Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains

MOSHE MARCUS AND LAURENT VERON

Abstract. We study the generalized boundary value problem for (E) $-\Delta u + |u|^{q-1}u = 0$ in a dihedral domain Ω , when q > 1 is supercritical. The value of the critical exponent can take only a finite number of values depending on the geometry of Ω . When μ is a bounded Borel measure in a *k*-wedge, we give necessary and sufficient conditions in order it be the boundary value of a solution of (E). We also give conditions which ensure that a boundary compact subset is removable. These conditions are expressed in terms of Bessel capacities $B_{s,q'}$ in \mathbb{R}^{N-k} where *s* depends on the characteristics of the wedge. This allows us to describe the boundary trace of a positive solution of (E).

Mathematics Subject Classification (2010): 35K60 (primary); 31A20, 31C15, 44A25, 46E35 (secondary).

1. Introduction

Let Ω be a bounded Lipschitz domain in \mathbb{R}^N and let q > 1. A long-term research on the equation

$$-\Delta u + |u|^{q-1}u = 0 \quad \text{in } \Omega, \tag{1.1}$$

has been carried out for more than twenty years by probabilistic and/or analytic methods. Much of the research was focused on three main problems in domains of class C^2 :

(i) The Dirichlet problem for (1.1) with boundary data given by a finite Borel measure on $\partial \Omega$.

Both authors were partially sponsored by the French – Israeli cooperation program through grant No. 3-4299. The first author (MM) also wishes to acknowledge the support of the Israeli Science Foundation through grant No. 145-05.

Received October 18, 2013; accepted in revised form June 17, 2014.

Published online February 2016.

- (ii) The characterization of removable singular subsets of $\partial \Omega$ relative to positive solutions of (1.1).
- (iii) The characterization of arbitrary positive solutions of (1.1) via an appropriate notion of boundary trace.

Consider the Dirichlet problem

$$-\Delta u + |u|^{q-1}u = 0 \quad \text{in} \quad \Omega, \ u = \mu \quad \text{in} \quad \partial \Omega \tag{1.2}$$

where $\mu \in \mathfrak{M}(\partial \Omega)$ (= space of finite Borel measures on $\partial \Omega$). Following [24], a (weak) solution $u := u_{\mu}$ of (1.2) is a function $u \in L^{q}_{\rho}(\Omega)$ such that,

$$\int_{\Omega} \left(-u\Delta\eta + \eta |u|^{q-1} u \right) dx = -\int_{\Omega} \mathbb{K}[\mu] \Delta\eta dx,$$
(1.3)

for every in $\eta \in X(\Omega)$, where

$$X(\Omega) = \left\{ \eta : \ \rho^{-1} \Delta \eta \in L^{\infty}(\Omega) \right\}.$$
(1.4)

Here $\mathbb{K}[\mu]$ is the harmonic function in Ω with boundary trace μ and ρ is the first eigenfunction of $-\Delta$ in $W_0^{1,2}(\Omega)$ normalized so that $\max_{\Omega} \rho = 1$. We also denote by λ the corresponding eigenvalue. We recall that, if Ω is Lipschitz $\mathbb{K}[\mu] \in L^1_{\rho}(\Omega)$; if Ω is of class C^2 , $\mathbb{K}[\mu] \in L^1(\Omega)$.

A measure μ is a *q*-good measure if (1.2) has a solution. The space of *q*-good measures is denoted by $\mathfrak{M}_q(\partial\Omega)$. It is known that, if μ is *q*-good, the solution is unique. Furthermore, if μ satisfies the condition

$$\int_{\Omega} \mathbb{K}[|\mu|]^q \rho dx < \infty, \tag{1.5}$$

then it is q-good. When μ satisfies this condition we say that it is a q-admissible measure.

When Ω is a domain of class C^2 , $\mathbb{K}[\mu] \in L^q_\rho$ for every $q \in (1, \frac{N+1}{N-1})$ and every $\mu \in \mathfrak{M}(\partial\Omega)$. Therefore, for q in this range, every measure in $\mathfrak{M}(\partial\Omega)$ is q-good and there is no removable boundary set (except for the empty set). Problem (iii), for q in this range, was resolved by Le Gall [16] (for N = q = 2) and Marcus and Véron [19] (for $1 < q < \frac{N+1}{N-1}, N \ge 3$).

The number $q_c = \frac{N+1}{N-1}$ is called the *critical value* for (1.1). If q is supercritical, *i.e.* $q \ge q_c$, point singularities are removable. In particular there is no solution of (1.2) when $\mu = \delta_y$ (= a Dirac measure concentrated at a point $y \in \partial \Omega$).

In the supercritical case, problems (i)-(iii), Ω of class C^2 , have been resolved in several stages. We say that a compact set $E \subset \partial \Omega$ is removable relative to equation (1.1) if there exists no positive solution vanishing on $\partial \Omega \setminus E$. We say that E is conditionally removable if any solution u of (1.2), with $\mu \in \mathfrak{M}(\partial \Omega)$, such that u = 0 on $\partial \Omega \setminus E$ must vanish in Ω . With respect to problem (ii) it was shown that a compact set $E \subset \partial \Omega$ is removable if and only if $C_{\frac{2}{q},q'}(E) = 0$, q' = q/(q-1). Here $C_{\alpha,p}$ denotes the Bessel capacity, with the indicated indexes on $\partial \Omega$. (see Subsection 4.2 for an overview of Bessel capacities). This result was obtained by Le Gall [16] for q = 2, Dynkin and Kuznetsov [8] for $1 < q \leq 2$, Marcus and Véron [20] for q > 2. For a unified analytic proof, covering all $q \geq q_c$ see [21].

The above result implies that every q-good measure μ must vanish on sets of $C_{\frac{2}{q},q'}$ capacity zero. On the other hand a result of Baras and Pierre [3] implies that every positive measure $\mu \in \mathfrak{M}(\partial \Omega)$ that vanishes on sets of $C_{\frac{2}{q},q'}$ capacity zero is the limit of an increasing sequence of admissible measures and therefore q-good. In conclusion: a measure $\mu \in \mathfrak{M}(\partial \Omega)$ is q-good if and only if it vanishes on sets of $C_{\frac{2}{q},q'}$ capacity zero. This takes care of problem (i).

Problem (iii) has been treated in several papers, with various definitions of a generalized boundary trace for positive solutions of (1.1), see [9] and [23]. Finally a full characterization of positive solutions was obtained by Mselati [25] for q = 2, Dynkin [7] for 1 < q < 2 and Marcus [18] for every $q \ge q_c$. In [7,25] the restriction to $q \le 2$ was dictated by their use of probabilistic techniques that do not apply to q > 2. In [18] the proof is purely analytic.

If Ω is Lipschitz, $\xi \in \partial \Omega$, we say that q_{ξ} is the critical value for (1.1) at ξ if, for $1 < q < q_{\xi}$, problem (1.2) with $\mu = \delta_{\xi}$ has a solution, but for $q > q_{\xi}$ no such solution exists.

In contrast to the case of smooth domains, when Ω is Lipschitz, q_{ξ} may vary with the point. For every compact set $F \subset \partial \Omega$ there exists a number q(F) > 1 such that, for 1 < q < q(F), every measure in $\mathfrak{M}(\partial \Omega)$ supported in F is q-good. Obviously $q(F) \leq \min\{q_{\xi} : \xi \in F\}$ but it is not clear if equality holds.

In the special case when Ω is a polyhedron, the function $\xi \to q_{\xi}$ obtains only a finite number of values (in fact, it is constant on each open face and each open edge) and, if $q \ge q_{\xi}$, an isolated singularity at ξ is removable. Furthermore, the assumption $1 < q < \min\{q_{\xi} : \xi \in \partial\Omega\}$ implies that every measure in $\mathfrak{M}(\partial\Omega)$ is q-good. For this and related results see [24].

In the present paper we study problem (1.2) when Ω is a polyhedron and q is supercritical, *i.e.* $q \ge \min\{q_{\xi} : \xi \in \partial \Omega\}$. Following is a description of the main results.

A. On the action of Poisson-type kernels with fractional dimension

In preparation for the study of supercritical boundary value problem s we establish an harmonic analytic result, extending a well known result on the action of Poisson kernels on Besov spaces with negative index (see [28, 1.14.4.] and [4]). We first quote the classical result for comparison purposes.

Proposition 1.1. Let $1 < q < \infty$ and s > 0. Then, for any bounded Borel measure μ in \mathbb{R}^{n-1} ,

$$I(\mu) = \int_{\mathbb{R}^{n}_{+}} |\mathbb{K}_{n}[\mu](y)|^{q} e^{-y_{1}} y_{1}^{sq-1} dy \approx \|\mu\|_{B^{-s,q}(\mathbb{R}^{n-1})}^{q}.$$
 (1.6)

Here $\mathbb{K}_n[\mu]$ denotes the Poisson potential of μ in $\mathbb{R}^n_+ = \mathbb{R}_+ \times \mathbb{R}^{n-1}$, namely,

$$\mathbb{K}_{n}[\mu](y) = \gamma_{n} y_{1} \int_{\mathbb{R}^{n-1}} \frac{d\mu(z)}{\left(y_{1}^{2} + |\zeta - z|^{2}\right)^{n/2}} \quad \forall y = (y_{1}, \zeta) \in \mathbb{R}^{n}_{+}$$
(1.7)

where γ_n is a constant depending only on *n*.

Notation. Let *m* be a positive integer and let v be a real number, $v \ge m + 1$. Denote,

$$\mathbb{K}_{\nu,m}[\mu](\tau,\zeta) := \int_{\mathbb{R}^m} \frac{\tau^{\nu-m} d\mu(z)}{\left(\tau^2 + |\zeta - z|^2\right)^{\nu/2}} \quad \forall \tau \in (0,\infty), \ \zeta \in \mathbb{R}^m.$$
(1.8)

Note that

$$\mathbb{K}_n[\mu] = \gamma_n \mathbb{K}_{n,n-1}[\mu].$$

Theorem 1.2. Let *m* and *v* be as above. Then, for every q > 1 and every $s \in (0, m/q')$, q' = q/(q - 1), there exists a positive constant *c* such that, for every positive measure $\mu \in \mathfrak{M}(\mathbb{R}^m)$ supported in $B_{R/2}(0)$ for some R > 1,

$$\frac{1}{c} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q \leq \int_0^R \left(\int_{|\zeta| < R} \left| \mathbb{K}_{\nu,m}[\mu](\tau,\zeta) \right|^q d\zeta \right) \tau^{sq-1} d\tau \\
\leq c R^{(s+\nu-m)q+1} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q.$$
(1.9)

This also holds when s = m/q', provided that the diameter of supp μ is sufficiently small.

This is proved in Section 3 (see Theorem 3.8) using a slightly different notation.

B. *The critical value and the characterization of q-good measures in a k-wedge*

The next step towards the study of boundary value problem s in a polyhedron is the treatment of such problems in a *k*-wedge (or *k*-dihedron) *i.e.*, the domain defined by the intersection of *k* hyperplanes in \mathbb{R}^N , 1 < k < N. The edge is an (N - k) dimensional space.

We note that if k = N the "edge" is a point and the corresponding wedge is a cone with vertex at this point. If k = 1 the wedge is a half space. Both of these cases have been treated in [24].

Let *A* be a Lipschitz domain in S^{k-1} . If

$$S_A := \left\{ x \in \mathbb{R}^N : |x| = 1, \ x \in A \times \prod_{j=k}^{N-1} [0, \pi] \right\} \subset S^{N-1}$$
(1.10)

then

$$D_A := \{x = (r, \sigma) : r > 0, \sigma \in S_A\}$$

is a k-wedge in \mathbb{R}^N whose "edge" d_A may be identified with \mathbb{R}^{N-k} and its "opening" is A.

Let λ_A be the first eigenvalue of $-\Delta_{S^{N-1}}$ in $W_0^{1,2}(S_A)$ and denote by κ_{\pm} the roots of the equation,

$$\kappa^{2} + (N-2)\kappa - \lambda_{A} = 0.$$
 (1.11)

Put

$$q_c := \frac{\kappa_+ + N}{\kappa_+ + N - 2} \tag{1.12}$$

and

$$q_c^* := 1 + \frac{2 - k + \sqrt{(k-2)^2 + 4\lambda_A - 4(N-k)\kappa_+}}{\lambda_A - (N-k)\kappa_+}.$$
 (1.13)

Let $C_{\alpha,p}^{N-k}$ denote the Bessel capacity with the indicated indices in \mathbb{R}^{N-k} . The next theorem provides a characterization of *q*-good measures supported on *d_A*.

Theorem 1.3.

- (a) If $1 < q < q_c$ every measure in $\mathfrak{M}(d_A)$ is q-good relative to D_A . In fact every such measure is q-admissible.
- (b) If $q \ge q_c^*$, the only q-good measure in $\mathfrak{M}(d_A)$ is the zero measure.
- (c) If $q_c \leq q < q_c^*$, a measure $\mu \in \mathfrak{M}(d_A)$ is q-good relative to D_A if and only if μ vanishes on every Borel set $E \subset d_A$ such that $C_{s,q'}^{N-k}(E) = 0$, $s = 2 \frac{k+\kappa_+}{q'}$.

The characterization of q-good measures in a polyhedron follows as an easy consequence of the above theorem (see Theorem 4.6 below).

C. Characterization of removable sets

Let Ω be an *N*-dimensional polyhedron. Theorem 1.3 provides a necessary and sufficient condition for the removability of a singular set *E* relative to the family of solutions *u* such that

$$\int_{\Omega} |u|^q \rho \, dx < \infty.$$

The next result provides a necessary and sufficient condition for *removability* in the sense that the only non-negative solution $u \in C(\overline{\Omega} \setminus E)$ which vanishes on $\overline{\Omega} \setminus E$ is the trivial solution u = 0.

Let *L* denote a face or edge or vertex of Ω and put $k := \operatorname{codim} L$. If 1 < k < N let d_L denote the linear space spanned by *L*, such that *L* is an open subset of d_L . Let Q_L denote the *k*-wedge with boundary d_L such that, for some neighborhood *M* of L, $\Omega \cap M = Q_L \cap M$ and let A_L denote the opening of Q_L . If k = N, Q_L is a cone with vertex *L*. Let $q_c(L)$ and $q_c^*(L)$ be defined as in (1.12) and (1.13) for $A = A_L$. Finally let

$$s(L) = 2 - \frac{k + \kappa_+}{q'}$$

where κ_{\pm} are the roots of (1.11) for $A = A_L$. If k = N, Q_L is a cone with vertex L. In this case $q_c(L) = q_c^*(L) = 1 - \frac{2}{\kappa_-}$. If $k = 1 q_c(L) = q_c^*(L) = (N+1)/(N-1)$. **Theorem 1.4.** Let Ω be a polyhedron in \mathbb{R}^N . A compact set $E \subset \partial \Omega$ is removable if and only if, for every *L* as above such that $E \cap L \neq \emptyset$, the following conditions hold:

$$- if 1 ≤ k < N: either q_c(L) ≤ q < q_c^*(L) and C_{s(L),q'}^{N-k}(E ∩ L) = 0 or q ≥ q_c^*(L); - if k = N: q ≥ q_c(L).$$

The present paper is part of an article, "Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains" arXiv:0907.1006 (2009). The first part of this article was published in [24]. The second and last part are presented here. The characterization of q-good measures, here established in polyhedrons, was recently established in [2], for arbitrary Lipschitz domains and a general family of nonlinearities. However the full removability result, Theorem 4.11, has not been superseded. (In [2] the authors provided - in the generality mentioned above - a characterization of *conditional removability* but not of full removability.) The methods of proof in the two papers are completely different. In the present paper, the characterization of q-good measures is based on an extension of a result of [4] and [28, 1.14.4.] on the action of Poisson kernels on Besov spaces with negative index. The use of Poisson-type kernels with fractional dimension has recently appeared in [12] to be a fundamental tool for the study of the boundary trace problem for semilinear elliptic equations with critical Hardy potentials depending on the distance to the boundary in the supercritical case. In [2] the proof relies on a relation between elliptic semilinear equations with absorption and linear Schrödinger equations.

