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Reeb dynamics detects odd balls

HANSJORG GEIGES AND KAI ZEHMISCH

Abstract. We give a dynamical characterisation of odd-dimensional balls within
the class of all contact manifolds whose boundary is a standard even-dimensional
sphere. The characterisation is in terms of the non-existence of short periodic
Reeb orbits.
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57R17 (secondary).

1. Introduction

1.1. Definitions and the main result

Let (M, @) be a compact, connected contact manifold (with a fixed choice of contact
form o) of dimension 21 4 1, n € N, whose boundary d M is diffeomorphic to S

We write infg (o) for the infimum of all positive periods of contractible closed
orbits of the Reeb vector field R,. When there are no closed contractible Reeb
orbits, we have infp(e) = 00, otherwise infp(«) is a minimum and in particular
positive.

Our main result will be a criterion for M to be diffeomorphic to a ball in terms
of infy () and an embeddability condition on d M. To formulate this condition, we
introduce the following terminology.

Definition 1.1. (a) Write D for the closed unit disc in R?. The (2n+1)-dimensional
manifold (with boundary)

Z:=RxDxC"!

with contact form
n—1

1
ey = db -+ > (x0 dyo — yo dxo) - ; yjdx;
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(with the obvious denomination of cartesian coordinates) will be referred to as the
contact cylinder.

(b) We say that 9 M admits a contact embedding into the contact cylinder Z
if there is an embedding ¢ of a collar neighbourhood of dM C M into Int(Z) with
¢*aeyl = o and with the image of the collar under ¢ contained in the interior of
@(dM), i.e. in the compact component of Z \ ¢(dM).

Theorem 1.2. Assume that the boundary dM = S*" of a contact manifold (M, o)
as above admits a contact embedding into the contact cylinder, and infy(a) > 7.
Then M is diffeomorphic to a ball.

This theorem has been proved for dim M = 3 by Eliashberg and Hofer [5]. In
that paper, they also announced the theorem for the higher-dimensional case, but
a proof has never been published. They formulated the higher-dimensional case
under the additional homological assumption H,(M; R) = 0; this condition, as we
shall see, is superfluous.

For simplicity, we shall assume throughout that n > 2, although a large part of
our argument also works for n = 1. Our proof shows that (M, «) is diffeomorphic
to a ball whenever M = $2" admits a contact embedding into the cylinder Z, :=
R x Dr2 x C"=1 of radius r, and infy () > 2. Given a contact embedding into Z =
Z1, it may be regarded as an embedding into a cylinder of slightly smaller radius.
Hence, even though the proof below will be based on the assumption infp () > 7,
the result holds under the weaker assumption infy(«) > 7.

1.2. Idea of the proof

The contact embedding ¢ of 9 M into the contact cylinder Z allows us to form a new
contact manifold R?**! by removing the bounded component of R>"+1\ p(dM)
and gluing in M instead. Similarly, we write Z for the cylinder Z with M glued in.
We shall be studying the moduli space WV of holomorphic discs u = (a, f): D —
R x R?"+! =: W in the symplectisation W of R?"*!  where the discs are subject
to certain boundary and homological conditions. (We always write D for the closed
unit disc in C when regarded as the domain of definition of our holomorphic discs.)
It will turn out that f(ID) is always contained in Z. We then have the following
dichotomy. Either the evaluation map

ev: WxD — Z
((a, ), 2) — f(@)

is proper and surjective, i.e. gives a filling, in which case topological arguments
involving the h-cobordism theorem can be used to show that M must be a ball.
Otherwise there will be breaking of holomorphic discs, which entails the existence
of short contractible periodic Reeb orbits as in Hofer’s paper [12].
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1.3. Remarks

(1) The bound 7 in Theorem 1.2 is optimal. Inside Z one can form the connected
sum as described by Weinstein [21], cf. [8, Section 6.2], with any contact manifold,
producing a belt sphere of radius ro smaller than, but arbitrarily close to 1. Inside
this belt sphere one finds a periodic orbit of length m’g.

(2) In the 3-dimensional case, Theorem 1.2 can be strengthened. If infy(a) > 7,
then there are in fact no closed Reeb orbits at all. (This was part of the formulation
of the theorem in [5].) In this 3-dimensional case, the holomorphic discs project
to embedded discs in Z, where they produce a foliation by discs transverse to the
Reeb direction, see [5, Section 2]. This precludes closed orbits.

(3) The existence of a foliation by discs as in (2) implies that there cannot even
be trapped Reeb orbits, i.e. orbits that are bounded in forward or backward time.
In [9] we show in joint work with Nena Rottgen that this is a purely 3-dimensional
phenomenon. In higher dimensions it is possible to have a Reeb dynamics on Eu-
clidean space, standard outside a compact set, with trapped orbits but no periodic
ones.

