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Asymptotic behavior and rigidity results
for symmetric solutions of the elliptic system Au = W, (u)

NICHOLAS D. ALIKAKOS AND GIORGIO Fusco

Abstract. We study symmetric vector minimizers of the Allen-Cahn energy
Jw) = f (% |Vu|2 + W(u)) dx and establish various results concerning their

structure and their asymptotic behavior in unbounded domains.
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1. Introduction

The problem of describing the structure of bounded solutions u : 2 — R™ of the
equation

Au = f(u), for xeQ (1.1)

where f : R™ — R™ is a smooth map and Q C R”" is a smooth domain that
can be bounded or unbounded and may also enjoy symmetry properties, is a diffi-
cult and important problem which has attracted the interest of many authors in the
last twentyfive years, see [8,9,11,17] just to mention a few. Questions concern-
ing monotonicity, symmetry and asymptotic behavior are the main objectives of
these investigations. Most of the existing literature concerns the scalar case m = 1
where a systematic use of the maximum principle and its consequences are the
main tools at hand. For the vector case m > 2 we mention the works [10] and [18]
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where the control of the asymptotic behavior of solutions was basic for proving
existence. In this paper we are interested in the case where f(u) = W, (u) is the
gradient of a potential W : R”™ — R and u is a minimizer for the action functional

f (% |Vu|2 + W(v)) , the Allen-Cahn energy, in the following sense:

Definition 1.1. A map u € C2(Q2: R™) N L%°(2; R™), with @ ¢ R” an open set,
is said to be a minimizer or minimal if for each bounded open lipshitz set Q' C Q it
results

. 1
Jow)=  min Jogu+t+v), Job) = / (—IVUI2 + W(v)), (12)
veWy (@ Rm) o \2

that is u|g is an absolute minimizer in the set of W1-2(Q'; R™) maps which coin-
cide with u on 9€2’.

Clearly if u : 2 — R™ is minimal then it is a solution of the Euler-Lagrange
equation associated to the functional Jg which is the vector Allen-Cahn equation

Au = W,(u), for x e Q. (1.3)

We will work in the context of reflection symmetries. Our main results are Theo-
rem 1.4 on the asymptotic behavior of symmetric minimizers and Theorem 1.7 and
Theorem 1.8 on the rigidity of symmetric minimizers. By rigidity we mean that,
under suitable assumptions, a symmetric minimizer u : R" — R” must in effect
depend on a number of variables k < n strictly less than the dimension n of the
domain space. These theorems, in the symmetric setting, are vector counterparts
of analogous results which are well known in the scalar case m = 1 [7,13]. How-
ever in the vector case there is more structure as we explain after the statement of
Theorem 1.7.

We let G be a reflection group acting both on the domain space 2 € R” and on
the target space R”. We assume that W : R” — R is a nonnegative C*> potential
such that:

H; W is symmetric with respect to G: W(gu) = W(u), for g € G, and u € R™.

For Theorem 1.4 and Theorem 1.7, G = §, where S denotes the group of order 2
generated by the reflection R? 5 z > 2 € R? in the plane {z; = 0}:

z=(-z1,22,...,2q), for d=n, m.

In this case the symmetry of W is expressed by W (it) = W (u), for u € R™. For
Theorem 1.8, G = T, where T denotes the group of order 6 of the symmetries of
the equilateral triangle. T is generated by the reflection y through the hyperplane
{z € R? : z; = 0} and by the reflections y- through the hyperplane {z € R? : z; =
iﬁzl}. We let F C R4, ford = n ord = m be a fundamental region [19] for the
action of G on R4. If G = § we take F :]Rfi|r ={zeR:7,>0).IfG =T we

take F = {z e R : 0 < 20 < /321, z1 > 0}.
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H, There exists a € F C R™ such that:
0=W() <W(@u), for ueckF. (14)

Moreover a is nondegenerate in the sense that the quadratic form D? Wia)(z, 2)
is positive definite.

In the symmetric setting we assume minimality in the class of symmetric variations:

Definition 1.2. Assume that @ C R” and u € C2(Q2; R”™) N L®(£2; R™) are sym-
metric:

xe Q= gx e, for geq,

1.5
u(gx) = gu(x), for ge G, and x € Q. (1.5)

Then u is said to be a symmetric minimizer if for each bounded open symmetric
lipschitz set Q' C 2 and for each bounded symmetric v € WO1 ’Z(Q’ ; R™) it results
Jor(u) < Jor(u +v). (1.6)

In the following by a minimizer we will always mean a symmetric minimizer in the
sense of the definition above. We set

Z={zeR":z#a, W) =0}.