2. The Martin kernel and critical values in a *k*-dimensional dihedron.

2.1. The geometric framework

An *N*-dim polyhedron *P* is a bounded domain bordered by a finite number of hyperplanes. Thus the boundary of *P* is the union of a finite number of sets $\{L_{k,j} : k = 1, ..., N, j = 1, ..., n_k\}$ where $\{L_{1,j}\}$ is the set of open faces of $P, \{L_{k,j}\}$ for k = 2, ..., N - 1, is the family of relatively open N - k-dimensional edges and $\{L_{N,j}\}$ is the family of vertices of *P*. An N - k-dimensional edge is a relatively open set in the intersection of *k* hyperplanes; it will be described by the characteristic angles of these hyperplanes.

We recall that the spherical coordinates in $\mathbb{R}^N = \{x = (x_1, \dots, x_N)\}$ are expressed by

$$\begin{cases} x_1 = r \sin \theta_{N-1} \sin \theta_{N-2} \cdots \sin \theta_2 \sin \theta_1 \\ x_2 = r \sin \theta_{N-1} \sin \theta_{N-2} \cdots \sin \theta_2 \cos \theta_1 \\ x_3 = r \sin \theta_{N-1} \sin \theta_{N-2} \cdots \cos \theta_2 \\ \vdots \\ x_{N-1} = r \sin \theta_{N-1} \cos \theta_{N-2}, \\ x_N = r \cos \theta_{N-1} \end{cases}$$
(2.1)

where $r = |x|, \theta_1 \in [0, 2\pi]$ and $\theta_{\ell} \in [0, \pi]$ for $\ell = 2, 3, ..., N - 1$. We denote $\sigma = (\theta_1, \ldots, \theta_{N-1})$. Thus in spherical coordinates $x = (r, \sigma)$.

We consider an unbounded *non-degenerate* k-dihedron, $2 \le k \le N$ defined as follows. Let A be given by

$$A = \begin{cases} (0, \alpha_1) \times \prod_{j=2}^{k-1} (\alpha_j, \alpha'_j) & \text{if } k > 2\\ (0, \alpha_1) & \text{if } k = 2 \end{cases}$$

where

$$0 < \alpha_1 < 2\pi, \quad 0 \le \alpha_j < \alpha'_j < \pi \quad j = 2, \dots, k-1.$$

We denote by S_A the spherical domain

$$S_A = \left\{ x \in \mathbb{R}^N : |x| = 1, \, \sigma \in A \times \prod_{j=k}^{N-1} [0, \pi] \right\} \subset S^{N-1}$$
(2.2)

and by D_A the corresponding k-dihedron,

$$D_A = \{x = (r, \sigma) : r > 0, \sigma \in S_A\}.$$

The *edge* of D_A is the (N - k)-dimensional space

$$d_A = \{x : x_1 = x_2 = \dots = x_k = 0\}.$$
 (2.3)

2.2. On the Martin kernel and critical values in a cone

We recall here some elements of local analysis when $\Omega = C_A \cap B_1$, A is a Lipschitz domain in S^{N-1} and C_A is the cone with vertex 0 and opening A.

Denote by λ_A the first eigenvalue and by ϕ_A the first eigenfunction of $-\Delta'$ in $W_0^{1,2}(A)$ (normalized by max $\phi_A = 1$). Let κ_- be the negative root of (1.11) and put

$$\Phi_1(x) := \frac{1}{\gamma} |x|^{\kappa_-} \phi_A(x/|x|)$$

where γ is a positive number. Then Φ_1 is a harmonic function in C_A vanishing on $\partial C_A \setminus \{0\}$. We choose $\gamma = \gamma_A$ so that the boundary trace of Φ_1 is δ_0 (=Dirac measure on with mass 1 at the origin).

- (i) If q ≥ 1 ²/_{κ−}, there is no solution of (1.1) in Ω_S with isolated singularity at 0 (see [10]).
- (ii) If $1 < q < 1 \frac{2}{\kappa_{-}}$, then for any k > 0 there exists a unique solution $u := u_k$ to problem (1.2) with $\mu = k\delta_0$ and

$$u_k(x) = k\Phi_1(x)(1+o(1))$$
 as $x \to 0.$ (2.4)

The function $u_{\infty} = \lim_{k \to \infty} u_k$ is a positive solution of (1.1) in Ω which vanishes on $\partial \Omega \setminus \{0\}$ and satisfies

$$u_{\infty}(x) = |x|^{-\frac{2}{q-1}} \omega_A(x/|x|)(1+o(1))$$
 as $x \to 0$ (2.5)

where ω_A is the (unique) positive solution of

$$-\Delta'\omega - a_{N,q}\omega + |\omega|^{q-1}\omega = 0$$
(2.6)

on S^{N-1} . Here Δ' is the Laplace-Beltrami operator and

$$a_{N,q} = \frac{2}{q-1} \left(\frac{2q}{q-1} - N \right).$$
 (2.7)

(iii) If $u \in C(\bar{\Omega}_A \setminus \{0\})$ is a positive solution of (1.1) vanishing on $(\partial C_A \cap B_{r_0}(0)) \setminus \{0\}$, then either *u* satisfies (2.4) for some k > 0 or *u* satisfies (2.5). In particular there exists a unique positive solution vanishing on $(\partial C_A \cap B_{r_0}(0)) \setminus \{0\}$ with strong singularity at 0. (For (ii) and (iii) see [24, Theorem 5.7].)

2.3. Separable harmonic functions and the Martin kernel in a k-dihedron, $2 \le k < N$

In the system of spherical coordinates, the Laplacian takes the form

$$\Delta u = \partial_{rr}u + \frac{N-1}{r}\partial_{r}u + \frac{1}{r^{2}}\Delta_{S^{N-1}}u$$

where the Laplace-Beltrami operator $\Delta_{S^{N-1}}$ is expressed by induction by

$$\Delta_{S^{N-1}} u = \frac{1}{(\sin \theta_{N-1})^{N-2}} \frac{\partial}{\partial \theta_{N-1}} \left((\sin \theta_{N-1})^{N-2} \frac{\partial u}{\partial \theta_{N-1}} \right) + \frac{1}{(\sin \theta_{N-1})^2} \Delta_{S^{N-2}} u, \qquad (2.8)$$

and

$$\Delta_{s1} u = \partial_{\theta_1 \theta_1} u. \tag{2.9}$$

If we compute the positive harmonic functions in the k-dihedron D_A of the form

$$v(x) = v(r, \sigma) = r^{\kappa} \omega(\sigma) \text{ in } D_A, \quad v = 0 \text{ in } \partial D_A \setminus \{0\}$$

we find that ω must be a positive eigenfunction corresponding to the first eigenvalue, λ_A , of $-\Delta_{S^{N-1}}$ in $W_0^{1,2}(S_A)$,

$$\begin{cases} \Delta_{S^{N-1}}\omega + \lambda_A \omega = 0 & \text{in } S_A \\ \omega = 0 & \text{on } \partial S_A \end{cases}$$
(2.10)

and κ must be a root of the algebraic equation (1.11) with λ_A as above. Thus $\kappa = \kappa_{\pm}$ where

$$\kappa_{+} = \frac{1}{2} \left(2 - N + \sqrt{(N-2)^{2} + 4\lambda_{A}} \right)$$

$$\kappa_{-} = \frac{1}{2} \left(2 - N - \sqrt{(N-2)^{2} + 4\lambda_{A}} \right).$$
(2.11)

Since

$$S^{N-1} = \left\{ \sigma = (\sigma_2 \sin \theta_{N-1}, \cos \theta_{N-1}) : \sigma_2 \in S^{N-2}, \ \theta_{N-1} \in (0, \pi) \right\},\$$

we look for a solution $\omega = \omega^{\{1\}}$ of (2.10) of the form

$$\omega^{\{1\}}(\sigma) = (\sin \theta_{N-1})^{\kappa_+} \omega^{\{2\}}(\sigma_2), \quad \theta_{N-1} \in (0,\pi), \quad \sigma_2 \in S^{N-2}.$$

Here $S^{N-2} = S^{N-1} \cap \{x_N = 0\}$ and we denote

$$S_A^{\{N-2\}} = S_A \cap \{x_N = 0\}, \quad D_A^{\{N-2\}} := D_A \cap \{x_N = 0\} \subset \mathbb{R}^{N-1}.$$

Then (2.11) jointly with relation (2.8) implies

$$\begin{cases} \Delta_{S^{N-2}} \omega^{\{2\}} + (\lambda_A - \kappa_+) \omega^{\{2\}} = 0 & \text{on } S_A^{\{N-2\}} \\ \omega^{\{2\}} = 0 & \text{on } \partial S_A^{\{N-2\}}. \end{cases}$$
(2.12)

Since we are interested in $\omega^{\{2\}}$ positive, $\lambda_A^{\{2\}} := \lambda_A - \kappa_+$ must be the first eigenvalue of $-\Delta_{S^{N-2}}$ in $W_0^{1,2}(S_A^{\{N-2\}})$.

Next we look for positive harmonic functions \tilde{u} in $D_A^{\{N-2\}}$ such that

$$\tilde{u}(x_1,\ldots,x_{N-1})=r^{\kappa'}\omega(\sigma_2),\quad \tilde{u}=0 \text{ on } \partial D_A^{\{N-2\}}.$$

The algebraic equation which gives the exponents is

$$(\kappa')^2 + (N-3)\kappa' - \lambda_A^{\{2\}} = 0.$$

Denote by κ'_{+} the positive root of this equation. By the definition of $\lambda_{A}^{\{2\}}$,

$$\kappa_{+}^{2} + (N-3)\kappa_{+} - \lambda_{A}^{\{2\}} = \kappa_{+}^{2} + (N-2)\kappa_{+} - \lambda_{A} = 0.$$

Therefore $\kappa'_{+} = \kappa_{+}$. Accordingly, if $k \ge 3$, we set

$$\omega^{\{2\}}(\sigma_2) = (\sin \theta_{N-2})^{\kappa_+} \omega^{\{3\}}(\sigma_3),$$

and find that $\omega^{\{3\}}$ satisfies

$$\begin{cases} \Delta_{S^{N-3}} \omega^{\{3\}} + (\lambda_A - 2\kappa_+) \omega^{\{3\}} = 0 & \text{in } S_A^{\{N-3\}} \\ \omega^{\{3\}} = 0 & \text{on } \partial S_A^{\{N-3\}}, \end{cases}$$
(2.13)

where

$$S_A^{\{N-3\}} = S_A \cap \{x_N = x_{N-1} = 0\}.$$

Performing this reduction process N - k times, we obtain the following results.

(i) If k > 2 then $\omega = \omega^{N-k}(\sigma)$ is given by

$$\omega(\sigma) = (\sin \theta_{N-1} \sin \theta_{N-2} \dots \sin \theta_k)^{\kappa_+} \omega^{\{N-k+1\}}(\sigma_{N-k+1})$$
(2.14)

where

$$\sigma_{N-k+1} \in S^{k-1} = S^{N-1} \cap \{x_N = x_{N-1} = \dots = x_{k+1} = 0\}$$

and $\omega' := \omega^{\{N-k+1\}}$ satisfies

$$\begin{cases} \Delta_{S^{k-1}}\omega' + (\lambda_A - (N-k)\kappa_+)\omega' = 0, & \text{in } S_A^{\{k-1\}} \\ \omega' = 0, & \text{on } \partial S_A^{\{k-1\}}, \end{cases}$$
(2.15)

where $S_A^{\{k-1\}} = S_A \cap \{x_N = x_{N-1} = \ldots = x_{k+1} = 0\} \approx A$ and $\lambda_A - (N-k)\kappa_+$ is the first eigenvalue of the problem.

(ii) If k = 2 then

$$\omega(\sigma) = (\sin \theta_{N-1} \sin \theta_{N-2} \dots \sin \theta_2)^{\kappa_+} \omega^{\{N-1\}}(\theta_1)$$
(2.16)

where $\sigma_{N-1} \in S^1 \approx \theta_1 \in (0, 2\pi)$, and $\omega^{\{N-1\}}$ satisfies

$$\begin{cases} \Delta_{S^1} \omega^{\{N-1\}} + (\lambda_A - (N-2)\kappa_+)\omega^{\{N-1\}} = 0 & \text{on } S_A^{\{1\}} \\ \omega^{\{N-1\}} = 0 & \text{on } \partial S_A^{\{1\}}, \end{cases}$$
(2.17)

with $\partial S_A^{\{1\}} \approx (0, \alpha)$. In this case

$$\kappa_{+} = \frac{\pi}{\alpha}, \quad \omega^{\{N-1\}}(\theta_{1}) = \sin(\pi\theta_{1}/\alpha),$$
(2.18)

and, by (1.11),

$$\lambda_A - (N-2)\kappa_+ = \frac{\pi^2}{\alpha^2} \Longrightarrow \lambda_A = \frac{\pi^2}{\alpha^2} + (N-2)\frac{\pi}{\alpha}.$$
 (2.19)

Observe that $\frac{1}{2} \le \kappa_+$ with equality holding only in the degenerate case $\alpha = 2\pi$ (which we exclude).

In either case, we find a positive harmonic function v_A in D_A , vanishing on ∂D_A , of the form

$$v_A(x) = |x|^{\kappa_+} \,\omega(x/|x|) \tag{2.20}$$

with ω as in (2.14) (for k > 2) or (2.18) (for k = 2). Furthermore, if Ω is a domain in \mathbb{R}^N such that, for some R > 0, $\Omega \cap B_R(0) = D_A \cap B_R(0)$ and w is a positive harmonic function in Ω vanishing on $d_A \cap B_R(0)$ then $w \sim v_A$ in $\Omega \cap B_{R'}(0)$ for every $R' \in (0, R)$. Similarly we find a positive harmonic function in D_A vanishing on $\partial D_A \setminus \{0\}$, singular at the origin, of the form

$$K'_A(x) = |x|^{\kappa_-} \omega(x/|x|).$$

If Ω is a domain as above and z is a positive harmonic function in Ω vanishing on $d_A \cap B_R(0) \setminus \{0\}$ then $z \sim K'_A$ in $\Omega \cap B_{R'}(0) \setminus \{0\}$ for every $R' \in (0, R)$. As K'_A is a kernel function of $-\Delta$ at 0 it follows that K'_A is, up to a multiplica-

As K'_A is a kernel function of $-\Delta$ at 0 it follows that K'_A is, up to a multiplicative constant c_A , the Martin kernel of $-\Delta$ in D_A , with singularity at 0. The Martin kernel, with singularity at a point $z \in d_A$, is given by

$$K_A(x,z) = c_A \frac{(\sin \theta_{N-1} \sin \theta_{N-2} \dots \sin \theta_k)^{\kappa_+} \omega^{\{N-k+1\}}(\sigma_{N-k+1})}{|x-z|^{N-2+\kappa_+}}$$
(2.21)

for every $x \in D_A$. From (2.1)

$$\sin \theta_{N-1} \sin \theta_{N-2} \dots \sin \theta_k = |x-z|^{-1} \sqrt{x_1^2 + x_2^2 + \dots + x_k^2}.$$

Therefore, if we write $x \in \mathbb{R}^N$ in the form $x = (x', x''), x' = (x_1, \dots, x_k), x'' = (x_{k+1}, \dots, x_N)$, we obtain the formula,

$$K_A(x, z) = c_A \frac{|x'|^{\kappa_+} \omega^{\{N-k+1\}}(\sigma_{N-k+1})}{|x-z|^{(N-2+2\kappa_+)}}$$

= $c_A \frac{|x'|^{\kappa_+} \omega^{\{N-k+1\}}(\sigma_{N-k+1})}{(|x'|^2 + |x'' - z|^2)^{(N-2+2\kappa_+)/2}}.$ (2.22)

Therefore, the Poisson potential of a measure $\mu \in \mathfrak{M}(d_A)$ is expressed by

$$\mathbb{K}_{A}[\mu](x) = c_{A}|x'|^{\kappa_{+}}\omega^{\{N-k+1\}}(\sigma_{N-k+1}) \\ \times \int_{\mathbb{R}^{N-k}} \frac{d\mu(z)}{(|x'|^{2} + |x'' - z|^{2})^{(N-2+2\kappa_{+})/2}}.$$
(2.23)

2.4. The admissibility condition

Consider the boundary value problem

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 & \text{in } D_A \\ u = \mu \in \mathfrak{M}(\partial D_A). \end{cases}$$
(2.24)

Let

$$\Gamma_R = \{ x = (x', x'') : |x'| \le R, |x''| \le R \}, \quad D_{A,R} := D_A \cap \Gamma_R$$
(2.25)

and let $\rho_{R,A}$ denote the first (positive) eigenfunction in $D_{A,R} := D_A \cap \Gamma_R$. In the rest of this section we drop the index A in K_A , $\rho_{A,R}$ etc., except for D_A , $D_{A,R}$ and d_A .

