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Boundary trace of positive solutions
of supercritical semilinear elliptic
equations in dihedral domains

MOSHE MARCUS AND LAURENT VERON

Abstract. We study the generalized boundary value problem for (E) —Au +
|u|q_lu = 0 in a dihedral domain €2, when ¢ > 1 is supercritical. The value
of the critical exponent can take only a finite number of values depending on
the geometry of 2. When p is a bounded Borel measure in a k-wedge, we give
necessary and sufficient conditions in order it be the boundary value of a solution
of (E). We also give conditions which ensure that a boundary compact subset is
removable. These conditions are expressed in terms of Bessel capacities By ,/ in

RNk where s depends on the characteristics of the wedge. This allows us to
describe the boundary trace of a positive solution of (E).
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1. Introduction

Let Q be a bounded Lipschitz domain in RY and let ¢ > 1. A long-term research
on the equation

—Au+ulf'u=0in Q, (1.1)

has been carried out for more than twenty years by probabilistic and/or analytic
methods. Much of the research was focused on three main problems in domains of
class C%:

(i) The Dirichlet problem for (1.1) with boundary data given by a finite Borel
measure on 9€2.
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(i1) The characterization of removable singular subsets of 92 relative to positive
solutions of (1.1).

(iii) The characterization of arbitrary positive solutions of (1.1) via an appropriate
notion of boundary trace.

Consider the Dirichlet problem
—Au+1ul'u=0 in Q, u=p in IQ (12)

where u € 9M(92) (= space of finite Borel measures on 92). Following [24], a
(weak) solution u := u, of (1.2) is a function u € L%(Q) such that,

/ (—uAn + nlul"_lu> dx = —/ KlulAndx, (1.3)
Q Q
for every in n € X (2), where

X(Q) = {n . plAn € L°°(s2)}. (1.4)

Here K[u] is the harmonic function in € with boundary trace u and p is the first
eigenfunction of —A in WOI’Z(SZ) normalized so that max,, o = 1. We also denote
by A the corresponding eigenvalue. We recall that, if € is Lipschitz K[u] € L}) (2);
if Qis of class C%, K[u] € L'(Q).

A measure u is a g-good measure if (1.2) has a solution. The space of g-good
measures is denoted by 9, (0€2). It is known that, if 11 is g-good, the solution is
unique. Furthermore, if u satisfies the condition

/ Kllull? pdx < oo, (1.5)
Q

then it is g-good. When u satisfies this condition we say that it is a g-admissible
measure.

When € is a domain of class C2, K[u] € LY forevery g € (1, N“) and every
n € IM(). Therefore, for ¢ in this range, every measure in 93?(852) is g-good
and there is no removable boundary set (except for the empty set). Problem (iii),
for g in this range, was resolved by Le Gall [16] (for N = g = 2) and Marcus and
Véron [19] (for 1 < g < M, N > 3).

The number g, = N H is called the critical value for (1.1). If g is supercritical,

ie. q > qc,point smgulantles are removable. In particular there is no solution of
(1.2) when . = 8y (= a Dirac measure concentrated at a point y € 9€2).

In the supercritical case, problems (i)-(iii), €2 of class C2, have been resolved
in several stages. We say that a compact set £ C 92 is removable relative to
equation (1.1) if there exists no positive solution vanishing on 2 \ E. We say that
E is conditionally removable if any solution u of (1.2), with u € 2M(32), such that
u =0o0n 02\ E must vanish in €.
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With respect to problem (ii) it was shown that a compact set £ C 0€2 is remov-
able if and only if Cz ,(E) =0,q' = q/(qg — 1). Here C,, ), denotes the Bessel

capacity, with the 1ndlcated indexes on d€2. (see Subsection 4.2 for an overview of
Bessel capacities). This result was obtained by Le Gall [16] for ¢ = 2, Dynkin and
Kuznetsov [8] for 1 < ¢ < 2, Marcus and Véron [20] for ¢ > 2. For a unified
analytic proof, covering all ¢ > g, see [21].

The above result implies that every g-good measure ;o must vanish on sets of
C 2q capacity zero. On the other hand a result of Baras and Pierre [3] implies that

every positive measure u € () that vanishes on sets of C» 7 capacity zero is
s

the limit of an increasing sequence of admissible measures and therefore g-good.
In conclusion: a measure pu € M(IN) is g-good if and only if it vanishes on sets of
C 7 capacity zero. This takes care of problem (i).

Problem (iii) has been treated in several papers, with various definitions of a
generalized boundary trace for positive solutions of (1.1), see [9] and [23]. Finally
a full characterization of positive solutions was obtained by Mselati [25] for ¢ = 2,
Dynkin [7] for 1 < g < 2 and Marcus [18] for every ¢ > ¢g.. In [7,25] the
restriction to ¢ < 2 was dictated by their use of probabilistic techniques that do not
apply to ¢ > 2. In [18] the proof is purely analytic.

If Q is Lipschitz, § € 9€2, we say that g is the critical value for (1.1) at & if,
for 1 < g < gg, problem (1.2) with u = ¢ has a solution, but for ¢ > gz no such
solution exists.

In contrast to the case of smooth domains, when €2 is Lipschitz, g may vary
with the point. For every compact set ' C 9€2 there exists a number g(F) > 1
such that, for 1 < g < g(F), every measure in 91(3€2) supported in F is g-good.
Obviously g(F) < min{gs : & € F} but it is not clear if equality holds.

In the special case when €2 is a polyhedron, the function & — g¢ obtains only
a finite number of values (in fact, it is constant on each open face and each open
edge) and, if ¢ > ¢, an isolated singularity at £ is removable. Furthermore, the
assumption 1 < g < min{gg : § € 0R2} implies that every measure in D(9Q) is
q-good. For this and related results see [24].

In the present paper we study problem (1.2) when €2 is a polyhedron and g is
supercritical, i.e. ¢ > min{gg : § € 0Q2}. Following is a description of the main
results.

A. On the action of Poisson-type kernels with fractional dimension

In preparation for the study of supercritical boundary value problem s we establish
an harmonic analytic result, extending a well known result on the action of Poisson
kernels on Besov spaces with negative index (see [28, 1.14.4.] and [4]). We first
quote the classical result for comparison purposes.

Proposition 1.1. Let 1 < g < coands > 0. Then, for any bounded Borel measure
win R

160 = [ A0 ey~ il ey (010

R
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Here KK,,[11] denotes the Poisson potential of w1 in R} = Ry x R 1, namely,

d
K, lnl(y) = Vn)’l/ > #)
R (yi 4 [¢ —z?)

7 =010 eRy (1.7)

where y,, is a constant depending only on 7.

Notation. Let m be a positive integer and let v be a real number, v > m + 1.
Denote,

Ky ml1](z, £) :=/ TR c0.00). c R (18)

Rm (r2 + ¢ - le)v/Z

Note that
K, [u] = VnKn,nfl [i].

Theorem 1.2. Let m and v be as above. Then, for every q > 1 and every s €
0,m/q"), ' = q/(q — 1), there exists a positive constant ¢ such that, for every
positive measure (. € M(R™) supported in Bg/>(0) for some R > 1,

1 q /R </ q > sq—1
- —s m =< Kvm 5 d a d
c ”l‘L”B 5.9 (RM) 0 ‘{‘<R| s [M](T §)| é‘ T T (19)

(s+v—m)g+1 q
E CR ”/’L”fo,q (R’") .
This also holds when s = m/q’, provided that the diameter of supp u is sufficiently
small.

This is proved in Section 3 (see Theorem 3.8) using a slightly different nota-
tion.

B. The critical value and the characterization of q-good measures in a k-wedge

The next step towards the study of boundary value problem s in a polyhedron is the
treatment of such problems in a k-wedge (or k-dihedron) i.e., the domain defined
by the intersection of k hyperplanes in R¥, 1 < k < N. The edge is an (N — k)
dimensional space.

We note that if kK = N the “edge” is a point and the corresponding wedge is
a cone with vertex at this point. If k = 1 the wedge is a half space. Both of these
cases have been treated in [24].

Let A be a Lipschitz domain in S¥=1. If

N—1
Sy = {xeRN:lxlzl,xeAx []o.71p c sV (1.10)
=k

then
Dy:={x=@0,0):r>0,0 € Sy}
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is a k-wedge in R whose “edge” d4 may be identified with R¥ % and its “open-
ing” is A.

Let A4 be the first eigenvalue of —AS vy I WO1 ’2(S 4) and denote by k4 the
roots of the equation,

K2+ (N —2)k —ip =0. (1.11)

Put
Ge == Kfj'ri;]\]_z (1.12)

and

2—k+ (k=22 4+4rs — 4N — k)i
Aa— (N —k)icy '

Let C(y ;k denote the Bessel capacity with the indicated indices in RY . The next
theorem provides a characterization of g-good measures supported on d 4.

Theorem 1.3.

q; =1+ (1.13)

(@) If 1 < g < q. every measure in MM(d ) is q-good relative to D 4. In fact every
such measure is q-admissible.

(b) If g = q, the only q-good measure in MM (d ) is the zero measure.

©) If qc < q < qF, ameasure u € M(d ) is q-good relative to D 4 if and only if
W vanishes on every Borel set E C d 4 such thatCSNq_,k(E) =0,s=2— kf}#.

The characterization of q-good measures in a polyhedron follows as an easy con-

sequence of the above theorem (see Theorem 4.6 below).