(4) One may consider manifolds M with disconnected boundary (and boundary
components different from $2"). The requirement of a contact embedding into the
contact cylinder Z is made for each component of d M individually. By translating
the images of these components in the R-direction one may then assume without
loss of generality that they are not nested. The collection ¢ (d M) of these images
is contained in a large ellipsoid E inside Int(Z). The manifold obtained from E
by removing the interiors of the components of ¢(dM) and gluing in M instead
has non-trivial fundamental group: by taking a path in M joining two boundary
components, and a second path joining these two boundary points in the exterior of
@(0M) C E, one creates an essential loop. It follows that this manifold contains a
contractible Reeb orbit of period smaller than 5. This orbit must in fact be contained
entirely in M, since the Reeb flow on Z is positively transverse to any hypersurface
{b} x D™,

In other words, Theorem 1.2 provides a means of detecting contractible peri-
odic orbits on non-compact manifolds or manifolds with boundary. See [2,3,20]
for related work.

ACKNOWLEDGEMENTS. We thank Peter Albers for useful conversations about
compactness questions, and Chris Wendl for drawing our attention to Frédéric Bour-
geois’s work on transversality in the setting of symplectisations. A part of the work
on this paper was done during the workshop on Legendrian submanifolds, holomor-
phic curves and generating families at the Académie Royale de Belgique, August
2013, organised by Frédéric Bourgeois.
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2. Symplectisations of contactisations

The contact cylinder Z may be regarded as the contactisation of the exact symplec-
tic manifold D x C"~1 ¢ C”. In the latter, we have the obvious holomorphic discs
D x {x}. In order to lift these to holomorphic discs in the symplectisation of Z,
it is advantageous to proceed in two steps: first lift them to holomorphic discs in
Cx DxC"!, and then transform them to holomorphic discs in the symplectisation
R x Z using an explicit biholomorphism

®: RxRxDxC"!' —CxbDxC!,

The desired boundary condition for the holomorphic discs on the left-hand side
gives us the boundary conditions for the holomorphic discs on the right.

This allows one to transform a Cauchy—Riemann problem on the left with re-
spect to a ‘twisted’ almost complex structure (which preserves the contact hyper-
planes and pairs the Reeb with the symplectisation direction) into a Poisson problem
on a single real-valued function.

This idea is implicit in [5, page 1320] and has also been used in [19, Proposi-
tion 5]. Before we turn to our specific situation, we discuss this transformation in
slightly greater generality.

2.1. Lifting holomorphic discs

Let (V, Jy) be a Stein manifold of complex dimension n. We write ¢ for a plurisub-
harmonic potential on V, so that wy := —d(dy o Jy) is a Kdhler form on V. In
fact, what is really relevant for the following discussion is the existence of such a
potential, not the integrability of Jy, cf. [10, Section 3.1]. Write A := —dyr o Jy
for the primitive 1-form of the symplectic form wy .

The contactisation of V is (R x V, a := db + )A), where b denotes the R-
coordinate. Notice that dp is the Reeb vector field of the contact form «. A sym-
plectisation of this manifold is

RxRxV,w:=d(ra)),
where 7 is a strictly increasing smooth positive function on the first R-factor (whose
coordinate we shall denote by a). A compatible almost complex structure J on this
symplectic manifold, which in addition preserves the contact hyperplanes
kera = {v—A(W)op: ve TV}
on {a} x R x V,is given by
J(0g) =0y and J(v—A(W)dp) = Jyv —A(Jyv)0p.

If Jy is not integrable, then J may only be tamed by w.
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A straightforward calculation gives the following generalisation of [19, Propo-
sition 5]:

Proposition 2.1. The map

d: RxRxV,J) — CxV,ieJy)
(a,b,z) —> (a — ¥ (z) +ib, z)

is a biholomorphism. O

Given a holomorphic disc D > z +— h(z) € V, we want to lift this to a
holomorphic disc

D> z+— (a(z), b(2), h(z))

in the symplectisation, with boundary in the zero level of the symplectisation, i.e.
alsp = 0. By Proposition 2.1, the functions a and b are found as follows. Let
a: D — R be the unique solution, smooth up to the boundary, of the Poisson
problem

a=20 on dDD.

{Aa = A(Y o h) onInt(D),

Then a — ¥ o h is harmonic, and we may choose the function b (unique up to adding
a constant) such that a — ¢ o h + ib is holomorphic. Notice that the function a is
subharmonic.

2.2. Examples

(1) Our first example shows how to derive the set-up of [5] in this general context.
We take V = C with plurisubharmonic potential ¥ (x 4 iy) = x2/2. This yields
the contact form db + x dy on R x C. Start with the holomorphic disc h: D — C
given by inclusion. The solution a of the corresponding Poisson problem — this is
equation (52) in [5] — is given by a(x, y) = (x% + y2 — 1)/4. For b one obtains
b(x,y) = bp — xy/2. Notice that a — iy o h + ib is the holomorphic function
2> —(22 4 1)/4 + iby.