First we observe that a positive Radon measure on d_A is q-good relative to D_A if and only if, for every compact set $F \subset d_A$, $\mu \chi_F$ is q-good in D_A

Now suppose that μ is compactly supported in d_A and denote its support by F. We claim that μ is q-good in D_A if and only if it is q-good relative to $D_{A,R}$ for all sufficiently large R. Let R be such that $F \subset B_{R/2}^{N-k}(0)$. Assume that μ is q-good in $D_{A,R}$. Let v_R be the solution of (1.1) in $D_{A,R}$ such that $v_R = \mu$ on $d_A \cap \Gamma_R$, $v_R = 0$ on $\partial D_{A,R} \setminus d_A$. Then v_R increases with R and $v = \lim_{R \to \infty} v_R$ is a solution of (1.1) in D_A with boundary data μ . This proves our claim in one direction; the other direction is obvious.

The condition for μ to be q-admissible in $D_{A,R}$ is

$$\int_{D_{A,R}} \mathbb{K}^{R}[|\mu|](x)^{q} \rho_{R}(x) dx < \infty, \qquad (2.26)$$

where K^R is the Martin kernel of $-\Delta$ in $D_{A,R}$. If R is sufficiently large then, in a neighborhood of $F, K^R \sim K$ and $\rho^R \sim \rho \sim v_A$. Therefore, a sufficient condition for μ to be q-good in D_A is

$$\int_{\Gamma_R \cap D_A} \mathbb{K}[|\mu|](x)|^q \rho(x) dx < \infty \quad \forall R > 0.$$
(2.27)

By the first observation in this subsection, it follows that the previous statement remains valid for any positive Radon measure supported on d_A .

By (2.21),

$$\mathbb{K}[|\mu|](x) \le c_A(r')^{\kappa_+} \int_{\mathbb{R}^{N-k}} j(x', x''-z) d|\mu|(z)$$
(2.28)

where

$$j(x) = |x|^{-N+2-2\kappa_+} \quad \forall x \in \mathbb{R}^N.$$
(2.29)

Therefore, using (2.20), condition (2.27) becomes

$$\int_{0}^{R} \int_{|x''| < R} \left(\int_{\mathbb{R}^{N-k}} j(x', x'' - z) d|\mu|(z) \right)^{q} (r')^{(q+1)\kappa_{+}+k-1} dx'' dr' < \infty$$
(2.30)

for every R > 0.

2.5. The critical values

Relative to the equation

$$-\Delta u + |u|^{q-1}u = 0 \tag{2.31}$$

there exist two thresholds of criticality associated with the edge d_A .

The first is the value q_c^* such that, for $q_c^* \leq q$ the whole edge d_A is removable but for $1 < q < q_c^*$ there exist non-trivial solutions in D_A which vanish on $\partial D_A \setminus d_A$. The second $q_c < q_c^*$ corresponds to the removability of points on d_A . For $q \geq q_c$ points on d_A are removable while for $1 < q < q_c$ there exist solutions with isolated point singularities on d_A . In the next two propositions we determine these critical values.

Proposition 2.1. Assume $q > 1, 1 \le k < N$. Then the condition

$$q < q_c^* := 1 + \frac{2 - k + \sqrt{(k - 2)^2 + 4\lambda_A - 4(N - k)\kappa_+}}{\lambda_A - (N - k)\kappa_+}$$
(2.32)

is necessary and sufficient for the existence of a non-trivial solution u of (2.31) in D_A which vanishes on $\partial D_A \setminus d_A$. Furthermore, when this condition holds, there exist non-trivial positive bounded measures μ on d_A such that $\mathbb{K}[\mu] \in L^q_\rho(\Gamma_R \cap D_A)$.

Remark. The statement remains true for k = N, which is the case of the cone. In this case $q_c = q_c^* = 1 - (2/\kappa_-)$ and a straightforward computation yields:

$$q_c = \frac{N+2+\sqrt{(N-2)^2+4\lambda_A}}{N-2+\sqrt{(N-2)^2+4\lambda_A}}.$$
(2.33)

Proof. Recall that $\lambda_A - (N - k)\kappa_+$ is the first eigenvalue in $S_A^{\{k-1\}}$ (see (2.15) and the remarks following it). Let κ'_+, κ'_- be the two roots of the equation

$$X^{2} + (k-2)X - (\lambda_{A} - (N-k)\kappa_{+}) = 0,$$

i.e.,

$$\kappa'_{\pm} = \frac{1}{2} \left(2 - k \pm \sqrt{(k-2)^2 + 4(\lambda_A - (N-k)\kappa_+)} \right).$$

Then, by [24, Theorem 5.7], recalled in Subsection 2.2, if $1 < q < 1 - (2/\kappa'_{-})$ there exists a unique solution of (2.31) in the cone $C_{S_A^{k-1}}$ *i.e.* the cone with opening $S_A^{k-1} \subset S^{k-1} \subset \mathbb{R}^k$ with trace $a\delta_0$ (where δ_0 denotes the Dirac measure at the vertex of the cone and a > 0). By (2.5) this solution satisfies

$$u_a(x) = a |x|^{-\alpha} \phi(x/|x|)(1+o(1)) \quad \text{as } x \to 0,$$
(2.34)

where ϕ is the first positive eigenfunction of $-\Delta'$ in $W_0^{1,2}(S_A^{k-1})$ normalized so that u_1 possesses trace δ_0 .

The function *u* given by

$$\tilde{u}_a(x',x'') = u_a(x') \quad \forall (x',x'') \in D_A = C_{S_A^{k-1}} \times \mathbb{R}^{N-k},$$

is a nonzero solution of (2.31) in D_A which vanishes on $\partial D_A \setminus d_A$ and has bounded trace on d_A .

A simple calculation shows that $1 - (2/\kappa'_{-})$ equals q_c^* as given in (2.32).

Next, assume that $q \ge q_c^*$ and let *u* be a solution of (2.31) in D_A which vanishes on $\partial D_A \setminus d_A$.

Given $\epsilon > 0$ let v_{ϵ} be the solution of (2.31) in $D_A^{\{N-k-1\}} \setminus \{x' \in \mathbb{R}^k : |x'| \le \epsilon\}$ such that

$$v_{\epsilon}(x') = \begin{cases} 0, & \text{if } x' \in \partial D_A^{\{N-k-1\}}, \ |x'| > \epsilon, \\ \infty, & \text{if } |x'| = \epsilon. \end{cases}$$

Given R > 0 let w_R be the maximal solution in $\{x'' \in \mathbb{R}^{N-k} : |x''| < R\}$.

Then the function u^* given by

$$u^*(x', x'') = v_{\epsilon}(x') + w_{R}(x'')$$

is a supersolution of (2.31) in $D_A \setminus \{(x', x'') : |x'| > \epsilon, |x''| < R\}$ and it dominates u in this domain. But $w_R(x'') \to 0$ as $R \to \infty$ and, by [10], $v_{\epsilon}(x') \to 0$ as $\epsilon \to 0$. Therefore $u_+ = 0$ and, by the same token, $u_- = 0$.

Proposition 2.2. Let A be defined as before. Then

$$\mathbb{K}[\mu] \in L^q_\rho(\Gamma_R \cap D_A) \quad \forall \mu \in \mathfrak{M}(d_A), \quad \forall R > 0$$
(2.35)

if and only if

$$1 < q < q_c := \frac{\kappa_+ + N}{\kappa_+ + N - 2}.$$
(2.36)

This statement is equivalent to the following:

Condition (2.36) is necessary and sufficient in order that the Dirac measure $\mu = \delta_P$, supported at a point $P \in d_A$, satisfy (2.35).

Proof. It is sufficient to prove the result relative to the family of measures μ such that μ is positive, has compact support and $\mu(d_A) = 1$. Let R > 1 be sufficiently large so that the support of μ is contained in $\Gamma_{R/2}$. The measure μ can be approximated (in the sense of weak convergence of measures) by a sequence $\{\mu_n\}$ of convex combinations of Dirac measures supported in $d_A \cap \Gamma_{R/2}$. For such a sequence $\mathbb{K}[\mu_n] \to \mathbb{K}[\mu]$ pointwise and $\{\mathbb{K}[\mu_n]\}$ is uniformly bounded in $D_A \setminus \Gamma_{3R/4}$. Therefore it is sufficient to prove the result when $\mu = \delta_0$. In this case the admissibility condition (1.5)) is

$$\int_0^R \int_{|x''| < R} j(x)^q (r')^{(q+1)\kappa_+ + k - 1} dx'' dr' < \infty,$$

i.e.,

$$\int_0^R \int_0^R |x|^{q(2-N-2\kappa_+)} (r')^{(q+1)\kappa_++k-1} (r'')^{N-k-1} dr'' dr' < \infty.$$

Substituting $\tau := r''/r'$ the condition becomes

$$\int_0^R \int_0^{R/r'} \left(1+\tau^2\right)^{\frac{q}{2}(2-N-2\kappa_+)} (r')^{q(2-N-\kappa_+)+\kappa_++N-1} \tau^{N-k-1} d\tau \, dr' < \infty.$$

This holds if and only if $q < (\kappa_+ + N)/(\kappa_+ + N - 2)$.

Remark. It is interesting to notice that k does not appear explicitly in (2.36). Furthermore, we observe that

$$\frac{2}{q_c - 1} \left(\frac{2q_c}{q_c - 1} - N \right) = \lambda_A \iff \kappa_+ (\kappa_+ + N - 2) = \lambda_A, \tag{2.37}$$

which follows from (2.11). This implies that there does not exist a nontrivial solution of the nonlinear eigenvalue problem

$$-\Delta_{S^{N}-1}\psi - \frac{2}{q-1}\left(\frac{2q}{q-1} - N\right)\psi + |\psi|^{q-1}\psi = 0 \quad \text{in } S_{D_{A}}$$

$$\psi = 0 \quad \text{in } \partial S_{D_{A}}$$
(2.38)

which, in turn, implies that there does not exists a nontrivial solution of (2.31) of the form $u(x) = u(r, \sigma) = |x|^{-2/(q-1)}\psi(\sigma)$, and also no solution of this equation in D_A which vanishes on $\partial D_A \setminus \{0\}$. This is the classical ansatz for the removability of isolated singularities in d_A .

3. The harmonic lifting of a Besov space $B^{-s,p}(d_A)$

Denote by $W^{\sigma,p}(\mathbb{R}^{\ell})$ ($\sigma > 0, 1 \le p \le \infty$) the Sobolev spaces over \mathbb{R}^{ℓ} . In order to use interpolation, it is useful to introduce the Besov space $B^{\sigma,p}(\mathbb{R}^{\ell})$ ($\sigma > 0$). If σ is not an integer then

$$B^{\sigma,p}(\mathbb{R}^{\ell}) = W^{\sigma,p}(\mathbb{R}^{\ell}).$$
(3.1)

If σ is an integer the space is defined as follows. Put

$$\Delta_{x,y}f = f(x + y) + f(x - y) - 2f(x)$$

Then

$$B^{1,p}(\mathbb{R}^{\ell}) = \left\{ f \in L^{p}(\mathbb{R}^{\ell}) : \frac{\Delta_{x,y}f}{|y|^{1+\ell/p}} \in L^{p}(\mathbb{R}^{\ell} \times \mathbb{R}^{\ell}) \right\},$$
(3.2)

with norm

$$\|f\|_{B^{1,p}} = \|f\|_{L^p} + \left(\iint_{\mathbb{R}^\ell \times \mathbb{R}^\ell} \frac{|\Delta_{x,y} f|^p}{|y|^{\ell+p}} dx \, dy\right)^{1/p},\tag{3.3}$$

(with standard modification if $p = \infty$) and

$$B^{m,p}(\mathbb{R}^{\ell}) = \left\{ f \in W^{m-1,p}(\mathbb{R}^{\ell}) : \\ D_x^{\alpha} f \in B^{1,p}(\mathbb{R}^{\ell}) \, \forall \alpha \in \mathbb{N}^{\ell}, \ |\alpha| = m-1 \right\}$$
(3.4)

with norm

$$\|f\|_{B^{m,p}} = \|f\|_{W^{m-1,p}} + \left(\sum_{|\alpha|=m-1} \iint_{\mathbb{R}^{\ell} \times \mathbb{R}^{\ell}} \frac{|D_x^{\alpha} \Delta_{x,y} f|^p}{|y|^{\ell+p}} dx \, dy\right)^{1/p}.$$
 (3.5)

We recall that the following inclusions hold ([27, p 155])

$$W^{m,p}(\mathbb{R}^{\ell}) \subset B^{m,p}(\mathbb{R}^{\ell}) \quad \text{if } p \ge 2$$

$$B^{m,p}(\mathbb{R}^{\ell}) \subset W^{m,p}(\mathbb{R}^{\ell}) \quad \text{if } 1 \le p \le 2.$$
(3.6)

When $1 , the dual spaces of <math>W^{s,p}$ and $B^{m,p}$ are respectively denoted by $W^{-s,p'}$ and $B^{-m,p'}$.

The following is the main result of this section.

Theorem 3.1. Suppose that $q_c < q < q_c^*$ and let A be defined as in Subsection 2.1. Then there exist positive constants c_1, c_2 , depending on q, N, k, κ_+ , such that for any R > 1 and any $\mu \in \mathfrak{M}_+(d_A)$ with support in $B_{R/2}$:

$$c_{1} \|\mu\|_{B^{-s,q}(\mathbb{R}^{N-k})}^{q} \leq \int_{D_{A,R}} \mathbb{K}[|\mu|]^{q}(x)\rho(x)dx \leq c_{2}(1+R)^{\beta} \|\mu\|_{B^{-s,q}(\mathbb{R}^{N-k})}^{q},$$
(3.7)

where $s = 2 - \frac{\kappa_+ + k}{q'}$, $\beta = (q+1)\kappa_+ + k - 1$ and $D_{A,R} = D_A \cap \Gamma_R$. If $q = q_c$ the estimate remains valid for measures μ such that the diameter of supp μ is sufficiently small (depending on the parameters mentioned before).

Remark. When $q \ge 2$ the norms in the Besov space may be replaced by the norms in the corresponding Sobolev spaces.