C. Characterization of removable sets

Let Q be an N-dimensional polyhedron. Theorem 1.3 provides a necessary and
sufficient condition for the removability of a singular set E relative to the family of
solutions u such that

/ lul?pdx < oo.
Q

The next result provides a necessary and sufficient condition for removability in the
sense that the only non-negative solution u € C (2 \ E) which vanishes on Q \ E is
the trivial solution u = 0.

Let L denote a face or edge or vertex of Q and putk :=codimL.If1 <k < N
let d;, denote the linear space spanned by L, such that L is an open subset of df .
Let Q1 denote the k-wedge with boundary dy, such that, for some neighborhood M
of L, QN M = Q; N M and let Ay denote the opening of Q;. If k = N, Oy is
a cone with vertex L. Let g.(L) and ¢(L) be defined as in (1.12) and (1.13) for
A = Ap. Finally let
k4 Ky

/

s(L) =2 —

where x4 are the roots of (1.11) for A = A;.If k = N, Oy is a cone with vertex L.
In this case g.(L) = g} (L) = 1— K% Ifk=1qg.(L)=¢g}(L)=(N+1)/(N—-1).
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Theorem 1.4. Let Q be a polyhedron in RN . A compact set E C 92 is removable
if and only if, for every L as above such that E N\ L # @, the following conditions
hold:

—if1 < k < N: either q.(L) < q < q}(L) and Clﬁ\(’L_)kq,(E NL)y =0 or
q =q;(L);
—ifk=N:q>qc(L).

The present paper is part of an article, “Boundary trace of positive solutions of semi-
linear elliptic equations in Lipschitz domains” arXiv:0907.1006 (2009). The first
part of this article was published in [24]. The second and last part are presented
here. The characterization of g-good measures, here established in polyhedrons,
was recently established in [2], for arbitrary Lipschitz domains and a general fam-
ily of nonlinearities. However the full removability result, Theorem 4.11, has not
been superseded. (In [2] the authors provided - in the generality mentioned above
- a characterization of conditional removability but not of full removability.) The
methods of proof in the two papers are completely different. In the present paper,
the characterization of g-good measures is based on an extension of a result of [4]
and [28, 1.14.4.] on the action of Poisson kernels on Besov spaces with negative
index. The use of Poisson-type kernels with fractional dimension has recently ap-
peared in [12] to be a fundamental tool for the study of the boundary trace problem
for semilinear elliptic equations with critical Hardy potentials depending on the
distance to the boundary in the supercritical case. In [2] the proof relies on a rela-
tion between elliptic semilinear equations with absorption and linear Schrédinger
equations.

2. The Martin kernel and critical values in a k-dimensional dihedron.

2.1. The geometric framework

An N-dim polyhedron P is a bounded domain bordered by a finite number of
hyperplanes. Thus the boundary of P is the union of a finite number of sets
{Lxj :k=1,...,N, j =1,...,n;} where {L ;} is the set of open faces of
P, {L j}fork =2,..., N —1,is the family of relatively open N — k-dimensional
edges and {Ly_;} is the family of vertices of P. An N — k-dimensional edge is a
relatively open set in the intersection of k hyperplanes; it will be described by the
characteristic angles of these hyperplanes.

We recall that the spherical coordinates in RN = {x = (x1,...,xy)} are
expressed by
X1 =rsinfy_1sinfy_3 ---sinH; sin H;
Xp =rsinOy_1sinOy_» - --8inbh cos Oy

X3 =r sin (9]\7_1 sin QN_Q + -+ COS 92
(2.1)

XN_1 =rsinfy_jcosby_s,
XN =rcosOy_i
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where r = |x|,0; € [0,27] and 6y € [0, ] for £ = 2,3,..., N — 1. We denote
o = (01, ...60y—1). Thus in spherical coordinates x = (r, o).
We consider an unbounded non-degenerate k-dihedron,?2 < k < N defined as
follows. Let A be given by
k—1

A= O] (@j, ) ifk>2
j=2
O, ay) ifk=2
where
O<a; <2n, 0=<uq; <a} <m j=2,...,k—1.
We denote by S4 the spherical domain
N—1
Sa=1xeR¥:|x|=1,0eAx [[10.x]} c SN (2.2)
=k

and by D4 the corresponding k-dihedron,
Dys={x=(@r,0):r >0,0 € Sa}.

The edge of D4 is the (N — k)-dimensional space
da={x:x1=x2=...=x; =0} (2.3)

2.2. On the Martin kernel and critical values in a cone

We recall here some elements of local analysis when 2 = C 4N By, A is a Lipschitz
domain in S¥~! and C, is the cone with vertex 0 and opening A.
Denote by A, the first eigenvalue and by ¢, the first eigenfunction of —A’ in

WO1 ’Z(A) (normalized by max ¢, =1). Let «_ be the negative root of (1.11) and put

1
Q1 (x) := ;IXIKVPA(X/ x[)

where y is a positive number. Then @ is a harmonic function in C,4 vanishing
on dC4 \ {0} . We choose y = y4 so that the boundary trace of ®; is §p (=Dirac
measure on with mass 1 at the origin).

G Ifg>=1-— Kl_ there is no solution of (1.1) in g with isolated singularity at 0
(see [10]).
) Ifl <g <1-— /% then for any k > O there exists a unique solution u := uy
to problem (1.2) with u = k&g and
ur(x) =k®;(x)(1 +o0(l)) as x — 0. 24
The function us, = limg_, oo ug is a positive solution of (1.1) in € which
vanishes on 0€2 \ {0} and satisfies

Uoo(X) = |x|*q%1wA(x/|x|)(1 +o(1)) as x—0 2.5)
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where o, is the (unique) positive solution of

—No—ay 0+ o=0 (2.6)
on SV~ Here A’ is the Laplace-Beltrami operator and
2 (2 _y @7
ay, =—— | ——— . .
Na—g—1\g—1

(iii) Ifu € C(S24\ {0}) is a positive solution of (1.1) vanishing on (dC 4N B, (0)\
{0}, then either u satisfies (2.4) for some k > O or u satisfies (2.5). In particular
there exists a unique positive solution vanishing on (3C 4 N B, (0)) \ {0} with
strong singularity at 0. (For (ii) and (iii) see [24, Theorem 5.7].)

2.3. Separable harmonic functions
and the Martin kernel in a k-dihedron,2 <k < N

In the system of spherical coordinates, the Laplacian takes the form

N —1 1
Au = 0pu + Ta,u + ﬁAstlu

where the Laplace-Beltrami operator A ,_, is expressed by induction by

1 d ) N—2 Ou
A = On—
-1 (sinOy_1)N=2 96y, ((sm v-1) 391\1—1)
1 (2.8)
+— A, U,
(SinQN_l)2 SN
and
A u = 0g9,u. 29

If we compute the positive harmonic functions in the k-dihedron D 4 of the form
v(x) =v(r,0) =r‘w(c) inDy, v=0 indDy)\ {0},

we find that «w must be a positive eigenfunction corresponding to the first eigenvalue,
Aa,of _ASN—I in Wol’z(SA),

sN-1 (2.10)

A o+ rigwo=0 inSy
w=0 on 4S54

and « must be a root of the algebraic equation (1.11) with A 4 as above. Thus k = x4
where

op = 1 (2—N+\/(N—2)2+4AA>
2 Q2.11)
Ko = % (2—N—\/(N—2)2+4AA).
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Since

SN-1 = {a — (oysinBy_1.cosOy_1) : o € SN2, Oy, € (O,n)},

we look for a solution @ = w!!! of (2.10) of the form
Ho) = inOy_1)* 0 (02), Oy-1€0,7), oSV 2
Here SV—2 = S¥~1 N {xy = 0} and we denote
S —sanpey =0y, DY =Dan{xy =0} c RV
Then (2.11) jointly with relation (2.8) implies

Astza){Z} + (s —kp)o? =0 on S;NfZ}

Voo (2.12)
o =0 on ast =
Since we are interested in !>} positive, Af} := A4 —k+ must be the first eigenvalue
N-2}
of —A , in Wy (s 7).
Next we look for positive harmonic functions & in DEXN_Z} such that
i(x1, ..., xn-1) =r o), @=00ndD{ .

The algebraic equation which gives the exponents is

)2+ (N =3’ =2 =o.

Denote by «/, the positive root of this equation. By the definition of A{Z}

K2+ (N =3y =M =12 4 (N =2k —2p =0,
Therefore Kﬁr = k4. Accordingly, if K > 3, we set
®(02) = (sinOy-2)* 0¥ (03),
and find that o} satisfies

ASN_sa)B} + (s — 2k =0 in SI{L‘N_3}

s 2.13)
=0 on 851{4 -,
where Vo3
ST = s n ey = xy_1 =0}

Performing this reduction process N — k times, we obtain the following results.
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() If k > 2 then w = 0V ~*(o) is given by

Nk oy k1) (2.14)

(o) = (sinOy_; sinOy_s . . . sin B !
where
~1 -1
on—k+1 € S =8N {xy = a1 = = x4 =0}

and o' := !N 51 gatisfies

Ay + Ga— (N =k’ =0, in st

o (2.15)
w =0, 0n8S1{4_},
where S¥ ™1 = Sunfxy = xy_1 = ... = xp1 = 0} ~ Aand Aa—(N—k)icy
is the first eigenvalue of the problem.
(ii) If k = 2 then
w(0) = (sinfy_;sinfy_5 . ..sin6) V1)) (2.16)
where oy_1 € S! ~ 0 € (0, 27), and ¥ ! satisfies
A oD 4 (g — (N =2k =0 on st
s (2.17)
V-1 =0 on ast),
with BSI{L‘I} ~ (0, ). In this case
i (N=1) .
Kt =—, o (61) = sin(m 0 /), (2.18)
o
and, by (1.11),
2 2
T T T
Aa—(N=2ky=—F=2:=—>5+(N-2)—. (2.19)
o o o

Observe that % < k4 with equality holding only in the degenerate case @ = 27
(which we exclude).