Theorem 1.3. Assume G = S and assume that W satisfies Hy — Hy. Assume that
Q C R”" is convex-symmetric in the sense that

X =(X1,X2,...,%,) € QL= (tx1,x2...,x,) € Q, for|t] < 1. (1.7)

Letu : Q — R™ be a minimizer and assume that there are § > 0 and dy > 0 such
that

u(x) —z| > 8, for z€ Z, dx,dQ") >dy, and x € QF (1.8)
where Q= {x € Q : x; > 0}. Assume moreover that
lul + |Vu| < M, for x € €, (1.9)

for some M > 0.
Then there exist ko, Ko > 0 such that

lu —a| < Koe %0439 g0 ¢ e Q. (1.10)
Proof. From (1.8) and (1.9) it follows that the restriction of the minimizer u to the

subset {x € Q : x; > dp} satisfies the assumptions of Theorem 1.2 in [15], which
implies the estimate (1.10). ]
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For example, if 2 = {x € R? : xp > 0}, (1.10) yields
lu —a| < Kge Fomintvix2d = for x e QF.

This implies lim,_, ;o u(tz) = a for each unit vector z € Q% but does not imply
limy, & oo u(x1, X2) = a for fixed x, > 0 or limy, oo u(x1, X2) = a for fixed
x; > 0.

Examples of minimizers that satisfy the hypothesis of Theorem 1.3 are pro-
vided by the entire equivariant solutions of (1.3) constructed in [3,5,14]. The gra-
dient bound in (1.9) is a consequence of the smoothness of €2 or, as in the case of
the entire solutions referred to above, it follows from the fact that  in Theorem 1.3
is the restriction to a non smooth set 2 of a smooth map defined in R”.

We denote by C ?Xp (22, R™) the set of lipschitz symmetric maps v : Q@ — R™
that satisfy the bounds

||U||C0.1(§’Rm) S M?

v —al +|Vv| < Koe—k()d(x,3§2+)’ for x e 9t (1.11)

We remark that from (1.10) and elliptic regularity, after redefining k9 and Ky if
necessary, we have

ueCyP @R, (1.12)
for the minimizer in Theorem 1.3.

Theorem 1.4. Assume W, Q and u : Q — R™ as in Theorem 1.3. Assume more-
over that

Hs The problem

u" = Ww,(u) for s € R

u(=s) =u(s)  for seR (1.13)
s—ljr—ir-loou(s) =

has a unique solution u : R — R™,

Hy The operator T : D(T) — L*(R, R™) defined by
D(T) = W3 (R, R™), Tv=—v" + Wy (id)v, (1.14)

where Wg’z(R, R™) ¢ W>2(R, R™) is the subspace of symmetric maps, has a
trivial kernel.

Then there exist k, K > 0, depending only on W and M, such that

lu(x) — i(x))| < Ke K& 6 x e Q. (1.15)
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Remark 1.5. A significant feature of Theorem 1.4 is that the estimate (1.15) is
valid, with k, K independent of €2, for bounded or unbounded domains and in par-
ticular for domains bounded in the x| direction.

Remark 1.6. The map u in assumption H3 can be characterized as a minimizer of
the functional A(v) = [ (% |v'|% + W(u)) ds in the set of symmetric Wléf R, R™)
maps that satisfy
lim v(s) =a. (1.16)
§——+00

Theorem 1.7. Assume that Q = R”" and that W and u : R" — R™ are as in
Theorem 1.4. Then u is unidimensional :

u(x) = ii(xy), x € R". (1.17)

From [3,5] and [14], we know that given a finite reflection group G, provided W
is invariant under G, there exists a G-equivariant solutions u# : R" — R™ of the
system (1.3). It is natural to ask about the asymptotic behavior of these solutions.
In particular, given a unit vector v = (v, ..., v,) € R” one may wonder about the
existence of the limit

lim u(x'+Av) = a(x), (1.18)