Recall the admissibility condition for a measure $\mu \in \mathfrak{M}_+(d_A)$:

$$\int_{D_{A,R}} \mathbb{K}[\mu]^q(x)\rho(x)dx < \infty \quad \forall R > 0$$

and the equivalence (see (2.27)-(2.30))

$$\int_{D_{A,R}} \mathbb{K}[\mu]^{q}(x)\rho(x)dx \approx J^{A,R}(\mu)$$

$$:= \int_{0}^{R} \int_{B_{R}'} \left(\int_{\mathbb{R}^{N-k}} \frac{d\mu(z)}{(\tau^{2} + |x'' - z|^{2})|)^{(N-2+2\kappa_{+})/2}} \right)^{q} \tau^{(q+1)\kappa_{+}+k-1}dx''d\tau,$$
(3.8)

where $x = (x', x'') \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $\tau = |x'|$ and $B_R'' = \{x'' \in \mathbb{R}^{N-k} : |x''| < R\}$. We denote

$$\nu = N - 2 + 2\kappa_+. \tag{3.9}$$

If $2\kappa_+$ is an integer, it is natural to relate (3.8) to the Poisson potential of μ in $\mathbb{R}^n_+ = \mathbb{R}_+ \times \mathbb{R}_{n-1}$ where $n = N - 2 + 2\kappa_+$. We clarify this statement below. Assuming that 2 < n + k - N, denote

$$y = (y_1, \tilde{y}, y'') \in \mathbb{R}^n, \quad \tilde{y} = (y_2, \dots, y_{n+k-N}), \quad y'' = (y_{n+k-N+1}, \dots, y_n).$$

The Poisson kernel in $\mathbb{R}^n_+ = \mathbb{R}_+ \times \mathbb{R}_{n-1}$ is given by

$$P_n(y) = \gamma_n y_1 |y|^{-n} \quad y_1 > 0, \tag{3.10}$$

for some $\gamma_n > 0$, and the Poisson potential of a bounded Borel measure μ with support in

$$\mathbf{d} := \left\{ y = \left(0, \, y'' \right) \in \mathbb{R}^n : \, y'' \in \mathbb{R}_{N-k} \right\}$$

is

$$\mathbb{K}_{n}[\mu](y) = \gamma_{n} y_{1} \int_{\mathbb{R}^{N-k}} \frac{d\mu(z)}{\left(y_{1}^{2} + |\widetilde{y}|^{2} + |y'' - z|^{2}\right)^{n/2}} \quad \forall y \in \mathbb{R}^{n}_{+}.$$
 (3.11)

In particular, for $\tilde{y} = 0$,

$$\mathbb{K}_{n}[\mu](y_{1}, 0, y'') = \gamma_{n} y_{1} \int_{\mathbb{R}^{N-k}} \frac{d\mu(z)}{\left(y_{1}^{2} + |y'' - z|^{2}\right)^{n/2}}.$$
(3.12)

The integral in (3.12) is precisely the same as the inner integral in (3.8).

In fact, it will be shown that, if we set

$$n := \{\nu\} = \inf\{m \in \mathbb{N} : m \ge \nu\},\tag{3.13}$$

this approach also works when $2\kappa_+$ is not an integer. We note that, for *n* given by (3.13),

$$n - N + k \ge 2,\tag{3.14}$$

with equality only if k = 3 and $\kappa_+ \le 1/2$ or k = 2 and $\kappa_+ \in (1/2, 1]$. Indeed,

$$n - N + k = k + \{2\kappa_+\} - 2$$

and (as $\kappa_+ > 0$) $\{2\kappa_+\} \ge 1$. If k = 2 then $\kappa_+ > 1/2$ and consequently $\{2\kappa_+\} \ge 2$. These facts imply our assertion.

We also note that κ_+ is strictly increasing relative to λ_A and

$$\kappa_{+} \begin{cases} = 1 & \text{if } D_{A} = \mathbb{R}_{+}^{N} \\ < 1 & \text{if } D_{A} \subsetneqq \mathbb{R}_{+}^{N} \\ > 1 & \text{if } D_{A} \gneqq \mathbb{R}_{+}^{N}. \end{cases}$$
(3.15)

Finally we observe that $\gamma := \lambda_A - (N - k)\kappa_+ > 0$ (see (2.15)) and, by (2.11) and (2.32),

$$\gamma = \kappa_+^2 + (k-2)\kappa_+, \quad q_c^* = 1 + \frac{-(k-2) + \sqrt{(k-2)^2 + 4\gamma}}{\gamma}.$$
 (3.16)

Therefore q_c^* is strictly decreasing relative to γ and consequently also relative to κ_+ .

The proof of the theorem is based on the following important result proved in [28, 1.14.4.]

Proposition 3.2. Let $1 < q < \infty$ and s > 0. Then for any bounded Borel measure μ in \mathbb{R}^{n-1} there holds

$$I(\mu) = \int_{\mathbb{R}^{n}_{+}} |\mathbb{K}_{n}[\mu](y)|^{q} e^{-y_{1}} y_{1}^{s_{1}-1} dy \approx \|\mu\|_{B^{-s,q}(\mathbb{R}^{n-1})}^{q}.$$
 (3.17)

In the first part of the proof we derive inequalities comparing $I(\mu)$ and $J^{A,R}(\mu)$. Actually, it is useful to consider a slightly more general expression than $I(\mu)$, namely:

$$I_{\nu,\sigma}^{m,j}(\mu) := \int_{\mathbb{R}^{m+j}_+} \left| \int_{\mathbb{R}^m} \frac{y_1 d\mu(z)}{\left(y_1^2 + |\widetilde{y}|^2 + |y'' - z|^2\right)^{\nu/2}} \right|^q e^{-y_1} y_1^{\sigma q - 1} dy, \quad (3.18)$$

where v is an arbitrary number such that v > m, $j \ge 1$ and $\sigma > 0$. A point $y \in \mathbb{R}^{m+j}_+$ is written in the form $y = (y_1, \tilde{y}, y'') \in \mathbb{R}_+ \times \mathbb{R}^{j-1} \times \mathbb{R}^m$. We assume that μ is supported in \mathbb{R}^m . Note that,

$$I(\mu) = \gamma_n^q I_{n,s}^{m,j} \text{ where } m = N - k, \quad j = n - m = n - N + k.$$
(3.19)

Put

$$F_{\nu,m}[\mu](\tau) := \int_{\mathbb{R}^m} \left| \int_{\mathbb{R}^m} \frac{d\mu(z)}{\left(\tau^2 + |y'' - z|^2\right)^{\nu/2}} \right|^q dy'' \quad \forall \tau \in [0,\infty).$$
(3.20)

With this notation, if $j \ge 2$ then

$$I_{\nu,\sigma}^{m,j}(\mu) := \int_0^\infty \int_{\mathbb{R}^{j-1}} F_{\nu,m}[\mu] \left(\sqrt{y_1^2 + |\widetilde{y}|^2} \right) e^{-y_1} y_1^{(\sigma+1)q-1} d\widetilde{y} \, dy_1 \qquad (3.21)$$

and if j = 1

$$I_{\nu,\sigma}^{m,1}(\mu) := \int_0^\infty F_{\nu,m}[\mu](y_1)e^{-y_1}y_1^{(\sigma+1)q-1}\,dy_1.$$
(3.22)

Lemma 3.3. Assume that $m < v, 0 < \sigma, 2 \le j$ and $1 < q < \infty$. Then there exists a positive constant c, depending on m, j, v, σ , q, such that, for every bounded Borel measure μ with support in \mathbb{R}^m :

$$\frac{1}{c}\int_0^\infty F_{\nu,m}[\mu](\tau)h_{\sigma,j}(\tau)d\tau \le I_{\nu,\sigma}^{m,j}(\mu) \le c\int_0^\infty F_{\nu,m}[\mu](\tau)h_{\sigma,j}(\tau)d\tau, \quad (3.23)$$

where $F_{\nu,m}$ is given by (3.20) and, for every $\tau > 0$,

$$h_{\sigma,j}(\tau) = \begin{cases} \frac{\tau^{(\sigma+1)q+j-2}}{(1+\tau)^{(\sigma+1)q}}, & \text{if } j \ge 2, \\ e^{-\tau}\tau^{(\sigma+1)q-1}, & \text{if } j = 1. \end{cases}$$
(3.24)

Proof. There is nothing to prove in the case j = 1. Therefore we assume that $j \ge 2$.

We use the notation $y = (y_1, \tilde{y}, y'') \in \mathbb{R} \times \mathbb{R}^{j-1} \times \mathbb{R}^m$. The integrand in (3.21) depends only on y_1 and $\rho := |\tilde{y}|$. Therefore, $I_{\nu,\sigma}^{m,j}$ can be written in the form

$$I_{\nu,\sigma}^{m,j}(\mu) = c_{m,j} \int_0^\infty \int_0^\infty F_{\nu,m}[\mu] \left(\sqrt{y_1^2 + \rho^2}\right) e^{-y_1} y_1^{(\sigma+1)q-1} \, dy_1 \rho^{j-2} d\rho.$$

We substitute $y_1 = (\tau^2 - \rho^2)^{1/2}$, then change the order of integration and finally substitute $\rho = r\tau$. This yields,

$$\begin{split} c_{m,j}^{-1} I_{\nu,\sigma}^{m,j}(\mu) \\ &= \int_0^\infty \int_\rho^\infty F_{\nu,m}[\mu](\tau) \rho^{j-2} e^{-\sqrt{\tau^2 - \rho^2}} (\tau^2 - \rho^2)^{(\sigma+1)q/2 - 1} \tau \, d\tau \, d\rho \\ &= \int_0^\infty \int_0^\tau F_{\nu,m}[\mu](\tau) \rho^{j-2} e^{-\sqrt{\tau^2 - \rho^2}} (\tau^2 - \rho^2)^{(\sigma+1)q/2 - 1} \tau \, d\rho \, d\tau \\ &= \int_0^\infty \int_0^1 F_{\nu,m}[\mu](\tau) \tau^{j-2 + (\sigma+1)q} e^{-\tau \sqrt{1 - r^2}} f(r) dr \, d\tau, \end{split}$$

where

$$f(r) = r^{j-2}(1-r^2)^{(\sigma+1)q/2-1}.$$

We denote

$$I_{\sigma}^{j}(\tau) = \int_{0}^{1} e^{-\tau \sqrt{1-r^{2}}} f(r) dr,$$

so that

$$I_{\nu,\sigma}^{m,j}(\mu) = c_{m,j} \int_0^\infty F_{\nu,m}[\mu](\tau) \tau^{j-2+(\sigma+1)q} I_{\sigma}^j(\tau) d\tau.$$
(3.25)

To complete the proof we estimate I_{σ}^{j} . Since $j \ge 2$, $f \in L^{1}(0, 1)$ and I_{σ}^{j} is continuous in $[0, \infty)$ and positive everywhere. Hence, for every $\alpha > 0$, there exists a positive constant $c_{\alpha} = c_{\alpha}(\sigma)$ such that

$$\frac{1}{c_{\alpha}} \le I_{\sigma}^{j} \le c_{\alpha} \text{ in } [0, \alpha).$$
(3.26)

Next we estimate I_{σ}^{j} for large τ . Since $j \geq 2$,

$$I_{\sigma}^{j} \leq 2^{(\sigma+1)q/2-1} \int_{0}^{1} (1-r)^{(\sigma+1)q/2-1} e^{-\tau \sqrt{1-r}} dr.$$

Substituting $r = 1 - t^2$ we obtain,

$$I_{\sigma}^{j} \leq 2^{(\sigma+1)q/2} \int_{0}^{1} t^{(\sigma+1)q-1} e^{-t\tau} dt = c(\sigma,q)\tau^{-(\sigma+1)q}.$$
 (3.27)

On the other hand, if $\tau \geq 2$,

$$I_{\sigma}^{j}(\tau) = \int_{0}^{1} (1 - t^{2})^{(j-3)/2} t^{(\sigma+1)q-1} e^{-\tau t} dt$$

= $\tau^{-(\sigma+1)q} \int_{0}^{\tau} (1 - (s/\tau)^{2})^{(j-3)/2} s^{(\sigma+1)q-1} e^{-s} ds$ (3.28)
 $\geq \tau^{-(\sigma+1)q} 2^{-(j-3)} \int_{0}^{1} s^{(\sigma+1)q-1} e^{-s} ds.$

Combining (3.25) with (3.26)-(3.28) we obtain (3.23).

Next we derive an estimate in which integration over $\mathbb{R}^n_+ = \mathbb{R}^j_+ \times \mathbb{R}^m$ is replaced by integration over a bounded domain, for measures supported in a fixed bounded subset of \mathbb{R}^m .

Let $B_R^j(0)$ and $B_R^m(0)$ denote the balls of radius *R* centered at the origin, in \mathbb{R}^j and \mathbb{R}^m respectively. Denote

$$F_{\nu,m}^{R}[\mu](\tau) = \int_{B_{R}^{m}} \left| \int_{\mathbb{R}^{m}} \frac{d\mu(z)}{(\tau^{2} + |y'' - z|^{2})^{\nu/2}} \right|^{q} dy'' \quad \forall \tau \in [0,\infty)$$
(3.29)

and, if $j \ge 2$,

$$I_{\nu,\sigma}^{m,j}(\mu;R) = \int_{B_R^j \cap \{0 < y_1\}} F_{\nu,m}^R[\mu] \left(\sqrt{y_1^2 + |\widetilde{y}|^2} \right) e^{-y_1} y_1^{\sigma q - 1} d\widetilde{y} \, dy_1, \quad (3.30)$$

where $(y_1, \tilde{y}) \in \mathbb{R} \times \mathbb{R}^{j-1}$. If j = 1 we denote

$$I_{\nu,\sigma}^{m,1}(\mu;R) = \int_0^R F_{\nu,m}^R[\mu](y_1)e^{-y_1}y_1^{\sigma q-1}\,dy_1.$$
(3.31)

Similarly to Lemma 3.3 we obtain the following:

Lemma 3.4. If $j \ge 1$, there exists a positive constant c such that, for any bounded Borel measure μ with support in $\mathbb{R}^m \cap B_R$

$$c^{-1} \int_{0}^{R} F_{\nu,m}^{R}[\mu](\tau) h_{\sigma,j}(\tau) d\tau \le I_{\nu,\sigma}^{m,j}(\mu;R) \le c \int_{0}^{R} F_{\nu,m}^{R}[\mu](\tau) h_{\sigma,j}(\tau) d\tau \quad (3.32)$$

with $h_{\sigma, j}$ as in (3.24).

Proof. In the case j = 1 there is nothing to prove. Therefore we assume that $j \ge 2$. From (3.30) we obtain

$$I_{\nu,\sigma}^{m,j}(\mu;R) = c_{m,j} \int_0^R \int_0^{\sqrt{R^2 - \rho^2}} F_{\nu,m}^R[\mu] \left(\sqrt{y_1^2 + \rho^2}\right) e^{-y_1} y_1^{(\sigma+1)q-1} dy_1 \rho^{j-2} d\rho.$$

Substituting $y_1 = (\tau^2 - \rho^2)^{1/2}$, then changing the order of integration and finally substituting $\rho = r\tau$ we obtain

$$c_{m,j}^{-1}I_{\nu,\sigma}^{m,j}(\mu;R) = \int_0^R \int_0^1 F_{\nu,\mu}^R[\mu](\tau)\tau^{j-2+(\sigma+1)q} e^{-\tau\sqrt{1-r^2}} f(r)dr\,d\tau.$$

where

$$f(r) = r^{j-2}(1-r^2)^{(\sigma+1)q/2-1}.$$

The remaining part of the proof is the same as for Lemma 3.3.

Lemma 3.5. Let $1 < q, 0 < \sigma$ and assume that m < vq and $0 \le j - 1 < v$. Then there exists a positive constant \bar{c} , depending on j, m, q, σ, v , such that, for every $R \ge 1$ and every bounded Borel measure μ with support in $B_{R/2}(0) \cap \mathbb{R}^m$,

$$\left| \int_{0}^{\infty} F_{\nu,m}[\mu](\tau) h_{\sigma,j}(\tau) d\tau - \int_{0}^{R} F_{\nu,m}^{R}[\mu](\tau) h_{\sigma,j}(\tau) d\tau \right|$$

$$\leq \bar{c} R^{(\sigma+1-\nu)q+m+j-1} \|\mu\|_{\mathfrak{M}}^{q}$$
(3.33)

with $h_{\sigma, j}$ as in (3.24).