In either case, we find a positive harmonic function v4 in D4, vanishing on 9D 4,
of the form
va(x) = [x"F o (x/|x]) (2.20)

with w as in (2.14) (for k > 2) or (2.18) (for k = 2). Furthermore, if €2 is a domain
in RV such that, for some R > 0, Q N Bg(0) = D4 N Br(0) and w is a positive
harmonic function in 2 vanishing on d4 N Bg(0) then w ~ v4 in 2 N Bg/(0) for
every R' € (0, R).
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Similarly we find a positive harmonic function in D 4 vanishing on dD 4 \ {0},
singular at the origin, of the form

K (x) = x|~ o(x/ |x)).

If Q is a domain as above and z is a positive harmonic function in €2 vanishing on
da N Br(0) \ {0} then z ~ K, in Q N Br/(0) \ {0} for every R" € (0, R).

As K/, is a kernel function of —A at 0 it follows that K', is, up to a multiplica-
tive constant c 4, the Martin kernel of —A in D 4, with singularity at 0. The Martin
kernel, with singularity at a point z € d4, is given by

(sinfy_1 sinfy_s...sinO)+ !N oy _141)

Ka(x,2)=c, T v 221)
for every x € Dy4. From (2.1)
sinfy_;sinfy_5...sin6 = |x — zl_l\/xl2 +x% + ... +x,%.
Therefore, if we write x € RY in the form x = (x/, x”), x’ = (x1, ..., x3), x" =
(Xk+1, -+ , XN), We obtain the formula,
K o oy )
Alx,2) = Cy Ix — Z|(1\’—2+2/<+)
(222)

_ |x/|K+w{ka+l}(UN_k+1)

=Gy (X + |5 = z2)N—2+2n/2"

Therefore, the Poisson potential of a measure u € 9(d,) is expressed by
Kalpl(x) = ¢, |x' o™ oy gq)

/ du() (223)
X
R

Nk (|x/|2 + |x// _ Z|2)(N—2+2/<+)/2'

2.4. The admissibility condition

Consider the boundary value problem

(2.24)

—Au+ul?'u=0 inDy
u=peMADy).

Let

Cp = {x = (x’,x”) : |x/| <R,

x"| <R}, Dar:=DanTg (225
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and let pg, 4 denote the first (positive) eigenfunction in D4 g := D4 N k. In the
rest of this section we drop the index A in K4, p, , etc., except for D, D4 g and
dy.

First we observe that a positive Radon measure on d4 is g-good relative to D 4
if and only if, for every compact set F' C da, i xr is g-good in D 4

Now suppose that p is compactly supported in d 4 and denote its support by F'.
We claim that u is g-good in D4 if and only if it is g-good relative to D4 g for all
sufficiently large R. Let R be such that F' C Bg /_2k (0). Assume that p is g-good
in D g. Let vg be the solution of (1.1) in D4 g such that vg = p onds N g,
v =00ndDy r\da. Then vg increases with R and v = limg_, » Vg is a solution
of (1.1) in D4 with boundary data . This proves our claim in one direction; the
other direction is obvious.

The condition for u to be q-admissible in D 4 is

KR[[1(0)? o ()dx < o0, (2.26)

Da g

where K ¥ is the Martin kernel of —A in D A.r- If R is sufficiently large then, in a
neighborhood of F, K R ~ K and pR ~ p ~ v4. Therefore, a sufficient condition
for u to be g-good in D 4 is

/ K[un|1x)|9p(x)dx < oo VR > 0. 2.27)
TF'rNDA

By the first observation in this subsection, it follows that the previous statement
remains valid for any positive Radon measure supported on d 4.
By (2.21),

. J& X" = 2)d|pl (@) (2.28)

K[|ull(x) < cA(r/)“/
RN

where
jx) = x|Vt yx e RV, (2.29)

Therefore, using (2.20), condition (2.27) becomes

R q
/ / ( / j(x/,x”—z)dl,ul(z)) (rH @Dtk =lg g < 0o (2.30)
0 |x”|<R \JRN-k

for every R > 0.

2.5. The critical values

Relative to the equation
—Au+ul'u=0 (2.31)

there exist two thresholds of criticality associated with the edge d 4.
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The first is the value g such that, for ¢} < g the whole edge d4 is removable
butfor 1 < g < g} there exist non-trivial solutions in D 4 which vanishon 0D 4\d4.
The second g, < g corresponds to the removability of points on d4. For g > ¢,
points on d4 are removable while for | < g < g, there exist solutions with isolated
point singularities on d4. In the next two propositions we determine these critical
values.

Proposition 2.1. Assume g > 1,1 <k < N. Then the condition

2—k++/(k—2)2+4xrs — 4N — k)icy
Aa— (N — k)

qg<gq;:=1+ (2.32)

is necessary and sufficient for the existence of a non-trivial solution u of (2.31) in
D 4 which vanishes on 0Dy \ da. Furthermore, when this condition holds, there
exist non-trivial positive bounded measures L on d 4 such that K[u] e L(Z) (CrNDy).

Remark. The statement remains true for k = N, which is the case of the cone. In
this case g = ¢ = 1 — (2/x_) and a straightforward computation yields:

N+2+(N—=2)2+4rqy
q = .
CON—2+(N -2+ 4n4

Proof. Recall that A4 — (N — k)« is the first eigenvalue in Sikil} (see (2.15) and
the remarks following it). Let «/, , k__ be the two roots of the equation

(2.33)

X2+ (k=2X — (oa— (N —k)ky) =0,

ie.,

1
5 (2—ki\/(k—2)2+4(xA—(N—k)/c+).

Then, by [24, Theorem 5.7], recalled in Subsection 2.2, if 1 < g < 1 — (2/«")
there exists a unique solution of (2.31) in the cone C -1 i.e. the cone with opening
A

/
K:tz

S]/j_l c Sk ¢ RF with trace ady (where 8y denotes the Dirac measure at the
vertex of the cone and a > 0). By (2.5) this solution satisfies

uq(x) = alx|"*¢(x/IxD( +o(1)) asx — 0, (2.34)

where ¢ is the first positive eigenfunction of —A’ in WOI’Z(S’;\_I) normalized so that
1] possesses trace &p.
The function u given by

fq (', x") = ug(x') V', x") € Dy = Cgr x RV,
A

is a nonzero solution of (2.31) in D4 which vanishes on d D 4 \ d4 and has bounded
trace ondy.
A simple calculation shows that 1 — (2/k’ ) equals ¢ as given in (2.32).
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Next, assume that ¢ > ¢ and let u be a solution of (2.31) in D4 which van-
isheson 0D 4 \ dy.

Given € > 0 let v, be the solution of (2.31) in DZN_k_l} \{x' e RF: x| <€)
such that
PN L S oD TN ) > e,
¢ oo, if x| =e.

Given R > 0 let w, be the maximal solution in {x” € RN =% : |x”| < R}.
Then the function u™* given by

w*(x', x") = ve (x) + wy (x”)
is a supersolution of (2.31) in D4 \ {(x’, x”) : |x'| > €, |x”| < R} and it dominates
u in this domain. But w, (x”) — 0 as R — oo and, by [10], vc(x") — 0 as € — 0.

Therefore u4 = 0 and, by the same token, u_ = 0. O

Proposition 2.2. Let A be defined as before. Then

Klul € LYTr N Da) VY € M(da), VR >0 (2.35)
if and only if
K+ + N
1 = 2.36
<4<d= i (236)

This statement is equivalent to the following:
Condition (2.36) is necessary and sufficient in order that the Dirac measure
W = 8p, supported at a point P € dy, satisfy (2.35).

Proof. 1t is sufficient to prove the result relative to the family of measures u such
that u is positive, has compact support and u(dg) = 1. Let R > 1 be sufficiently
large so that the support of 1 is contained in I'g 2. The measure 1 can be approxi-
mated (in the sense of weak convergence of measures) by a sequence {u,} of con-
vex combinations of Dirac measures supported in d4 N I'g/>. For such a sequence
K[un] — K[u] pointwise and {KK[14,,]} is uniformly bounded in D \I'3g/4. There-
fore it is sufficient to prove the result when & = §p. In this case the admissibility
condition (1.5)) is

R
/ / GO0 ()@ g o
0 [x”|<R

ie.,

R /R
/ / |x|q(2—N—2K+)(r/)(q+l)l<++k*l(r//)kafldr//dr/ < 0.
0 0
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Substituting t := r”/r’ the condition becomes

/ q
R rR/r ~(2—N—-2k4) v _
/ / (1 +r2)2 i (r’)q(2 N N=LN—k=1 g0 4y < 0.

