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Geometric elliptic functionals and mean curvature

LUIS J. ALÍAS, JORGE H. S. DE LIRA AND MARCO RIGOLI

Abstract. We introduce an extended notion of mean curvature for graphs via
the Euler-Lagrange equation of a geometric elliptic functional. We then draw
some geometric conclusions for Killing graphs with prescribed weighted and
anisotropic mean curvatures with the aid of a general form of the weak maximum
principle and a sufficient condition for an appropriate notion of parabolicity.

Mathematics Subject Classification (2010): 49Q20 (primary); 53C21, 53C42
(secondary).

1. Introduction

In this paper we introduce a generalized notion of mean curvature for hypersurfaces
in Riemannian manifolds endowed with a Killing vector field. More precisely, the
Riemannian manifolds we consider are warped products of the form M⇥%R, where
% is the norm of a Killing vector field and M is a complete Riemannian manifold.
This generalized mean curvature characterizes critical hypersurfaces 6 ⇢ M ⇥% R
of geometric functionals of the form

Z
6
Fe� f d6, (1.1)

where the Lagrangian F is integrated against some weighted measure e� f d6 on6.
We assume that the Lagrangian is conserved by the flow generated by the Killing
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field Y in the sense that £Y F |6 = 0. This last assumption guarantees that, if
the critical hypersurface is a graph over some domain in M , the Euler-Lagrange
equation for the functional (1.1) can be written in terms of a partial differential
equation on M . For details, see Theorem 2.1 in Section 2 below.

As expected, when considering the Riemannian product M ⇥ R, an appropri-
ate choice of the Lagrangian and of the measure yields the usual definition of the
mean curvature of the graph 6 of a function u 2 C1(M) via the well-known mean
curvature equation

div

 
rup

1+ |ru|2

!
= nH,

where n = dimM and H is the standard mean curvature of the graph in the direction
of the normal

N =

1p
1+ |ru|2

✓
�ru +

@

@s

◆
,

where s is the coordinate on R. Here the operators div and r are defined on M .
One of the main goals of this paper is to elucidate the interplay between con-

stant or assigned mean curvature graphs, in the aforementioned warped products,
and the analysis of weighted elliptic operators defined on the smooth metric mea-
sure space (M, e� f dM) where the weight is appropriately related to the warping
function. The interplay comes from the following remark. Let the weighted diver-
gence operator be

div f X = e f div
⇣
e� f X

⌘
, X 2 0(T M),

that naturally appears in connection with the weighted volume form e� f dM on M .
It turns out that solutions of the weighted mean curvature equation

div f

 
rup

1+ |ru|2

!
= nH f ,

define, at the same time, graphs with prescribed weighted mean curvature in M⇥R
and graphs with prescribed mean curvature in warped products M ⇥% R provided
that f = � log %.

One of the main issues in this context is the existence and uniqueness of en-
tire graphs with constant mean curvature in M ⇥% R, where M is non-compact.
Quite recently, H. Rosenberg, F. Schulze and J. Spruck [26] proved that if M has
non-negative Ricci curvature and sectional curvatures bounded from below, then an
entire minimal graph lying into a half-space in the Riemannian product M ⇥ R is
a slice of the form M ⇥ {c} for some c 2 R. The same conclusion holds for entire
graphs with constant mean curvature lying into slabs of a warped product M ⇥% R
if one adds the assumption that the warping factor is uniformly bounded up to its
second derivatives, [12]. Both results are based on Liouville-type properties for the
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mean curvature equation and rely on refined gradient estimates essentially due to
N. Korevaar [21]. In [12] a version of the maximum principle [23] is also used
for guaranteeing that, under those assumptions, entire graphs with constant mean
curvature are indeed minimal.

In this paper we derive a maximum principle for a wide class of quasilinear
elliptic operators that includes the generalized mean curvature operator. This allows
us to prove a number of non-existence and uniqueness results for entire graphs with
either assigned or constant generalized mean curvature in warped product spaces.
An interesting feature of these results is that the influence of the warping factor
dictates what should be the regions where the maximum principle holds. In rough
terms, these regions are bounded by the graphs of powers of the distance from a
fixed origin of M . This specific power is, in turn, related to the growth rate of the
mean curvature. Thus these radial functions can be understood as barriers bounding
the regions that play the role of slabs or half-spaces. Moreover, these functions yield
global quantitative height estimates for entire graphs.

In the statement of the results, BR denotes the geodesic ball in M with radius
R centered at some point o 2 M and r(x) = distM(o, x), x 2 M . The following is
a corollary of Theorem 4.1 in Section 4:

Given a positive function % 2 C1(M) consider the warped product manifold
M̄ = M ⇥% R. Assume that

sup
M
% < +1

and

lim inf
R!+1

log
R
BR %

R2�&
= 0,

for some 0  & < 2. Then any constant mean curvature graph 6 in M̄ lying
between the graphs of the radial functions ±�r& outside a compact in M ,
for some � > 0, is minimal. In particular, if & = 0, the sectional curvatures
of M satisfy KM � �K0 for some positive constant K0 and RicM � 0, then
6 = M ⇥ {c} for some c 2 R.

The precise notion of graphs into warped products is formalized in terms of Killing
graphs in Section 2. In Section 3, we prove the maximum principle we alluded to,
following techniques introduced in our previous works [1, 24, 25]. This new form
of a general weak maximum principle, stated as Theorem 3.2 in Section 3, holds
for possibly unbounded functions and extended divergence-type operators. As we
mentioned above, these operators include those coming from the Euler-Lagrange
equations of the elliptic functionals we are considering in Section 2. In the same
spirit we have also given a sufficient condition for a related notion of parabolicity
as expressed in Theorem 3.4 in Section 3. Since these results are interesting in their
own and could be used in different contexts, we have given self-contained proofs.
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This enlarged notion of parabolicity adapted to the generalized mean curvature
operator bears fruitful consequences like the next result, that is a particular case of
Theorem 4.6 in Section 4:

Let M , % and M̄ be as above. Suppose that

sup
M
% < +1

and
1R
BR %

/2 L1(+1).

Then any constant mean curvature graph 6 lying into a slab of the form
M ⇥ [s1, s2] with s1 < s2 is of the form M ⇥ {c} for some c 2 [s1, s2].

Another consequence of the parabolicity is the following (see Theorem 4.13 in Sec-
tion 4 for a more general statement):

Let 6 be the graph of a function u in M ⇥% R. Suppose that

%2 2 L1(M, dM)

and that |ru| = O(%�1) as r ! +1. If the mean curvature vector of the
graph points in the same direction of the positive orientation of the factor R
and u is bounded from above, then there exists c 2 R such that6 = M⇥{c}.

The geometric applications of the analytical theorems in Section 3 are gathered
together in Sections 4 and 5 where we specialize our approach to the cases of the
classical, weighted and anisotropic notions of mean curvature.

Killing graphs with constant anisotropic mean curvature are interesting exam-
ples of extremal hypersurfaces for certain choices of the functional in (1.1). In Eu-
clidean space the compact minimizers of these functionals, known as Wulff shapes,
have been studied by Jean Taylor [29] who gave a rigorous existence proof using
Geometric Measure Theory to deal with the so-called crystalline functionals, which
is singular; this type of functionals is not covered in the present paper. There is a
further approach to the problem called the level set approach especially used for the
anisotropic curvature flow [15]. Finally, the anisotropic volume preserving mean
curvature flow has also been studied in the case of vector spaces with a Minkowski
norm by B. Andrews [2].

In spite of a massive list of distinguished contributions, the differential geomet-
ric aspects of the anisotropic mean curvature have still to be unfolded in depth. To
the best of our knowledge some of the main contributions on the subject are, among
others, due to T. Colding and W. Minicozzi [9], M. Koiso and B. Palmer [19, 20],
and Y. He and H. Li [16]. This line of research is concerned, for instance, with the
stability of the Wulff shape as well as with the study of critical compact hypersur-
faces for higher order anisotropic mean curvatures. Furthermore, Koiso and Palmer
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wrote a beautiful series of papers on capillary problems involving elliptic paramet-
ric functionals associated to the same type of Lagrangian we define in equation
(5.25) below.

Another important trend has been developed by H. von der Mosel, U. Clarenz,
S. Hildebrandt and others [7, 8, 17, 18]. They emphasize the analytical side, for
instance, the existence and regularity of solutions of the Plateau problem and so on.
In [22], we combine both approaches to formulate the notion of anisotropic mean
curvature in general Riemannian manifolds. There we prove that, if the ambient
Riemannian space is endowed with a Killing field, then it is possible to guarantee
the existence of critical points for Lagrangians conserved by the field flow. This is
the starting point of the present research.

ACKNOWLEDGEMENTS. The authors would like to thank the anonymous referee
for his/her valuable suggestions and corrections which contributed to improve this
paper. This work was started while the first and third authors were visiting the De-
partamento de Matemática of the Universidade Federal do Ceará, Fortaleza, Brazil,
and it also benefited from two visits of the second and third authors to the Depar-
tamento de Matemáticas of the Universidad de Murcia, Spain. The authors would
like to thank both institutions for their hospitality.

2. A variational setting for a generalized mean curvature

Let M̄ be an (n+1)-dimensional Riemannian manifold with metric and Riemannian
connection respectively denoted by ḡ = h· , ·i and r̄. The norm derived from
ḡ is denoted by | · |. In what follows we fix a differentiable positive function
F : T M̄\{0} ! R satisfying the homogeneity condition

F(y, t⌘) = t F(y, ⌘), (2.1)

for all (y, ⌘) 2 T M̄, ⌘ 6= 0, t > 0. According to [8], we refer to F as to a
parametric Lagrangian. The parametric Lagrangian F allows us to introduce a
parametric functionalF as follows. Given an oriented n�dimensional Riemannian
manifold � and  : � ! M̄ an immersion, we define

F [ ] =

Z
�
F( , N ) ⇤d M̄, (2.2)

where the volume element  ⇤d M̄ is induced by the immersion  and N is a unit
normal vector field along  . The classical example of such a functional is the
volume of the immersion, which corresponds to the Lagrangian F(y, ⌘) = |⌘|.
Another important class of examples are provided by functionals of the form

F f [ ] =

Z
�
e� f F( , N ) ⇤d M̄, (2.3)
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for some differentiable function f 2 C1(�). We briefly comment on the ellipticity
of the functional later in Section 3.

Given an arbitrary vector field Q 2 0(T M̄) an important example is the fol-
lowing generalized version of Hildebrandt’s functional

F f [ ] +

Z
�
e� f

hQ( ), N i ⇤d M̄ . (2.4)

Note that with the choices f = 0, F(y, ⌘) = |⌘| and Q( ) =  the critical points
of this functional, in the case of M̄ = Rn

⇥ R, model capillary surfaces. We refer
the reader to [8] for further details.

Here we are mainly concerned with hypersurfaces described as graphs in war-
ped product spaces. Specifically, given a complete Riemannian manifold (M, � )
and a positive function % 2 C1(M), we consider the warped product space M̄ =

M ⇥% R, that is, the product manifold M ⇥ R = {(x, s) : x 2 M, s 2 R} endowed
with the Riemannian metric

ḡ = � + %2(x)ds2.

In this setting, the coordinate vector field @
@s is a non-singular Killing vector field

on M̄ . Given a smooth function u defined on an open domain � ⇢ M , the graph of
u is the hypersurface given by

6(u) = {(x, u(x)) : x 2 �} ⇢ M ⇥ R.