Proof. We estimate

$$\left| \int_{0}^{\infty} F_{\nu,m}[\mu](\tau)h_{\sigma,j}(\tau)d\tau - \int_{0}^{R} F_{\nu,m}^{R}[\mu](\tau)h_{\sigma,j}(\tau)d\tau \right| \leq$$

$$\int_{R}^{\infty} \left| F_{\nu,m}[\mu] \right|(\tau)h_{\sigma,j}(\tau)d\tau + \int_{0}^{R} \left| F_{\nu,m}[\mu] - F_{\nu,m}^{R}[\mu] \right|(\tau)h_{\sigma,j}(\tau)d\tau.$$
(3.34)

For every $\tau > 0$,

$$\left|F_{\nu,m}[\mu]\right|(\tau) \le \tau^{-\nu q} \left\|\mu\right\|_{\mathfrak{M}}^{q}.$$
(3.35)

Since j - 1 < vq, it follows that

$$\begin{split} \int_{R}^{\infty} \left| F_{\nu,m}[\mu] \right|(\tau) h_{\sigma,j}(\tau) d\tau &\leq \|\mu\|_{\mathfrak{M}}^{q} \int_{R}^{\infty} \tau^{-\nu q} h_{\sigma,j}(\tau) d\tau \\ &\leq c(\sigma,q) \|\mu\|_{\mathfrak{M}}^{q} \int_{R}^{\infty} \frac{\tau^{(\sigma+1)q+j-2-\nu q}}{(1+\tau)^{(\sigma+1)q}} d\tau \quad (3.36) \\ &\leq \frac{c(\sigma,q)}{\nu q-j+1} \|\mu\|_{\mathfrak{M}}^{q} R^{j-1-\nu q}. \end{split}$$

Since, by assumption, supp $\mu \subset B_{R/2}$, we have

$$\begin{split} &\int_{0}^{R} \left| F_{\nu,m}[\mu] - F_{\nu,m}^{R}[\mu] \right| (\tau) h_{\sigma,j}(\tau) d\tau \\ &\leq \int_{0}^{R} \int_{|y''|>R} \left| \int_{\mathbb{R}^{m}} \frac{d\mu(z)}{(\tau^{2} + |y'' - z|^{2})^{\nu/2}} \right|^{q} dy'' h_{\sigma,j}(\tau) d\tau \\ &\leq \|\mu\|_{\mathfrak{M}}^{q} \int_{0}^{R} \int_{|\zeta|>R/2} \left(|\tau^{2} + |\zeta|^{2} \right)^{-\nu q/2} d\zeta h_{\sigma,j} d\tau \\ &\leq c(m,q) \|\mu\|_{\mathfrak{M}}^{q} \int_{0}^{R} \int_{R/2}^{\infty} \left(\tau^{2} + \rho^{2} \right)^{-\nu q/2} \rho^{m-1} d\rho h_{\sigma,j} d\tau \qquad (3.37) \\ &\leq c(m,q) \|\mu\|_{\mathfrak{M}}^{q} \int_{0}^{R} \tau^{m-\nu q} \int_{R/2\tau}^{\infty} (1 + \eta^{2})^{-\nu q/2} \eta^{m-1} d\eta h_{\sigma,j} d\tau \\ &\leq \frac{c(m,q)}{\nu q - m} \|\mu\|_{\mathfrak{M}}^{q} R^{m-\nu q} \int_{0}^{R} \tau^{(\sigma+1)q+j-2} d\tau \\ &\leq \frac{c(m,q)}{(\nu q - m)((\sigma+1)q + j - 1)} \|\mu\|_{\mathfrak{M}}^{q} R^{(\sigma+1)q+j-1+m-\nu q}. \end{split}$$

Combining (3.34)-(3.37) we obtain (3.33).

Corollary 3.6. For every R > 0 put

$$J_{\nu,\sigma}^{m,j}(\mu;R) := \int_0^R F_{\nu,m}^R[\mu](\tau)\tau^{(\sigma+1)q+j-2}d\tau.$$
(3.38)

Then

$$\frac{1}{c}I_{\nu,\sigma}^{m,j}(\mu) - \bar{c}R^{\beta} \|\mu\|_{\mathfrak{M}}^{q} \le J_{\nu,\sigma}^{m,j}(\mu;R) \le cR^{(\sigma+1)q}I_{\nu,\sigma}^{m,j}(\mu), \qquad (3.39)$$
$$\beta = (\sigma+1-\nu)q + j + m - 1,$$

for every R > 1 and every bounded Borel measure μ with support in $B_{R/2}^m(0) := B_{R/2}(0) \cap \mathbb{R}^m$.

Proof. This is an immediate consequence of Lemma 3.5 and Lemma 3.3. Π

Lemma 3.7. Let m, j be positive integers such that $j \ge 1$ and let $1 < q, 0 < \sigma$. Put n := m + j.

Then there exist positive constants c, \bar{c} , depending on j, m, q, σ , such that, for every R > 1 and every measure $\mu \in \mathfrak{M}_+(B_{R/2}^{m'}(0))$,

$$\frac{1}{c} \|\mu\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^{q} - \bar{c}R^{q\left(\sigma - \frac{n-1}{q'}\right)} \|\mu\|_{\mathfrak{M}}^{q} \le J_{n,\sigma}^{m,j}(\mu; R)
\le cR^{(\sigma+1)q} \|\mu\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^{q}.$$
(3.40)

If $\sigma < \frac{n-1}{a'}$, there exists $R_0 > 1$ such that, for all $R > R_0$,

$$\frac{1}{2c} \|\mu\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^q \le J_{n,\sigma}^{m,j}(\mu;R).$$
(3.41)

If $\sigma = \frac{n-1}{a'}$ then, there exists a > 0 such that the inequality remains valid for measures μ such that diam(supp μ) $\leq a$.

If, in addition, $\frac{j-1}{a'} < \sigma$ then

$$\frac{1}{2c} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q \le J_{n,\sigma}^{m,j}(\mu;R) \le cR^{(\sigma+1)q} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q,$$
(3.42)

where $s := \sigma - \frac{j-1}{\alpha'}$.

Remark. Assume that $\mu \ge 0$. Then:

- (i) If $\mu \in B^{-\sigma,q}(\mathbb{R}^{n-1})$ and $\frac{j-1}{q'} \ge \sigma$ then $\mu(\mathbb{R}^m) = 0$.
- (ii) If $\mu \in B^{-s,q}(\mathbb{R}^m)$ and $\sigma > (n-1)/q'$ then s > m/q' and therefore $B^{s,q'}(\mathbb{R}^m)$ can be embedded in $C(\mathbb{R}^m)$.
- *Proof.* Inequality (3.40) follows from (3.39) and Proposition 3.2 (see also (3.19)). For positive measures μ ,

$$\|\mu\|_{\mathfrak{M}} = \mu\left(\mathbb{R}^{n-1}\right) \le \|\mu\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^{q}.$$

Therefore, if $\sigma < \frac{n-1}{a'}$, (3.40) implies that there exists $R_0 > 1$ such that (3.41) holds for all $R > R_0$. If $\sigma = \frac{n-1}{q'}$ (3.40) implies that

$$\frac{1}{c} \left\|\mu\right\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^{q} - \bar{c} \left\|\mu\right\|_{\mathfrak{M}}^{q} \leq J_{n,\sigma}^{m,j}(\mu;R).$$

But if μ is a positive bounded measure such that diam(supp μ) $\leq a$ then

$$\|\mu\|_{\mathfrak{M}}/\|\mu\|_{B^{-\sigma,q}(\mathbb{R}^{n-1})}^q \to 0 \text{ as } a \to 0.$$

The last inequality follows from the imbedding theorem for Besov spaces according to which there exists a continuous trace operator $T : B^{\sigma,q'}(\mathbb{R}^{n-1}) \mapsto B^{s,q'}(\mathbb{R}^m)$ and a continuous lifting $T' : B^{s,q'}(\mathbb{R}^m) \mapsto B^{\sigma,q'}(\mathbb{R}^{n-1})$ where $s = \sigma - \frac{n-m-1}{q'}$.

If
$$\nu \in \mathbb{N}$$
 and $\sigma = s + \frac{\nu - m - 1}{q'}$,

$$J_{\nu,\sigma}^{m,\nu-m}(\mu; R) = \int_0^R F_{\nu,m}^R[\mu](\tau)\tau^{(\sigma+1)q+\nu-m-2} d\tau$$

$$= \int_0^R F_{\nu,m}^R[\mu](\tau)\tau^{(s+\nu-m)q-1} d\tau.$$

However, if μ is positive, the expression

$$M^{m}_{\nu,s}(\mu; R) := \int_{0}^{R} F^{R}_{\nu,m}[\mu](\tau)\tau^{(s+\nu-m)q-1} d\tau, \qquad (3.43)$$

is meaningful for any real $\nu > m$ and s > 0. Furthermore, as shown below, the results stated in Lemma 3.7 can be extended to this general case.

Theorem 3.8. Let $1 < q, v \in \mathbb{R}$ and *m* a positive integer. Assume that $1 \le v - m$ and 0 < s < m/q'. Then there exists a positive constant *c* such that, for every bounded positive measure μ supported in $\mathbb{R}^m \cap B_{R/2}(0), R > 1$,

$$\frac{1}{c} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q \le M_{\nu,s}^m(\mu; R) \le c R^{(s+\nu-m)q+1} \|\mu\|_{B^{-s,q}(\mathbb{R}^m)}^q.$$
(3.44)

This also holds when s = m/q', provided that the diameter of supp μ is sufficiently small.

Proof. If v is an integer and j := v - m then this statement is part of Lemma 3.7. Indeed the condition s > 0 means that $\sigma = s + \frac{j-1}{q'} > \frac{j-1}{q'}$ and the condition s < m/q' means that $\sigma < \frac{n-1}{q'}$.

Therefore we assume that $\nu \notin \mathbb{N}$. Let $n := \{\nu\}$ and $\theta := n - \nu$ so that $0 < \theta < 1$. Our assumptions imply that $1 \le n - m - 1$ because (as ν is not an integer) $\nu - m > 1$ and consequently $n - m \ge 2$.

If a, b are positive numbers, put

$$A_{\nu} := \frac{a^{(s+\nu-m)q-1}}{(a^2+b^2)^{\nu q/2}}.$$

Obviously A_{ν} decreases as ν increases. Therefore, $A_n \leq A_{\nu} \leq A_{n-1}$ which in turn implies,

$$M_{n,s}^m \le M_{\nu,s}^m \le M_{n-1,s}^m.$$

By Lemma 3.7, the assertions of the theorem are valid in the case that v = n or v = n - 1. Therefore the previous inequality implies that the assertions hold for any real v subject to the conditions imposed.

By (3.8),

$$J^{A,R} = \int_0^R F^R_{\nu,m}(\tau) \tau^{(q+1)\kappa_+ + k - 1} d\tau,$$

where m = N - k and $v = N - 2 + 2\kappa_+$. Consequently, by (3.38),

$$J^{A,R} = M^m_{\nu,s}$$

where *s* is determined by,

$$(s + v - m)q - 1 = (q + 1)\kappa_{+} + k - 1, \quad k = v - m + 2 - 2\kappa_{+}.$$

It follows that

$$sq = -(k - 2 + 2\kappa_{+})q + (q + 1)\kappa_{+} + k = k(1 - q) + 2q - \kappa_{+}(q - 1)$$

and therefore

$$s = 2 - \frac{k + \kappa_+}{q'}.$$

Proof of Theorem 3.1. Put

$$\nu := N - 2 + 2\kappa_+, \quad s := 2 - \frac{\kappa_+ + k}{q'}, \quad m := N - k.$$
 (3.45)

Recall that in the case k = 2 we have $\kappa_+ > 1/2$. Therefore

$$\nu - m - 1 = k - 3 + 2\kappa_+ > 0. \tag{3.46}$$

Furthermore,

$$(s + v - m)q - 1 = (q + 1)\kappa_{+} + k - 1, \quad k = v - m + 2 - 2\kappa.$$

Thus

$$J^{A,R} = \int_0^R F^R_{\nu,m}(\tau)\tau^{(q+1)\kappa_+ + k - 1} d\tau = M^m_{\nu,s}.$$

Next we show that $0 < s \le m/q'$. More precisely we prove

$$0 < s \le m/q' \iff q_c \le q < q_c^*. \tag{3.47}$$

Let μ be a bounded non-negative Borel measure in $B^{-s,q}(\mathbb{R}^m)$. If $s \leq 0$, $B^{-s,q}(\mathbb{R}^m) \subset L^q(\mathbb{R}^m)$. Therefore, in this case, every bounded Borel measure on \mathbb{R}^m is admissible *i.e.* satisfies (2.35). Consequently, by Proposition 2.2, $q < q_c$. As we assume $q \geq q_c$ it follows that s > 0.

If s > 0 and $sq' - m \ge 0$ then $C_{s,q'}(K) = 0$ for every compact subset of \mathbb{R}^m and consequently $\mu(K) = 0$ for any such set. Conversely, if sq' - m < 0 then there exist non-trivial positive bounded measures in $B^{-s,q}(\mathbb{R}^m)$. Therefore, by Proposition 2.1, sq' < m if and only if $q < q_c^*$.

In conclusion, $0 < s \le m/q'$ and $\nu - m \ge 1$; therefore Theorem 3.1 is a consequence of Theorem 3.8.

Remark. Note that the critical exponent for the imbedding of $B^{2-\frac{\kappa_++k}{q'},q'}(\mathbb{R}^{N-k})$ into $C(\mathbb{R}^{N-k})$ is again

$$q = q_c = \frac{N + \kappa_+}{N + \kappa_+ - 2}.$$

4. Supercritical equations in a polyhedral domain

In this section q is a real number larger than 1 and P an N-dim polyhedral domain as described in Subsection 6.1. Denote by $\{L_{k,j} : k = 1, ..., N, j = 1, ..., n_k\}$ the family of faces, edges and vertices of P. In this notation, $L_{1,j}$ denotes one of the open faces of P; for k = 2, ..., N - 1, $L_{k,j}$ denotes a relatively open (N-k)-dimensional edge and $L_{N,j}$ denotes a vertex. For $1 \le k < N$, the (N-k)dimensional space which contains $L_{k,j}$ is denoted by \mathbb{R}_j^{N-k} . If 1 < k < N, the cylinder of radius r around the axis \mathbb{R}_j^{N-k} will be denoted by $\Gamma_{k,j,r}^{\infty}$ and the subset $A_{k,j}$ of S^{k-1} is defined by

$$\lim_{r\to 0}\frac{1}{r}\big(\partial\Gamma_{k,j,r}^{\infty}\cap P\big)=L_{k,j}\times A_{k,j}.$$

 $A_{k,j}$ is the 'opening' of *P* at the edge $L_{k,j}$. For k = N we replace in this definition the cylinder $\Gamma_{N,j,r}^{\infty}$ by the ball $B_r(L_{N,j})$. For $1 < k \le N$ and $A = A_{k,j}$ we use d_A as an alternative notation for \mathbb{R}_j^{N-k} and denote by D_A the *k*-dihedron with edge d_A and opening *A* as in Subsection 6.1 (with S_A defined as in (2.2)). For k = 1, D_A stands for the half space $\mathbb{R}_j^{N-1} \times (0, \infty)$.

4.1. Definitions and auxiliary results

Let Ω be a bounded Lipschitz domain. We say that $\{\Omega_n\}$ is a *Lipschitz exhaustion* of Ω if, for every n, Ω_n is Lipschitz and

$$\Omega_n \subset \overline{\Omega}_n \subset \Omega_{n+1}, \quad \Omega = \bigcup \Omega_n, \quad \mathbb{H}_{N-1}(\partial \Omega_n) \to \mathbb{H}_{N-1}(\partial \Omega).$$
(4.1)

If ω_n (respectively ω) is the harmonic measure in Ω_n (respectively Ω) relative to $x_0 \in \Omega_1$, then, for every $Z \in C(\overline{\Omega})$,

$$\lim_{n \to \infty} \int_{\partial \Omega_n} Z \, d\omega_n = \int_{\partial \Omega} Z \, d\omega. \tag{4.2}$$

[24, Lemma 2.1]. Furthermore, if μ is a bounded Borel measure on $\partial \Omega$ and $v := \mathbb{K}^{\Omega}[\mu]$, there holds

$$\lim_{n \to \infty} \int_{\partial \Omega_n} Z v \, d\omega_n = \int_{\partial \Omega} Z \, d\mu, \tag{4.3}$$

[24, Lemma 2.2]. If v is a positive solution and (4.3) holds we say that μ is the *boundary trace* of v.

The following estimates are proved in [24, Lemma 2.3]:

Proposition 4.1. Let μ be bounded Borel measures on $\partial\Omega$. Then $\mathbb{K}[\mu] \in L^1_{\rho}(\Omega)$ and there exists a constant $C = C(\Omega)$ such that

$$\|\mathbb{K}[\mu]\|_{L^{1}_{0}(\Omega)} \leq C \|\mu\|_{\mathfrak{M}(\partial\Omega)}.$$

$$(4.4)$$

In particular if $h \in L^1(\partial \Omega; \omega)$ then

$$\|\mathbb{P}[h]\|_{L^1_o(\Omega)} \le C \|h\|_{L^1(\partial\Omega;\omega)}.$$

$$(4.5)$$

The nest result will be used in deriving estimates in a k-dimensional dihedron when the boundary data is concentrated on the edge.