(2) For our second example we take V = C with plurisubharmonic potential
¥ (z) = |z|>/4. This gives rise to the contact form db + (x dy — ydx)/2on R x C.
The solution a of the Poisson problem is unchanged, but » is now simply a con-
stant function. The example in [19] is obtained by crossing this V with a cotangent
bundle T*Q, on which one takes the plurisubharmonic potential ||p||?/2, with p
denoting the fibre coordinate, corresponding to the canonical Liouville 1-form on

T*Q.
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2.3. The contact cylinder

The contact form oy on the contact cylinder Z = R x D x C"~! derives from the
plurisubharmonic potential

1 ) ln—l 5
V(@0 215+ s 2nt) = 20l + 5 ;yj

onD x (C”_l,wherezj =xj+iy;,j=0,1,...,n—1.
Similar to Example 2.2 (2), for any choice of parameters b € R, s, t € ]R”_l,
we have the holomorphic discs

”;,bi D — R x R x D
z = (302> = 1. b, z, s + it),

lifting the obvious holomorphic discs in D x C"~!. The disc u;’ » has boundary on
the Lagrangian cylinder

LY:={0} xR x §' xR x {t}

in R x Z. These Lagrangian cylinders foliate d({0} x Z).

3. The moduli space of holomorphic discs
We now form the contact manifold (@Z”H, &) as explained in Section 1.2. Let
(W:=Rx R+ ¢ = d(t@))

be its symplectisation, where 7: R — R™ is a smooth function with t > 0 and
7(a) = e for a > 0. The freedom of choosing 7 on {a < 0} is required for the
asymptotic analysis cited in Section 4.

3.1. The almost complex structure

Choose by, r, R € Rt with r < 1 such that @(dM) is contained in the interior of
the box
B :=[—bo, byl x D? x D¥ > C Z,

where Df,k C C* denotes a closed 2k-disc of radius p. We write B for the result of
gluing M into this box, in other words,

R = BUyp (R x C x C"~) \ In(B)).
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We shall also have occasion to use the notation Z for the cylinder Z with M glued
in, that is,

Z =R¥1\ (R x (C\ Iny(D)) x C"1).

On the symplectic manifold (W, @) we choose an almost complex structure J com-
patible with w subject to the following conditions:

(J1) On the complement of R x Int(§), the almost complex structure J equals the
one described in Section 2.1.

(J2) On R x Int(B), we make a generic choice (in a sense explained in Section 5.2)
of an R-invariant almost complex structure J preserving ker & and satisfying
J(04) = Ry.

Condition (J1) will allow us to prove that holomorphic discs in the relevant region
are standard. Condition (J2) implies that the breaking of holomorphic discs corre-
sponds to cylindrical ends asymptotic to Reeb orbits.

3.2. The moduli space

We now consider holomorphic discs (smooth up to the boundary) of the form
u=(a,f): (D,iD) — (W — R x R¥"1, L‘) ,

i.e. with Lagrangian boundary condition, where t is allowed to vary over R"~!.
We shall call the value of t corresponding to a given u the ‘boundary level’ of the
holomorphic disc.

We define WV to be the moduli space of such discs u, which are supposed to
satisfy the following conditions:

(M1) The relative homology class [u] € Hy(W, L'), with t equal to the boundary
level of u, equals that of u;’b for some b € R, s € R""! where |b], |s| are

large (such that u; , may be regarded as a holomorphic disc in W).
(M2) For k =0, 1,2 we have u(i¥) € Lt N {z9 = i*}.

Let u = (a, f) be a holomorphic disc satisfying (M1). By the maximum princi-
ple, f(ID) is contained in Z, see Lemma 3.6. By the boundary lemma of E. Hopf,
applied to a small disc in D touching a given boundary point and mapping to the
complement of R x Int(B), so that the zo-component of u is defined and holomor-
phic on that small disc, the boundary u(3D) is transverse to

(0} x Rx {e} x R" ! x {t} c Lt

for each e € S! and, by (M1), in fact positively transverse. Thus, condition (M2)
fixes a parametrisation of u.
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3.3. Properties of the holomorphic discs

Here we collect some basic properties of the discs u € W.

Lemma 3.1. The Maslov index (v of any disc u € W, i.e. the index of the bundle
pair (W*TW, (u|yp)*T L"), equals 2.

Proof. We appeal to the axiomatic definition of the Maslov index in [17, Sec-
tion C.3]. For the disc ug := uf, in R x R2"*1 the bundle ugT(R x R2n+1y

is a trivial C"*!-bundle. The fibre of the totally real subbundle (uo)am)*T Lt over
el e 9D is given by Ri @ Rie” @ R"~!. So the normalisation property of the
Maslov index implies j(ug ) = 2.