A——+00

where x’ is the projection of x = x” + Av on the hyperplane orthogonal to v. One
can conjecture that this limit does indeed exist and that # is a solution of the same
system equivariant with respect to the subgroup G, C G that leave v fixed, i.e.
the stabilizer of v. In [3,5] and [14] an exponential estimate analogous to (1.10)
in Theorem 1.3 was established. This gives a positive answer to this conjecture
for the case where v is inside the set D = Int Ugeg, §F C R". Here F is a
fundamental region for the action of G on R4, ford = n, m and G, C G is
the subgroup that leave a fixed. Under the assumptions Hz and Hy Theorem 1.4
goes one step forward and shows that the conjecture is true when v belongs to the
interior of one of the walls of the set D above and G, is the subgroup of order
two generated by the reflection with respect to that wall. In the proof of Theorem
1.4 the estimate (1.10) is basic. Once the exponential estimate in Theorem 1.4 is
established, we conjecture that, under assumptions analogous to H3 and Hy, the
approach developed in the proof of Theorem 1.4 can be used to handle the case
where v belongs to the intersection of two walls of D. We also expect that, under
the assumption that at each step u# is unique and hyperbolic, the process can be
repeated to establish the whole hierarchy of limits corresponding to all possible
choice of v and u is always a solution of the system equivariant with respect to
the subgroup G,,. This program is motivated by the analogy between equivariant
connection maps and minimal cones [4].

Theorem 1.8 below gives an example, in the diffuse interface set-up, that cor-
responds to a minimal cone that splits into a triod and a hyperplane [22]. Theorem
1.8 concerns minimizers equivariant with respect to the symmetry group 7 of the
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equilateral triangle. We can imagine that 7 = G, for some v that belongs to the
intersection of two walls of D. The following assumptions H} and H}, in the case
at hand where G = T, correspond to the assumption H3 and Hy in Theorem 1 4.
We assume that

a=(1,0,...,0) e R".

H, The problem

u = W,(u) for s eR,

u(—s) = yu(s) for seR (1.19)
lim u(s) = y+a

§s—>+00

has a unique solution # : R — R™.
H, the operator 7 : D(T) — L?>(R, R™) defined by

D(T) =W, 2R, R"™),  Tv=—v"+ Wy (v, (1.20)
where Wf’z(]R, R™) ¢ W22(R,R™) is the subspace of the maps that satisfy
u(—s) = yu(s), has a trivial kernel.

Then we have the assumptions concerning uniqueness and hyperbolicity of i:
Hs There is a unique T -equivariant solution i : R2 — R™ of (1.3)
u(gs) = gu(s), for geT and s € R? (1.21)
that satisfies the estimate
lii(s) — a| < Ke k302 for s e Dy, (1.22)
where Dy = {s € R? : |s2] < +/3s1, s1 > 0}.
Hg the operator 7 : D(7) — L*(R?, R™) defined by
D(T) =W RER™),  Tv=—Av+ Wy @)v, (1.23)
where W%’Z(Rz, R™) ¢ W22(IR?, R™) is the subspace of T-equivariant maps,
has a trivial kernel.
We are now in the position of stating:

Theorem 1.8. Assume that W satisfies Hy and Hy with a = (1,0,...,0) and
moreover that 0 = W(a) < W(u) for u € F \ {a}). Assume that H;, H) and
Hs, Hg hold. Let u : R* — R™, forn > 3 and m > 2, be a T-equivariant
minimizer that satisfies (1.9) and, for some § > 0, dy > 0, the condition

lu(x) — yxal =6 for d(x,9D) > dy and x € D, (1.24)

where D = {x € R" : |x2| < /3x1, x; > 0}.
Then u is two-dimensional :

u(x) = iu(xy, xp), for x € R". (1.25)
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Remark 1.9. If instead of a minimizer defined on R” we considered a minimizer
defined on a subset 2 C R”, which in analogy with (1.7) satisfies

x = (X1,X2,X3,...,X) € Q

= (lcos¢,lsing, x3,...,x,) € Q, forle[O,,/xlz+x%:| and ¢ € [0, 2n),

instead of (1.25), the conclusion of Theorem 1.8 would be exponential convergence
of u to u similar to (1.15).

Theorem 1.8 is an example of a De Giorgi type result for systems where mono-
tonicity is replaced by minimality (see [2,12] and [21, Section 3]). In the symmet-
ric setting we are considering, it is the PDE analog of the fact that a minimal cone
C in R" with the symmetry of the equilateral triangle is necessarily of the form
C =C x R""2, with C the triod in the plane. The rest of the paper is devoted to the
proofs. In Section 2 we prove Theorem 1.4. In Section 2.1 and Section 2.2 we prove
a number of lemmas that are basic for the proof of Theorem 1.4 that we conclude
in Sections 2.3 and 2.4. Theorems 1.7 and Theorem 1.8 are proved in Section 2.5
and Section 3.

2. The proof of Theorem 1.4

The proof of Theorem 1.4 that we present here, from an abstract point of view, has
a lot in common with the proof of Theorem 1.2 in [15]. We will remark on this
point later and spend a few words to motivate the various lemmas that compose the
proof of Theorem 1.4. We begin with some notation and two basic lemmas.