Proposition 4.2. We denote by G^{Ω_n} (respectively G^{Ω}) the Green function in Ω_n (respectively Ω). Let v be a positive harmonic function in Ω with boundary trace μ . Let $Z \in C^2(\overline{\Omega})$ and let $\tilde{G} \in C^{\infty}(\Omega)$ be a function that coincides with $x \mapsto G(x, x_0)$ in $Q \cap \Omega$ for some neighborhood Q of $\partial\Omega$ and some fixed $x_0 \in \Omega$. In addition assume that there exists a constant c > 0 such that

$$|\nabla Z \cdot \nabla \hat{G}| \le c\rho. \tag{4.6}$$

Under these assumptions, if $\zeta := Z\tilde{G}$ then

$$-\int_{\Omega} v\Delta\zeta \, dx = \int_{\partial\Omega} Zd\mu. \tag{4.7}$$

Proof. Let $\{\Omega_n\}$ be a C^1 exhaustion of Ω . We assume that $\partial \Omega_n \subset Q$ for all n and $x_0 \in \Omega_1$. Let $\tilde{G}_n(x)$ be a function in $C^1(\Omega_n)$ such that \tilde{G}_n coincides with $G^{\Omega_n}(\cdot, x_0)$ in $Q \cap \Omega_n, \tilde{G}_n(\cdot, x_0) \to \tilde{G}(\cdot, x_0)$ in $C^2(\Omega \setminus Q)$ and $\tilde{G}_n(\cdot, x_0) \to \tilde{G}(\cdot, x_0)$ in Lip (Ω) . If $\zeta_n = Z\tilde{G}_n$ we have,

$$-\int_{\Omega_n} v\Delta\zeta_n \, dx = \int_{\partial\Omega_n} v\partial_{\mathbf{n}}\zeta \, dS = \int_{\partial\Omega_n} vZ\partial_{\mathbf{n}}\tilde{G}_n(\xi, x_0) \, dS$$
$$= \int_{\partial\Omega_n} vZP^{\Omega_n}(x_0, \xi) \, dS = \int_{\partial\Omega_n} vZ \, d\omega_n.$$

By (4.3),

$$\int_{\partial\Omega_n} v Z \, d\omega_n \to \int_{\partial\Omega} Z \, d\mu$$

On the other hand, in view of (4.6), we have

$$\Delta \zeta_n = \tilde{G}_n \Delta Z + Z \Delta \tilde{G}_n + 2\nabla Z \cdot \nabla \tilde{G}_n \to \Delta Z$$

in $L^1_{\rho}(\Omega)$; therefore,

$$-\int_{\Omega_n} v\Delta\zeta_n\,dx \to -\int_{\Omega} v\Delta\zeta\,dx.$$

We denote by $\mathfrak{M}_q = \mathfrak{M}_q(\partial \Omega)$ the set of q-good measures on the boundary. A positive solution u of (1.1) in Ω possesses a boundary trace $\mu \in \mathfrak{M}(\partial \Omega)$ if and only if

$$\int_{\Omega} u^q \rho dx < \infty \tag{4.8}$$

[24, Proposition 4.1]. In this case $\mu \in \mathfrak{M}_q$.

The following statements can be proved in the same way as in the case of smooth domains. For the proof in that case see [20].

I. $\mathfrak{M}_q(\partial \Omega)$ is a linear space and

$$\mu \in \mathfrak{M}_q(\partial \Omega) \iff |\mu| \in \mathfrak{M}_q(\partial \Omega).$$

II. If $\{\mu_n\}$ is an increasing sequence of measures in $\mathfrak{M}_q(\partial\Omega)$ and $\mu := \lim \mu_n$ is a finite measure, then $\mu \in \mathfrak{M}_q(\partial\Omega)$.

Proposition 4.3. Let μ be a bounded measure on $\partial P . (\mu \text{ may be a signed measure.}) For <math>i = 1, ..., N$, $j = 1, ..., n_i$, we define the measure $\mu_{k,j}$ on $d_{A_{k,i}}$ by,

$$\mu_{k,j} = \mu \text{ on } L_{k,j}, \quad \mu_{k,j} = 0 \text{ on } d_{A_{k,j}} \setminus L_{k,j}.$$

Then $\mu \in \mathfrak{M}_q(\partial P)$, *i.e.*, the problem

$$-\Delta u + u^{q} = 0 \quad in \ P, \ u = \mu \quad on \ \partial P \tag{4.9}$$

possesses a solution, if and only if $\mu_{k,j}$ is a q-good measure relative to $D_{A_{k,j}}$ for all (k, j) as above.

Proof. In view of statement I above, it is sufficient to prove the proposition in the case that μ is non-negative. This is assumed hereafter. If $\mu \in \mathfrak{M}_q(\partial P)$ then any measure ν on ∂P such that $0 \le \nu \le \mu$ is a q-good measure relative to P. Therefore

$$\mu \in \mathfrak{M}_q(\partial P) \Longrightarrow \mu'_{k,j} := \mu \chi_{L_{k,j}} \in \mathfrak{M}_q(\partial P).$$

Assume that $\mu \in \mathfrak{M}_q(\partial P)$ and let $u_{k,j}$ be the solution of (4.9) when μ is replaced by $\mu'_{k,j}$. Denote by $u'_{k,j}$ the extension of $u_{k,j}$ by zero to the k-dihedron $D_{A_{k,j}}$. Then $u'_{k,j}$ is a subsolution of (1.1) in $D_{A_{k,j}}$ with boundary data $\mu_{k,j}$. In the present case there always exists a supersolution, e.g. the maximal solution of (1.1) in $D_{A_{k,j}}$ vanishing outside $d_{A_{k,j}} \setminus \overline{L}_{k,j}$. Therefore there exists a solution $v_{k,j}$ of this equation in $D_{A_{k,j}}$ with boundary data $\mu_{k,j}$, *i.e.*, $\mu_{k,j}$ is q-good relative to $D_{A_{k,j}}$.

Next assume that $\mu \in \mathfrak{M}(\partial P)$ and that $\mu_{k,j}$ is *q*-good relative to $D_{A_{k,j}}$ for every (k, j) as above. Let $v_{k,j}$ be the solution of (1.1) in $D_{A_{k,j}}$ with boundary data $\mu_{k,j}$. Then $v_{k,j}$ is a supersolution of problem (4.9) with μ replaced by $\mu'_{k,j}$ and consequently there exists a solution $u_{k,j}$ of this problem. It follows that

$$w := \max\{u_{k,j} : k = 1, \dots, N, j = 1, \dots, n_k\}$$

is a subsolution while

$$\bar{w} := \sum_{\substack{k=1,\dots,N,\\j=1,\dots,n_k}} u_{k,j}$$

is a supersolution of (4.9). Consequently there exists a solution of this problem, *i.e.*, $\mu \in \mathfrak{M}_q(\partial P)$.

4.2. Removable singular sets and 'good measures', I

We first introduce some standard elements associated to the Bessel capacities which are the natural way to characterize good measures or removable sets. For $\alpha \in \mathbb{R}$, we denote by G_{α} the Bessel kernel of order α , defined by

$$G_{\alpha}(\xi) = \mathcal{F}^{-1}\left((1+|\cdot|^2)^{-\frac{\alpha}{2}} \right)(\xi),$$
(4.10)

where \mathcal{F} is the Fourier transform in the space $\mathcal{S}'(\mathbb{R}^{\ell})$ of moderate distributions in \mathbb{R}^{ℓ} . For $1 \leq p \leq \infty$, the Bessel space $L_{\alpha,p}(\mathbb{R}^{\ell})$ is defined by

$$L_{\alpha,p}(\mathbb{R}^{\ell}) = \left\{ f : f = G_{\alpha} \ast g, : g \in L^{p}(\mathbb{R}^{\ell}) \right\},$$
(4.11)

with norm

$$\|f\|_{L_{\alpha,p}} = \|g\|_{L_p} = \|G_{-\alpha} * f\|_{L_p}.$$

For $\alpha, \beta \in \mathbb{R}$ and $1 , the mapping <math>f \mapsto G_{\beta} * f$ is an isomorphism from $L_{\alpha,p}(\mathbb{R}^{\ell})$ into $L_{\alpha+\beta,p}(\mathbb{R}^{\ell})$. Finally the Bessel spaces are connected to Besov and Sobolev spaces: when $\alpha > 0$ and $1 , it is known that if <math>\alpha \in \mathbb{N}$, $L_{\alpha,p}(\mathbb{R}^{\ell}) = W^{\alpha,p}(\mathbb{R}^{\ell})$ and if $\alpha \notin \mathbb{N}$, then $L_{\alpha,p}(\mathbb{R}^{\ell}) = B^{\alpha,p}(\mathbb{R}^{\ell})$, with equivalent norms (see *e.g.* [5,27]).

The Bessel capacity $C_{\alpha,p}^{\mathbb{R}^{\ell}}$ ($\alpha > 0, p \ge 1$) is defined by the following rules: if $K \subset \mathbb{R}^{\ell}$ is compact

$$C_{\alpha,p}^{\mathbb{R}^{\ell}}(K) = \inf\left\{ \|f\|_{L_{\alpha,p}}^{p} : f \in \mathcal{S}(\mathbb{R}^{\ell}), f \ge \chi_{K} \right\}.$$
(4.12)

If G is open

$$C_{\alpha,p}^{\mathbb{R}^{\ell}}(G) = \sup \left\{ C_{\alpha,p}^{\mathbb{R}^{\ell}}(K) : K \subset G, \ K \text{ compact} \right\}.$$
(4.13)

If A is any set

$$C_{\alpha,p}^{\mathbb{R}^{\ell}}(A) = \inf \left\{ C_{\alpha,p}^{\mathbb{R}^{\ell}}(G) : A \subset G, \ G \text{ open} \right\}.$$
(4.14)

Note that the capacity of any non-empty set is positive if and only if $\alpha > \frac{\ell}{p}$ because of Sobolev-Besov embedding theorem.

Proposition 4.4. Let A be a Lipschitz domain on S^{k-1} , $2 \le k \le N - 1$, and let D_A be the k-dihedron with opening A. Let $\mu \in \mathfrak{M}(\partial D_A)$ be a positive measure with compact support contained in d_A (= the edge of D_A). Assume that μ is q-good relative to D_A . Let R > 1 be large enough so that $\operatorname{supp} \mu \subset B_R^{N-k}(0)$ and let u be the solution of (1.1) in D_A^R with trace μ on d_A^R and trace zero on $\partial D_A^R \setminus d_A^R$. Then:

(i) For every non-negative $\eta \in C_0^{\infty}(B^{N-k}_{3R/4}(0))$,

$$\left(\int_{d_{A}^{R}} \eta^{q'} d\mu \right) \leq c M^{q'} \int_{D_{A}^{R}} u^{q} \rho dx + c M^{q'} \left(\int_{D_{A}^{R}} u^{q} \rho dx \right)^{\frac{1}{q}} \left(1 + M^{-1} \|\eta\|_{L^{q'}(d_{A}^{R})} \right).$$

$$(4.15)$$

where $M = \|\eta\|_{L^{\infty}}$ and ρ is the first eigenfunction of $-\Delta$ in D_A^R normalized by $\rho(x_0) = 1$ at some point $x_0 \in D_A^R$. The constant *c* depends only on $N, q, k, x_0, \lambda_1, R$ where λ_1 is the first eigenvalue.

(ii) For any compact set $E \subset d_A$,

$$C_{s,q}^{N-k}(E) = 0 \Longrightarrow \mu(E) = 0, \quad s = 2 - \frac{\kappa_+ + k}{q'}, \tag{4.16}$$

where $C_{s,q}^{N-k}$ denotes the Bessel capacity with the indicated indices in \mathbb{R}^{N-k} .

Remark. If we replace D_A^R by $D_A \cap B_{\tilde{R}}^k(0) \cap B_R^{N-k}(0)$, $\tilde{R} > 1$, then the constant c in (i) depends on \tilde{R} but *not* on R.

Proof. We identify d_A with \mathbb{R}^{N-k} and use the notation

$$x = (x', x'') \in \mathbb{R}^k \times \mathbb{R}^{N-k}, \quad y = |x'|.$$

Let $\eta \in C_0^{\infty}(\mathbb{R}^{N-k})$ and let *R* be large enough so that $\sup \eta \subset B_{R/2}^{N-k}(0)$. Let $w = w_R(t, x'')$ be the solution of the following problem in $\mathbb{R}_+ \times B_R^{N-k}(0)$:

$$\partial_t w - \Delta_{x''} w = 0 \qquad \text{in } \mathbb{R}^+ \times B_R^{N-k}(0),$$

$$w(0, x'') = \eta(x'') \qquad \text{in } B_R^{N-k},$$

$$w(t, x'') = 0 \qquad \text{on } \partial B_R^{N-k}(0).$$
(4.17)

Thus $w_R(t, \cdot) = S_R(t)[\eta]$ where $S_R(t)$ is the semi-group operator corresponding to the above problem. Denote,

$$H_R[\eta](x', x'') = w_R(|x'|^2, x'') = S_R(y^2)[\eta](x''), \quad y := |x'|.$$
(4.18)

We assume, as we may, that R > 1. Let ρ^R be the first eigenfunction of $-\Delta_{x''}$ in the ball $B_R^{N-k}(0)$ normalized by $\rho^R(0) = 1$ and let ρ_A be the first eigenfunction of $-\Delta_{x'}$ in C_A (where C_A denotes the cone with opening A in \mathbb{R}^k) normalized so that $\rho_A(x'_0) = 1$ at some point $x'_0 \in S_A$. Then $\rho^R \rho_A$ is the first eigenfunction of $-\Delta$ in $\{x \in D_A : |x''| < R\}$. Note that $\rho^R \leq 1$ and $\rho^R \to 1$ as $R \to \infty$ in $C^2(I)$ for any bounded set $I \subset \mathbb{R}^{N-k}$.

Let $h \in C^{\infty}(\mathbb{R})$ be a monotone decreasing function such that h(t) = 1 for t < 1/2 and h(t) = 0 for t > 3/4. Put

$$\psi_R(x') = h\big(|x'|/R\big)$$

and

$$\zeta_R := \rho_A \psi_R H_R[\eta]^{q'}. \tag{4.19}$$

If ρ_A^R is the first eigenfunction (normalized at x_0) of $D_A^R := D_A \cap \Gamma_R$ (Γ_R as in $(2.2\overline{5}))$ then

$$\rho_A \psi_R \le c \rho_A^R \tag{4.20}$$

and $\rho^R \rho_A^R$ is the first eigenfunction in D_A^R . Hereafter we shall drop the index R in ζ_R , H_R , w_R but keep it in the other notations in order to avoid confusion.