By the homotopy invariance of the Maslov index, we have u(u;’ p) = 2 forall
standard discs u;’ , in W. Finally, given any u € VV, we may choose u; , in the same
relative homology class, so that u — u;’b is a boundary. This implies () =2. 0O

Lemma 3.2. Each disc u € W has symplectic energy f]D) u*w equal to 7.

Proof. Choose a standard disc u;’ » in the same relative class in Hy (W, LY as u.
Then in particular [du] = [au; o1 in Hi(LY). Since L' is Lagrangian, the pull-back
of the 1-form & to Lt is closed, and hence

[o=] a
u 3”;,17
One then computes

/w:/&:/ &:/ (xcylzj'[_ 0
, t ,
u ou dug du;‘b

Remark 3.3. By the same argument we see that any non-constant holomorphic disc
in W with boundary on L* has symplectic energy in 7N.

Recall that a holomorphic disc u is called simple if there are no two disjoint
non-empty open subsets U, V C D such that u(U) = u(V). The next two lemmata
will be used to establish transversality for our moduli space.

Lemma 3.4. All discs u € WV are simple.

Proof. According to [15, Theorem A], the homology class [u] € Hy(W, LY of a
holomorphic disc with totally real boundary condition can be decomposed into pos-
itive multiples of homology classes represented by simple discs, which are obtained
from a decomposition of D). Since the class [u] = [u; »] € Ha(W, LY is indecom-
posable by Lemma 3.2 and Remark 3.3, the disc « itself must be simple. O
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Simplicity of the discs u = (a, f) will not be quite enough for our purposes.
We shall also need simplicity of f in the sense of the following lemma, cf. [13,
Theorem 1.14]. Here 7 denotes the projection of 7 M onto ker @ along the Reeb
vector field R .

Lemma 3.5. For eachu = (a, f) € W, the set
Fuji={zeD: ol f #0, f'(f(2) = {z}}

of * f-injective points’ is open and dense in .

Proof. The combination of defining conditions for Fiy; is open, so we need only
show that Fiyj is dense in ID. We begin with three observations about the behaviour
of the holomorphic discs u.

First of all, in a neighbourhood of the boundary 9D C ID we can write f in
components as f = (b, h) = (b, ho, ..., h,—1) with each i ; holomorphic. By the
comment in Section 3.2, hg|sp is an immersion, hence = o T f|3p # 0. Moreover,
a variant of the Carleman similarity principle [5, pages 1315/6] implies that the set
{zeD: moT,f =0} is finite.

Secondly, the boundary 91D maps under f to R x §' x C*~!. Near any point in
Int(ID) that putatively maps to R x (C \ Int(D)) x C"~!, we could write f = (b, h)
as above, and we would find that A violates the maximum principle. We conclude
in particular that there are no mixed intersections of the holomorphic disc u, i.e.
pairs of an interior and a boundary point with the same image.

Thirdly, from the work in [22] it follows that the immersion u|3p = (0, f|sp)
has at most finitely many double points. Otherwise the respective preimages would
accumulate in two separate points — for in a common limit point the differential 7'u
would be singular — and [22, Lemma 4.2] would imply that the differentials T'u in
the two limit points are collinear over R. Furthermore, by Lemma 3.6 (i) below, the
collinearity factor would have to be positive. Then [22, Lemma 4.3] would imply
that u is not simple, contradicting the preceding lemma.

From these last two observations we infer that Fj,; contains dID with the ex-
ception of at most finitely many points, and in particular is non-empty.

Now we prove that Fiy; is dense, arguing by contradiction. If Fiy; were not
dense, the set Int(ID) \ Fi,j would have non-empty interior. By the preceding obser-
vations we can find an open subset U C Int(D) such that for each z € U the set
=Y (f(z)) C Int(D) contains more than just the point z, and such that ro Ty, f # 0
in all points w € f~!(f(U)). The latter implies that the points in f~!(f(z)) are
isolated, and hence finite in number.

What follows is an explication of an argument in [13, page 459]. Fix a point
z0 € U and write f~'(f(z0)) = {z0.z1, ..., zn}. Choose pairwise disjoint (and
disjoint from U) open neighbourhoods Uy C Int(D) of zx,k =1, ..., N, such that
flu, is an embedding. By a compactness argument, U can be chosen so small that

N
fyc Y rww,
k=1
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and such that |y is likewise an embedding. Choose relatively compact neighbour-
hoods U,é C Ugof zx,k = 1,..., N. By shrinking U to a smaller neighbourhood
of zg, we can ensure that

N
fy el rap.
k=1

Set Ay = (f|U)_1(f(U,2)) C U. If A; has non-empty interior, we can shrink U
such that f(U) C f(U;) (but U need no longer be a neighbourhood of z9). The
argument then concludes as in [13, pages 459/60], leading to a contradiction to u
being simple. If A has empty interior, so that U \ A; is dense in U, we find that

N N
rycJrwp clrwo.
k=2 k=2
The argument concludes inductively. O

3.4. Bounds on the holomorphic discs

In the next lemma we collect some restrictions on the image u(ID) of the holomor-
phic discs u € W.