More generally, assume that M̄ is a Riemannian manifold endowed with a non-
singular Killing vector field Y with complete flow lines such that the orthogonal
distribution

y 2 M̄ 7! Dy =

�
v 2 Ty M̄ : hY (y), vi = 0

 
⇢ Ty M̄ (2.5)

is integrable. It is easy to verify that the integral leaves of D are totally geodesic
hypersurfaces in M̄ . Let M be a fixed integral leaf. The flow 8 : M ⇥ R ! M̄
generated by Y takes isometrically M = M0 to the leaf Ms = 8s(M) for any
s 2 R, where 8s = 8(·, s). The Riemannian connection in M with the metric
induced by its inclusion in M̄ is denoted by r.

Next, we consider an open, relatively compact domain � in M with smooth
boundary and we suppose that the immersion  : � ! M̄ is of the form

 (x) =  u(x) = 8(x, u(x)), x 2 �, (2.6)

for some C1 function u : � ! R. In this case, the hypersurface

6(u) =  (�) (2.7)

is the Killing graph of the function u.
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Our first result gives a characterization of critical Killing graphs for the func-
tional F f in (2.3). Towards this end we assign local coordinates y0 = s, y1 =

x1, . . . , yn = xn to a point y = 8(x, s), if x1, . . . , xn are coordinates of the
point x 2 �. We associate local coordinates y0, . . . , yn, ⌘0, . . . , ⌘n to points
(y, ⌘) 2 T M̄ by setting

⌘ = ⌘↵
@

@y↵

����
y
.

In terms of these coordinates, the metric in M̄ is written as

ḡ↵�dy↵dy�, for 0  ↵,�  n,

where
ḡi j = �i j , for 1  i, j  n,

are the components of the metric � induced on � by the inclusion � ⇢ M̄ . Fur-
thermore, we have

ḡ00 = |Y |
2, ḡ0i = 0, for 1  i  n.

The components of the contravariant version of the metrics in M̄ and � are respec-
tively denoted by ḡ↵� and � i j .

Finally with £Y we will indicate the Lie derivative in the direction of Y . Recall
that

div f X = e f div
⇣
e� f X

⌘
,

for X 2 0(T M) and f 2 C1(M). We are now ready to state:

Theorem 2.1. Suppose that £Y F |6 = 0 for any Killing graph 6 in M̄ , with F as
in (2.1). Then the Euler-Lagrange equation of the functional (2.3) is

div f X �

⌧
X,

r�

2�

�
= 0, (2.8)

with � = |Y |
�2 and

X = � i j
@F
@⌘i

@

@x j
· (2.9)

Moreover, a critical Killing graph  , for (2.3) constrained by some Lagrange mul-
tiplier nH, satisfies the equation

div f X �

⌧
X,

r�

2�

�
= �nH. (2.10)

In this case, we say that the Killing graph has prescribed generalized mean curva-
tureH.



616 LUIS J. ALÍAS, JORGE H. S. DE LIRA AND MARCO RIGOLI

The proof of Theorem 2.1 is rather technical and, for the reader’s convenience,
is postponed to the Appendix. Now we discuss some important examples of this
general formulation which we are going to consider in the sequel.
Example 2.2 (Killing graphswithprescribedmean curvature). We fix F(y,⌘)=
|⌘| and we choose f = 0 obtaining

F [ u] =

Z
�
 ⇤

u d M̄,

that is, the induced Riemannian volume of the graph 6(u). With these choices we
recover the classical setting of Killing graphs with prescribed mean curvature, [11].
As we will see next, the Euler-Lagrange equation (2.10) becomes

div
✓

ru
W

◆
�

⌧
r�

2�
,
ru
W

�
= nH. (2.11)

Indeed, since the flow of Y preserves the length of vectors in M̄ , the Lagrangian F
is preserved along the flow lines of Y . In particular, £Y F = 0. Moreover we have

@

@⌘↵
|⌘| =

1
|⌘|

ḡ↵�⌘� .

Recall that the components of ⌘(y) = N along the graph 6(u) are given by

⌘i = �

ui

W
, ⌘0 =

�

W
,

where
W =

q
� + |ru|2.

Hence we conclude that the components of X are, in this case, given by Xi = �
ui
W ,

that is, X = �
ru
W . Therefore, (2.10) becomes (2.11).

Example 2.3 (Killing graphs with prescribed weighted mean curvature). Now
we fix F(y, ⌘) = |⌘| and choose a general weight e� f . This choice yields the
weighted volume of Killing graphs defined by

F [ u] =

Z
�
e� f ⇤

u d M̄

whose critical points are f -minimal graphs in the sense that the weighted mean
curvature

H f = H +

1
n
⌦
r̄ f, N

↵
vanishes on 6(u), where H is the classical mean curvature of 6(u). In this case,
the prescribed generalized mean curvature equation (2.10) becomes

div f
✓

ru
W

◆
�

⌧
r�

2�
,
ru
W

�
= nH f . (2.12)
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Example 2.4 (Regularization of the 1-Laplacian). Given a constant � > 0, we
define a positive definite symmetric tensor g 2 0(T ⇤M̄ ⌦ T ⇤M̄) by

g(v, v) = � (⇡⇤v,⇡⇤v) + �

⌧
v,

Y
|Y |

�2
.

Here ⇡ : M̄ ! M stands for the projection ⇡(y) = x if y = 8(x, s). We then
consider the perturbation of the classical volume Lagrangian F(y, ⌘) = |⌘| given
by

F�(y, ⌘) =

q
g
�
⌘, ⌘

�
.

Evaluating the corresponding functional at a Killing graph  u we have

F�[ u] =

Z
�

q
|ru|2 + �� dM,

where � = |Y |
�2. The Euler-Lagrange equation (2.8) for this functional is

div

 
rup

|ru|2 + ��

!
�

*
r�

2�
,

rup
|ru|2 + ��

+
= 0.

Note that as � ! 0+ this operator becomes the 1-Laplace operator that describes
the level set formulation of the mean curvature flow in M [15].

As pointed out by U. Clarenz and H. von der Mosel in [8], this kind of func-
tional is used for numerical computations and surface processing involving the
anisotropic mean curvature [7]. For more examples of integrands and applications
in numerical analysis we refer to [13] and [14].

Example 2.5 (Killing graphs with constant anisotropic mean curvature). Con-
sider the 1-form in M̄ defined by

2(⌘) = hY (y), ⌘i, for ⌘ 2 Ty M̄ .

Note that £Y2 = 0. Given a differentiable function a, we consider the Lagrangian
F defined by

F(y, ⌘) = a
✓
2

✓
⌘

|⌘|

◆◆p
g(⌘, ⌘) (2.13)

where g is the tensor defined in Example 2.4 above. In this case, and following the
notation of Theorem 2.1, we obtain (see Section 5 for details)

X =

✓
a0(2)2

p
g(N , N ) � a(2)

1
p

g(N , N )

◆
ru
W

, (2.14)
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and therefore from (2.10) we have

div
✓✓

a(2)
1

p

g(N , N )
� a0(2)2

p
g(N , N )

◆
ru
W

◆

�

⌧✓
a(2)

1
p

g(N , N )
� a0(2)2

p
g(N , N )

◆
ru
W

,
r�

2�

�
= nHF ,

(2.15)

where HF is the anisotropic mean curvature of 6(u). This example generalizes to
M̄ the Lagrangians in R3 studied by M. Koiso and B. Palmer in [19,20].

It is worth pointing out that the different versions of the prescribed generalized
mean curvature equation (2.10) that we have obtained in the examples above share
some structural properties. In the Section 3 we will develop the analytical tools
to deal with these equations with a unified approach. In Sections 4 and 5 we will
apply these analytical results to draw geometric conclusions about the uniqueness
and non-existence of solutions to these equations.

3. A form of the weak maximum principle

In this section, we prove a generalized form of the weak maximum principle for a
class of divergence-form elliptic operators in a Riemannian manifold including the
quasilinear geometric operators presented in Examples 2.2 to 2.5 in Section 2. The
main novelty here is that the principal part of these operators might also depend on
the point x 2 M .

Throughout this section (M, h· , ·i) denotes a complete Riemannian manifold.
We let r = r(x) be the geodesic distance in M from some fixed origin o 2 M and
we denote with BR = BR(o) the geodesic ball centered at o with radius R. We
consider on M the following operator

Lu = div�
⇣
|ru|�1'(x, |ru|)h(ru, ·)]

⌘
, (3.1)

where ] denotes the musical isomorphism, � 2 C1(M), h is a positive definite
symmetric 2-covariant tensor field on M and ' : M ⇥ R+

0 ! R+

0 satisfies '(·, t) 2

C0(M) for every t 2 R+

0 = [0,+1) and '(x, ·) 2 C0(R+

0 ) \ C1(R+) for every
x 2 M , where R+

= (0,+1). Note that L can be alternatively written as

Lu = e�div
⇣
e��|ru|�1'(x, |ru|)h(ru, ·)]

⌘

= div
⇣
|ru|�1'(x, |ru|)h(ru, ·)]

⌘
� |ru|�1'(x, |ru|)h(ru,r�).

We assume that, for some continuous functions h� and h+ defined on R+

0 , the
tensor h satisfies the following bounds

0 < h�(r)  h(X, X)  h+(r) (3.2)
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for every X 2 TxM , with |X | = 1, and every x 2 @Br . Moreover, we also assume
that ' satisfies the following structure conditions:

i) '(x, 0) = 0, for every x 2 M;
ii) '(x, t) > 0, on M ⇥ R+; (3.3)
iii) '(x, t)  A(x)t�, on M ⇥ R+,

for some � > 0 and A(x) 2 C0(M), with A(x) > 0. Furthermore, assume that

inf
M

h�(r(x))
h+(r(x))

1
A(x)1/�

=

1
C1/�0

(3.4)

for some C0 > 0.
Remark 3.1. Note that condition ii) in (3.3) is just an ellipticity condition for the
operator L . In Sections 4 and 5 we verify that the operators given in the Examples
2.2 to 2.5 in Section 2 accomplish the requirements on ' and h for suitable choices
of them.

Under these general assumptions on L , we give here a proof of a version of the
weak maximum principle that we shall use in our geometric applications. Since the
result is interesting in its own and could be used in different contexts, we present
the proof in detail in order to make this section as self-contained as possible.

Theorem 3.2. Given &, µ 2 R we let

⌧ = µ + (& � 1)(1+ �) (3.5)

and we assume that
& � 0, & � ⌧ > 0. (3.6)

Let u 2 C2(M) be a function such that

bu = lim sup
r(x)!+1

u(x)
r(x)&

< +1. (3.7)

Suppose that

lim inf
R!+1

log
R
BR h+(r)e��

R&�⌧
= d0 < +1. (3.8)

For ⇠ 2 R suppose that the set

�⇠ = {x 2 M : u(x) > ⇠} (3.9)

is non-empty. Then

inf
�⇠

�
1+r(x)

�µ
h+(r(x))

Lu(x)

8><
>:
0 if &=0
C0d0 max{bu, 0}�(& � ⌧ )1+� if &>0 and ⌧<0
C0d0 max{bu, 0}�&�(& � ⌧ ) if &>0 and ⌧ �0.