If E c R?, ford > 1, is a measurable set we let H4(E) be the d-dimensional
Lebesgue measure of E.

2.1. Basic lemmas

In the following we use the notation x = (s, £) with x; = s and (x2, ..., x,) = &.
From (1.11) it follows that, if (I, £) € Q7 satisfies d((/, £), 9Q") > I, then the
map s — u(s, §),s € [/, 1], that we still denote with u, satisfies the bound

u—al+ |lug| < Kge "%, fors € [0, []. .
u— al + |us| < Koe™°, f [0.1] (2.1)
Note that from the assumption that a is nondegenerate in H, we also have
u—al+lug| < Kge "%, fors > 0. .
i — al + liis| < Koe ™, f 0 (2.2)
Let 7; the operator defined by
Di(T)={v e WS (=11 R™) 1 (D) =0},  Tu=—v" + Wy (@v. (2.3)

For [ € (0,400] we let (v,w); =fil vw denote the inner product in L2((—1,1), R™).
1

We let [[vl; = (v, v); and [[vll1; = [vllw12q—s5.Rm)-
For the standard inner product in R” we use the notation (-, -).
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. m gt — Ko
Ifv: [, [] — R™ satisfies (2.1), then |[v|[;1; < C = N We set

Bl = (v e WAL, 11, R™) s v(#l) = 0; |vll1; < C}, 24)
where Wsl’z([—l, 11, R™) is the subspace of symmetric maps. Let S be defined by
S={veWg (I~ 1, R™) : v(E) = 0; |vll; =1}, 25)

Lemma 2.1. Assume Hy and Hy as in Theorem 1.4 and let ¢; : Bl]’z — R be
defined by

I
e (v) = %((ﬁs + Vs, s + Vs — (s, Us)1) + fl(W(ﬁ +v) - W))ds. (2.6)

Then there exist Iy > 0, q° > 0 and ¢ > 0 such that, for all | > ly, we have

Dyqei(qv) > ¢? forq €[0,g°]andv € S

e/ (qv) > e;(q°v) forg® <qandv €S,

e (qv) > €(p.q,v) 2.7
=e/(pv) + Dge(pv)(g —p) forO<p<qg<g°andvesS

Dye(p,q,v) >0 forO0<p<qg<qg°andv €S.

Remark 2.2. e; is a kind of effective potential. Indeed, as we shall see, in the proof
of Theorem 1.4 the map L2((=1,1),R™) > q +— e;(qv) plays a role similar to the
one of the usual potential R 5 ¢ — W (a + gv) in the proof of [15, Theorem 1.2].

Proof. Differentiating twice e;(qv) with respect to g gives

[ l
Dyqei(qv) = /l(vs, Vs) +/1 Wi (u +qv) (v, v) (2.8)

l

Dyger(@lyo-+ [ (Wil + qv) = Wau@) 0. )

—l

By the interpolation inequality
1 1
Iollz < V21l Il < V200l 2.9)
for qv € Bll’z we get via the second inequality

lgvlle < v/2C, (2.10)

and via the first

D=

Iz < v2C2g72. @.11)
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Therefore we have

1

| Wasa, (i (s) + qv(s)) = Wi, ()] < V2C2 W3, (2.12)

where W is defined by

W= max W (ﬁ(s)+rﬁc). 2.13)
1<i,j,.k<m
seR,|T|<1,7eR™

From (2.12) we get

< Ciq2, (2.14)

[ (Wit = W@ 0.

where C1 > 0 is a constant independent of /. We now observe that
Dyge1(gv)lg=0 = (T1v, v)i = (TV, V)oo, (2.15)

where ¥ is the trivial extension of v to R. T is a self-adjoint operator which is
positive by the minimality of iz. Therefore assumption Hy implies that the point
spectrum of 7 is bounded below by a positive number. From H; the smallest eigen-
value p of the matrix Wy, (a) is positive and Persson’s Theorem in [1] implies that
also the remaining part of the spectrum of 7', the essential spectrum, is bounded
below by © > 0. It follows that the spectrum of T is bounded below by a positive
constant 0 < fi < w. From this (2.15) and Theorem 13.31 in [20] it follows

Dyqe1(qv)lg=0 > i, (2.16)

which together with (2.14) implies

2._

| =

Dyqe1(qv)l = > ¢ , for g €10,41, (2.17)

where g = }‘“—? This concludes the proof of (2.7);. We now consider the problem

min e;(v). (2.18)
veB}‘z
lvlli=g

Since the constraint in problem (2.18) is closed with respect to weak convergence
in WOI’Z, if v; is a minimizer of problem (2.18), we have v; # 0. This implies

e;(Dl) =] > 0. (2.19)