Lemma 3.6. Foru = (a, f) € YW we have:

(i) a < 0 onInt(D). .
(ii) f(nt(D)) is contained in the interior of Z, i.e.

f(IntD)) N (R x (C\ Int(D)) x C*') = 4.

Proof. (i) The holomorphicity of u = (a, f) (with respect to an almost complex
structure preserving ker & and satisfying J(9,) = Ry) implies f*@ = —da o1, so
a is subharmonic. We have a|3p = 0, but a cannot be identically zero on all of D,
for otherwise we would have f*«a = 0 and f*da = 0, which would imply that u
has zero symplectic energy density and hence is constant, contradicting (M1). The
strong maximum principle for a then implies the claim.

(ii) Near the points of D mapping under f to R x (C \ Int(D)) x C"~! we
can write this map in components as f = (b, h). If f(Int(D)) were not contained
in Int(Z), we would find that the map h¢ is defined and locally constant on a non-
empty open and closed subset of ID, and hence on all of ID, contradicting the homo-
logical assumption (M1). O

Since a generic choice of the almost complex structure J is only allowed on
R x Int(B), this can be used to guarantee regularity in the sense of [17, Defini-
tion 3.1.4] only for those holomorphic discs that pass through this “perturbation
domain’, see [17, Remark 3.2.3]. We therefore want to show that all other discs
belong to the standard family u;’ »» Where transversality is obvious. This will be
used below to show that VV is actually a manifold.
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Lemma 3.7. Letu = (a, f) € W. If f(D) € R**'\ Int(B), then u = u',,, for
somes € R"~!, b € R, and t equal to the boundary level of u.

Proof. Since f maps to the complement of Int(ﬁ), we can write it globally as f =
(b, h), with every component % ; of h a holomorphic map D — C. The boundary
condition for # means that for j = 1,...,n — 1 we have ImA; = t; on dID. The
minimum and maximum principle for harmonic functions implies that ImA; = ¢;
on all of ID. Hence, by the open mapping theorem, Re /1 ; =: s is likewise constant
onDforj=1,...,n—1.

The component kg is a holomorphic disc in C with hg|yp an orientation-
preserving diffeomorphism of 9D, ¢f. the comment after condition (M2). The argu-
ment principle implies that A is an orientation-preserving automorphism of D, and
then (M2) forces hg = idp.

By Proposition 2.1, the function

¢ a(@) = 7@ - 5 ;(Imhj) =a(@) - 7l -3 ;amh,-)

on ID is harmonic, taking the constant value —1/4— t|%>/2 on 3D, hence it is constant
on . This means that the imaginary part b that makes this into a holomorphic
function must also be constant. Solving for a(z) we get

a(z) = All(|z|2 —1) onD,

. _ .t
ie.u =uUg,. O

The next lemma will allow us to control the degree of the evaluation map ev.
It says that non-standard discs can never reach b-levels with |b| > bg. This is also
relevant for compactness.

Lemma 3.8. Letu = (a, f) € W. On the closed set A := £~ (R2+1\ Int(B)) C
D, which includes the whole boundary 3D in its interior, we write f = (b, h). If the
function b takes values outside [—bg, bo), then f maps to a b-level set {b1} x D x
C" ! with |by| > bg and hence, by the preceding lemma, the holomorphic curve u
equals ”;,bl for some s and t.

Proof. Choose z, € A with b, := b(z,) of maximal absolute value. Notice that z,
is an interior point of A. By Proposition 2.1, the function

1 5 lnfl 5 '
g:=a— Zlhol - Eg(lmhj) +ib

is holomorphic on Int(A). We should now like to argue with the maximum principle
that the imaginary part b of g has to be constant equal to b, on an open and closed
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subset of . If z, € Int(ID), this inference is indeed conclusive, just as in part (ii)
of Lemma 3.6. If z, € 0D, we reason as follows.

The real part of the holomorphic function g takes the constant value ay :=
—1/4 — It|2 /2 on dD C Int(A). It follows that the function can be extended by
Schwarz reflection to the complementary set A of A in C \ D, with (@ denoting
the Riemann sphere. Indeed, the holomorphic function i(g — aj) takes real values
on 3D, so the Schwarz reflection principle applies to this function, and we simply
transform the extension via the map w — —iw + ajy to a holomorphic extension
of g. Now z, is an interior point of A U ‘A, and we conclude as before with the
maximum principle. O

Finally, we establish a C%-bound in the C"~!-direction on non-standard discs.