(3.10)
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Proof. We begin by observing that if a is any constant and ua = u + a, then

Lua = Lu

and
�⇠ = {x 2 M : ua(x) > ⇠ + a}.

Furthermore, if & > 0 thenbua = bu, and if & = 0 thenbua = bu + a. So in order to
estimate

inf
�⇠

(1+ r(x))µ

h+(r(x))
Lu(x)

we may replace u with a suitable translate ua . Next, fix b > max{bu, 0}. It is easy
to see that there exists a constant a such that

ua(x)
(1+ r(x))&

< b on M (3.11)

and ua(x0) > 0 for some x0 2 M . This is obvious if u is bounded above and in
particular, due to (3.7) if & = 0. On the other hand, if u is not bounded above, and
therefore & > 0, then by (3.7) there exists R̄ > 0 such that

u(x)
(1+ r(x))&

< b on M\BR̄,

and it is clear that there exists a 2 R such that ua(x0) > 0 for some x0 2 B̄R̄ and
ua(x)

(1+r(x))& < b on B̄R̄ and on all of M . We will assume that a constant a has been
selected in such a way that (3.11) holds. In accordance to the observation made
above, we are going to replace u with ua and, for the ease of notation, we suppress
the subscript a. Furthermore, if ⇠1  ⇠ and

inf
�⇠

(1+ r(x))µ

h+(r(x))
Lu(x)  D

then
inf
�⇠1

(1+ r(x))µ

h+(r(x))
Lu(x)  D

so that, without loss of generality, we may suppose ⇠ � 0. Next, let

K = inf
�⇠

(1+ r(x))µ

h+(r(x))
Lu(x)

and suppose K > 0, otherwise there is nothing to prove. In this case u is non-
constant on any component of �⇠ and

(1+ r(x))µ

h+(r(x))
Lu(x) � K > 0 on �⇠ . (3.12)
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We fix ✓ 2 (1/2, 1) and we choose R0 > 0 large enough so that BR0 \�⇠ 6= ; and
|ru| 6⌘ 0 on it. Given R > R0 we let  2 C1(M) be a cut off function such that
0    1 and 8>><

>>:
 ⌘ 1 on B✓R
 ⌘ 0 on M\BR
|r | 

C
R(1� ✓)

for some constant C > 0. Let also � 2 C1(R) and F(v, r) 2 C1(R2) be such that
0  �  1 and ⇢

� = 0 on (�1, ⇠ ]
� > 0, �0

� 0 on (⇠,+1)
(3.13)

and

F(v, r) > 0,
@F
@v

(v, r) < 0 on R+

0 ⇥ R+

0 . (3.14)

Finally, we let Z be the vector field defined on �⇠ by

Z =  1+��(u)F(v, r)e��|ru|�1'(x, |ru|)h(ru, ·)], (3.15)

where v is given by
v = ↵(1+ r)& � u (3.16)

and ↵ > b is a constant so that v > 0 on �⇠ . Indeed, according to (3.11) and the
assumption ⇠ � 0, so that u > 0 on �⇠ , we have

(↵ � b)(1+ r)&  v  ↵(1+ r)& on �⇠ . (3.17)

Note that Z vanishes on @(�⇠ \ BR) and it extends to a continuous vector field
on the whole of M by defining it to be zero in the complement of �⇠ \ BR . In
what follows we proceed as if Z were of class C1. This will allow us to better
explain the underlying reasons of the argument of the proof. Having done this, it
is an easy matter to provide a proof for the general continuous case using the weak
formulation of the divergence theorem (see for instance [24] for a similar case).

We now compute the divergence of Z . Note that, from iii) in (3.3), we have

t'(x, t) � A(x)�1/�'(x, t)1+1/� on M ⇥ R+

0 . (3.18)

Furthermore, from the properties (3.2) of h

|h(ru,rv)| 

p
h(ru,ru)

p
h(rv,rv)  h+(r(x))|ru||rv|. (3.19)
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We compute

e�divZ =  1+��(u)F(v, r)Lu
+(1+ �) ��(u)F(v, r)|ru|�1'(x, |ru|)h(ru,r )

+ 1+��0(u)F(v, r)|ru|�1'(x, |ru|)h(ru,ru)

+ 1+��(u)
@F
@v

(v, r)|ru|�1'(x, |ru|)h(ru,rv)

+ 1+��(u)
@F
@r

(v, r)|ru|�1'(x, |ru|)h(ru,rr),

that yields

e�divZ �  1+��(u)F(v, r)K (1+ r)�µh+(r)
�(1+ �) ��(u)F(v, r)'(x, |ru|)h+(r)|r |

+ 1+��(u)
@F
@v

(v, r)|ru|�1'(x, |ru|)h
⇣
ru,↵&(1+ r)&�1

rr�ru
⌘

+ 1+��(u)
@F
@r

(v, r)|ru|�1'(x, |ru|)h(ru,rr),

where to obtain the last inequality we have used (3.2), (3.12), (3.13), (3.16) and
(3.19). Using now (3.2), (3.14) and (3.18) we obtain

e�divZ � �(1+ �) ��(u)F(v, r)'(x, |ru|)h+(r)|r |

+ 1+��(u)F(v, r)K (1+ r)�µh+(r)

� 1+��(u)
@F
@v

(v, r)'(x, |ru|)|ru|h�(r)

+↵&(1+ r)&�1 1+��(u)
@F
@v

(v, r)|ru|�1'(x, |ru|)h(ru,rr)

+ 1+��(u)
@F
@r

(v, r)|ru|�1'(x, |ru|)h(ru,rr)

and therefore

e�divZ � �(1+ �) ��(u)F(v, r)'(x, |ru|)h+(r)|r |

+ 1+��(u)F(v, r)K (1+ r)�µh+(r)

+ 1+��(u)
����@F@v (v, r)

���� h�(r)
A(x)1/�

'(x, |ru|)1+1/�

� 1+��(u)
����@F@v (v, r)

����↵&(1+ r)&�1
|ru|�1'(x, |ru|)h(ru,rr)

+ 1+��(u)
����@F@v (v, r)

����
@F
@r (v, r)��� @F@v (v, r)

��� |ru|
�1'(x, |ru|)h(ru,rr).
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Hence, we have

e�divZ � �(1+ �) ��(u)F(v, r)'(x, |ru|)h+(r)|r |

+  1+��(u)
����@F@v (v, r)

���� B(x,ru, r),
(3.20)

where

B(x,ru, r)=
h�(r)
A(x)1/�

'(x, |ru|)1+1/� +

F(v, r)��� @F@v (v, r)
���K (1+ r)�µh+(r)

+

0
@x @F

@r (v,r)��� @F@v (v,r)
����↵&(1+r)&�1

1
A|ru|�1'(x,|ru|)h(ru,rr).

(3.21)

Using (3.4) we obtain

B(x,ru, r)�

0
@ 1
C1/�0

'(x, |ru|)1+1/� +

F(v, r)��� @F@v (v, r)
���K (1+ r)�µ

1
A h+(r)

+

0
@ @F

@r (v,r)��� @F@v (v,r)
���� ↵&(1+r)&�1

1
A|ru|�1'(x, |ru|)h(ru,rr).

(3.22)

Next, we consider different cases.

Case 1: ⌧ < 0. We choose

F(v, r) = e�qv(1+r)�⌧

where q > 0 is a constant that will be specified later. We use (3.16), (3.17), (3.6)
and ↵ > 0 to obtain

0 �

@F
@r (v, r)��� @F@v (v, r)

��� � ↵&(1+ r)&�1
� �↵(& � ⌧ )(1+ r)&�1 (3.23)

on �⇠ and
F(v, r)��� @F@v (v, r)

��� =

1
q

(1+ r)⌧ . (3.24)

Also note that

|ru|�1'(x, |ru|)h(ru,rr)  '(x, |ru|)h+(r).
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Inserting (3.23) and (3.24) into (3.22) and using (3.5) we deduce

B(x,ru, r) �

"
1

C1/�0
'(x, |ru|)1+1/� +

K
q

(1+ r)(&�1)(1+�)

� ↵(& � ⌧ )(1+ r)&�1'(x, |ru|)

#
h+(r).

(3.25)

At this point we need to estimate the right-hand side of (3.25) so as to have

B(x,ru, r) � 3'(x, |ru|)1+1/�h+(r) (3.26)

where3 is a positive constant independent of ru, r and x . For this purpose we use
the next lemma whose proof is a calculus exercise.

Lemma 3.3. Let �, %,�,! be positive constants and let f be the function defined
on R+

0 by f (s) = !s1+1/� � �s+ %. Then the inequality f (s) � 3s1+1/� holds on
R+

0 provided

3  ! �

��1+1/�

(1+ �)1+1/�%1/�
.

Applying Lemma 3.3 with s = '(x, |ru|) and x fixed it is easy to verify that (3.25)
holds independently of x if we can choose a positive 3 such that

3 

1
C1/�0

�

q1/��(↵(& � ⌧ ))1+1/�

(1+ �)1+1/�K 1/�
, (3.27)

where r = r(x). Thus, if # 2 (0, 1) and we choose

q =

#�K (1+ �)1+�

C0��(↵(& � ⌧ ))1+�
and 3 =

1� #

C1/�0
(3.28)

then 3 > 0 and it satisfies (3.27).
We insert (3.26) and the expression for @F/@v into (3.20) to obtain

divZ � e��
⇣

� (1+ �) ��(u)F(v, r)'(x, |ru|)h+(r)|r |

+q3 1+��(u)(1+ r)�⌧ F(v, r)'(x, |ru|)1+1/�h+(r)
⌘
.

We integrate this inequality on �⇠ \ BR , apply the divergence theorem and recall
that Z vanishes on @(�⇠ \ BR) to obtain

q3
1+ �

Z
�⇠\BR

 1+��(u)(1+ r)�⌧ F(v, r)'(x, |ru|)1+1/�h+(r)e��



Z
�⇠\BR

 ��(u)F(v, r)'(x, |ru|)h+(r)|r |e�� .
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We write
 ��(u)F(v, r)'(x, |ru|)h+(r)|r |e�� = g1g2

with
g1 = (�(u)F(v, r)h+(r))

1
1+� |r |(1+ r)

⌧�
1+� e�

1
1+� �

and
g2 = (�(u)F(v, r)h+(r))

�
1+�  �'(x, |ru|))(1+ r)�

⌧�
1+� e�

�
1+� � .

Applying Hölder’s inequality with conjugate exponents 1 + � and 1 + 1/� to the
integral on the right-hand side we obtain

Z
�⇠\BR

 ��(u)F(v, r)'(x, |ru|)h+(r)|r |e��



 Z
�⇠\BR

�(u)F(v, r)h+(r)|r |
1+�(1+ r)⌧�e��

! 1
1+�

⇥

 Z
�⇠\BR

�(u)F(v, r)h+(r) 1+�'(x, |ru|))
1+�
� (1+ r)�⌧ e��

! �
1+�

,

and after some simplification from the above we get

✓
q3
1+ �

◆1+� Z
�⇠\BR

 1+��(u)(1+ r)�⌧ F(v, r)'(x, |ru|)1+1/�h+(r)e��



Z
�⇠\BR

�(u)F(v, r)(1+ r)⌧�|r |
1+�h+(r)e�� .

