ω⊗2
X ⊗Q1⊗Q2),

q∗
1 L1 ⊗ q∗

2 L2 −→ f∗(ω⊗2
X ⊗Q1⊗Q2).
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Let G := ω⊗2
X ⊗Q1⊗Q2. If h0(G) = 1, then L = q∗

1 L1⊗q∗
2 L2 as required. If

h0(G) ≥ 2, then one sees that

h0(π1,∗(G)⊗L1⊗P1) ≥ rank(G) + deg(G) ≥ 1 + 2.

Since

rank(π2,∗(G⊗π∗
1 (L1⊗P1))) ≥ rank(q2,∗(q∗

1 (L⊗2
1 ⊗P1)⊗q∗

2 (L2))) = 2,

one sees that

P3(X) ≥ h0(ω⊗2
X ⊗Q1⊗Q2⊗L) = h0(π2,∗(G⊗π∗

1 (L1⊗P1))⊗L2⊗P2) ≥ 2 + 3

and this is impossible. Let Mi := p∗
i Li⊗Q∨

i . By Claim 4.10, one has

a∗(ωX ) ∼= OA ⊕ M1 ⊕ M2 ⊕ M1⊗M2

and hence by Groethendieck duality,

a∗(OX ) ∼= OA ⊕ M∨
1 ⊕ M∨

2 ⊕ M∨
1 ⊗M∨

2 .

Let X −→ Z −→ A be the Stein factorization. Following [HM] Section 7,
one sees that the only possible nonzero structure constants defining the 4 − 1
cover Z −→ A are c1,4 ∈ H 0(M1⊗M2⊗M∨

3 ), c1,6 ∈ H 0(M1⊗M∨
2 ⊗M3) and

c4,6 ∈ H 0(M∨
1 ⊗M2⊗M3). So, Z −→ A is a bi-double cover. It is determined

by two degree 2 covers ai : Xi −→ A defined by ai,∗(OXi ) = OA ⊕ p∗
i Li⊗Q∨

i

and sections −c1,4c1,6 ∈ H 0(M⊗2
1 ) and c1,4c4,6 ∈ H 0(M⊗2

2 ). It is easy to see
that X1, X2, Z are smooth.

This completes the proof.

5. – Varieties with P3(X) = 4, q(X) = dim(X) and κ(X) = 1

Theorem 5.1. Let X be a smooth projective variety with P3(X) = 4, q(X) =
dim(X) and κ(X) = 1 then X is birational to (C × K̃ )/G where G is an abelian
group acting faithfully by translations on an abelian variety K̃ and faithfully on a
curve C. The Iitaka fibration of X is birational to f : (C × K̃ )/G −→ C/G = E
where E is an elliptic curve and dim H 0(C, ω⊗3

C )G = 4.

Proof. Let f : X −→ Y be the Iitaka fibration. Since κ(X) = 1, and
a : X −→ A is generically finite, one has that Y is a curve of genus g ≥ 1.
If g = 1, then Y is an elliptic curve and by Proposition 2.1, Y −→ A(Y ) is
of degree 1 (i.e. an isomorphism). By Proposition 2.1 one sees that if g ≥ 2,
then q(X) ≥ dim(X) + 1 which is impossible.
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From now on we will denote the elliptic curve A(Y ) simply by E and f :
X −→ E will be the corresponding algebraic fiber space. Let X −→ X̄ −→ A
be the Stein factorization of the Albanese map. Since X̄ −→ E is isotrivial,
there is a generically finite cover C −→ E such that X̄ ×E C is birational to
C × K̃ . We may assume that C −→ E is a Galois cover with group G. G
acts by translations on K̃ and we may assume that the action of G is faithful
on C and K̃ . Since G acts freely on C × K̃ , one has that

H 0(X, ω⊗3
X ) = H 0(C × K̃ , ω⊗3

C×K̃
)G = [H 0(K̃ , ω⊗3

K̃
) ⊗ H 0(C, ω⊗3

C )]G .

Since G acts on K̃ by translations, G acts on H 0(K̃ , ω⊗3
K̃

) trivially. It follows
that

4 = P3(X) = dim H 0(C, ω⊗3
C )G .

Similarly, one sees that q(X) = q(C/G) + q(K̃/G) and so q(C/G) = 1.

We now consider the induced morphism π : C → C/G =: E . By the
argument of [Be], Example VI.12, one has

4 = dim H 0(C, ω⊗3
C )G = h0

(
E,O

(∑
P∈E

⌊
3

(
1 − 1

eP

)⌋))
.