Lemma 3.9. Letu = (a, f) € W. If f(D) intersects

R+

R x C x (c"—l \ DQ"_22>,

then u equals one of the standard discs u; b

Proof. Consider the open subset
G = f! (]R x C x ((C'H \Df{’—z)) c D,

which will be non-empty under the assumption on f in the lemma. On the closure
G of G we write f = (b, h) as before. For convenience we setk := (hy, ..., hy—1).
Consider the subharmonic function k := |12 4 -+ - + |hn—1|> = |K|?.

Write G for the topological boundary of G in ID. We have k|36 = RZ, so
the maximum of k on G must be attained at a point in G N 3D (in particular, this
intersection must be non-empty).

If G = D, we are done by Lemma 3.7. Otherwise, we perform Schwarz
reflection on the holomorphic function /4 ; — it;, which is possible since Imh ; = ¢;
on dDD. To the extended function we add if; again to obtain the extension of /.
Geometrically, this corresponds to a reflection of 4 ;(G) in the line {z; = it;} C C.

Write S for the compact subset of the Riemann sphere given as the union of G
and its reflected copy, and continue to write k for the extension of the plurisubhar-
monic function to S. Beware that k may take larger values on S than on G.

Choose a point so € G N 3D where k| attains its maximum (R + 8)%. Now
consider an open §-ball B about the point k(sp) € C"'. Then k(3G) is contained
in the complement of Bs, and since the extension of k to § was obtained by Schwarz
reflection along 3D > sp, the full boundary k(dS) after reflection will likewise be
contained in the complement of Bs.

This allows us to apply the monotonicity lemma [14, Theorem II.1.3], which
tells us that the area of k(S) N By is bounded from below by 78%. (In [14] the
estimate is given in the form const.- 2; in the present Euclidean setting the constant
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7 comes from the classical isoperimetric inequality.) So the area of k(G) N By is
bounded from below by 762 /2, and from above by the energy 7 of u. This implies
8 < V2.

To sum up: Any holomorphic disc # whose k-component stays outside D%i,”_z

is standard; for all other discs the k-component stays inside Di’; 755' O

4. Compactness

In this section we establish, under the assumption infy () > 7, compactness of the
truncated moduli space

W = {u —(a, f) e W: f(D) C [—bo, bo] X D x Df;:jz} ,

i.e. the space obtained from WV by cutting off ends containing standard discs only.

4.1. Variable boundary condition

The holomorphic discs # € W have boundary on the Lagrangian cylinder L*, which
varies with the parameter t € R"~!. Tt is possible to fix the boundary condition, at
the cost of allowing the almost complex structure to vary. This is done with the
help of a flow that enables us to identify different copies of L. That flow will also
provide explicit charts when we discuss transversality.

Start with a constant vector field v on the space Im C"~! of t-coordinates, and
regard this as a vector field on R x R x C x C"~!. Cut this off with a bump function
supported near

{0} x [—bo, bo] x S' x C*!

and identically 1 in a smaller neighbourhood of that set. Then write ¥/} for the flow
of this vector field.

For a sequence u, of holomorphic discs of level t, — to, we can then use the
maps wlt”fto to pull back the u, to J,-holomorphic discs of level ty, where J, :=
(wf“_t")*.l is C*°-convergent to J and coincides with J outside the neighbourhood
described in the preceding paragraph.

4.2. Proof of compactness

Now we apply this construction to the truncated moduli space V’'. Consider a
sequence (u,) of holomorphic discs u, = (ay, fy) € W'. Then, in particular

the levels t, will be contained in the compact set DZ::«/E' Hence, after passing

to a subsequence, we may assume that t, — ty for some ty € D;ﬁlﬁ. With the

construction from the preceding section we may take the u, to be J,-holomorphic
discs of fixed boundary level ty. The almost complex structures J, equal J outside



676 HANSJORG GEIGES AND KAI ZEHMISCH

a neighbourhood of {0} x [—bg, bg] X S x C* ! and converge to J in the C°°-
topology. By Lemma 3.2, all discs u, have symplectic energy equal to 7.

We claim that there is a uniform bound on maxp |Vu,|. Here |. | denotes the
norm corresponding to an R-invariant metric on W of the form da? + 8Ran+1, With
&Ran+1 any Riemannian metric on @Z”H. The mean value theorem then gives a
uniform C%-bound on (a,), and compactness follows as in [11] with [17, Theo-
rem B.4.2].

Bubbling off analysis as in [11, Section 6] shows that, a priori, the following
phenomena might occur:

- bubbling of spheres

- bubbling of finite energy planes

- breaking

- bubbling of discs (this can only happen at boundary points).