Let R > 2R0; then ✓R > R/2 > R0 and using the properties of � and  we deduce

E =

✓
q3
1+ �

◆1+� Z
�⇠\BR0

�(u)F(v, r)'(x, |ru|)1+1/�h+(r)e��

 C1+�(1+ ✓R)⌧�[(1� ✓)R]
�(1+�)

Z
�⇠\(BR\B✓R)

F(v, r)h+(r)e�� .
(3.29)

Using (3.17) for v and the expression of F on �⇠ \ (BR \ B✓R)

F(v, r)  e�q(↵�b)(1+✓R)&�⌧
,

thus from (3.29)

E 
bCR�⌧�1��e�q(↵�b)(1+✓R)&�⌧

Z
BR
h+(r)e��
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for some constant bC > 0. Now observe that, since |ru| 6⌘ 0 on�⇠ \BR0 , it follows
that E > 0. From assumption (3.8), for every fixed d > d0 there exists a strictly
increasing sequence Rk % +1 with R1 > 2R0 and such that

log
Z
BRk

h+(r)e��  dR&�⌧
k ; (3.30)

and from the above inequality with R = Rk we obtain

0 < E 
bCR�⌧�1��k e�q(↵�b)(1+✓Rk)&�⌧

Z
BRk

h+(r)e��


bCR�⌧�1��k edR

&�⌧
k �q(↵�b)(1+✓Rk)&�⌧

,

where the constant bC > 0 is independent of k. In order for this inequality to hold
for every k, we must have

d � (↵ � b)q✓&�⌧ ,

hence, letting ✓ ! 1,
d � (↵ � b)q.

We set ↵ = tb, t > 1, and we insert the choice (3.28) of q in the above inequality,
solve with respect to K , and let # % 1 to obtain

K  C0db�(& � ⌧ )1+�
��

(1+ �)1+�
t1+�

t � 1
.

Therefore, minimizing with respect to t > 1 and letting d ! d0, b ! max{bu, 0},
we obtain

K  C0d0 max{bu, 0}�(& � ⌧ )1+�.

In other words,

inf
�⇠

(1+ r)µ

h+(r)
Lu  C0d0 max{bu, 0}�(& � ⌧ )1+�. (3.31)

This finishes the proof when & > 0 and ⌧ < 0.
For & = 0 (and necessarily ⌧ < 0 by (3.6)) we can improve the above estimate

as follows. We apply (3.31) to the function u �bu on the set
�
x 2 M : u(x) �bu > ⇠ �bu = �⇠ ,

observing that [u �bu = 0 and that Lu = L(u �bu), to obtain
inf
�⇠

(1+ r)µ

h+(r)
Lu  0.
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Case 2: ⌧ � 0 (and necessarily & > 0 by (3.6)). We choose

F(v, r) = F(v) = e�qv(&�⌧ )/&

where q > 0 is a constant to be specified later. Noting that the exponent of v is
positive by (3.6), a computation yields

@F
@v

(v, r) = �q
& � ⌧

&
v�⌧/& F(v) < 0,

while clearly, @F/@r ⌘ 0.
Using estimate (3.22), recalling that v � (↵ � b)(1 + r)& (see (3.17)), and

proceeding as in Case 1, we estimate

B(x,ru, r) �

"
1

C1/�0
'(x, |ru|)1+1/� � ↵&(1+ r)&�1'(x, |ru|)

+

&

q(& � ⌧ )
(↵ � b)⌧/&K (1+ r)(&�1)(1+�)

#
h+(r).

(3.32)

According to Lemma 3.3, for every r � 0 fixed, the right-hand side of the above
inequality is bounded from below by 3'(x, |ru|)1+1/�h+(r) provided

3 

1
C1/�0

�

q1/��(↵&)1+1/�(& � ⌧ )1/�

(1+ �)1+1/�(K&)1/�(↵ � b)⌧/(�&)
· (3.33)

Since the right-hand side of the above inequality is independent of r , for every such
3 we have B(x,ru, r) � 3'(x, |ru|)1+1/�h+(r). In particular, if # 2 (0, 1) and
we choose

q =

#�K&(1+ �)1+�(↵ � b)⌧/&

C0��(↵&)1+�(& � ⌧ )
and 3 =

1� #

C1/�0
(3.34)

then3 > 0 and it satisfies (3.33). Substituting into (3.20), and using the expression
for @F/@v, we deduce that

divZ � e��
✓

� (1+ �) ��(u)F(v)'(x, |ru|)h+(r)|r |

+q
& � ⌧

&
3 1+��(u)v⌧/& F(v)'(x, |ru|)1+1/�h+(r)

◆
.

We now proceed as in Case 1, repeating, with minor adaptations, the arguments that
lead to (3.29), to conclude instead that

0 < E =

Z
�⇠\BR0

�(u)F(v)'(x, |ru|)1+1/�h+(r)e��


bC(1+ ✓Rk)⌧�[(1� ✓)Rk]�(1+�)

Z
�⇠\(BRk \B✓Rk )

F(v)h+(r)e��,
(3.35)
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where bC is a constant independent of k and ✓ . Using the inequality
F(v)  e�q(↵�b)(&�⌧ )/& (1+✓Rk)&�⌧

valid on �⇠ \ (BRk \ B✓Rk ), and (3.30), we conclude that for every k we have

0 < E 
bCR�⌧�1��k edR

&�⌧
k �q(↵�b)(&�⌧ )/& (1+✓Rk)&�⌧

.

Again, this forces
d � q(↵ � b)(&�⌧ )/&✓&�⌧ .

Therefore, setting ↵ = tb, t > 1, letting ✓ % 1, inserting the value of q given by
(3.34), solving with respect to K and letting # % 1, d & d0, b & max{bu, 0}, we
obtain

K  C0d0 max
�bu, 0 � (�&)�(& � ⌧ )

(1+ �)1+�
t1+�

t � 1
;

hence, again minimizing with respect to t > 1, we conclude that

K  C0d0 max
�bu, 0 �&�(& � ⌧ ).

In other words,

inf
�⇠

(1+ r)µ

h+(r)
Lu  C0d0 max

�bu, 0 �&�(& � ⌧ ).

This finishes the proof when ⌧ � 0.

3.1. A criterion for parabolicity

In this subsection we derive a parabolicity criterion for the operator

Lu = e�div
�
e��|ru|�1'(x, |ru|)h(ru, ·)]

�
(3.36)

defined in (3.1). Recall that a Riemannian manifold (M, h· , ·i) is said to be parabolic
if the only subharmonic functions on M which are bounded from above are con-
stant; that is, if the only solutions u of the inequality 1u � 0 which are bounded
from above are constant. Following this terminology, we say that the Riemannian
manifold (M, h· , ·i) is L�parabolic if the only solutions u of the inequality Lu � 0
which are bounded from above are constant.

The following result establishes a sufficient condition for L-parabolicity of a
complete manifold (M, h· , ·i)

Theorem 3.4. Let (M, h· , ·i) be a complete manifold, o 2 M a fixed origin and
r(x) = distM(x, o). Let L be the operator defined in (3.36) with h and ' satisfying
the assumptions (3.2), (3.3) and (3.4) above. Let h+(r) be defined in (3.2). If

1⇣ R
@Bt h+(r)e��

⌘ 1
�

/2 L1(+1) (3.37)

then (M, h· , ·i) is L-parabolic.
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The proof of Theorem 3.4 requires the following technical lemma

Lemma 3.5. Let L be the operator defined in (3.36) with h and ' satisfying the
assumptions (3.2), (3.3) and (3.4). Let  2 C0(R) and let u be a non-constant C1
solution on M of the differential inequality

Lu � |ru|�1'(x, |ru|)h(ru,ru)(u). (3.38)

Assume that there exist functions ↵ 2 C1(I ) and � 2 C0(I ) defined on an interval
I � u(M) such that

↵(u) � 0, (3.39)
↵0(u) + (u)↵(u) � �(u) > 0 (3.40)

on M . Then, there exist R0 > 0 depending only on u and a constant C > 0
independent of ↵ and �, such that, for any r > R � R0

✓Z
Br
�(u)'(x, |ru|)|ru|h�(r)e��

◆
�1

�C
✓Z r

R

✓Z
@Br

e��h+(r)
↵(u)1+�

�(u)�

◆
�
1
�
◆�

.

(3.41)

Proof. We consider the vector field

Z = ↵(u)e��|ru|�1'(x, |ru|)h(ru, ·)]. (3.42)

We compute the distributional divergence of Z and we use our assumptions on ↵,�
and (3.38) to obtain

divZ �

�
↵0(u) + (u)↵(u)

�
e��|ru|�1'(x, |ru|)h(ru,ru)

� �(u)e��|ru|�1'(x, |ru|)h(ru,ru).

Using (3.2) we immediately obtain

divZ � �(u)e��|ru|'(x, |ru|)h�(r). (3.43)

Integrating over Bt and applying the divergence theorem givesZ
@Bt

hZ ,rrie�� �

Z
Bt
�(u)|ru|'(x, |ru|)h�(r)e�� . (3.44)

On the other hand, using Cauchy-Schwarz inequality and (3.2), we have
Z
@Bt

hZ ,rrie�� 

Z
@Bt
↵(u)'(x, |ru|)h+(r)e�� . (3.45)
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We observe that assumption iii) on ' in (3.3) implies (see (3.18))

t'(x, t) � A(x)�
1
� '(x, t)1+

1
� . (3.46)

Hence,

↵(u)'(x, |ru|)h+(r)e��

 A(x)
1
1+�

↵(u)

�(u)
�
1+�

h+(r)

h�(r)
�
1+�

e��
1
1+�

�
|ru|'(x,|ru|)

� �
1+� e��

�
1+� �(u)

�
1+� h�(r)

�
1+� .

Thus, applying Hölder’s inequality with conjugate exponents p = 1 + � and q =

1+
1
� we obtainZ

@Bt
hZ ,rrie�� 

Z
@Bt
↵(u)'(x, |ru|)h+(r)e��



 Z
@Bt
A(x)

↵(u)1+�

�(u)�
h+(r)1+�

h�(r)�
e��

! 1
1+�✓Z

@Bt
|ru|'(x,|ru|)�(u)h�(r)e��

◆ �
1+�

.

(3.47)

We set
G(R) =

Z
BR
�(u)h�(r)|ru|'(x, |ru|)e�� (3.48)

and we observe that, since u is non constant, there exists R0 > 0 sufficiently large
such that, for any R � R0, it holds that G(R) > 0. Using the coarea formula and
putting together (3.44) and (3.47) we obtain

G(R)
1+�
�  G 0(R)

 Z
@BR

A(x)
↵(u)1+�

�(u)�
h+(r)�

h�(r)�
h+(r)e��

! 1
�

(3.49)

for R � R0. In particular the term within the parentheses of the above inequality is
positive and we can rewrite (3.49) in the form

 Z
@BR

A(x)
h+(r)�

h�(r)�
h+(r)

↵(u)1+�

�(u)�
e��

!
�
1
�



G 0(R)

G(R)1+
1
�

(3.50)

on [R0,+1). Hence, using (3.4),

C�
1
�

0

 Z
@BR

↵(u)1+�

�(u)�
h+(r)e��

!
�
1
�



G 0(R)

G(R)1+
1
�

.