This holds if and only if ¢ < (k4 + N)/(k+ + N —2). O

Remark. It is interesting to notice that k does not appear explicitly in (2.36). Fur-
thermore, we observe that

2 24,
— N )=t <= ki(ks + N —2) = Ay, 2.37)
ge — 1 \qc—1

which follows from (2.11). This implies that there does not exist a nontrivial solu-
tion of the nonlinear eigenvalue problem

2 2q q—1 .
A V=TT N v =0 ins,

qg—1 (2.38)

Y =0 inds,

which, in turn, implies that there does not exists a nontrivial solution of (2.31) of
the form u(x) = u(r, o) = |x|7%@=Dy (o), and also no solution of this equation
in D 4 which vanishes on d D 4 \ {0}. This is the classical ansatz for the removability
of isolated singularities in dg4.

3. The harmonic lifting of a Besov space B~*7(d4)

Denote by WP (RY) (¢ > 0,1 < p < o) the Sobolev spaces over R¢. In order to
use interpolation, it is useful to introduce the Besov space B%?(R¢) (o > 0). If o
is not an integer then

BoP(RY) = woP (RY). 3.1

If o is an integer the space is defined as follows. Put

Ay f=fa+y)+ flx=y)=2f().
Then
Axyf

| |1+£/p

B"P(RY) = {f e LP(R"): € LP(R" x Re)} : 3.2

with norm

/17 v
£ llgrp = ||f||Lp+(/f]R . |;|5+,, dxdy) . (3.3)
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(with standard modification if p = co) and

B"™P(RY) = {f e W bP(RY)
(3.4)
D%f € B"P(RY) Va € N, |a| =m — 1}

with norm

1/p
DY A 17
s =W hero+ (3 [ e lavay) L 6
w1 J RExRE Y]

We recall that the following inclusions hold ( [27, p 155])
wmr(RY) c B™P(RY) if p>2

(3.6)
B™P(RY) c wmP(RY) if 1 <p<2.
When 1 < p < o0, the dual spaces of W*? and B™? are respectively denoted by
WP and B—"-P'
The following is the main result of this section.

Theorem 3.1. Suppose that q. < q < q and let A be defined as in Subsection 2.1.
Then there exist positive constants c1, ¢p, depending on q, N, k, k., such that for
any R > 1 and any p € MM (d ) with support in B >:

C1 ||M’||%—s¢q(RN—k)
g 8 3.7
< | Kul*@p@dx < e+ R 1alf gy -

D4 R

where s =2 — Kt;,r ,B=(q@+ ks +k—1and Dy g = DaNTRg.Ifq = q. the
estimate remains valid for measures p such thatthe diameter of supp u is sufficiently

small (depending on the parameters mentioned before).
Remark. When g > 2 the norms in the Besov space may be replaced by the norms
in the corresponding Sobolev spaces.

Recall the admissibility condition for a measure p € 4 (d4):

Kul?(x)p(x)dx <oo VR >0

Da g
and the equivalence (see (2.27)-(2.30))

Kl (x)px)dx ~ JA4R ()
Da.r

(3.8)
= g dp(2) 7 LD h—1 g 1
~Jo B \JRN-* (t2 4 |x" — z|2)|) N —2+2k1)/2 s
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where x = (x/,x”) € RF x RV "% 7 = |x/| and B}, = {x” e RV=F : |x”| < R}.
We denote
v=N—2+2%,. (3.9)

If 2k, is an integer, it is natural to relate (3.8) to the Poisson potential of u in
R} =Ry x R,_ where n = N — 2 + 2« . We clarify this statement below.
Assuming that 2 < n + k — N, denote

y=(.YY)eR", F=0n s Ynthk=N)s Y = Ontk=N+1s-- -+ Yn)-

The Poisson kernel in R, = R, x R, is given by

P,(y) = vuy1lyl™  y1 >0, (3.10)

for some y, > 0, and the Poisson potential of a bounded Borel measure p with
support in
d = {y = (0’ y”) S Rn . y” S RN—]{}

is

du(z)
Knlul(y) = yny1/ T N Vy e R%. (3.11)
RNk (y2 4+ (312 4+ |y” — zI?)
In particular, for y = 0,
du(z)
K,[]1(y1,0,y") = J/nyl/ )n/z. 3.12)

RN—k (y% + |y// _ Z|2

The integral in (3.12) is precisely the same as the inner integral in (3.8).
In fact, it will be shown that, if we set

n:={v}=inf{m e N: m > v}, (3.13)

this approach also works when 2« is not an integer. We note that, for n given by
(3.13),
n—N+k=>2, (3.14)

with equality only if k = 3 and k. < 1/2 ork = 2 and k. € (1/2, 1]. Indeed,
n—N+k=k+ {2} -2

and (as k1 > 0) {2k3} > 1. If k = 2 then k1 > 1/2 and consequently {2« } > 2.
These facts imply our assertion.
We also note that k4 is strictly increasing relative to A 4 and

1 if D4 =RY

1 if Dy S RY (3.15)
1 if Dy 2 RY.

K4

VoA
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Finally we observe that y := X4 — (N — k)k4+ > 0 (see (2.15)) and, by (2.11) and
(2.32),

~(k=2) +v/ k=22 +4dy

y =12+ k-2kr, g =1+ . (3.16)

Therefore g is strictly decreasing relative to y and consequently also relative to
K4.

The proof of the theorem is based on the following important result proved
in [28,1.14.4.]

Proposition 3.2. Let 1 < g < oo and s > 0. Then for any bounded Borel measure
w in R there holds

I(w) = fR Ka kIO e 30 dy ~ il ey - (31D
+

In the first part of the proof we derive inequalities comparing 7 () and J4 R (u).
Actually, it is useful to consider a slightly more general expression than 7 (u),
namely:

1% (1) —/m+
R J

where v is an arbitrary number such thatv > m, j > 1 and 0 > 0. A point

d
f ) 7z e T 'ay,  (3.18)
R (yi+ 152 + |y — z[?)

y € Rfrj is written in the form y = (y1, 5, y”) € Ry x R/~ x R™. We assume
that w is supported in R™. Note that,

I(w =y where m=N—k, j=n—m=n—N+k  (3.19

q
3 du(z)
Fv,m[ﬂ](f) T /nl /m (-62 —|— |y// - Z|2)V/2

With this notation, if j > 2 then

(o.¢]
1 () = fo /R  Fomlnd (N/y%+|}‘|2) ey dydy, (321
-

andif j =1

Put

dy” ¥t el0,00).  (3.20)

o0
1 () = /0 Fy il e 1y gy, (3.22)
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Lemma 3.3. Assume thatm < v,0 < 0,2 < jand 1 < g < 00. Then there exists
a positive constant ¢, depending onm, j, v, o, q, such that, for every bounded Borel
measure (L with support in R™:

o0

1 [*® .
) fo Fumlil (0o j(Ddr < 17 (1) < ¢ /O Fumlil (0o j(D)dz. (323)

where F, , is given by (3.20) and, for every T > 0,

ro+Dg+j-2
- =2
ho j(t) = { (1+ D)+ (3.24)

e—t.[(a-i-l)q—l’ lf] =1.

Proof. There is nothing to prove in the case j = 1. Therefore we assume that
jiz2. .

We use the notation y = (y1, v, y”) € Rx R-/_l x R™ . The integrand in (3.21)
depends only on y; and p := |y|. Therefore, I 1'," ) can be written in the form

o0 o0
1 — 1g—1 i
L' (W) = Cm,j/O fo Fymlt] (\/ylz + pz) ey T gy I 2dp.,

We substitute y; = (2 — ,02)1/2

substitute p = rt. This yields,

, then change the order of integration and finally

T ()

m, ] v,0

o (o.¢]

= [ Rl e VT @ gy e e
0 P
<7 2 2, 2 2\(0+Dg/2—1

= [ Rt 2e VI @ 2y e gy
0 0

o0 1
- / / Fymlp)(0)r/ 2O+ 08= V1= ¢y g,
0 0

where
f(r) — rj—Z(l _ r2)(0'+1)q/2—1'
We denote 1
1) = f N pryar,
0
so that

o0
1% () =Cm,j/0 Fymlpl(yr/ =2 1/ (7)dz. (3.25)
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To complete the proof we estimate I(f. Since j > 2, f € Ll(O, 1) and IOZ is
continuous in [0, co) and positive everywhere. Hence, for every o > 0, there exists
a positive constant ¢, = ¢y (o) such that

1 .
— < Ié < c¢q in [0, ). (3.26)
Ca

Next we estimate Ic{ for large t. Since j > 2,
1j < 2 +ha/2-1 /1(1 N e
0
Substituting r = 1 — > we obtain,
1) <20+ha/2 /1 1OV~ gt = (o, )T~ DY, (3.27)

0
On the other hand, if T > 2,

1 .
Ié (T) — /.5 (1 _ t2)(1—3)/2t(0'+1)(]—1e—‘[ldt
T .
==+l / (1= s/ tha-1,m545  (328)
0

1
- T—(a+1)q2—<j—3>/ §@ a1, 7o

0
Combining (3.25) with (3.26)-(3.28) we obtain (3.23). O
Next we derive an estimate in which integration over R = ]Ri x R™ is

replaced by integration over a bounded domain, for measures supported in a fixed
bounded subset of R™.