The first is impossible in an exact symplectic manifold. The second and third phe-
nomenon are precluded by the assumption info(«) > 7 and the energy estimate
from Lemma 3.2, ¢f. [11, page 548], since a finite energy plane in a symplectisation
is asymptotic to a contractible Reeb orbit. Notice that this rules out any kind of
bubbling at interior points.

This leaves the bubbling of discs at boundary points. By Remark 3.3, there
could be at best a single bubble disc at the boundary, taking away the full energy 7,
¢f. [17, Theorem 4.6.1]. But the C°. convergence on the complement of the bubble

loc
point, together with condition (M2(3, is incompatible with a ghost disc.

5. Transversality

The purpose of this section is to show that the truncated moduli space W’ is a
smooth, oriented manifold with boundary. As usual, this is achieved by proving
transversality results in the setting of W!-”-maps for some p > 2. Smoothness of
the holomorphic discs is then implied by elliptic regularity.

Let 3 denote the space of W!-7-maps

u: (D, D) —> (W, {0} x @2"“),

where 1 (3DD) is supposed to be contained in L for some t € R"~!, and u is required
to satisfy the homological condition (M1) from Section 3.2. Write B¢ C B for the
subspace of discs corresponding to a fixed boundary level t.

The space B! is a (separable) Banach manifold modelled on the Banach space
of Wh-P-sections of u*(T W, T L") (i.e. vector fields along u that are tangent to L*
along the boundary); charts are obtained from such vector fields along u# by choos-
ing a metric for which the submanifold L' is totally geodesic and then applying the
exponential map, see [6]. The construction from Section 4.1 shows that the map
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sending a disc u € B to its level t gives B the structure of a locally trivial fibra-
tion over R"~! with fibre 3. Tangent vectors at u € BB can be written uniquely as
u + vl,, where u € T, B!, and v is a vector field as in Subsection 4.1 coming from
a constant vector field b on Im C"~!.

5.1. The linearised Cauchy—Riemann operator

Over B we have a Banach space bundle £ whose fibre over the point u € B is the
space L? (u*T W) of LP-vector fields along u; see for instance [1, Proposition 6.13]
for the construction of the bundle structure. This bundle inherits the local product
structure from .

Fix an almost complex structure J on W satisfying the conditions (J1) and
(J2). The Cauchy-Riemann operator u > u, + J(u)u, defines a section of £. In
order to discuss transversality, we need to compute the vertical differential D,, of
this section at u € B. To this end, consider a path of holomorphic curves

u® =Y o exp, (su)

for s in some small interval around 0, where i denotes the flow as in Section 4.1.
This path is tangent to u+v|, ins = 0. Let V be a torsion-free connection on 7 W.
Write

Vs = (V8u3/3s)|s=0, Vy = (Vaus/ax)|s=o,

and likewise V. Since the torsion of V vanishes, we have

auS 8”“‘
Vs— = vx— = vx(u+ U):
0x as

and similarly for du®/dy. Hence

Dy(u+ol) =V (w0 + J )
= Ve(u+0) + J@)Vy (u+0) + (Vurod ) () uy
= Diu+ K,v,

where

Diu = Viu+ J@)Vyu+ (VuJ)@uy,

u

K0 := Vo4 J(u)Vyo + (VUJ)(u)uy.

The operator b — K, 0 is linear of order O in b, and hence a compact operator. The
restriction of D, to the subspace T, B equals D!, which is a Fredholm operator of
index

index(DY) =p+n+1=n+3

by the index formula [17, Theorem C.1.10] and Lemma 3.1. The subspace U, C
T,,B made up of vectors of the form v|, is (n — 1)-dimensional, and it is contained
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in the kernel of DY. Hence, by the invariance under compact perturbations of both
the Fredholm property and the index, see [17, Theorem A.1.4], we have — writing
O for the zero operator —

index(D,) = 1ndex(D +Og,) = 1ndex(Dt) +n—1=2n+2.

5.2. Regular almost complex structures

Given an almost complex structure J on W subject to the constraints (J1) and (J2),
write WV for the space of holomorphic discs u € B, i.e. those u with uy, + J(u)u, =
0. In other words, these are holomorphic discs satisfying condition (M1).

The almost complex structure J is called regular if two conditions are satisfied:

(i) D, isonto forall u € W.
(ii) The evaluation map
w — Lt x Lt x Lt
u=(a, f) — (f(D), f({), f(=1))

is transverse to Lt1 X Lit X Lil , where ing = L' N {z0 = ¢!},

If the first condition is satisfied, VV will be a manifold of the expected dimension
2n + 2; if in addition (ii) holds, then WV will be a manifold of dimension 2n — 1.