Indeed the uniqueness assumption about & implies that v = 0 is the unique mini-
mizer of ¢;. We have

liminfoy =« > 0. (2.20)

[—+o0
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To prove this we assume that instead there is a sequence /x such that limy_, 40 07, =
0. We can also assume that the sequence vy, of the trivial extensions of v;, converges
weakly in W12 to a map © which by lower semicontinuity satisfies

ex(?) = 0. 221)

This is in contradiction with the assumption that v = 0 is the unique minimizer of
€~ Indeed the constraint in problem (2.18) persists in the limit and implies v # 0.

This establishes (2.20) and concludes the proof of (2.7), with ¢° = min {(j, V2u }

The last two inequalities in (2.7) are straightforward consequences of (2.7);. ‘ L]

Lemma 2.3. Let be u as in Theorem 1.3 and assume that
(,&) eQr, d((,§),9Q) =1, (2.22)

then there is a constant Cy > 0 independent of | > 1, such that

2
lu(, &) — il Looq—r.0.rm) < Callu(-, &) — ull; . (2.23)
Proof. From (2.22) u(-, &) satisfies (2.1). Therefore using also (2.2) there exists
s € [0,1] such that |u(s, &) — u(s)] < m =: |u(s, &) — u(s)|. From this and

lu(-, &)y — ug| < 2Ky it follows

_ _ _ m _ m
lu(s,&)—u(s)|=m(1—-2Ko|s—s|), forse[—I,[]1N |:s — 2—1(()’s+2—K()i| (2.24)

and a simple computation gives (2.23). O

Before continuing with the proof, we explain the meaning of the lemmas that
follow. Given /,7 > 0 and ¢ € R"~! we let C/ (s) C R" denote the cylinder

Cl(c) ={(s,86): =l <s <l |E§—¢|<r} (2.25)

Lemma 2.4, Lemma 2.5 and Lemma 2.6 describe successive deformations through
which, for fixed A > 0,0 > O and g € (0, g°), we transform the minimizer u first
into a map v then into w and finally into a map w? that satisfies the conditions

w? =u, on Q\Clrrfg(s‘),
i A . A 0
w"(l+§,é)=u(l+§), for |& —¢| sr+3 (2.26)

5 _ - @
w9 (-, &) —u)l; 42 < g, for [E—gl <7+ 5

2

The deformations described in these lemmas are complemented by precise quanti-
tative estimates on the amount of energy required for the deformation (see (iii) in
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Lemma 2 .4, (iii) in Lemma 2.5 and (2.47) in Lemma 2.6). Lemma 2.4 describes the
deformation of u into a map v that coincides with & on the bases of Clr:f( $):
2

v = u, outside Cl ( )\CrJr ()

. ] A (2.27)
v(1+5,s)=u(z+§), for |§ — ¢l <r+o.

Lemma 2.5 describes the deformation of v into a map w that satisfies

w = v, outside Cr+g(§) \C,+A(§)

- _ 0
lw. &) —uOl 3 =g, for [§ —gl=r+3.

(2.28)

Lemma 2.6 describes the deformation of w into w?. Lemma 2.7 and Corollary 2.8

i . . G . +%
show that we can replace w? with a map w that coincides with w? outside Clr+ 2(5)
2

and has less energy than w?. Moreover Corollary 2.8 yields a quantitative estimate
for the energy difference.
In Section 2.3 we put all these energy estimates together and show (see Propo-

sition 2.9) that, if d (Clr:f ?(¢),dQ) > [ + A and r, [ are sufficiently large, the as-
sumption

luC, ¢) —ulli = ¢°
is incompatible with the minimality of u, thus establishing the estimate
lu, ) —uGlli < q°,

which is the main step in the proof of Theorem 1.4.

2.2. Replacement lemmas

Lemma 2.4. Let A and o > 0 be fixed. Assume that Clr:f ?(¢) C Q satisfies

d( T2 gy, asz) >0+ (2.29)
Then there exists amap v € C ISEXP (2, R™) such that

() v=u, on @\ (CF2\T ),
(i1) v(l—i-&,é):ﬁ(l—i-%), for |E —¢| <r+o.