Proceeding as in Lemma 1.1 of [24] we then obtain (3.41) with C = (��C0)�1.
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We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let ⇣ > 0 and set ↵(t) = e⇣ t , and �(t) = ⇣e⇣ t . Hence
(3.39), (3.40) are satisfied with  ⌘ 0. If u is a solution of Lu � 0 which is
non constant and with u⇤

= supM u < +1, applying (3.41) of Lemma 3.5 for
r > R � R0 we have

1
⇣
R
BR e

⇣u'(x, |ru|)|ru|h�(r)e��
� C

0
BB@
Z r

R

1⇣ R
@Bt h+(r) eu

⇤

⇣ e��
⌘ 1
�

1
CCA
�

. (3.51)

Letting r ! +1 and using (3.37) we obtain the desired contradiction.

4. Killing graphs with prescribed mean curvature

In this section, we deal with the equation of Killing graphs with prescribed mean
curvature

div
✓

ru
W

◆
�

⌧
r�

2�
,
ru
W

�
= nH, (4.1)

presented in Example 2.2.
Recall that r = r(x) denotes the geodesic distance in M from some fixed origin

o 2 M and BR = BR(o) stands for the geodesic ball centered at o with radius R.
We prove the following:

Theorem 4.1. Let M̄ be a complete Riemannian manifold endowed with a complete
Killing field Y and let M be an integral leaf of the Killing foliation. Assume that

sup
M

|Y | < +1 (4.2)

and

lim inf
R!+1

log
R
BR |Y |

R2�&�µ
= 0, (4.3)

for some µ, & 2 R, such that & � 0 and 2� & � µ > 0.
Then there are no Killing graphs  u(x) = 8(x, u(x)), for x 2 M , lying

between the graphs  &,±�(x) = 8(x,±�r(x)& ) outside a compact in M , for any
� > 0, and with mean curvature H satisfying

|H | �

C
(1+ r(x))µ

(4.4)

for some C > 0.
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Proof. We reason by contradiction and we let  u(x) be a Killing graph over M
satisfying the hypothesis of the theorem. Then u is a solution of

Lu = divlogp

�

✓
ru
W

◆
= nH on M (4.5)

with � = |Y |
�2. Since H has constant sign, passing to �u if necessary, we may

assume that H(x) � 0 on M . To apply Theorem 3.2 we observe that M is complete,
we let � = logp

� = � log |Y | and we choose h to be the metric on M , so that h�

and h+ are both identically equal to 1. Define

'(x, t) =

tp
� (x) + t2

.

Then ' clearly satisfies i) and ii) in (3.3), while it satisfies iii) with the choices

� = 1 and A(x) = |Y (x)|.

Thus, assumption (3.4) is guaranteed by (4.2). Since  u(x) lies between the graphs
 &,��(x) and  &,�(x), we have

bu = lim sup
r(x)!+1

u(x)
r(x)&

 � < +1.

We now let ⌧ = µ+2(&�1) and observe that (3.6) is satisfied and (4.3) corresponds
to (3.8) with d0 = 0.

Because of assumption (4.4), we have

(1+ r(x))µLu(x) � C > 0

on M . Next, we choose any ⇠ such that �⇠ is non-empty to get, by applying Theo-
rem 3.2, the desired contradiction, since

inf
�⇠

(1+ r(x))µLu(x)  0.

This concludes the proof of the theorem.

The reasoning in the above proof also shows the validity of the next:

Corollary 4.2. Let M̄ be a complete Riemannian manifold endowed with a com-
plete Killing field Y and let M be an integral leaf of the Killing foliation. Assume
that

sup
M

|Y | < +1
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and

lim inf
R!+1

log
R
BR |Y |

R2�&
= 0, (4.6)

for some 0  & < 2.
Then any constant mean curvature Killing graph  (x) = 8(x, u(x)), for x 2

M , lying between the graphs  &,±�(x) = 8(x,±�r(x)& ) outside a compact in M ,
for some � > 0, is minimal. In particular, if & = 0, the sectional curvatures of M
satisfy KM � �K0 for some positive constant K0 and RicM � 0, then  (M) is a
leaf.

Proof. We only have to show the validity of the last statement. Since u is bounded,
by the main theorem in [12] we know that |ru| is bounded. Thus u satisfies

div
✓

ru
W

◆
�

⌧
r�

2�
,
ru
W

�
= 0,

where now the operator is uniformly elliptic because of the boundedness of |ru|.
Since RicM � 0, u is constant by [28, Theorem 7.4 ]. This finishes the proof.

Note that if we consider the density on M given by e� f with f = � log |Y | =

logp

� then (4.3) and (4.6) can be interpreted as conditions on the growth rate of
the weighted volume of geodesic balls in M . In what follows we are going to show
that this particular choice of weighted volume gives rise to a weighted isoperimetric
ratio with relevant geometric implications.

For instance, it is well-known that entire graphs with constant mean curvature
in the Euclidean space have to be minimal. I. Salavessa proved in [27] this result
by an ingenious way of relating the mean curvature of the graph with the Cheeger’s
constant. We adapt her reasoning to the present situation.

Proposition 4.3. Given a function u 2 C1(M) suppose that the mean curvature H
of the graph of u has constant sign, say H > 0. Then

inf
M
H 

1
n
clogp

� , (4.7)

where
clogp

� = inf
�⇢M

vollogp

� (@�)

vollogp

� (�)
,

with � running on the relatively compact domains with smooth boundary in M , is
the weighted Cheeger’s constant.

Proof. Since we can fix H > 0, integrating (4.5) over a relatively compact domain
� with smooth boundary yields

inf
�
nHvollogp

� (�) 

Z
@�

⌧
ru
W

, ⌫

�
|Y |,
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where
vollogp

� (�) =

Z
�

|Y |

and ⌫ is the unit normal along @� ⇢ M . Then using Cauchy-Schwarz inequality
we get

inf
�
H 

1
n
vollogp

� (@�)

vollogp

� (�)
.

This implies

inf
M
H 

1
n
clogp

� ,

with� running on the relatively compact domains with smooth boundary in M .

Of course (4.7) also holds if H � 0. Hence, turning back to Salavessa’s result,
in case M̄ = Rn

⇥ R, the Killing vector field Y is the coordinate vector field on the
R factor and H � 0, the above yields

inf
M
H = 0.

This shows that there do not exist entire constant mean curvature graphs in M̄ =

Rn
⇥ R but the minimal ones. This can indeed be extended to the more general

setting of Killing graphs. We have:

Proposition 4.4. Let vollogp

� (@Br ) =

R
@Br |Y | and suppose that

vollogp

� (@Br )  Cear
↵

on R+

0 (4.8)

for some constants C > 0, a � 0, ↵ 2 (0, 1]. Then

clogp

�

(
= 0 if ↵ 2 (0, 1)
 a if ↵ = 1.

(4.9)

Proof. Proceeding as in Cheeger, [6], with the aid of the coarea formula, we obtain
the (weighted) Cheeger’s inequality

⇣
clogp

�

⌘2
4

 �
1logp

�

1 (M) (4.10)

where

�
1logp

�

1 (M) = inf
'2C1c (M),

' 6⌘0

R
M |r'|

2
|Y |R

M '
2
|Y |

. (4.11)
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Then, adapting the proof of Theorem 7.8 of Bianchini, Mari, Rigoli, [5], one sees
that

�
1logp

�

1 (M)

8<
:

= 0 if ↵ 2 (0, 1)



a2

4
if ↵ = 1.

(4.12)

Thus (4.9) follows from this latter and (4.10).

As an immediate consequence we have:

Corollary 4.5. Let M̄ be a complete Riemannian manifold endowed with a com-
plete Killing field Y and let M be an integral leaf of the Killing foliation. Suppose
that Z

@Br
|Y |  Cear

↵
on R+

0

for some constants c > 0, a � 0, ↵ 2 (0, 1). Then any constant mean curvature
Killing graph  : M ! M̄,  (x) = 8(x, u(x)), for x 2 M, is minimal.

We now comment about the sharpness of assumptions (4.3) and (4.6) in The-
orem 4.1 and Corollary 4.2, respectively. Towards this aim, let us consider M̄ =

Hn
⇥R and Y the coordinate vector field on theR factor, as before. It is well-known

that the Cheeger’s constant of Hn is n � 1. Therefore, we expect that the constant
mean curvature with respect to an appropriate orientation of an entire graph is in
the interval [0, n�1n ].

However, in this case (4.6) is satisfied if and only if & 2 [0, 1). Thus, from
Corollary 4.2, we deduce that every graph with constant mean curvature and lying
between  &,±�(x) = 8(x,±�r(x)& ), for some � > 0 and & 2 [0, 1), is, in fact,
minimal.

On the other hand, if & 2 [1, 2) there do exist constant mean curvature graphs
with H 2 (0, n�1n ] lying between the two graphs  &,±� , for some � > 0, outside
a compact set in Hn . To see this, let Hn be represented as the model space with
metric of constant negative curvature �1, which we realize in polar coordinates
(r, ✓) 2 (0,+1) ⇥ Sn�1 as

h· , ·i = dr2 + sinh2(r)d✓2,

d✓2 being the standard metric on Sn�1.
Then, for any H 2 (0, (n � 1)/n] the smooth function

u(x) =

Z r(x)

0

sinh1�n(t)
R t
0 nH sinh

n�1(⌧ )d⌧r
1� sinh2(1�n)(t)

⇣R t
0 nH sinh

n�1(⌧ )d⌧
⌘2 dt (4.13)
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defines an entire graph over Hn with constant mean curvature H . Furthermore,

lim
r(x)!+1

u(x)
r(x)

= CH ,

where

CH =

8<
:

nHp
(n � 1)2 � n2H2

if 0 < H < (n � 1)/n

+1 if H = (n � 1)/n.

This means that for H 2 (0, (n � 1)/n) the graph lies between the graphs

 1,±2CH (x) =

�
x,±2CHr(x)

�
in Hn

⇥ R outside a compact set of Hn .
We further note that this example also shows that condition (4.6) cannot be

relaxed to

lim inf
R!+1

log
R
BR |Y |

R2�&
2 R+.

Indeed, in the above case we have

lim inf
R!+1

log
R
BR |Y |

R2�&
= lim inf

R!+1

log volBR
R2�&

=

(
+1 if & 2 (1, 2)
C(n � 1) if & = 1

for some C > 0.
We conclude this section with the following observation: if & = 0, i.e., u is

bounded, and H(x) has constant sign, proceeding as in the proof of Theorem 4.1,
we arrive to (4.5) with u bounded above and H(x) � 0. Thus if (4.2) holds and

1R
@Bt |Y |

/2 L1(+1), (4.14)

we can apply Theorem 3.4 to conclude that (M, h· , ·i) is L-parabolic. As a conse-
quence we have

Theorem 4.6. Let M̄ be a complete Riemannian manifold endowed with a complete
Killing field Y and let M be an integral leaf of the Killing foliation. Assume that

sup
M

|Y | < +1 (4.15)

and
1R

@Bt |Y |

/2 L1(+1). (4.16)
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Let  u(x) be a Killing graph with mean curvature of constant sign whose image
lies in some slab of the form

8
�
M ⇥

⇥
s1, s2

⇤�
=

�
8(x, s) : x 2 M, and s1  s  s2

 
.

Then the graph is a leaf.