Let B ,je (0) and B (0) denote the balls of radius R centered at the origin, in R/
and R™ respectively. Denote

FRLul(r) = /

B

du(z)
R (‘L’2 + |y// _ Z|2)v/2

FR Il (N/y% + |§|2) ey aydy,  (3.30)

where (y1,5) € R x R/~1.If j = 1 we denote

q
dy’ Vrel0,00) (329

;1
and, if j > 2,
I (s R) = /

Bfeﬂ{0<y1 }

R
5 (us R) = fo FR ey dyy. (3.31)

Similarly to Lemma 3.3 we obtain the following:
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Lemma 34. If j > 1, there exists a positive constant ¢ such that, for any bounded
Borel measure (o with support in R™ N Bg

R R
! /0 Ff il (@he, j(@)de < 1) (u; R) < ¢ /O Ff (e, j()dT (3.32)
with hs j as in (3.24).

Proof. Inthe case j = 1 there is nothing to prove. Therefore we assume that j > 2.
From (3.30) we obtain

R pa/R2—p2
‘ - +1)g—1 i
179 (43 R) = m 5 / / Ffm[u]< yf+p2>e Py gy o2
0 JO

Substituting y; = (t2 — p?)!/2, then changing the order of integration and finally
substituting p = r7 we obtain

R 1
eI (us R) = / / FR ul(o)r/ 2=y =% £(r)dr d.
0 0

m,j-v,o

where
fry = 1T =)l bart,

The remaining part of the proof is the same as for Lemma 3.3. O

Lemma 3.5. Let 1 < q,0 < o and assume thatm < vq and0 < j — 1 < v. Then
there exists a positive constant ¢, depending on j,m, q, o, v, such that, for every
R > 1 and every bounded Borel measure ju with support in Bg2(0) N IR™,

00 R
Vo Fv,m[u](r)ho,j(f)df—/o FR L ul(Dhe, j(t)dT

(3.33)
< ER(U-H—v)q-i-m-i-j—l ”/J/”Eq)n
with hs j as in (3.24).
Proof. We estimate
o0 R
‘/ Fv,m[u](r)ha,j(f)df—/ FR 111(0he, j(0)dT| <
0 0 (3.34)

00 R
/R |Fomlp]] (Dhe,j(T)dT + /0 Fv,m[m—Fv’?mm])u)ha,,-(r)dr.

For every T > 0,
|Fomli]| (©) < T | wlldy - (3.35)
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Since j — 1 < vgq, it follows that

/ | Fyomli]] (Do (D)7 < 1l / T hg, j(0)dT
r(@+Dg+j-2-vq
<c(o,q) Iuld / (1 + 7)+hq 1 eeng 4T
c(o,q) q pj-l1-
< — R/ .
S T+ Il 5

Since, by assumption, supp 4 C Bg,2, we have

r

Fonlitl = FE, (0| (@ho (Dd7

/ / / du(z) !
y”|>R m + |y// _ |2)U/2

2
el f f (172 + 1¢P) ™2 d¢ hy jd
[¢|>R/2

2
cm, @) el // (24 02) 20" dp by s

dy"he, j(v)dt

IA

IA

IA

— 2 _
cm, q) Il / - vq//z (14 02) "V dn by, d
R/2t

C(m7Q) ” ”q RM vq/ (a+l)q+j—2dr

- c(m, q)
T (vg-—m)((c+Dg+j—-1)

Combining (3.34)-(3.37) we obtain (3.33).

RO+Dg+j—1+m—vq

q
Il 141l

Corollary 3.6. For every R > 0 put

R
I (s R) = / Fllpl (@ @Dt =2qe,
0
Then

1 i ‘ .
SIS (0 — SR iy < I (s R) < cROFTDILI (),

B=@+1—-v)g+j+m—1,

(3.36)

(3.37)

(3.38)

(3.39)

for every R > 1 and every bounded Borel measure . with support in By /2(0) =

BR/z(O) NR™.
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Proof. This is an immediate consequence of Lemma 3.5 and Lemma 3.3. U

Lemma 3.7. Let m, j be positive integers such thatj > 1 andlet1 < q,0 < o.
Putn:=m+ j.

Then there exist positive constants c, ¢, depending on j, m, q, o, such that, for
every R > 1 and every measure | € DJT+(B7§/2(0)),

1 —go—1=t ;
Z||u||j§_l,,q(w_1)—ch(“ P ety < 925 s B

(3.40)
(o+1) q
5 CR g 1 ”M”B_U*q(R”_l) .
Ifo < ";1 , there exists Ry > 1 such that, for all R > Ry,
! q m, j
5o Wl gy < Il i R). (3.41)
If o = ";1 then, there exists a > 0 such thatthe inequality remains valid for
measures [ such thatdiam(supp ) < a.
If, in addition, 1;1 < o then
1 .
S M va oy = s (s R) < ROVl gy » (342)
where s .= o — 5.
q

Remark. Assume that 4 > 0. Then:

(i) If w € B~"4(R""!) and fq;l > o then uw(R™) = 0.
(i) f w € B~9(R™)and o > (n—1)/q’ thens > m/q’ and therefore BS4 (R™)
can be embedded in C (R™).

Proof. Inequality (3.40) follows from (3.39) and Proposition 3.2 (see also (3.19)).
For positive measures (1,

-1
litlon = (R) < 12l oy e, -

Therefore, if o < "q‘,l , (3.40) implies that there exists Ry > 1 such that(3.41) holds
forall R > Ry.

Ifo = "q—,l (3.40) implies that

1 _ .
g ety = € Il = T (15 R
But if p is a positive bounded measure such thatdiam(supp ;) < a then

llellom / IIMlléfﬂ,q(Rn,l) — 0 asa — 0.
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The last inequality follows from the imbedding theorem for Besov spaces according
to which there exists a continuous trace operator T : B”’q/(R"_l) — B* ’q,(Rm)
and a continuous lifting 7" : Bs’q,(Rm) > B4 (R""!) where s = a—”_qL/_]. O

vaeNanda:s—{—”_qL,_l,
K R 1 2
)" (i R) = /0 Flulu) (@ D=2 gy

R
= / FR @z stv—ma-tgr,
0

However, if i is positive, the expression
R
. . R —m)g—1
M (u; R) := /0 FR I (@)zetv=ma-lge, (3.43)

is meaningful for any real v > m and s > 0. Furthermore, as shown below, the
results stated in Lemma 3.7 can be extended to this general case.

Theorem 3.8. Let 1 < g, v € R and m a positive integer. Assume that 1 < v —m
and 0 < s < m/q’. Then there exists a positive constant ¢ such that, for every
bounded positive measure i supported in R™ N Bg,>(0), R > 1,

1 _

I oy < M3 R) < RO G (3.44)
This also holds when s = m/q’, provided that the diameter of supp u is sufficiently
small.

Proof. If v is an integer and j := v — m then this statement is part of Lemma 3.7.
Indeed the condition s > 0 means that 0 = s + Jq;,l > 1;1 and the condition

s < m/q' means that o < ";1.

Therefore we assume that v € N. Let n := {v} and & := n — v so that
0 < 6 < 1. Our assumptions imply that 1 < n —m — 1 because (as v is not an
integer) v — m > 1 and consequently n — m > 2.

If a, b are positive numbers, put

a(s-i—v—m)q—l
T @ty

Ay

Obviously A, decreases as v increases. Therefore, A, < A, < A,_1 which in turn
implies,

Mrrxs = Mll)q?s = Mrrzn—l,s'
By Lemma 3.7, the assertions of the theorem are valid in the case that v = n or
v = n — 1. Therefore the previous inequality implies that the assertions hold for
any real v subject to the conditions imposed. O
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By (3.8),
JAR _ /R FR (ryr@+Deh=1gg,
wherem = N —kandv =N —02 + 2k, . Consequently , by (3.38),
TAR = M
where s is determined by,
+v—-—m)gq—1=@+Dkyr+k—1, k=v—-—m+2—2ky.

It follows that

sq=—k—-24+2«k)g+ @+ Dryr+k=k(1—q)+2g —ki(g—1)

and therefore

s =2 k —;//q.
Proof of Theorem 3.1. Put
vi= N =24 2y, s::2—K+qJ/rk, —N—k (345
Recall that in the case kK = 2 we have x4 > 1/2. Therefore
v—m—1=k—3+2ky > 0. (3.46)

Furthermore,
s+v—myg—1=@+Dkyr+k—-1, k=v—-—m-+2-—2.
Thus R
JAR =/0 Ffm(t)t("+l)"++k_ldf = MITS’

Next we show that 0 < s < m/q’. More precisely we prove
0<s<m/g & q-<q<gq. (3.47)

Let u be a bounded non-negative Borel measure in B~*4(R™). If s < O,
B754(R™) ¢ L1(R™). Therefore, in this case, every bounded Borel measure on
R™ is admissible i.e. satisfies (2.35). Consequently , by Proposition 2.2, ¢ < gc.
As we assume g > g, it follows that s > 0.

If s > 0and sqg" —m > 0 then C, ,(K) = 0 for every compact subset of
R™ and consequently w(K) = 0 for any such set. Conversely, if s¢’ —m < 0
then there exist non-trivial positive bounded measures in B~5-9(R™). Therefore, by
Proposition 2.1, sq" < m if and only if ¢ < ¢.