_ n—1,—2kol
(i) J e )( V) Jc’l’jfg(;)(”) <Cor'" e ,

where Cy > 0 is a constant independent of | and r.
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Proof. For (s, &) € C;:f(g) \CHQ(g) we define v by

u(s, £) = <1 —n —2¥|)ﬁ(s)+ =2 s 6, (2.30)

forse[l,l+Aland |€§ —¢| <r +o.

It remains to define v(s, &) for (s, &) € ([, [+ A) x{§ :r+0 < |E—¢| <r+20}.
Set
[+A—s
Bu(s &) = =~ u )+
u(s, &) = u(s, &) — Bu(s, §).

Note that by (2.30) |§ — ¢| = r + o implies v(/, &) = u(l,&), v( + X1, §) =
u(l + A, &) and therefore we have

u(l-i-)» £), (2.31)

|E —¢l=r+0= Bu(s,§) = Bv(s,§), for s e[l,] 4+ A] (2.32)

where v is defined in (2.30). Set, fors € [[,[ + A]

ﬁ(s,5)=v( <+9)é |+g) u<s<r+@)é §|

where again v is defined in (2.30). With these notations we complete the definition
of v by setting

g) , (2.33)

v(s, &) = Bu(s, ) + MT”_Q&(S, £+ 2Tr ; =<l ey, @34

for (s,§) e [,I+AX) x{E:r+o0<|E—¢| <r+20}.

Statements (i) and (ii) are obvious consequences of the definition of v. Direct in-
spection of (2.30) and (2.34) shows that v is continuous. From (2.30) v(s, &) is
a linear combination of u(s) and u(s, £) computed for s € [/, + A]. A similar
statement applies to v(s, £) in (2.34) since Bu(s, &), 0(s, £) and #(s, £) are linear
combinations of u(s, £) and v(s, &) in (2.30) computed for s € [/, [ + A]. From this,
assumption (2.29) and (2.1) we conclude

lv—al + Vo] < Cze™ for (s, €) € €/ 7%(c) \C ), (235)
where C3 > 0 is a constant independent of / and . From (2.35) and the assumptions
on the potential W it follows, for (s, &) € Clr:f ?¢) \ C;+2Q ),

1
E|Vv|2 + W () < Cqe 20!, (2.36)
—r+20

which together with H" (Cr+2g ()\C

42 (c)) < Csr™"~! concludes the proof. []
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Given anumber 0 < g < ¢°,let Az C R"~! be the set

Agi= e e O -0l > a3 16—l <r+e). @3
where v is the map constructed in Lemma 2 4.

Lemma 2.5. Let v as before and let S := Az N{§ :r < |§ —¢| <7 + o}. Then

there is a constant C1 > 0 independent of | andr and a map w € C?Xp(ﬁ, R™)
such that

M w=von @\ (C] )\ Cri3(©)
(i) w(. ) —a()l, 3 <3, forl§ —cl=r+%.

1il J =T w) — J.r —=r U<CH"_1S,
w Czrg(g)\%g(?)( ) Clig(g)\cl+%(§)( ) =G (S)

Proof. Set
q"&) = Il &) —aClly 3, N N
v(s, &) —zz(s)’ for s € (—l - §,l+ 5), and £ € S. (2.38)
q'(§)
Fors € (—l— %,l—}— %), and & € §, define
w(s, &) =u(s) +¢4" E)v"(s, &),

qw(g):<1_'1_2w )q_i_‘]_zw
(o o

From this definition it follows that w coincides with v = it + ¢ vV if | —¢| =r or
&€ — ¢| =r 40 or g’ = q. This shows that w coincides with v on the boundary of
the set (—1 — 4,1+ %) x S and implies (i). From (2.39) it also follows that ¢ = §
for|E —¢|=r+ % for & € §. This and the definition of S imply (ii). To prove (iii)
we note that

V(s &) =

(2.39)

q°(&).

_ _ A A
lw —i|=|qg"v’|<|qg"V'|=|v — i, forse(—l— E’l+§>’ and £ €S (2.40)
which implies
ks py
lw—al < Koge™"°, for s € 0,l—|—§ ,and & € §S. (241)

Therefore we have

I+% I+%
f . (W(w) —W()) < / . W(w) <C, for& € S. (2.42)

—I=3 =5
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We can write

q" . A
w:—v(v—u), for s € 0’l+§ ,and £ €S

therefore we have, using also v € C ?Xp (€2, R™) and (2.2)

w
Wy = Cf]—v(vs —ug) = |w| < Ke_kM,
. . (243)
(4 - q
wg; =\ — (v—u)+—vvgj.
§j q

From qgi = (vY, vf/')H-% and (2.39) it follows

e e e N )
&j & 4

q" 0 _
_ 1_1_2|S_§|_r q <VUU> 244
0 (qv)z » Vg l+%’ (2.44)
q¥ 2 1
- (82 zren

where we have used qq;v < 1for& € §. From (2.43) and (2.44) it follows
A A
- =, l—l——), and £€ S,