Remark 4.7. Note that condition (4.16) is much stronger than

lim inf
R!+1

log
R
BR |Y |

R2
= 0, (4.17)

which is nothing but (4.3) with & = µ = 0. For instance, if
Z
@BR

|Y | ⇠ CeR
2�✏

as R ! +1 (4.18)

for some C > 0 and 0 < ✏ < 2 then

log
Z
BR

|Y | ⇠ CR2�✏ as R ! +1. (4.19)

Hence, (4.17) is satisfied. But clearly, (4.16) is not met.

4.1. The case of weighted Killing graphs

If we fix F(y, ⌘) = |⌘| and choose a general weight e� f we obtain the setting of
Killing graphs with prescribed weighted mean curvature. In this case, the Euler-
Lagrange equation becomes

div f
✓

ru
W

◆
�

⌧
r�

2�
,
ru
W

�
= nH f , (4.20)

and we obtain the corresponding versions of Theorem 4.1 and Corollary 4.2, with
the same proofs, and with the density � in the operator L defined in (3.1) now given
by � = f + logp

� = f � log |Y |. Specifically, the corresponding versions are
stated as follows:

Theorem 4.8. Let M̄ be a complete Riemannian manifold endowed with a complete
Killing field Y and let M be an integral leaf of the Killing foliation. Assume that

sup
M

|Y | < +1 (4.21)

and

lim inf
R!+1

log
R
BR |Y |e� f

R2�&�µ
= 0, (4.22)
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for some µ, & 2 R, such that & � 0 and 2� & � µ > 0. Then there are no Killing
graphs  u(x) = 8(x, u(x)), for x 2 M , lying between the graphs  &,±�(x) =

8(x,±�r(x)& ) outside a compact in M , for any � > 0, and with weighted mean
curvature H f satisfying ��H f

��
�

C
(1+ r(x))µ

(4.23)

for some C > 0.

Corollary 4.9. Let M̄ be a complete Riemannian manifold endowed with a com-
plete Killing field Y and let M be an integral leaf of the Killing foliation. Assume
that

sup
M

|Y | < +1

and

lim inf
R!+1

log
R
BR |Y |e� f

R2�&
= 0, (4.24)

for some 0  & < 2.
Then any constant weighted mean curvature Killing graph (x) = 8(x, u(x)),

for x 2 M , lying between the graphs  &,±�(x) = 8(x,±�r(x)& ) outside a com-
pact in M , for some � > 0, is minimal.

In order to emphasize the geometric nature of assumptions (4.22) and (4.24)
on the growth rate of the weighted volume of geodesic balls in M , we digress about
some examples which illustrate the sharpness of our results and the differences
between the mean curvature case and its weighted counterpart.

For the sake of simplicity we suppose that the metric in M is rotationally sym-
metric. More precisely, we suppose that M = M⇠ is a model space with pole at o
and Gaussian coordinates (r, ✓) 2 R+

⇥ Sn�1 in terms of which � is expressed by

� = dr2 + ⇠2(r)d✓2, (4.25)

for some ⇠ 2 C1(R+

0 ), for ⇠ > 0 in R+, satisfying ⇠ 0(0) = 1, and ⇠ (2k)(0) = 0,
for each k = 0, 1, 2, . . . and where d✓2 denotes the canonical metric in Sn�1.

We also assume that the norm of the Killing field does not depend on ✓ . In
this case, the ambient metric ḡ of M̄ is written in terms of cylindrical coordinates
(s, r, ✓) as

ḡ = %2(r)ds2 + dr2 + ⇠2(r)d✓2,

with % 2 C1(R+

0 ), % > 0 on R+

0 . Note that M̄ is a doubly-warped product with
respect to warping functions of the coordinate r . This includes space forms as well
as Riemannian products of space forms and the real line as particular examples of
ambient manifolds. Here Y = @/@s, with |Y | = %(r), and we further assume that
the density is a radial function, that is, f = f (r). Let

�(r) = %(r)⇠n�1(r)e� f (r).
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In this geometric setting, for a fixed r0 2 R+,

h(r0) = (n � 1)
⇠ 0(r0)
⇠(r0)

+

%0(r0)
%(r0)

� f 0(r0) =

� 0(r0)
�(r0)

is the weighted mean curvature of the Killing cylinder r = r0 in M̄ calculated with
respect to the orientation�

@
@r . Below we prove the existence of non-minimal entire

graphs with constant weighted mean curvature.

Proposition 4.10. Let M̄ with metric in cylindrical coordinates (s, r, ✓) given by

%2(r)ds2 + dr2 + ⇠2(r)d✓2

as above. Assume that �(r) ! +1 as r ! +1 and

lim
r!0+

h(r) > 0 and lim
r!+1

h(r) > 0.

Then, there exist non-minimal entire rotationally symmetric graphs with weighted
constant mean curvature H f 6= 0, for every n|H f | 2 (0, infR+ B(r)), where

B(r) =

�(r)R r
0 �(t)dt

.

Remark 4.11. As we will see in the proof, the assumptions on h guarantee that
infR+ B(r) > 0, so that (0, infR+ B(r)) is not empty.

Proof. Given a radial C2 function u = u(r), equation (4.20) for constant weighted
mean curvature H f becomes

div f+logp

�

 
u0(r)rrp

� (r) + u 02(r)

!
= nH f .

Integrating on the geodesic ball Br with respect to the weighted measure
e� f�logp

� dM and using the divergence theorem we obtainZ
@Br

u0p
� + u 02

|Y |e� f
=

Z
Br
nH f |Y |e� f .

Hence, using the co-area formula, we have

u0(r)p
� + u 02(r)

%(r)⇠n�1(r)e� f (r)
= nH f

Z r

0
%(t)⇠n�1(t)e� f (t)dt

and it follows that

u(x) = u(r(x)) =

Z r(x)

0

%�1(t)��1(t)
R t
0 nH f �(⌧ )d⌧r

1� ��2(t)
⇣R t
0 nH f �(⌧ )d⌧

⌘2 dt (4.26)
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provided
n|H f | < inf

R+

B(r). (4.27)

Observe that, by de l’Hôpital’s rule,

lim
r!0+

B(r) = lim
r!0+

� 0(r)
�(r)

> 0. (4.28)

On the other hand, since �(r) ! +1 as r ! +1, by the same rule we also have

lim
r!+1

B(r) = lim
r!+1

� 0(r)
�(r)

> 0. (4.29)

Therefore, I = (0, infR+ B(r)) 6= ;. Hence (4.26) defines a radially symmetric
Killing graph with constant non-zero weighted mean curvature H f , for every

n|H f | 2 I.

This finishes the proof.

Observe that the example after Corollary 4.5 corresponds to the choices % ⌘ 1,
⇠(r) = sinh(r) and f ⌘ 0, for which one has

inf
R+

B(r) = inf
R+

sinhn�1(r)R r
0 sinh

n�1(t)dt
= lim

r!+1

sinhn�1(r)R r
0 sinh

n�1(t)dt
= n � 1.

In contrast with Salavessa’s result we have:

Proposition 4.12. There exist entire Killing graphs in Euclidean space with con-
stant weighted mean curvature which are not minimal.

Proof. First note that ⇠(r) = r and %(r) = 1. Then fix any ↵ 2 R, and " > 0 and
let

e� f (r)
=

e"r

(1+ r)↵
.

A simple computation gives
inf
R+

B(r) = ".

Defining u(x) as in (4.26) for n|H f | 2 (0, ") we obtain a graph lying between the
graphs  1,±�(x) = ±�r(x) outside a compact set in Rn .

We end this section with some comments about the necessity of (4.24). First
observe that in the examples in the proof of Proposition 4.12 condition (4.24) is
satisfied only for & 2 [0, 1). As for the asymptotic behavior of u as r ! 1, an
easy computation shows that

u(r) ⇠ C log�(r) as r ! +1,
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for some constant C > 0. For instance, consider again the case of M = Hn and
choose f (r) = �r↵ for some ↵ > 1 and r � 1. Moreover, fix either %(r) = 1 or
%(r) = cosh(r). These choices correspond respectively to the Riemannian product
Hn

⇥ R and to the hyperbolic space Hn+1
= Hn

⇥cosh r R.
The above prescription gives us a graph  u for which

u(r) ⇠ Cr↵ as r ! +1

for some constant C > 0. In particular,  u(x) lies between the graphs  &,±2C(x)
outside an appropriate compact set of Hn if and only if & � ↵. On the other hand,
(4.24) holds only for & < 2 � ↵ which is excluded by our previous request. This
shows the necessity of (4.24) also in this setting.

4.2. An application of the parabolicity criterion

In this subsection, we consider an intrisic weighted Laplacian operator defined on
a Killing graph. We then apply Theorem 3.4 directly to such a graph with the
Riemannian metric induced from the ambient space.

Theorem 4.13. Let M̄ be a complete Riemannian manifold endowed with a com-
plete Killing field Y and let M be an integral leaf of the Killing foliation. Assume
that

|Y |
2

2 L1(M, dM). (4.30)

Let  u(x) = 8(x, u(x)), for x 2 M , be a Killing graph on M such that

|ru| = O
✓
1

|Y |

◆
as x ! 1. (4.31)

If the mean curvature vector field points in the same (respectively, opposite) direc-
tion of Y and u is bounded from above (respectively, below), then u is constant and
the graph is a leaf of the foliation.

Proof. Let 6 =  (M) ⇢ M̄ and denote by r
6 and 16 the gradient and the

Laplace operators on 6 with respect to the induced metric. Then

r
6u =

�
r̄s

�
>

= �Y>, (4.32)
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where > denotes the tangential projection over 6. Consider a local orthonormal
frame {e1, . . . , en} with respect to metric on 6. Then

16u =

nX
i=1

D
r
6
ei �Y

>, ei
E
=

nX
i=1

D
r̄ei �Y

>, ei
E

= �
nX
i=1

D
r̄ei Y

>, ei
E
+

D
r̄� ,Y>

E

= �
nX
i=1

⌦
r̄ei Y, ei

↵
� �

nX
i=1

⌦
r̄ei hY, N iN , ei

↵
+

⌧
r̄�

�
, �Y>

�

= nH� hY, N i +

⌧
r
6u,

r
6�

�

�
.

That is,
16,log � u = nH� hY, N i, (4.33)

where 16,log � is the operator given by

16,log � u = 16u �

⌦
r
6u,r6 log �

↵
= e�div6

�
e��r6u

�
,

with � = log � . Here div6 denotes the divergence on6 with respect to the induced
metric.

We can now apply Theorem 3.4 to the operator L = 16,log � on (6, h· , ·i6),
with '(x, t) = t , � = 1 and h = h· , ·i6 , so that h+ = 1, provided that condition
(3.37) is satisfied. Note that in the present case condition (3.37) becomes

1R
@Bt |Y |

2d6
/2 L1(+1), (4.34)

where Bt is the geodesic ball of radius t with respect to some fixed origin in the
complete manifold (6, h· , ·i6).

According to [24, Proposition 1.3], condition (4.34) is satisfied if

|Y |
2

2 L1(6, d6). (4.35)

Now observe that
h· , ·i6 = h· , ·iM + |Y |

2du ⌦ du.
Hence, by (6.1) below,

d6 =

q
1+ |ru|2|Y |

2dM.

On the other hand, by assumption (4.31) we have |ru|2|Y |
2

 C on M , for some
constant C > 0. It follows that

d6 

p

1+ CdM,
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and assumption (4.30) implies (4.35). Therefore, Theorem 3.4 can be applied to the
operator 16,log � .