We shall verify that $\zeta \in D_A^R$. To this purpose we compute,

$$\Delta \zeta = -\lambda_1 (\rho_A \psi_R) H[\eta]^{q'} + (\rho_A \psi_R) \Delta H[\eta]^{q'} + 2\nabla (\rho_A \psi_R) \cdot \nabla H[\eta]^{q'}$$

$$= -\lambda_1 \zeta + q' (\rho_A \psi_R) (H[\eta])^{q'-1} \Delta H[\eta]$$

$$+ q (q'-1) (\rho_A \psi_R) (H[\eta])^{q'-2} |\nabla H[\eta]|^2$$

$$+ 2q' (H[\eta])^{q'-1} \nabla (\rho_A \psi_R) \cdot \nabla H[\eta].$$

(4.21)

In addition.

$$\nabla H[\eta] = \nabla_{x'} H[\eta] + \nabla_{x''} H[\eta] = \partial_y H[\eta] \frac{x'}{y} + \nabla_{x''} H[\eta]$$
$$= 2y \partial_t w \left(y^2, x''\right) \frac{x'}{y} + \nabla_{x''} H[\eta] \left(x', x''\right)$$

and consequently (recall that y stands for |x'|),

$$\nabla H[\eta] \cdot \nabla(\rho_A \psi_R)$$

= $2\partial_t w(y^2, x'') x' \cdot \left(\psi_R \left(|x'|^{\kappa_+ - 1} \left(\kappa_+ \frac{x'}{y} \omega_k(x'/y) + |x'| \nabla \omega_k(x'/y) \right) \right) + \rho_A \nabla \psi_R \right)$
= $2\kappa_+ \partial_t w(y^2, x'') |x'|^{\kappa_+} \omega_k(x'/y) = 2\partial_t w(y^2, x'') (\kappa_+ \rho_A \psi_R + \rho_A x' \cdot \nabla \psi_R).$

Since $w = w_R$ vanishes for |x''| = R and $\eta = 0$ in a neighborhood of this sphere, $|\partial_t w(y^2, x'')| \le c\rho^R$. As ψ_R vanishes for |x'| > 3R/4 we have $\rho_A \nabla \psi_R \le c\rho_A^R$. Therefore

$$|\nabla H[\eta] \cdot \nabla \rho_A| \le c \rho^R \rho_A^R$$

and, in view of (4.21),

$$|\Delta\zeta| \le c\rho^R \rho_A^R. \tag{4.22}$$

Thus $\zeta \in X(D_A^R)$ and consequently

$$\int_{D_A^R} \left(-u\Delta\zeta + u^q \zeta \right) dx = -\int_{D_A^R} \mathbb{K}[\mu] \Delta\zeta dx.$$
(4.23)

Since $q(q'-1)\rho_A(H[\eta])^{q'-2}|\nabla H[\eta]|^2 \ge 0$, we have

$$\begin{aligned} \left| \int_{D_{A}^{R}} u \Delta \zeta dx \right| \\ &\leq \int_{D_{A}^{R}} u \left(\lambda_{1} \zeta + q' (H[\eta])^{q'-1} \left(\rho |\Delta H[\eta]| + 2 |\nabla \rho . \nabla H[\eta]| \right) \right) dx \\ &\leq \int_{D_{A}^{R}} u \left(\lambda_{1} \zeta + q' \zeta^{1/q} \left(\rho^{1/q'} |\Delta H[\eta]| + 2 \rho^{-1/q} |\nabla \rho . \nabla H[\eta]| \right) \right) dx \\ &\leq \left(\int_{D_{A}^{R}} u^{q} \zeta dx \right)^{\frac{1}{q}} \left(\lambda_{1} \left(\int_{D_{A}^{R}} \zeta dx \right)^{\frac{1}{q'}} + q' \|L[\eta]\|_{L^{q'}(D_{A}^{R})} \right) \end{aligned}$$

$$(4.24)$$

where

$$L[\eta] = \rho^{1/q'} |\Delta H[\eta]| + 2\rho^{-1/q} |\nabla \rho. \nabla H[\eta]|.$$
(4.25)

By Proposition 4.2

$$-\int_{D_A^R} \mathbb{K}[\mu] \Delta \zeta dx = \int_{d_A^R} \eta^{q'} d\mu.$$
(4.26)

Therefore

$$\begin{pmatrix} \int_{d_A^R} \eta^{q'} d\mu \end{pmatrix} \leq \int_{D_A^R} u^q \zeta dx + \left(\int_{D_A^R} u^q \zeta dx \right)^{\frac{1}{q}} \left(\lambda_1 \left(\int_{D_A^R} \zeta dx \right)^{\frac{1}{q'}} + q' \|L[\eta]\|_{L^{q'}(D_A^R)} \right).$$

$$(4.27)$$

Next we prove that

$$\|L[\eta]\|_{L^{q'}(D^R_A)} \le C \|\eta\|_{W^{s,q'}(\mathbb{R}^{N-k})}$$
(4.28)

starting with the estimate of the first term on the right hand side of (4.25).

$$\Delta H[\eta] = \Delta_{x'} H[\eta] + \Delta_{x''} H[\eta] = \partial_y^2 H[\eta] + \frac{k-1}{y} \partial_y H[\eta] + \Delta_{x''} H[\eta]$$

= $2y^2 \partial_{tt} w(y^2, x'') + k \partial_t w(y^2, x'') + \Delta_{x''} H[\eta]$
= $2y^2 \partial_{tt} w(y^2, x'') + (k+1) \partial_t w(y^2, x'').$

Then

$$\begin{split} \int_{\mathbb{R}^{N}} \rho \left| \Delta H[\eta] \right|^{q'} dx &\leq c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{tt} w(y^{2}, x'') \right|^{q'} dx'' y^{\kappa_{+} + 2q' + k - 1} dy \\ &+ c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{t} w(y^{2}, x'') \right|^{q'} dx'' y^{\kappa_{+} + k - 1} dy \\ &\leq c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{tt} w(t, x'') \right|^{q'} dx'' t^{(\kappa_{+} + k)/2 + q'} \frac{dt}{t} \\ &+ c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{t} w(t, x'') \right|^{q'} dx'' t^{(\kappa_{+} + k)/2} \frac{dt}{t} \\ &\leq c \int_{0}^{1} \left\| t^{2 - (1 - \frac{\kappa_{+} + k}{2q'})} \frac{d^{2}S(t)[\eta]}{dt^{2}} \right\|_{L^{q'}(\mathbb{R}^{N-k})}^{q'} \frac{dt}{t} \\ &+ c \int_{0}^{1} \left\| t^{1 - (1 - \frac{\kappa_{+} + k}{2q'})} \frac{dS(t)[\eta]}{dt} \right\|_{L^{q'}(\mathbb{R}^{N-k})}^{q'} \frac{dt}{t}. \end{split}$$

Put $\beta = \frac{\kappa_+ + k}{2q'}$ and note that $0 < \beta = \frac{1}{2}(2 - s) < 1$. By standard interpolation theory,

$$\int_0^1 \left\| t^{1-(1-\beta)} \frac{dS(t)[\eta]}{dt} \right\|_{L^{q'}(\mathbb{R}^{N-k})}^{q'} \frac{dt}{t} \approx \|\eta\|_{\left[W^{2,q'},L^{q'}\right]_{1-\beta,q'}}^{q'} \approx \|\eta\|_{W^{2(1-\beta),q'}(\mathbb{R}^{N-k})}^{q'},$$

and

$$\int_0^1 \left\| t^{2-(1-\beta)} \frac{d^2 S(t)[\eta]}{dt^2} \right\|_{L^{q'}(\mathbb{R}^{N-k})}^{q'} \frac{dt}{t} \approx \|\eta\|_{\left[W^{4,q'},L^{q'}\right]_{\frac{1}{2}(1-\beta),q'}}^{q'} \approx \|\eta\|_{W^{2(1-\beta),q'}(\mathbb{R}^{N-k})}^{q'}.$$

The second term on the right hand side of (4.25) is estimated in a similar way:

$$\begin{split} &\int_{\mathbb{R}^{N}} \rho^{-q'/q} |\nabla H[\eta] \cdot \nabla \rho|^{q'} \, dx \leq c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{t} w(y^{2}, x'') \right|^{q'} dx' y^{\kappa_{+}+k-1} dy \\ &\leq c \int_{0}^{1} \int_{\mathbb{R}^{N-k}} \left| \partial_{t} w(t, x'') \right|^{q'} dx' t^{\frac{\kappa_{+}+k}{2}} \frac{dt}{t} \\ &\leq c \int_{0}^{1} \left\| t^{1-(\frac{1}{2}-\beta)} \frac{dS(t)[\eta]}{dt} \right\|_{L^{q'}(\mathbb{R}^{N-k})}^{q'} \frac{dt}{t} \\ &\approx \|\eta\|_{W^{2(1-\beta),q'}(\mathbb{R}^{N-k})}^{q'}. \end{split}$$

This proves (4.28). Further, (4.27) and (4.28) imply (4.15).

We turn to the proof of part (ii). Let *E* be a closed subset of $B_{R/2}^{N-k}(0)$ such that $C_{s,q'}^{N-k}(E) = 0$. Then there exists a sequence $\{\eta_n\}$ in $C_0^{\infty}(d_A)$ such that $0 \le \eta_n \le 1$, $\eta_n = 1$ in a neighborhood of *E* (which may depend on *n*), supp $\eta_n \subset B_{3R/4}^{N-k}(0)$ and $\|\eta_n\|_{W^{s,q'}} \to 0$. Then, by (4.28),

$$||L[\eta_n]||_{L^{q'}(D^R_A)} \to 0.$$

Furthermore

$$\|w\|_{L^{q'}((0,R)\times B_R^{N-k}(0))} \le c \|\eta_n\|_{L^{q'}(B_R^{N-k}(0))}$$

and consequently

$$H[\eta_n] \to 0$$
 in $L^{q'}(D^R_A)$.

(Here we use the fact that $k \ge 2$.) In addition

 $0 \le H[\eta_n] \le 1, \quad H[\eta_n] \le c(R - |x'|)$

with a constant c independent of n. Hence (see (4.20))

$$\zeta_{n,R} := \rho_A \psi_R H[\eta_n]^{q'} \le \rho^R \rho_A \psi_R H[\eta_n]^{q'-1} \le \rho^R \rho_A^R H[\eta_n]^{q'-1}.$$

As $u^q \rho^R \rho^R_A \in L^1(D^R_A)$ we obtain

$$\lim_{n \to \infty} \int_{D_A} u^q \zeta_n dx = 0$$

This fact and (4.27) imply that

$$\int_{d_A^R} \eta_n^{q'} d\mu \to 0.$$

As $\eta_n = 1$ on a neighborhood of E in \mathbb{R}^{N-k} it follows that $\mu(E) = 0$.

Proposition 4.5. Let D_A be a k-dihedron, $1 \le k < N$. Let k_+ be as in (2.11) and let q_c^* and q_c be as in Proposition 2.1 and Proposition 2.2 respectively. Assume that $q_c \le q < q_c^*$. A measure $\mu \in \mathfrak{M}(\partial D_A)$, with compact support contained in d_A , is q-good relative to D_A if and only if μ vanishes on every Borel set $E \subset d_A$ such that $C_{s,q'}(E) = 0$, where $s = 2 - \frac{k+\kappa_+}{q'}$.

Remark. We shall use the notation $\mu \prec C_{s,q'}$ to say that μ vanishes on any Borel set $E \subset (d_A)$ such that $C_{s,q'}(E) = 0$.

In the case k = N: $D_A = C_A$ (= the cone with vertex 0 and opening A in \mathbb{R}^k) and $q_c = q_c^*$. By [24] (specifically the results quoted in Subsection 2.2) $q_c = 1 - \frac{2}{\kappa_-} = \frac{N+\kappa_+}{N+\kappa_+-2}$ and if $1 < q < q_c$ then there exist solutions for every measure $\mu = k\delta_P$, $P \in d_A$.

In the case k = 1, $q_c^* = \infty$, $\kappa_+ = 1$ and $q_c = \frac{N+1}{N-1}$. Thus s = 2/q and the statement of the theorem is well known (see [21]).

Proof. In view of the last remark, it remains to deal only with $2 \le k \le N - 1$. We shall identify d_A with \mathbb{R}^{N-k} .

It is sufficient to prove the result for positive measures because $\mu \prec C_{s,q'}$ if and only if $|\mu| \prec C_{s,q'}$. In addition, if $|\mu|$ is a q-good measure then μ is a q-good measure.

First we show that if μ is non-negative and q-good then $\mu \prec C_{s,q'}$. If E is a Borel subset of $\partial\Omega$ then $\mu\chi_E$ is q-good. If E is compact and $C_{s,q'}(E) = 0$ then, by Proposition 4.4, E is a removable set. This means that the only positive solution of (1.1) in D_A such that $\mu(\partial\Omega \setminus E) = 0$ is the zero solution. This implies that $\mu\chi_E = 0$, *i.e.*, $\mu(E) = 0$. If $C_{s,q'}(E) = 0$ but E is not compact then $\mu(E') = 0$ for every compact set $E' \subset E$. Therefore, we conclude again that $\mu(E) = 0$.

Next, assume that μ is a positive measure in $\mathfrak{M}(\partial D_A)$ supported in a compact subset of \mathbb{R}^{N-k} .

If $\mu \in B^{-s,q}(\mathbb{R}^{N-k})$ then, by Theorem 3.1, μ is admissible relative to $D_A \cap \Gamma_{k,R}$, for every R > 0. (As before $\Gamma_{k,R}$ is the cylinder with radius R around the "axis" \mathbb{R}^{N-k} .) This implies that μ is q-good relative to D_A .

If $\mu \prec C_{s,q'}$ then, by a theorem of Feyel and de la Pradelle [11] (see also [3]), there exists a sequence $\{\mu_n\} \subset (B^{-s,q}(\mathbb{R}^{N-k}))_+$ such that $\mu_n \uparrow \mu$. As μ_k is *q*-good, it follows that μ is *q*-good.

Theorem 4.6. Let P be an N-dimensional polyhedron as described in Proposition 4.3. Let μ be a bounded measure on ∂P , (may be a signed measure). Let k = 1, ..., N, $j = 1, ..., n_k$, and let $L_{k,j}$ and $A_{k,j}$ be defined as at the beginning of this section. Further, put

$$s(k, j) = 2 - \frac{k + (\kappa_{+})_{k, j}}{q'}, \qquad (4.29)$$

where $(\kappa_+)_{k,j}$ is defined as in (2.11) with $A = A_{k,j}$. Then $\mu \in \mathfrak{M}_q(\partial P)$, i.e., μ is a good measure for (1.1) relative to P, if and only if, for every pair (k, j) as above and every Borel set $E \subset L_{k,j}$:

• If $1 \le k < N$ then

$$(q_c)_{k,j} \le q < (q_c^*)_{k,j}, \ C_{s(k,j),q'}^{N-k}(E) = 0 \Longrightarrow \mu(E) = 0$$

$$q \ge (q_c^*)_{k,j} \Longrightarrow \mu(L_{N,j}) = 0$$
(4.30)

and if k = N, i.e., L is a vertex,

$$q \ge (q_c)_{k,j} = \frac{N+2+\sqrt{(N-2)^2+4\lambda_A}}{N-2+\sqrt{(N-2)^2+4\lambda_A}} \Longrightarrow \mu(L) = 0.$$
(4.31)

Here $(q_c^*)_{k,j}$ and $(q_c)_{k,j}$ are defined as in (2.32) and (2.36) respectively, with $A = A_{k,j}$.

• If $1 < q^{n,j} < (q_c)_{k,j}$ then there is no restriction on $\mu \chi_{L_{k,j}}$.

Proof. This is an immediate consequence of Proposition 4.3 and Proposition 4.5 (see also the Remark following it). In the case k = N, $L_{N,j}$ is a vertex and the condition says merely that for $q \ge (q_c)_{N,j}$, μ does not charge the vertex.

4.3. Removable singular sets, II

Proposition 4.7. Let A be a Lipschitz domain on S^{k-1} , $2 \le k \le N-1$, and let D_A be the k-dihedron with opening A. Let u be a positive solution of (1.1) in D_A^R , for some R > 0. Suppose that $F = S(u) \subset d_A^R$ and let Q be an open neighborhood of F such that $\overline{Q} \subset d_A^R$. (Recall that $d_A^R = d_A \cap B_R^{N-k}(0)$ is an open subset of d_A .) Let μ be the trace of u on $\mathcal{R}(u)$.

Let $\eta \in W_0^{s,q'}(d_A^R)$ such that

$$0 \le \eta \le 1, \quad \eta = 0 \quad on \ Q. \tag{4.32}$$

Employing the notation in the proof of Proposition 4.4, put

$$\zeta := \rho_A \psi_R H_R[\eta]^{q'}. \tag{4.33}$$

Then

$$\int_{D_A^R} u^q \zeta \, dx \le c \left(1 + \|\eta\|_{W^{s,q'}(d_A)} \right)^{q'} + \mu \left(d_A^R \setminus Q \right)^q, \tag{4.34}$$

c independent of u and η .