2 g llgz
A= +———2)|v—it|+|ve, | <K 7k0|s|,f el-!
|ng|_< 7 lv—u| |v§j|_ e ors 2 >

where again we have used v € Cg*(Q, R™) and (2.2). From this and (2.43) we

conclude

I+%
(2.45)

H_% 2 2 2
<|Vw| — |V ) < | IvwP<c forges.
-1-3

A
-1-%

O

This inequality and (2.42) conclude the proof.
Lemma 2.6. Let w the map constructed in Lemma 2.5. Define w9 by setting

Q
A+ ayfors.8) €C (o). and g € A
w? = 3 Lo (246)
wo for(s,£) €CN(S), & ¢ Ag, and (5,6) £C (S,
Then wi e C?Xp(ﬁ, R™) and
J,o H—J,. o (w)=<O. (2.47)
e IE
2

A
I+5
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Proof. We have w —u = ¢"v" and g% > g on A;. Thus, recalling the definition
of e;,Lemma2.1 and ¢ < ¢°, we have € 1 (gv™) €1 (g™ v™) < 0 and therefore

(= /A ey @ - &3 (g"v") ) dE

1 _ _
+52 /Aé((w%’wg)m— (e, ws;hg)df (2.48)

j 2
1 - -
<= q > — (ws, we, d

where we have set A; = Az N Br+%(g) with Br+%(g) = {IE —g¢|<r+ %}

To conclude the proof we note that for & € Aq

q _ = v q q _ =2 v
ng —quj, = (ng, w§j>l+% =q <V%—j, v§j>l+% )

5 ) (2.49)
we; =gy +q"vE, = (we, wéf)z+% - (qg) +(a") <ng’ U§/>z+% ’
where we have also used the fact that (v?, v”)H% = 1 implies (v", ij>l+% = 0.
From (2.49) it follows
<wé wé) — (we,, we,) =—(qv>2+(q2—(qw)2)<vv vv> <0
6 6143 &0 Weili+4 §j & iy =
for & € Aq. This and (2.48) prove (2.47). ]

Next we show that we can associate to w? a map w € C EXP (€, R™) which
o . : +% 7 .
coincides with w? on Q\C’lr+ . (¢) and has less energy than w?. Moreover we derive

2
a quantitative estimate of the energy difference. We follow closely the argument

in [15]. First we observe that, if we define g*(§) := q“’q (&), we can represent
J r+8 (w?) in the polar form

(©)
1+%

J .0 (w‘?) —J e @
2 2
Cz+% (s) Cz+% (s)

1 2 5
(s (worP oo S8, st
J
This follows from v = v? and from (v*, Ug )42 = 0, which imply

i'lts

g q 2
Z<ng, ng)% — Vg 247 Z<ug; vg;)% :
J J

(2.50)

/B,+§ (©)N{g*>0)
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and from the definition of ¢; in Lemma 2.1. We remark that the definitions of

q* and w? imply
. -
q" =q, on B, o(c),
, A 2.51)
q

=g, on Az N Br+%(g).

Lemma 2.7. Let ¢ > 0 as in Lemma 2.1 and let ¢ : Br+%(g) c R*™! — R be the
solution of

Ap=c*¢ in B, ¢(s)

_ (2.52)
0 =q on E)B,Jr%(g).
Then there is a map w € C ?Xp (R, R™) with the following properties
_ r+2
w = w! on Q\CZ+A2(§)
2
14
w=q“vV+u on Clr:f () (2.53)
2
“ <9 =q on B, ¢(g).
Moreover
J.o WwWhH—1J, ¢ (o)
¢ ¢
+4 144
(2.54)

>

(€rs3 @ V™) =€, (00" = Dyt 3 (90™) (g™ — ).
/19,+%<g>mq*>sa} 2 i ik

Proof. Let b > 0, b < mingcp o ()¢ be fixed and let A, C B, 1¢(g) the set
r+3

Ap = (€ € Br+%(g) : q* > b}. Ap is an open set since w? = i + g*v¥ is
continuous by construction. Let

1
Tar(p) = / <§|VP|2+61+% (|p|vw))ds, (2.55)

Ap

Since Ap is open and g* € L%°(Ap, R) there exists a minimizer p* € ¢* +
WO1 ’Z(Ab, R) of the problem