The proof that the set of regular J is non-empty, in fact of second Baire cate-
gory, follows the standard line of reasoning as in the proof of Theorems 3.1.5 and
34.1of [17]. Selecting such a regular J is the generic choice we make in (J2). For
the standard discs us »» transversality is obvious. By Lemma 3.7, all discs that are
not standard pass through the region where J may be chosen generically, which
is sufficient to achieve transversality by [17, Remark 3.2.3]. In contrast with the
set-up in [17], we are only allowed to perturb J along &, keeping it compatible
with d@. But this is exactly the situation dealt with by Bourgeois in the appendix
of [4]. The proof given there carries over to our situation; the essential ingredient of
Bourgeois’s argument is that the set of f-injective points is open and dense, which
is precisely our Lemma 3.5.

5.3. Orientation

In order to speak of the degree of the evaluation map ev on VW x D, we need to put an
orientation on the moduli space VV. Given the relation between }V and VV described
in the preceding section, it suffices to orient }V, and that in turn amounts to showing
that the determinant line bundle det D over VV is oriented, since ker D, = T, W.
Recall that the determinant line det F is defined for any Fredholm operator F
as det F = detker F ® (detcoker F)*. Since D, is surjective for all u € W, the
determinant line bundle is simply detker D = /\2"+2 ker D. In the arguments that
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follow, however, we use deformations through not necessarily surjective Fredholm
operators, so we need to work with determinant lines, in general.
As we have seen, the operator D,, splits (by slight abuse of notation) as D, =
D; + K,,. The linear interpolation of D, to D; + Og;, is via Fredholm operators,
since K, is compact. It follows that det(D,,) = det(D,td + Og3,), see [7, page 6801,
whence
det(D,) = det D} ® detY,,.

The second factor inherits a natural orientation from the orientation of R”~1. The
first factor is naturally oriented by the construction in [7, Section 8.1]. Our situation
is a particularly simple one, since 7 L' is a trivial bundle. This implies that any bun-
dle pair (u*TW, (u|sp)*T L) comes with a natural trivialisation of the boundary
bundle, and this suffices for the construction of a natural orientation of the determi-
nant line bundle.

6. Proof of Theorem 1.2

By Sections 3 to 5 (notably Lemma 3.8), the assumption infy(ex) > 7 of Theo-
rem 1.2 implies that the evaluation map

ev: WxD — Z
((a, ), 2) — f@)

is a proper map of degree 1. By Lemmata 3.7 and 3.9, we may pretend that JV x D
and Z are — after smoothing corners — compact, oriented manifolds with bound-
ary, without changing the homotopy type of these spaces, and that ev is a smooth
degree 1 map between these manifolds.

Homotopical and homological arguments similar to the ones that follow were
used by Eliashberg—Floer—-McDulff, see [16].

Proposition 6.1. The manifold Z is simply connected.

Proof. Given a loop in Z , we homotope it to an embedded circle C inside Int(? )
that intersects the complement of B, in other words, such that it passes through
the region where all holomorphic discs (more precisely, their f-components) are
standard. We can make the evaluation map

WxD — Z
((a, ), 2) — f(2)

transverse to C by a perturbation compactly supported in Int(B). The preimage of
C under this perturbed map will then be a single circle C’ C W x D mapping with
degree 1 onto C. The homotopy of C’ to a loop in W x {1} induces a homotopy of
Ctoaloopinthe cell R x {1} x C"~!. O
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Lemma 6.2. Let ¢: (P,0P) — (Q,00Q) be a degree 1 map between compact,
oriented m-dimensional manifolds with boundary. Then the induced homomor-
phism ¢, . Hy(P; F) — Hy(Q;F) in singular homology with coefficients in a field
F is surjective in each degree k € Ny.

Proof. Over a field, the Kronecker pairing between homology and cohomology is
non-degenerate, so equivalently we need to show injectivity of the induced homo-
morphism ¢* in cohomology.

Given a non-zero class 8 € H*(Q), Poincaré duality allows us to find a class
y € H"%(0Q, Q) such that B U y is the orientation generator of H™(Q, Q).
Since ¢ is of degree 1, we have

0#¢"(BUY)=¢"BUS"Y,
which forces ¢* to be injective on H*(Q). O
Proposition 6.3. The manifold Z has the integral homology of a point.

Proof. With the preceding lemma this follows with an argument completely analo-
gous to the proof of Proposition 6.1. O

Proof of Theorem 1.2 . Since 2n # 3, the smooth Schoenflies theorem tells us that
the subset of Z bounded by ¢(d M) and a standard ellipsoid surrounding ¢(d M) is
diffeomorphic to a collar of 9 M. Hence M is a strong deformation retract of Z. So
by Propositions 6.1 and 6.3, the manifold M is a simply connected homology ball
with boundary diffeomorphic to $". It follows that M is diffeomorphic to a ball:
for n > 3 we appeal to Proposition A on page 108 of Milnor’s lectures [18]; for
n = 2, to Proposition C on page 110. O
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