In conclusion, 0 < s < m/q’ and v — m > 1; therefore Theorem 3.1 is a
consequence of Theorem 3.8. O
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K+

ko1
Remark. Note that the critical exponent for the imbedding of B 1 RNk
into C(RN %) is again

_ _ N+K+
q—‘]c—N+K+_2~

4. Supercritical equations in a polyhedral domain

In this section ¢ is a real number larger than 1 and P an N-dim polyhedral domain
as described in Subsection 6.1. Denote by {Ly,; :k=1,..., N, j=1,...,n}
the family of faces, edges and vertices of P. In this notation, L, ; denotes one
of the open faces of P; for k = 2,..., N — 1, L ; denotes a relatively open
(N — k)-dimensional edge and L ; denotes a vertex. For 1 < k < N, the (N —k)-

dimensional space which contains Ly ; is denoted by ]R;.V * Il <k<N , the
cylinder of radius r around the axis ]R;V ~* will be denoted by F,f,oj’r and the subset
Ay j of S¥=1is defined by
.1
lim ;(ar,g’f,.,, NP) =Ly ;% Ag,j.

Ay, j is the opening’ of P at the edge Ly ;. For k = N we replace in this definition
the cylinder F]?f’j’r by the ball B, (Ly,;). For1 <k < N and A = Ay ; we use dj

as an alternative notation for ]R;v ~* and denote by D 4 the k-dihedron with edge d 4
and opening A as in Subsection 6.1 (with S4 defined as in (2.2)). Fork = 1, D4
stands for the half space Rj.v -1 x 0, 00).

4.1. Definitions and auxiliary results

Let 2 be a bounded Lipschitz domain. We say that {€2,} is a Lipschitz exhaustion
of Q if, for every n, 2, is Lipschitz and

Q, C Qn C Qn+1v Q =UQ,, IHINfl(aszn) - HN*l(aQ)- 4.1)
If w, (respectively ) is the harmonic measure in €2, (respectively €2) relative to
X0 € 1, then, for every Z € C(S2),
lim Zdw, = f Zdw. 4.2)
=00 JaQ, aQ
[24, Lemma 2.1]. Furthermore, if u is a bounded Borel measure on 92 and v :=
K$[ ], there holds
lim Zvdw, = / Zdu, 4.3)
=00 J3Q, Q

[24, Lemma 2.2]. If v is a positive solution and (4.3) holds we say that p is the
boundary trace of v.
The following estimates are proved in [24, Lemma 2.3]:
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Proposition 4.1. Let u be bounded Borel measures on 0S2. Then K[u] € L}) ()
and there exists a constant C = C(2) such that

KLl 2 @) = € liellonog) - (44)
In particular if h € L' (3S2; w) then
”IP[h]”L})(Q) <C ||h||L1(3Q;w) . (4.5)

The nest result will be used in deriving estimates in a k-dimensional dihedron when
the boundary data is concentrated on the edge.

Proposition 4.2. We denote by G (respectively G*) the Green function in Q,
(respectively 2). Let v be a positive harmonic function in §2 with boundary trace ji.
Let Z € C%(Q) and let G € C*°(Q) be a function that coincides with x — G (x, x0)
in Q N Q for some neighborhood Q of 92 and some fixed xo € Q2. In addition
assume that there exists a constant ¢ > 0 such that

IVZ - VG| < cp. (4.6)

Under these assumptions, if { .= Z G then

—/ VAL dx:/ Zdu. 4.7
Q Q

Proof. Let {Q2,} be a C ! exhaustion of €. We assume that 9$2,, C Q for all # and
x0 € Q1. Let G, (x) be a function in C'(£2,,) such thatG coincides with G (-, x0)
in QﬂQn,G (-, x0) = G(-, xp) in C*(Q\0) and G, (-, x0) — G( Xo) in Lip (2).
If¢, = ZG we have,
—f VAL, dx = / VO dS = f vZ0nG (£, x0)dS
» Elo M EIoM

=/ vZPQ"(xO,g)dS=/ vZ dwy,.
A 02y,

/ dea)n—>/ Zdu.
EIo M Ele}

On the other hand, in view of (4.6), we have

By (4.3),

Atp = GoAZ +ZAG, +2VZ-VG, —> AZ

in L} (Q); therefore,

—/ VAL, dx — —/ VAL dx. O
Qu Q
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We denote by I, = M, () the set of g-good measures on the boundary.
A positive solution u of (1.1) in © possesses a boundary trace u € 9(3<2) if and
only if

fqudx < 00 (4.8)
Q

[24, Proposition 4.1]. In this case u € M, .
The following statements can be proved in the same way as in the case of
smooth domains. For the proof in that case see [20].

I. 901, (0€2) is a linear space and
we MR <= |u| € M(0R).

IL If {11,,} is an increasing sequence of measures in I, () and p := lim u,, is a
finite measure, then 1 € M, (02).

Proposition 4.3. Let i be a bounded measure on 0 P.(u may be a signed measure.)
Fori=1,...,N, j=1,...,n;, wedefine the measure jii j ondy, ; by,

Mk, j = onLgj, k=0 ondAkyj\Lk,j.
Then p € M, (0 P), i.e., the problem
—Au+u?!=0inP, u=pn ondP (4.9)

possesses a solution, if and only if i, j is a g-good measure relative to D 4, ; for
all (k, j) as above.

Proof. In view of statement I above, it is sufficient to prove the proposition in the
case that u is non-negative. This is assumed hereafter. If u € 91,(3d P) then any
measure v on d P such that) < v < u is a g-good measure relative to P. Therefore

1€ MyAP) = ;= 1xe,; € Mg (IP).

Assume that u € M, (3 P) and let uy, ; be the solution of (4.9) when p is replaced
by ,u}{y j- Denote by u}c j the extension of u, ; by zero to the k-dihedron Dy, ;.
Then u}(’ j is a subsolution of (1.1) in D 4, i with boundary data p ;. In the present
case there always exists a supersolution, e.g. the maximal solution of (1.1) in D, ;
vanishing outside d g ; \ Ly, j- Therefore there exists a solution vy, ; of this equation
in DAk_j with boundary data uy, ;,i.e., g, j is g-good relative to DA,{,J..

Next assume that u € 9M(dP) and that ., ; is g-good relative to Dy, for
every (k, j) as above. Let v, j be the solution of (1.1) in Dy, ; with boundary data
i, j- Then vg j is a supersolution of problem (4.9) with u replaced by ,u}c’ j and
consequently there exists a solution uy ; of this problem. It follows that

wi=max{ug;j:k=1,...,N, j=1,...,n)
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is a subsolution while

is a supersolution of (4.9). Consequently there exists a solution of this problem, i.e.,
we M, OP). O

4.2. Removable singular sets and ‘good measures’, I

We first introduce some standard elements associated to the Bessel capacities which
are the natural way to characterize good measures or removable sets. For o € R,
we denote by G, the Bessel kernel of order «, defined by

Go(®) =F ' (41 P7F) @), (4.10)

where F is the Fourier transform in the space S’(R) of moderate distributions in
RY. Forl < p < 00, the Bessel space Lavp(Re) is defined by

Lo p(RY) ={f: f=Guaxg :geLP(RY}, 4.11)

with norm
1, = Iglz, = 1G—a* £l -

Fora,p € Rand 1 < p < oo, the mapping f +— Gg * f is an isomorphism
from Ly, p(RE) into Lyyp, p(RZ). Finally the Bessel spaces are connected to Besov
and Sobolev spaces: when ¢ > Oand 1 < p < 00, it is known that if ¢ € N,
Ly p(RY) = WP (RY) and if o ¢ N, then Ly, ,(RY) = B*P(RY), with equivalent
norms (see e.g. [5,27]).

The Bessel capacity Cglf; (¢ > 0, p = 1) is defined by the following rules: if
K c R’ is compact

C¥ (K) = inf{||f||€w L feSMRY, f > XK}. 4.12)
If G is open
Cy(G) = sup {CE,(K) : K € G, K compact]. (4.13)
If A is any set
Cay(4) = inf {CE(G): A C G, G open. (4.14)

Note that the capacity of any non-empty set is positive if and only if o > % because
of Sobolev-Besov embedding theorem.
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Proposition 4.4. Let A be a Lipschitzdomain on S¥~1,2 < k < N — 1, and let
D4 be the k-dihedron with opening A. Let i € 9M(3Dy4) be a positive measure
with compact support contained in d 5 (= the edge of D 4). Assume that . is q-good
relative to D . Let R > 1 be large enough so that supp u C Bg -k (0) and let u be
the solution of (1.1) in Dﬁf with trace i on df and trace zero on an \ df. Then:

(i) For every non-negative n € Cgo(Bé\;;/ﬁ 0)),

(/dR nq,d,u> <cM? /DR u? pdx

A A

ot (/ R qudx) <1 + M ”’7”Lq’(d§)> :
D

A

(4.15)

-

where M = ||nll,~ and p is the first eigenfunction of —A in D§ normal-
ized by p(xg) = 1 at some point xo € Dﬁ. The constant ¢ depends only on
N, q,k,xg, A1, R where A1 is the first eigenvalue.

(i1) For any compact set E C d 4,

K++

’ ’

ClME)=0= wE)=0, s=2-

(4.16)

where C fv q k denotes the Bessel capacity with the indicated indices in RN K.
Remark. If we replace Df by Dg N BE O NnB 2’ -k ), R > 1, then the constant
c in (i) depends on R but not on R.