Finally, note that our assumptions on the mean curvature vector field guarantee
that

(u � c)16,log � u  0

for some constant c. Hence, by Theorem 3.4 u is constant. This finishes the proof
of Theorem 4.13.

5. Killing graphs with prescribed anisotropic mean curvature

Throughout this section, we consider the Lagrangian F given by

F(y, ⌘) = a
✓
2

✓
⌘

|⌘|

◆◆p
g(⌘, ⌘) (5.1)

which is defined in Example 2.5. We are going to prove that the prescribed gener-
alized mean curvature equation (2.10) may be written as (2.15). We have

@F
@s

=a
✓
2

✓
⌘

|⌘|

◆◆
@

@s
p
g(⌘, ⌘) + a0

✓
2

✓
⌘

|⌘|

◆◆
@

@s
2

✓
⌘

|⌘|

◆

= a
✓
2

✓
⌘

|⌘|

◆◆
1

2
p

g(⌘, ⌘)
@

@s
g(⌘, ⌘)

+ a0

✓
2

✓
⌘

|⌘|

◆◆✓
£Y2

✓
⌘

|⌘|

◆
+2

✓
@

@s
,
⌘

|⌘|

�◆◆

= a
✓
2

✓
⌘

|⌘|

◆◆
1

2
p

g(⌘, ⌘)

✓
£Y g(⌘, ⌘) + 2g

✓
@

@s
, ⌘

�
, ⌘

◆◆

+ a0

✓
2

✓
⌘

|⌘|

◆◆✓
£Y2

✓
⌘

|⌘|

◆
+2

✓
@

@s
,
⌘

|⌘|

�◆◆

= a
✓
2

✓
⌘

|⌘|

◆◆
1

p

g(⌘, ⌘)
g
✓

@

@s
, ⌘

�
, ⌘

◆
+a0

✓
2

✓
⌘

|⌘|

◆◆
2

✓
@

@s
,


@

@s
,
⌘

|⌘|

�◆
.

However, along a Killing graph

@

@s
, ⌘

�
= 0 (5.2)

and
@

@s
|⌘| = 0,

from which we conclude that
@F
@s

����
6

= 0.
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To see the validity of (5.2), observe that

⌘ = N |6 = �

ui

W
@

@xi
+

�

W
@

@s
,

so that

@

@s
, ⌘

�
= �

ui

W


@

@s
,
@

@xi

�
�

@

@s

✓
ui

W

◆
@

@xi

+

�

W


@

@s
,
@

@s

�
+

@

@s

⇣ �
W

⌘ @

@s
= 0,

because
ui

W
and

�

W
do not depend on s.

Hence, we may apply Theorem 2.1 in order to compute the generalized mean
curvature of Killing graphs relatively to the Lagrangian F defined in (5.1) that, in
this case, corresponds to the anisotropic mean curvature of 6, that we denote by
HF . We have

@

@⌘↵

p
g(⌘, ⌘) =

1
p

g(⌘, ⌘)
g↵�⌘�

and
@

@⌘↵
2

✓
⌘

|⌘|

◆
= 2�

@

@⌘↵
⌘�

|⌘|
=

1
|⌘|
2↵ �2

✓
⌘

|⌘|

◆
⌘↵

|⌘|2
,

where the 2↵’s are the components of 2. It follows that

@

@⌘↵
a(2) = a0(2)

✓
1
|⌘|
2↵ �2

⌘↵

|⌘|2

◆
,

where to simplify the notation we have set 2 and 2↵ for 2
⇣
⌘
|⌘|

⌘
and 2↵

⇣
⌘
|⌘|

⌘
,

respectively. These formulas imply

@F
@⌘↵

= a0(2)2↵

p

g(⌘, ⌘)
|⌘|

+ a(2)
1

p

g(⌘, ⌘)
g↵�⌘� � a0(2)2

⌘↵

|⌘|

p

g(⌘, ⌘)
|⌘|

or equivalently

@F
@⌘↵

= a0(2)2↵

p

g(⌘, ⌘)
|⌘|

+

✓
a(2)

|⌘|
p

g(⌘, ⌘)
g↵� � a0(2)2

p

g(⌘, ⌘)
|⌘|

ḡ↵�
◆
⌘�

|⌘|
.

(5.3)
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In particular we have

@F
@⌘i

= a0(2)2i

p

g(⌘, ⌘)
|⌘|

+

✓
a(2)

|⌘|
p

g(⌘, ⌘)
gi j � a0(2)2

p

g(⌘, ⌘)
|⌘|

�i j

◆
⌘ j

|⌘|
.

However 2i = 0 and gi j = �i j for 1  i, j  n. Hence we obtain

� i j
@F
@⌘i

=

✓
a(2)

|⌘|
p

g(⌘, ⌘)
� a0(2)2

p

g(⌘, ⌘)
|⌘|

◆
⌘ j

|⌘|
.

We observe that along the graph 6 of  : � ! M setting ⌘ = N it holds that

⌘i = �

ui

W
, |⌘| = 1.

In the notations of Theorem 2.1 we then obtain

X =

✓
a0(2)2

p
g(N , N ) � a(2)

1
p

g(N , N )

◆
ru
W

. (5.4)

Therefore from (2.10)

nHF = div
✓✓

a(2)
1

p

g(N , N )
� a0(2)2

p
g(N , N )

◆
ru
W

◆

�

⌧✓
a(2)

1
p

g(N , N )
� a0(2)2

p
g(N , N )

◆
ru
W

,
r�

2�

�
,

that is, equation (2.15) in Example 2.5. Note that

2(N )|6 =

1
W

=

1p
� + |ru|2

and p
g(N , N )|6 =

1
W

q
|ru|2 + ��

imply

1
W

✓
a(2)

1
p

g(N , N )
� a0(2)2

p
g(N , N )

◆

=

1p
�� + |ru|2

a

 
1p

� + |ru|2

!
�

p
�� + |ru|2�
� + |ru|2

� 3
2
a0

 
1p

� + |ru|2

!
.

In terms of the notation of Theorem 3.2 we choose h the metric on M , so that h�

and h+ are both identically equal to 1, and we choose

'(x, t) =

tp
�� + t2

0
@a

 
1p
� + t2

!
�

�� + t2�
� + t2

� 3
2
a0

 
1p
� + t2

!1
A , (5.5)
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so that

1
W

✓
a(2)

1
p

g(N , N )
� a0(2)2

p
g(N , N )

◆
= |ru|�1'(x, |ru|).

In the particular case when a ⌘ 1 we have

'(x, t) =

tp
�� + t2

,

while in the case � = 1 we obtain

'(x, t) =

tp
� + t2

 
a

 
1p
� + t2

!
�

1p
� + t2

a0

 
1p
� + t2

!!
.

We are now able to apply Theorem 3.2 to obtain a non-existence result for graphs
with prescribed anisotropic mean curvature.

Theorem 5.1. Let M̄ be a complete Riemannian manifold endowed with a complete
Killing field Y and let M be an integral leaf of the Killing foliation. Assume that

sup
M

|Y | < +1, (5.6)

and

lim inf
R!+1

log
R
BR |Y |

R2�&�µ
= 0, (5.7)

for some µ, & 2 R, & � 0, such that 2� & � µ > 0.
Then there are no Killing graphs  (x) = 8(x, u(x)), for x 2 M , lying be-

tween the graphs  &,±�(x) = 8(x,±�r(x)& ) outside a compact in M , for any
� > 0, and with anisotropic mean curvature HF satisfying

|HF | �

C
(1+ r(x))µ

(5.8)

for some C > 0, provided

7(w, z) > 0 for every (w, z) 2 R+

⇥ R+, (5.9)

and
7⇤

= sup
(w,z)2R+

⇥R+

7(w, z) < +1, (5.10)

where
7(w, z) = a(z) � ((�� 1)z2w + 1)a0(z)z.

Remark 5.2. As we will see in the proof, condition (5.9) corresponds to the ellip-
ticity condition ii) in Theorem 3.2.
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Proof. We reason by contradiction and we let  (x) = 8(x, u(x)) be a Killing
graph over M under the hypothesis of the theorem. Then u satisfies

Lu = div
⇣
|ru|�1'(x, |ru|)ru

⌘
� |ru|�1'(x, |ru|)

⌧
r�

2�
,ru

�
= nHF

with � = |Y |
�2. We choose f = logp

� = � log |Y | and '(x, t) given by (5.5).
Now, the proof goes along the same lines of the proof of Theorem 4.1, with the
choices

� = 1 and A(x) =

7⇤

p

�
|Y (x)|.

Clearly ' satisfies i) in Theorem 3.2. Condition ii) is guaranteed because of (5.9),
observing that

a

 
1p
� + t2

!
�

�� + t2�
� + t2

� 3
2
a0

 
1p
� + t2

!
= 7(w, z)

with

w = � and z =

1p
� + t2

.

Finally, iii) is granted because of (5.10) and the choices of � and A(x).
On the other hand, assumption (3.4) is satisfied because of (5.6). As in Theo-

rem 4.1, (3.6) is satisfied with ⌧ = µ + 2(& � 1), while (5.7) corresponds to (3.8)
with d0 = 0. The rest of the proof is the same as in Theorem 4.1.

Similarly to the previous section, we have

Corollary 5.3. Let M̄ be a complete Riemannian manifold endowed with a com-
plete Killing field Y and let M be an integral leaf of the Killing foliation. Assume
that

sup
M

|Y | < +1,

and

lim inf
R!+1

log
R
BR |Y |

R2�&
= 0, (5.11)

for some 0  & < 2.
Then, under assumptions (5.9) and (5.10), any Killing graph  (x) =

8(x, u(x)), for x 2 M , with constant anisotropic mean curvature lying between
the graphs &,±�(x) = 8(x,±�r(x)& ) outside a compact in M , for some � > 0,
is minimal.
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5.1. An anisotropic Weingarten map

In this subsection, we interpret the anisotropic mean curvature as the trace of a
tensor which plays the role of the Weingarten map in the anisotropic setting. In
particular, this shows that our definition of generalized mean curvature extends the
usual one for immersed hypersurfaces. To accomplish this, we must assume that F
is horizontally constant, i.e., the total derivative DF of F in T M̄ has no horizontal
component.

In order to give a precise meaning to this statement, we fix some terminology
and basic facts on the geometry of the tangent bundle T M̄ .