Where P is a branch points of π , and eP is the ramification index of a
ramification point lying over P . Note that |G| = ePsP , where sP is the number
of ramification points lying over P .

It is easy to see that since

⌊
3

(
1 − 1

eP

)⌋
= 1 (resp. = 2) if eP = 2 (resp. eP ≥ 3),

we have the following cases:

Case 1. 4 branch points P1, ..., P4 with ePi = 2.

Case 2. 3 branch points P1, P2, P3 with eP1 ≥ 3, eP2 = eP3 = 2.

Case 3. 2 branch points P1, P2 with ePi ≥ 3.

We will follow the notation of [Pa]. Let π : C → E be an abelian cover
with abelian Galois group G. There is a splitting

π∗OC = ⊕χ∈G∗ L∨
χ .

In particular, if dχ := deg(Lχ ), then

g = 1 +
∑

χ∈G∗, χ �=1

dχ .
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For every branch point Pi with i = 1, ..., s, the inertia group Hi , which
is defined as the stabilizer subgroup at any point lying over Pi , is a cyclic
subgroup of order ei := ePi . We also associate a generator ψi of each H∗

i

which corresponds to the character of Pi . For every χ ∈ G∗, χ|Hi = ψ
n(χ)
i with

0 ≤ n(χ) ≤ |Hi | − 1. And define

ε
Hi ,ψi
χ,χ ′ :=

⌊
n(χ) + n(χ ′)

|Hi |
⌋

.

Following [Pa], one sees that there is an abelian cover C → E with group G
with building data Lχ if and only if the line bundles Lχ satisfy the following
set of linear equivalences:

(3) Lχ + Lχ ′ = Lχχ ′ +
∑

i=1,...,s

ε
Hi ,ψi
χ,χ ′ Pi .

If χ|Hi = ψ
ni (χ)

i , then

(4) dχ + dχ ′ = dχχ ′ +
∑

i=1,...,s

⌊
ni (χ) + ni (χ

′)
ei

⌋
.

Let H be the subgroup of G generated by the inertia subgroups Hi and let
Q = G/H . One sees that there is an exact sequence of groups

1 −→ Q∗ −→ G∗ −→ H∗ −→ 1.

The generators ψi of H∗
i define isomorphisms H∗

i
∼= Zei where ei := |Hi |.

Therefore, we have an induced injective homomorphism

ϕ : H∗ ↪→
∏

i=1,...,s

Zei

such that the induced maps ϕi : H∗ −→ Zei are surjective. By abuse of notation,
we will also denote by ϕ the induced homomorphism ϕ : G∗ −→ ∏

i=1,...,s Zei .
We will write

ϕ(χ) = (n1(χ), ..., ns(χ)) ∀χ ∈ G∗.

Let µ(χ) be the order of χ . By [Pa] Proposition 2.1,

dχ =
∑

i=1,...,s

ni (χ)

ei
.

We will now analyze all possible inertia groups H .

Case 1: s = 4, and e := ei = 2. Then H∗ ⊂ Z4
2. Note that H∗ �= Z4

2
since (1, 0, 0, 0) /∈ H∗. Thus H∗ ∼= (Z2)

s with 1 ≤ s ≤ 3.
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By Example 1, all of these possibilities occur.

Case 2: s = 3 and e1 ≥ 3, e2 = e3 = 2. There must be a character χ

with ϕ(χ) = (1, n2, n3), and so

dχ = 1

e1
+ n2

2
+ n3

2

which is not an integer. Therefore this case is impossible.

Case 3: s = 2 and e1, e2 ≥ 3. Assume that e1 > e2. Since G∗ → Ze1 is
surjective, there is χ ∈ H∗ with ϕ(χ) = (1, n2). Then

dχ = 1

e1
+ n2

e2
< 1

which is impossible. So we may assume that e = e1 = e2 ≥ 3 and H∗ ⊂ Z2
e .

Let ϕ(χ) = (n1, n2). One has dχ = n1+n2
e . Thus n2 = e − n1 for any χ �= 1.

Therefore, H∗ = {(i, e − i)|0 ≤ i ≤ e − 1} ∼= Ze. By Example 1, all of these
possibilities occur.

From the above discussion, it follows that:

Proposition 5.2. Let φ : C −→ E be a G-cover with E an elliptic curve and
dim H 0(ω⊗3

C )G = 4. Then either φ is ramified over 4-points and the inertia group
H is isomorphic to (Z2)

s with s ∈ {1, 2, 3} or φ is ramified over 2-points and the
inertia group H is isomorphic to Zm with m ≥ 3.
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