Proof. We identify d4 with RN~ and use the notation

x=Lx") eRE xRN Ky =i/
Letn € C{° (RN=K) and let R be large enough so that suppn C Bg /_2k (0). Let
w = wg(z, x") be the solution of the following problem in R x Bg —*0):

dw — Agrw =0 in R™ x BY %(0),
w(0.x") = n(x") inBY*, 4.17)
w(r,x") =0 on dBY *(0).

Thus wg(z, -) = Sg(t)[n] where Sg(¢) is the semi-group operator corresponding to
the above problem. Denote,

Hrnl(x', x") = wr(1x'1%, x") = Sk (¥H)n1(x"), vy :=|x. (4.18)
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We assume, as we may, that R > 1. Let p® be the first eigenfunction of —A,~ in
the ball Bg —k (0) normalized by pR(0) = 1 and let p,4 be the first eigenfunction of
—A, in C4 (where C 4 denotes the cone with opening A in R¥) normalized so that
PA (x(’)) = 1 at some point x(’) € S4. Then p®py is the first eigenfunction of —A in
{x € D4 : |x”| < R}. Note that p® < 1 and p® — 1 as R — oo in C%(I) for any
bounded set I ¢ RNk,

Let 1 € C*(R) be a monotone decreasing function such thata(t) = 1 for
t <1/2and h(z) =0 fort > 3/4. Put

Yr(x') = h(|x|/R)
and
CR = pavrHR[NIT. (4.19)

If pf is the first eigenfunction (normalized at x¢) of Dﬁ’ = Dy NTgr (T'g asin
(2.25)) then

pavr < cpX (4.20)

and pRp f is the first eigenfunction in Df.

Hereafter we shall drop the index R in ¢g, Hg, wg but keep it in the other
notations in order to avoid confusion.

We shall verify that ¢ € Df. To this purpose we compute,

AL == 2 (paVR)HN + (oavR) AH[NIY + 2V (pa¥r) - VH[5]?
= — ¢ +q (pavR)(HIND ~'AHN]
+q(q' = 1) (oavr)(H)! 2 VH[n]?
+ 24 (HIN)? ™'V (pavr) - VHInI.

(4.21)

In addition,

/

VH[n] = VyHlnl + Ve Hinl = ayH[n]x; Vo Hn]

/
= 2y8,w(y2, x”)x— + Vx//H[n](x’, x”)
y

and consequently (recall that y stands for |x'|),

VH[n]-V(pa¥r)
=2d,w(y*x")x’- <wR (IJC’I“*‘1 <K+X;wk (x"/y)+1x" | Vex (x’/y)>) + pAVt/fR)

= 2w (2 X)X [Fax (x'/y) = 28w (y?, X”) (ks pa¥r + pax’ - Vig).
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Since w = wg vanishes for [x”| = R and n = 0 in a neighborhood of this sphere,
19, w(y?, x”)| < cpR. As g vanishes for |x'| > 3R/4 we have paVig < c,of.
Therefore

IVH[n1- Vpal < co®p}

and, in view of (4.21),
|A¢] < cpRpf. (4.22)

Thus¢ € X (DQe ) and consequently
/ (—uAL +uig)dx = —f K[u]Acdx. (4.23)
D D}

Since g(q’ — 1)pa(H[nD)? “2|VH[n]> > 0, we have

/ ulNtdx
DR

A

< [ (e +q DT GIAHIN +205.9 Il )

A

e (e L (4.24)
< [ u(mic e (01 8t + 20719 .9 HEN ) )
DX
1 1
q q’
< ultdx A / cdx | +4q LM, o
(fng ) ( DE L4 (D)
where
Linl = p"4 |AH]| +2p~ 9|V p.VH[7]|. (4.25)
By Proposition 4.2
—/ K[M]Agdxz/ n?du. (4.26)
DX df
Therefore
/ 0¥ dp) < / wizdx
df DX
1 . 4.27)

q a
q ! /
+ </;)§u Cdx) Al (/Dkfdx> +q Ll 4 oK |

A

Next we prove that
||L[77]||Lq’(D§) <C ||77||Ws,q/(RN—k) (4.28)
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starting with the estimate of the first term on the right hand side of (4.25).

k—1
AH[nl = Ay HInl + Ay Hlnl = 03 Hlnl + — OvH Il + AcrHn)
= 2y%0,w(y? x") + kdyw(y?, x") + Ay Hln)

= 2y28t,w(y2, x") + (k + l)Btw(yZ, x").
Then

1 , ,
/ 0 |AH[77]|11/ dx < C/ / |anw(y2’ x//)iq dx//yk++2(] +k71dy
RN 0 JRN-k
1 /
+ C/ / |8;w(y2, x//)|‘1 dx//yx++k—1dy
0 JRN—k

! / dt
< C/ / |a”w(t,x//)|q dx//t(/c++k)/2+q/_
0 JRN-k t

dt

1 !
+C/ / |8,w(t,x”)|q dx' e+ /227
0 RN—]{ t

] -t s | dt
<c t - ar
0 ! L4 (RN—k) !
+c/1 t1—(1—K++k)dS(f)[n] dt
0 dt L4 (RN—k) t '

Put 8 = '“2’;,]( and note that 0 < 8 = %(2 —§) < 1. By standard interpolation

theory,
/1 J1-1-p 4SOl | a ~ 1
0 dt L9/ (RN—F) t [WZ‘Z L4 }1 b/ W=D RN
and
2 (- ﬁ))d S(t)[n] d ~ q
a2 P ||77||[W4 ' La /:| ||77||W2<1 =8¢’ (RN—k)
0 L4 (RN k) 1(1—5)41
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The second term on the right hand side of (4.25) is estimated in a similar way:

/ =14 |V H ] - Vplt dx<c/ f
N4 +h dt
<c/ / |8tw(t X )} dxt S

3 C/ A g dS@im | dt
0

dt
~ q’
SAL AP

dx’y'(++k ldy

L9 (RN=F) 0

This proves (4.28). Further, (4.27) and (4.28) imply (4.15).
We turn to the proof of part (ii). Let E be a closed subset of BY R /2 (0) such that
CN k(E) = 0. Then there exists a sequence {n,} in C°°(dA) suchthat0 < n, <1,

n, = 1 in a neighborhood of E (which may depend on n), supp n, C B3 R/4 (0) and
||’7n l ws.a 0. Then, by (4.28),

”L[nn] ”L"’(Df) — 0.

Furthermore

101,40 =ty = € Il g

and consequently
H[na,l — 0 in LY (DX).
(Here we use the fact that k > 2.) In addition
0<Hn] =<1, Hna=<c(R—I|x])

with a constant ¢ independent of n. Hence (see (4.20))

tur = pAVRHNT < pRpavrHIn 9 ' < pRpRHp, 177"

As uq,oR,of € Ll(Dﬁ) we obtain

lim ult,dx =0.
n—oo DA

This fact and (4.27) imply that

/ n,ql/du — 0.
dR

A

As 1, = 1 on a neighborhood of E in R¥ ¥ it follows that u(E) = 0. O
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Proposition 4.5. Let D4 be a k-dihedron, 1 < k < N. Let ky be as in (2.11) and
let q} and q. be as in Proposition 2.1 and Proposition 2.2 respectively. Assume that
ge < q < qF. Ameasure p € M(0D ), with compact support contained in d,,
is g-good relative to D 4 if and only if i vanishes on every Borel set E C dj such

thatCy y/(E) = 0, where s = 2 — kj;',“’ .

Remark. We shall use the notation 1 < Cy 4 to say that u vanishes on any Borel
set E C (da) such thatCy o (E) = 0.
In the case k = N: Dy = C4 (= the cone with vertex 0 and opening A

in R¥) and g. = ¢*. By [24] (specifically the results quoted in Subsection 2.2)

g =1-— K% = 1\/N+7«r—:+—2 and if 1 < g < ¢, then there exist solutions for every

measure 4 = kép, P € dy.
Inthecase k = 1,9} = 00, ky = 1 and g, = %—f} Thus s = 2/g and the
statement of the theorem is well known (see [21]).

Proof. In view of the last remark, it remains to deal only with2 <k < N — 1. We
shall identify d 4 with RN =K,

It is sufficient to prove the result for positive measures because u < Cg 4 if
and only if |u| < C; 4. In addition, if |u| is a g-good measure then w is a g-good
measure.

First we show that if y is non-negative and g-good then u < Cy . If E is a
Borel subset of d€2 then w ¢ is g-good. If E is compact and C ,/(E) = 0 then, by
Proposition 4.4, E is a removable set. This means that the only positive solution of
(1.1)in D 4 such that(02\ E) = 0 is the zero solution. This implies that ux; = 0,
ie.,u(E) =0.If C5 o(E) = 0 but E is not compact then w(E") = 0 for every
compact set E’ C E. Therefore, we conclude again that (E) = 0.

Next, assume that u is a positive measure in J1(d D 4) supported in a compact
subset of RNV=F,

If u e B4 (RN _k) then, by Theorem 3.1, p is admissible relative to D4 N
I'x.r, for every R > 0. (As before I'y g is the cylinder with radius R around the
“axis” RV ~K.) This implies that y is g-good relative to D 4.