The canonical projection ⇡ : T M̄ ! M̄ , ⇡(y, ⌘) = y, determines the vertical
distribution

(y, ⌘) 2 T M̄ 7! V(y,⌘) = ker⇡⇤|(y,⌘) ⇢ T(y,⌘)T M̄, (5.12)

which is integrable with integral leaves given by the fibers ⇡�1(y) = Ty M̄ . The
Riemannian connection r̄ in M̄ determines a horizontal distribution

(y, ⌘) 2 M̄ 7! H(y,⌘) = ker K(y,⌘) ⇢ T(y,⌘)T M̄, (5.13)

where the map K : T T M̄ ! T M̄ is defined by

K(y,⌘)(U⇤⇣ ) = r̄⇣U, for ⇣ 2 Ty M̄, (5.14)

whereU 2 0(T M̄) is a vector field in M̄ withU(y) = ⌘. It turns out that horizontal
and vertical subspaces are orthogonal with respect to the Sasaki metric h· , ·iT M̄ in
T M̄ defined by

hY,WiT M̄ = h⇡⇤Y,⇡⇤Wi + hKY, KWi, Y,W 2 0(T T M̄). (5.15)

Orthogonal projections onto vertical and horizontal subspaces are respectively de-
noted by ⇡v

⇤
and ⇡h

⇤
. In terms of the local coordinates defined earlier in Section 2,

the vertical and horizontal lifts of tangent vectors in M̄ are given by
✓
@

@yk

◆v ����
(y,⌘)

=

@

@⌘k

����
(y,⌘)

, (5.16)

✓
@

@yk

◆h ����
(y,⌘)

=

@

@yk

����
(y,⌘)

� 0rkl(y)⌘
l @

@⌘r

����
(y,⌘)

, (5.17)

for 1  k  n + 1, where 0rkl are the Christoffel symbols of r̄ calculated with
respect to the local chart y1, . . . , yn+1. Vertical and horizontal lifts preserve the
metric in the sense thatD

Uh, V h
E
T M̄

=

⌦
Uv, V v↵

T M̄ = hU, V i, (5.18)
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for any vector fields U, V 2 0(T M̄). This implies that the fibers ⇡�1(y), for
y 2 M̄, are totally geodesic. Thus, the coordinates (⌘k)n+1k=1 defined above consist
of a global normal coordinate system for each fiber. More precisely, it holds that
the Riemannian connection D in T M̄ determined by the Sasaki metric satisfies

DUvV v
= 0, (5.19)

for any U, V 2 0(T M̄).
Definition 5.4. Given a cross-section �(x) = ( (x), N ( (x))), for x 2 6, of the
fiber bundle  ⇤T M̄ , we define a covariant tensorAF 2 0(T ⇤6 ⌦ T ⇤6) by

AF (U, V ) =

⌦
D( ⇤U)vDF, ( ⇤V )v

↵
T M̄ � �, (5.20)

for any vector fieldsU, V 2 0(T6). We also define the tensorA]F 2 0(T6⌦T ⇤6)
by D

A]FU, V
E
= AF (U, V ), for U, V 2 0(T6). (5.21)

We observe that the tensor A]F is well-defined taking tangent vector fields over
tangent vector fields, due to the degree one homogeneity of F . We also remark that
the tensorsAF andA]F are symmetric.

In local coordinates we have

AF

✓
 ⇤

@

@xi
, ⇤

@

@x j

◆
=

@yk

@xi
@yl

@x j
@2F
@⌘k@⌘l

����
�(x)

. (5.22)

Definition 5.5. The tensor AF 2 0(T6 ⌦ T ⇤6) defined by

hAFU, V i =

D
A]F AU, V

E
= AF (AU, V ), for U, V 2 0(T6), (5.23)

is the anisotropic Weingarten map, where A 2 0(T6 ⌦ T ⇤6) is the usual Wein-
garten map of  corresponding to the normal N .
Definition 5.6. A parametric Lagrangian F : T M̄\{0} ! R is said to be horizon-
tally constant if ⇡h

⇤
DF = 0.

Note that, in Euclidean space, this amounts to imposing that F(y, ⌘) = F(⌘).
Definition 5.6 is particularly meaningful since it enables us to recover the

anisotropic mean curvature defined, in variational terms in Theorem 2.1, as the
trace of the tensor AF . Indeed, we have the following result whose proof can be
found in [22].

We follow the notations of Section 2.

Theorem 5.7. If the parametric Lagrangian F : T M̄ � {0} ! R is horizontally
constant, then the anisotropic Weingarten map is given by

 ⇤AF = �r̄X (5.24)

with X as in (2.9). In this case nHF = trAF .
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In the particular case of a Riemannian product M̄ = M⇥R for which Y =
@
@s ,

the Lagrangian
F(y, ⌘) = a(2)|⌘| (5.25)

with a 2 C2(R) and 2 = hY, ⌘
|⌘| i, is horizontally constant. Note that (5.25) is a

special case of (5.1) with � = 1. In this case we easily verify that

⇡v
⇤
DF = a(2)

⌘

|⌘|
+ a0(2)

✓
Y �2

⌘

|⌘|

◆
.

Here, 0 denotes derivative with respect to the real variable 2. Furthermore, the
parallelism of Y implies that F is horizontally constant. Indeed, given any vector
field U 2 0(T M̄), we haveD

DF,Uh
E
T M̄

= a0(2)
⌦
r̄UY, ⌘

↵
= 0.

Hence, in this setting the anisotropic mean curvature is the trace of the anisotropic
Weingarten map.

6. Appendix: proof of Theorem 2.1

Let � be a relatively compact domain in M with smooth boundary. Since F is a
degree-one homogeneous function with respect to the second variable, we have

F f [ ] =

Z
�
F( , N )e� f ⇤d M̄

=

Z
F

 
 ,

 ⇤

@
@x1 ^ . . . ^  ⇤

@
@xn

| ⇤

@
@x1 ^ . . . ^  ⇤

@
@xn |

!
e� fpdet gi j dx

=

Z
F
✓
 , ⇤

@

@x1
^ . . . ^  ⇤

@

@xn

◆
e� f dx

where we have used the fact that

p
det gi j =

s
det

⌧
 ⇤

@

@xi
 ⇤

@

@x j

�
=

���� ⇤

@

@x1
^ . . . ^  ⇤

@

@xn

���� .
Observing that

gi j , for 1  i, j  n,
are the components of the metric induced on � by the immersion  , we compute

 ⇤

@

@x1
^ . . . ^  ⇤

@

@xn
=

✓
@

@x1
+ u1

@

@s

◆
^ . . . ^

✓
@

@xn
+ un

@

@s

◆

=

@

@x1
^ . . . ^

@

@xn
+

nX
i=1

ui
@

@x1
^ . . . ^

@

@xi�1
^

@

@s
^

@

@xi+1
^ . . . ^

@

@xn
.
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Hence,

 ⇤

@

@x1
^ . . . ^  ⇤

@

@xn
=

���� @@x1 ^ . . . ^
@

@xn

����
@
@s�� @
@s
��

�

���� @@s
����
���� @@x1 ^ . . . ^

@

@xn

����
nX
i=1

� i j u j
@

@xi

=

���� @@x1 ^ . . . ^
@

@xn

����
���� @@s

����
✓
�
@

@s
�8⇤ru

◆
=

1
p

�

���� @@x1 ^ . . . ^
@

@xn

����WN

=

1
p

�

p
det �i jW N =: GWN ,

where we have set
G =

1
p

�

p
det �i j

and
W =

����� @@s �8⇤ru
���� =

q
� + |ru|2.

It follows that p
det gi j =

1
p

�

q
� + |ru|2

p
det �i j . (6.1)

We also conclude that the coordinates of the point ( , ⇤

@
@x1 ^ . . .^ ⇤

@
@xn ) in T M̄

are given by
y0 = u, y1 = x1, . . . , yn = xn

and
⌘0 = �G, ⌘i = �G ui .

Next, we consider a variation of the immersion  : � ! M̄ defined by

 t (x) = 8(x, u(x) + tv(x)), for x 2 �, t 2 R, (6.2)

where v : � ! R is a compactly supported C2 function. Differentiating, one
obtains

de� f F
dt

=e� f @F
@s

d
dt

(u+tv)+e� f @F
@xi

dxi

dt
+e� f @F

@⌘0
d
dt

(�G
�
�e� f @F

@⌘i
d
dt

�
Gui

�

=e� f @F
@s

v � e� f @F
@⌘i

Gvi ,

where we used the fact that f does not depend on s.
Noting that

Gi
G

= �

�i
2�

+

⇣
p

det �
⌘
i

p

det �
, (6.3)
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we obtain

e� f @F
@⌘i

Gvi =e� f @F
@⌘i

G� i jv j =
@

@x j

✓
e� f � i j

@F
@⌘i

Gv

◆
�

@

@x j

✓
e� f � i j

@F
@⌘i

G
◆

v

=

@

@x j

✓
e� f � i j

@F
@⌘i

Gv

◆
�

@

@x j

✓
� i j

@F
@⌘i

◆
e� f Gv

�� i j
@F
@⌘i

 
� f j �

� j

2�
+

(
p

det � ) j
p

det �

!
e� f Gv

=

@

@x j

✓
e� f� i j

@F
@⌘i

Gv

◆
�

 
@

@x j

✓
� i j

@F
@⌘i

◆
+� i j

@F
@⌘i

(
p

det � ) j
p

det �

!
e� fGv

+ � i j
@F
@⌘i

✓
f j +

� j

2�

◆
e� f Gv.

However, by equation (3.4.9) in [30] (see also in [10, Chapter 1]), we have⇣
p

det �
⌘
j

p

det �
= 0kjk,

and thus,

e� f @F
@⌘i

Gvi =

@

@x j

✓
e� f � i j

@F
@⌘i

Gv

◆

�

✓
@

@x j

✓
� i j

@F
@⌘i

◆
+ � i j

@F
@⌘i

0kjk � � i j
@F
@⌘i

f j
◆
e� f Gv

+ � i j
@F
@⌘i

� j

2�
e� f Gv.

Hence, we finally have

de� f F
dt

= e� f @F
@s

v �

@

@x j

✓
e� f � i j

@F
@⌘i

Gv

◆

+

✓
� i j

@F
@⌘i

◆
; j
e� f Gv � � i j

@F
@⌘i

f j e� f Gv � � i j
@F
@⌘i

� j

2�
e� f Gv.

Letting

X = � i j
@F
@⌘i

����⇣
 , ⇤

@

@x1
^...^ ⇤

@
@xn

⌘ @

@x j
, (6.4)

one has
de� f F
dt

=e� f @F
@s

v�

@

@x j
⇣
e� f X jGv

⌘
+

⇣
X j

; j�X j f j
⌘
e� fGv�� i j

@F
@⌘i

� j

2�
e� fGv

=e� f @F
@s

v�

@

@x j
⇣
e� f X jGv

⌘
+ div f X e� f Gv �

⌧
X,

r�

2�

�
e� f Gv.
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Now we use the assumption £Y F |6 = 0, that is,

@F
@s

���
6

= 0.

Thus, since v is compactly supported in �, we get

d
dt

����
t=0
F f [ t ] =

Z
�

@

@x j
⇣
e� f X jGv

⌘
+ div f X e� f Gv �

⌧
X,

r�

2�

�
e� f Gv

=

Z ✓
div f X �

⌧
X,

r�

2�

�◆
e� f Gv

=

Z
�

1
p

�

✓
div f X �

⌧
X,

r�

2�

�◆
ve� f pdet �dx .

We conclude that the Euler-Lagrange equation for unconstrained critical points of
F f is given by

div f X �

⌧
X,

r�

2�

�
= 0

where

X = � i j
@F
@⌘i

����⇣
 , ⇤

@

@x1
^...^ ⇤

@
@xn

⌘ @

@x j
. (6.5)

But each derivative @F
@⌘i

is homogeneous of degree zero, so that

X = � i j
@F
@⌘i

����
( ,N )

@

@x j
. (6.6)

This proves the validity of equation (2.8). To deal with the second part of the
theorem we have to consider the modified functional

F f [ ] + V f [ ],

where

V f [ ] =

Z
�
nH

u
p

�
e� f dM

is the volume enclosed by the graph with respect to the measure e� f d M̄ . It is then
a standard procedure to derive the validity of (2.10) (see, for instance, [3] and [4]).
This concludes the proof of the theorem. ⇤
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