Proof. First we prove (4.34) for $\eta \in C_0^{\infty}(d_A^R)$. Let σ_0 be a point in A and let $\{A_n\}$ be a Lipschitz exhaustion of A. If $0 < \epsilon < \text{dist}(\partial A, \partial A_n) = \overline{\epsilon}_n$ then

 $\epsilon \sigma_0 + C_{A_n} \subset C_A.$

Denote

$$D_A^{R',R''} = D_A \cap [|x'| < R'] \cap [|x''| < R''].$$

Pick a sequence $\{\epsilon_n\}$ decreasing to zero such that $0 < \epsilon_n < \min(\overline{\epsilon}_n/2^n, R/8)$. Let u_n be the function given by

$$u_n(x'x'') = u(x' + \epsilon_n \sigma_0, x'') \quad \forall x \in D_{A_n}^{R_n, R}, \quad R_n = R - \epsilon_n.$$

Then u_n is a solution of (1.1) in $D_{A_n}^{R_n,R}$ belonging to $C^2(\overline{D}_{A_n}^{R_n,R})$ and we denote its boundary trace by h_n . Let

$$\zeta_n := \rho_{A_n} \psi_R H_R[\eta]^{q'},$$

with ψ_R and $H_R[\eta]$ as in the proof of Proposition 4.4. By Proposition 4.2

$$-\int_{D_{A_n}^{R_n,R}} \mathbb{P}[h_n] \Delta \zeta_n dx = \int_{B_R^{N-k}(0)} \eta^{q'} h_n d\omega_n \tag{4.35}$$

where ω_n is the harmonic measure on $d_{A_n}^R$ relative to $D_{A_n}^{R_n,R}$. (Note that $d_{A_n}^R = d_A^R$ and we may identify it with $B_R^{N-k}(0)$.) Hence

$$\int_{D_{A_n}^{R_n,R}} \left(-u_n \Delta \zeta_n + u_n^q \zeta_n \right) dx = -\int_{B_R^{N-k}(0)} \eta^{q'} h_n \, d\omega_n.$$
(4.36)

Further,

$$\int_{B_R^{N-k}(0)} \eta^{q'} h_n \, d\omega_n \to \int_{B_R^{N-k}(0)} \eta^{q'} d\mu \le \mu(d_A^R \setminus Q),$$

because $\eta = 0$ in Q. By (4.24), (4.28) we obtain,

$$\left| \int_{D_{A_n}^{R_n,R}} u_n \Delta \zeta_n \, dx \right|$$

$$\leq c \left(\int_{D_{A_n}^{R_n,R}} u_n^q \zeta_n dx \right)^{\frac{1}{q}} \left(\left(\int_{D_{A_n}^{R_n,R}} \zeta_n dx \right)^{\frac{1}{q'}} + \|\eta\|_{W^{s,q'}(B_R^{N-k}(0))} \right).$$
(4.37)

From the definition of ζ_n it follows that

$$\int_{D_{A_n}^{R_n,R}} \zeta_n \, dx \leq \int_{D_{A_n}^{R_n,R}} \rho_n \, dx \to \int_{D_A^R} \rho \, dx,$$

where ρ (respectively ρ_n) is the first eigenfunction of $-\Delta$ in D_A^R (respectively $D_{A_n}^{R_n,R}$) normalized by 1 at some $x_0 \in D_{A_1}^{R_1,R}$. Therefore, by (4.36),

$$\int_{D_{A_n}^{R_n,R}} u_n^q \zeta_n dx \le c \left(\int_{D_{A_n}^{R_n,R}} u_n^q \zeta_n dx \right)^{\frac{1}{q}} \left(1 + \|\eta\|_{W^{s,q'}(B_R^{N-k}(0))} \right) + \mu \left(d_A^R \setminus Q \right).$$

This implies

$$\int_{D_{A_n}^{R_n,R}} u_n^q \zeta_n dx \le c \left(1 + \|\eta\|_{W^{s,q'}(B_R^{N-k}(0))} \right)^{q'} + \mu \left(d_A^R \setminus Q \right)^q.$$
(4.38)

To verify this fact, put

$$m = \left(\int_{D_{A_n}^{R_n, R}} u_n^q \zeta_n dx\right)^{1/q}, \ b = \mu(d_A^R \setminus Q), \ a = c\left(1 + \|\eta\|_{W^{s,q'}(B_R^{N-k}(0))}\right)$$

so that (4.38) becomes

$$m^q - am - b \le 0.$$

If $b \leq m$ then

$$m^{q-1} - a - 1 \le 0.$$

Therefore,

$$m \le (a+1)^{\frac{1}{q-1}} + b$$

which implies (4.38). Finally, by the lemma of Fatou we obtain (4.34) for $\eta \in C_0^{\infty}$. By continuity we obtain the inequality for any $\eta \in W_0^{s,q'}$ satisfying (4.32).

Theorem 4.8. Let A be a Lipschitz domain on S^{k-1} , $2 \le k \le N - 1$, and let D_A be the k-dihedron with opening A. Let E be a compact subset of d_A^R and let u be a non-negative solution of (1.1) in D_A^R (for some R > 0) such that vanishes on $\partial D_A^R \setminus E$. Then

$$C_{s,q'}^{N-k}(E) = 0, \quad s = 2 - \frac{\kappa_+ + k}{q'} \Longrightarrow u = 0, \tag{4.39}$$

where $C_{s,q'}^{N-k}$ denotes the Bessel capacity with the indicated indices in \mathbb{R}^{N-k} .

Proof. By Proposition 4.4, (4.39) holds under the additional assumption

$$\int_{D_A^R} u^q \rho_R \rho_A^R dx < \infty. \tag{4.40}$$

Indeed, by [24, Proposition 4.1], (4.40) implies that the solution u possesses a boundary trace μ on ∂D_A^R . By assumption, $\mu(\partial D_A^R \setminus E) = 0$. Therefore, by Proposition 4.5, the fact that $C_{s,q'}^{N-k}(E) = 0$ implies that $\mu(E) = 0$. Thus $\mu = 0$ and hence u = 0.

We show that, under the conditions of the theorem, if $C_{s,q'}^{N-k}(E) = 0$ then (4.40) holds.

By Proposition 4.7, for every $\eta \in W_0^{s,q'}(d_A^R)$ such that $0 \leq \eta \leq 1$ and $\eta = 0$ in a neighborhood of E,

$$\int_{D_A^R} u^q \zeta \, dx \le c \left(1 + \|\eta\|_{W^{s,q'}(B_R^{N-k}(0))} \right)^{q'}, \tag{4.41}$$

for ζ as in (4.33). (Here we use the assumption that u = 0 on $\partial D_A^R \setminus E$.)

Let a > 0 be sufficiently small so that $E \subset B_{(1-4a)R}^{N-k}(0)$. Pick a sequence $\{\phi_n\}$ in $C_0^{\infty}(\mathbb{R}^{N-k})$ such that, for each n, there exists a neighborhood Q_n of E, $\bar{Q}_n \subset B_{(1-3a)R}^{N-k}(0)$ and

$$0 \leq \phi_n \leq 1 \text{ everywhere, } \phi_n = 1 \text{ in } Q_n$$

$$\tilde{\phi}_n := \phi_n \chi_{[|x''| < (1-2a)R]} \in C_0^{\infty} \left(\mathbb{R}^{N-k} \right)$$

$$\| \tilde{\phi}_n \|_{W^{s,q'}(\mathbb{R}^{N-k})} \to 0 \text{ as } n \to \infty$$

$$\eta_n := (1 - \phi_n) \lfloor_{[|x''| < R]} \in C_0^{\infty} \left(d_A^R \right)$$

$$\eta_n = 0 \text{ in } \left[(1 - a)R < |x''| < R \right].$$

(4.42)

Such a sequence exists because $C_{s,q'}^{N-k}(E) = 0$. Applying (4.41) to η_n we obtain,

$$\sup \int_{D_A^R} u^q \zeta_n \, dx \le c < \infty, \tag{4.43}$$

where $\zeta_n = \rho_A \psi_R H_R^{q'}[\eta_n]$ (see (4.33)). By taking a subsequence we may assume that $\{\eta_n\}$ converges (say to η) in $L^{q'}(B_R^{N-k}(0))$ and consequently $H[\eta_n] \to H[\eta]$ in the sense that

$$H_R[\eta_n](x',\cdot) = w_{n,R}(y^2,\cdot) \to w_R(y^2,\cdot) = H_R[\eta](x',\cdot) \text{ in } L^{q'}$$

uniformly with respect to y = |x'|. It follows that

$$\int_{D_A^R} u^q \zeta \, dx < \infty, \quad \zeta = \rho_A \psi_R H_R^{q'}[\eta]. \tag{4.44}$$

As $\tilde{\phi}_n \to 0$ in $W^{s,q'}(\mathbb{R}^{N-k})$ it follows that $\phi_n \to 0$ and hence $\eta_n \to 1$ a.e. in $B^{N-k}_{(1-2a)R}(0)$. Thus $\eta = 1$ in this ball, $\eta = 0$ in [(1-a)R < |x''| < R] and $0 \le \eta \le 1$ everywhere.

Consequently, given $\delta > 0$, there exists an N-dimensional neighborhood O of $d_A \cap B_{(1-2a)R}^{N-k}(0)$ such that

$$1-\delta < H_R[\eta] < 1$$
 and $1-\delta < \psi_R/\rho_A^R < 1$ in O.

Therefore (4.44) implies that

$$\int_{D_A^{(1-3a)R}} u^q \rho^R \rho_A^R dx \le c < \infty.$$
(4.45)

Recall that the trace of u on $\partial D_A^R \setminus d_A^{(1-4a)R}$ is zero. Therefore u is bounded in $D_A^R \setminus D_A^{(1-3a)R}$. This fact and (4.45) imply (4.40).

Definition 4.9. Let Ω be a bounded Lipschitz domain. Denote by ρ the first eigenfunction of $-\Delta$ in Ω normalized by $\rho(x_0) = 1$ for a fixed point $x_0 \in \Omega$.

For every compact set $K \subset \partial \Omega$ we define

$$M_{\rho,q}(K) = \left\{ \mu \in \mathfrak{M}(\partial\Omega) : \mu \ge 0, \ \mu(\partial\Omega \setminus K) = 0, \ \mathbb{K}[\mu] \in L^q_{\rho}(\Omega) \right\}$$

and

$$\tilde{C}_{\rho,q'}(K) = \sup\left\{\mu(K)^q: \ \mu \in M_{\rho,q}(K), \ \int_{\Omega} \mathbb{K}[\mu]^q \rho \, dx = 1\right\}.$$

Finally we denote by $C_{\rho,q'}$ the outer measure generated by the above functional.

The following statement is verified by standard arguments:

Lemma 4.10. For every compact $K \subset \partial \Omega$, $C_{\rho,q'}(K) = \tilde{C}_{\rho,q'}(K)$. Thus $C_{\rho,q'}$ is a capacity and,

$$C_{\rho,q'}(K) = 0 \iff M_{\rho,q}(K) = \{0\}.$$
 (4.46)

Theorem 4.11. Let Ω be a bounded polyhedron in \mathbb{R}^N . A compact set $K \subset \partial \Omega$ is removable if and only if

$$C_{s(k,j),q'}(K \cap L_{k,j}) = 0, (4.47)$$

for k = 1, ..., N $j = 1, ..., n_k$, where s(k, j) is defined as in (4.29). This condition is equivalent to

$$C_{\rho,q'}(K) = 0. \tag{4.48}$$

A measure $\mu \in \mathfrak{M}(\partial \Omega)$ is q-good if and only if it does not charge sets with $C_{\rho,q'}$ -capacity zero.

Proof. The first assertion is an immediate consequence of Proposition 4.3 and Theorem 4.8. The second assertion follows from the fact that

$$C_{\rho,q'}(K \cap L_{k,j}) = C_{s(k,j),q'}(K \cap L_{k,j}).$$

The third assertion follows from Theorem 4.6 and the previous statement. \Box

References

- D. R. ADAMS and L. I. HEDBERG, "Function Spaces and Potential Theory", Grundl. Math. Wiss., Vol. 314, Springer-Verlag, Berlin, 1966.
- [2] A. ANCONA and M. MARCUS, *Positive solutions of a class of semilinear equations with absorption and schrödinger equations*, J. Math. Pures Appl. **104** (2015), 587–618.
- [3] P. BARAS and M. PIERRE, Singularités éliminables pour des équations semi-lineaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206.
- [4] BUI HUY QUI, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245–295.
- [5] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions, In: "Partial Differential Equations", Proc. Sympos. Pure Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1961, 33–49.
- [6] E. B. DYNKIN, "Diffusions, Superdiffusions and Partial Differential Equations", Amer. Math. Soc. Colloquium Publications, Vol. 50, Providence, RI, 2002.
- [7] E. B. DYNKIN, "Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, University Lecture Series, Vol. 34, Amer. Math. Soc., Providence, RI, 2004.
- [8] E. B. DYNKIN and S. E. KUZNETSOV, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49 (1996), 125–176.
- [9] E. B. DYNKIN and S. E. KUZNETSOV, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. 51 (1998), 897–936.
- [10] J. FABBRI and L. VÉRON, Singular boundary value problems for nonlinear elliptic equations in non smooth domains, Adv. Differential Equations 1 (1996), 1075–1098.
- [11] D. FEYEL and A. DE LA PRADELLE, Topologies fines et compactifications associÕes L certains espaces de Dirichlet, Ann. Inst. Fourier (Grenoble) 27 (1977), 121–146.
- [12] K. GKIKAS and L. VERON, Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials, Nonlinear Anal. 121 (2015), 469–540.
- [13] N. GILBARG and N. S. TRUDINGER, "Partial Differential Equations of Second Order", 2nd ed., Springer-Verlag, Berlin/New-York, 1983.
- [14] C. KENIG and J. PIPHER, The h-path distribution of conditioned Brownian motion for nonsmooth domains, Probab. Theory Related Fields 82 (1989), 615–623.
- [15] J. B. KELLER, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math. 10 (1957), 503–510.
- [16] J. F. LE GALL, *The Brownian snake and solutions of* $\Delta u = u^2$ *in a domain*, Probab. Theory Related Fields **102** (1995), 393–432.
- [17] J. F. LE GALL, "Spatial Branching Processes, Random Snakes and Partial Differential Equations", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999.
- [18] M. MARCUS, Complete classication of the positive solutions of $-\Delta u + u^q = 0$, J. Anal. Math. **117** (2012), 187–220.
- [19] M. MARCUS and L. VÉRON, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. An. 144 (1998), 201–231.
- [20] M. MARCUS and L. VÉRON, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77 (1998), 481–521.
- [21] M. MARCUS and L. VÉRON, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900.
- [22] M. MARCUS and L. VÉRON The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. 56 (2003), 689–731.
- [23] M. MARCUS and L. VÉRON, *The precise boundary trace of positive solutions of the equation* $\Delta u = u^q$ *in the supercritical case*, In: "Perspectives in Nonlinear Partial Differential Equations", Berestycki Henri *et al.* (eds.), Based on the Conference celebration of Häim Bretis' 60th birthday, June 21-25, 2004, Amer. Mathematical Society (ANS), Contemporay Mathemathics vol. 446, Providence, RI, 2007, 345–383.

- [24] M. MARCUS and L. VÉRON, Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case, Annali Sc. Norm. Super. Pisa, Classe di Scienze, Ser. V X (2011), 913–984.
- [25] B. MSELATI, "Classification and Probabilistic Representation of the Positive Solutions of a Semilinear Elliptic Equation", Mem. Amer. Math. Soc., Vol. 168, 2004.
- [26] R. OSSERMAN, On the inequality $\Delta u \ge f(u)$, Pacific J. Math. 7 (1957), 1641–1647.
- [27] E. STEIN, "Singular Integral and Differentiability Properties of Functions", Princeton Univ. Press, 1970.
- [28] H. TRIEBEL, "Interpolation Theory, Function Spaces, Differential Operators", North-Holland Pub. Co., 1978.

Department of Mathematics Technion - Israel Institute of Technology Haifa, 32000, Israel marcusm@math.technion.ac.il

Laboratoire de Mathématiques Faculté des Sciences Parc de Grandmont 37200 Tours, France veronl@lmpt.univ-tours.fr