If 4 < Cy 4 then, by a theorem of Feyel and de la Pradelle [11] (see also [3]),
there exists a sequence {u,} C (B_W(RN_"))+ such thatu, 1 . As uy is g-
good, it follows that u is g-good. U

Theorem 4.6. Let P be an N-dimensional polyhedron as described in Proposi-
tion 4.3. Let u be a bounded measure on 0P, (may be a signed measure). Let
k=1,...,N, j=1,...,ng,andlet Ly j and A j be defined as at the beginning
of this section. Further, put

k .
sk, jy =2~ “EEkT (4.29)
where (k1 )y, j is defined as in (2.11) with A = Ay j. Then p € M, (A P), i.e., juis
a good measure for (1.1) relative to P, if and only if, for every pair (k, j) as above

and every Borel set E C Ly j:
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e If1 <k < N then

@ < < (a2 CNe5) g (B) =0 = u(E) =0

(4.30)
9= (q:)k,j = u(Ly,;) =0
and ifk = N, i.e., L is a vertex,
N+2+4+ /(N —2)2+4x
( ) 4 w(L)=0. 431)

q = (‘Ic)k,j =
N =24 /(N —2)2 +4xa

Here (q})k,j and (qc)k,; are defined as in (2.32) and (2.36) respectively, with
A=A
o If1 < q < (qc)k,j then there is no restriction on MXLy -

Proof. This is an immediate consequence of Proposition 4.3 and Proposition 4.5
(see also the Remark following it). In the case k = N, Ly ; is a vertex and the
condition says merely that for g > (g¢)n, j, it does not charge the vertex. O

4.3. Removable singular sets, I1

Proposition 4.7. Let A be a Lipschitz domain on Sk=1 2 <k <N—1,andlet D4
be the k-dihedron with opening A. Let u be a positive solution of (1.1) in Dﬁ,for

some R > 0. Suppose that F = S(u) C df and let Q be an open neighborhood
of F such thatQ C df. (Recall that d® = d, N Bg_k (0) is an open subset of d4.)
Let 11 be the trace of u on R(u).

Letn € Wé’q/(df) such that
0<n<l1, n=0on0Q. 4.32)

Employing the notation in the proof of Proposition 4.4, put

¢ = payrHRINY . (4.33)
Then
q

q/
q ) R
/D§ wigdx <c (14 nllye,,) +n(df)\0) (4.34)

¢ independent of u and n.

Proof. First we prove (4.34) for n € Cgo d f ). Let og be a point in A and let {A,}
be a Lipschitz exhaustion of A. If 0 < € < dist (0 A, dA,) = €, then
€0 + CA,, C Ca.

Denote .
DR =Dan[1x'I < R]N[Ix"| < R"].
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Pick a sequence {¢,} decreasing to zero such that0 < €, < min(¢,/2", R/8). Let
u, be the function given by

un(x'x") = u(x’ 4+ €400, x") Vx € DfZ’R, R, =R —¢,.

Then u,, is a solution of (1.1) in Df:‘R belonging to C 2(D§:’R) and we denote its
boundary trace by 4. Let

Cn = pa,VRHRIN?,

with {g and Hg[n] as in the proof of Proposition 4.4. By Proposition 4.2

- / Plhy]Alydx = / 1% hpydwn (4.35)
Rn,R B

Dy RO

where w,, is the harmonic measure on d fn relative to DfZ’R. (Note that d fn =d f
and we may identify it with B I]g _k(O) .) Hence

/R L (Fun G+ ufigy) d = _/N—k 1% hy de,. (4.36)
Da BY5(0)

Further,
/ 09 by deoy — ndu < n@dX\ ),
BY % (0) By (0

because n = 0 in Q. By (4.24), (4.28) we obtain,
/DfZ'R Uy A, dx

1 1
q ! ¢
<c /DRn-R I/tn;nd.x LRH.R {ndx + ||n||Ws’q/(Bg_k(0))
An

An

4.37)

From the definition of ¢, it follows that

anxsf ,Ondx—>/ pdx,
/D R pfn.R DR

Rn

An An
where p (respectively p,) is the first eigenfunction of —A in Df (respectively
Dﬁ;"R) normalized by 1 at some x¢ € DfI’R. Therefore, by (4.36),

1
q
q q R
/;ﬁn,R uné-l’ldx 5 c (\/Dfn,R uné’nd}C) (1 + ”n”W"‘I/(Bg*k(O))> + /’L (dA \ Q) .
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This implies
q q' R q
/ajij untndx < c(1+ IInIIWs.qf(Bgfk(o))) + u(ds \ 0)°. (4.38)

To verify this fact, put

1/q
— q _ R —
m = <A§n,R uné.ndx> , b= /’L(dA \ 0),a=c (1 + ||U||Wx,q/(311ty—k(0)))

so that (4.38) becomes
m? —am —b <0.

If b < m then
mi~'—a—1<o0.
Therefore,
m< @+ D)™ +b
which implies (4.38). Finally, by the lemma of Fatou we obtain (4.34) for n € C{°.
By continuity we obtain the inequality for any n € Wg 4 satisfying (4.32). O

Theorem 4.8. Let A be a Lipschitz domain on Sk=1 2 <k <N —1,andlet Dy
be the k-dihedron with opening A. Let E be a compact subset of d f and let u be

a non-negative solution of (1.1) in Dﬁ (for some R > 0) such thatu vanishes on
DR\ E. Then

K++k
_ q/

cYEy=0, s=2 = u =0, (4.39)

where C ;Nq—/k denotes the Bessel capacity with the indicated indices in RN 7.

Proof. By Proposition 4.4, (4.39) holds under the additional assumption

/ uq,oRpfdx < 00. (4.40)
R

Dy

Indeed, by [24, Proposition 4.1], (4.40) implies that the solution u possesses a
boundary trace © on 8D§. By assumption, M(8D§ \ E) = 0. Therefore, by
Proposition 4.5, the fact that C jvq_,k (E) = 0 implies that u(E) = 0. Thus u =0
and hence u = 0.

We show that, under the conditions of the theorem, if C SIY(]—/k (E) = 0 then
(4.40) holds.
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By Proposition 4.7, for every n € Wg’q/(df) such that0 < n < land n =
0 in a neighborhood of E,

J.

for ¢ as in (4.33). (Here we use the assumption that u = 0 on 8D§ \ E)
Let a > 0 be sufficiently small so that £ C B(All :i‘ ) z(0). Pick a sequence
{¢n} in C§° (RN=K) such that, for each n, there exists a neighborhood Q, of E,

Qn C B\ 4,)2(0) and

q/
wtz dx < ¢ (14 Il pisy) - (441)

R
A

0 < ¢, <1 everywhere, ¢, =1 in Q,

(lgn = Qu X <(1-200R] € CSO (RN_k>

|l s sy = 0 as n — oo (4.42)
M= (= o) Ly-me CF (af)

m =0in[(1 —a)R < |x"| <R].

Such a sequence exists because C SNq_,k(E ) = 0. Applying (4.41) to n,, we obtain,
sup/ . ult, dx < c < oo, (4.43)
DA

where {, = paY¥r Hzl[n,,] (see (4.33)). By taking a subsequence we may assume

that {5, } converges (say to n) in Lq,(Bg_k(O)) and consequently H[n,] — HI[n]
in the sense that

Hglnal(x', ) = wn,R(yz, ) = wR(yz, -) = Hgnl(x',-) in L4

uniformly with respect toy = |x’|. It follows that
/R ul¢dx < oo, ¢ =payrHy (4.44)
DA

As (f&n — 0in WS4 (RN=*) it follows that ¢, — 0 and hence 1, — 1 ae. in
B{\5,g(0). Thus n = 1 in this ball, n = 0 in [(I —a)R < |x"] < R] and
0 <n <1 everywhere.

Consequently , given § > 0, there exists an N-dimensional neighborhood O
of da N B\ 5, ¢ (0) such that

1—8<Hgr[nl<1and 1 =8 <yr/pX <1 in O.
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Therefore (4.44) implies that

q ~R R
/D<1—3a>R ulp®pydx <c < oo. (4.45)
A
Recall that the trace of u on 8D§ \ dl(qlfém)R is zero. Therefore u is bounded in
DR\ DY R This fact and (4.45) imply (4.40). O

Definition 4.9. Let 2 be a bounded Lipschitz domain. Denote by p the first eigen-
function of —A in 2 normalized by p(xg) = 1 for a fixed point x¢ € 2.
For every compact set K C 92 we define

My q(K) = {1 € MO : 1 0, p(02\ K) =0, Kiul € L)}

and
ép’q/(K) = sup {M(K)q pne M, (K), /;K[M]q,odx = 1} .

Finally we denote by C, , the outer measure generated by the above functional.

The following statement is verified by standard arguments:

Lemma 4.10. For every compact K C 02, Cp, o/(K) = Cp, o/(K). Thus C,, o is a
capacity and,
Cpg(K)=0 &< M, ,(K)=1{0}. (4.46)

Theorem 4.11. Let Q be a bounded polyhedron in RN . A compact set K C 9 is
removable if and only if

Csik,j.q' (K N Ly, j) =0, (4.47)

fork=1,-,N j=1,...,ng, where s(k, j) is defined as in (4.29). This condition
is equivalent to
Cp.q(K)=0. (4.48)

A measure . € M(I) is g-good if and only if it does not charge sets with C, -
capacity zero.

Proof. The first assertion is an immediate consequence of Proposition 4.3 and The-
orem 4.8. The second assertion follows from the fact that

Cp,q’(K N Lk,j) = Cs(k,j%q’(K N Lk,j)-

The third assertion follows from Theorem 4.6 and the previous statement. O
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