Ta,(p") = min  Ja,(p). (2.56)
a*+ Wy (Ap,R)

We also have

0<p*<q. 2.57)
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This follows from (2.7) that implies 74, (2 *+2|p *I) < Ja,(p*) and therefore
p* > 0. The other inequality is a consequence of J4, (min{p*, g}) < Ja,(p*)
which follows from

/|V(min{p*,é})125f v
Ap Ap

and from (2.7). Since the map g — ¢, » (Iglv?)) isa C! map, we can write the
2
variational equation

/A ((vp*, Vy) + quH_%(p*vw)y) dg =0, (2.58)
b

forall y € Wol’z(Ab, R) N L*°(Ap). In particular, if we define Ay := {x € A, :
p* > ¢}, we have

/A* (79", V) + Dyeyyy (p0") v) d =0, (2.59)
b

forally € Wol’z(Ab, R)NL*(Ap) that vanish on A\ A;. If we take y = (p*—p)*
in (2.59) and use (2.7) which implies qul+% (p*v¥) > % p* we get

/A* ((Vp*a V(p* =) +*p (pF - co)) dg < 0. (2.60)
b

This inequality and

J

that follows from (2.52) imply

(V. V (= ) + ¢ (p* — ¢)) d =0, 2.61)

®
b

/A* (|V(p*—(p)’2+62 (p*—(p)2> dg <0. (2.62)

That is H" (A};) = 0 which together with p* < ¢ on A, \ A, shows that
p* <, for& € Ap. (2.63)

Let w be the map defined by setting

wd for (s,6)€Q\ (I — 5,1+5)x Ap
i+q®v” =u + min{p*,q* " for& € A,.
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Note that this definition, the definition of A; and (2.63) imply

q“ < ¢, for§ € B, ¢(<). (2.65)
From (2.64) we have
J,o h—J, ¢ (0
Cl+%2(g) Cz+%2 s
1 n

> = |Vq*| |Vp* \ + v, v

'/Ahﬂ{l’*<q*}<2( ( )J_1< 5’ §’>

o 010 ey (1) »

|Vq P = IVP " ey (@) — e (P*vw)> dk

o
Abﬂp <gq*}

ey (70") = ey (P7V") = Doy (p0")(g" = p") ) dt 2 0.
where we have used

1 1
S (Ve[ = [V ) = 3 1va* = Vp [ + (V" V (4" = p%))

Ahm p*<q*}

and
[ @ ds==[ D (07 (6 de
ApN{p*<q*} ApN{p*<q*} :
which follows from (2.58) with y = (¢* — p*)™. From (2.7); and (2.63) we have
€y (47") =&y (P7 07 V) Z ey (470") =&y (0.g7 V7). (267)
From this and (2.65) which implies
Bg)N{p<g*t=an{p<g}can{p’ <q}, (68

we have

/Abm{p <q }(e1+ (@ v") =€ (P*v") = Dyey s (P™v )(q*—p*))ds

2f+9(§)ﬁ{¢<q*}<el+% (q*v ) iGs: (p Y ) qul+ (p Y )(q*—p*))d§(2'69)

2, (e ) e o) Dy (o) (0" ) e
49

The inequality (2.54) follows from this and (2.66). O
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Corollary 2.8. Let w9 be as before and let v € C?XP(ﬁ, R™) be the map con-
structed in Lemma 2.7. Then there are Iy > 0,r9 > 0 and a number c; > 0
independent of | > ly, r > rq such that

Joo wh—J .0 (0)=cH" ' (A; N B(9)). (2.70)
¢l ¢ (42 0 5:(5))
2 2

Proof. Set R =r+2,then we have ¢(§) = g¢ (| —¢|, R) with¢ (-, R) : [0, R] —
R a positive function which is strictly increasing in (0, R]. Moreover we have
¢(R,R) =1and

Ri<Ry, t€(O,R) = ¢R1—1t,R1)>¢(Ry—1, Ry). (2.71)

Note that £ € B () implies ¢(§) < go(r,r + ). Therefore for § € B.(s) N Az
we have

el+'%(évw) - e]_,_%(ﬁm)w) - quH_%((PVw)(é —9)

q
= Dge, . (sv*) — Dge, 5 (pv™) )ds
/(; ( a7+5 a7+5 ) (2.72)
q 1, 1, 0\\?2
2 _ — _ 2 _ 2 - 222 _ &
>c /w (s — p)ds 5¢ q—9) 2 5¢q (1 ¢(r,r+2>) ,

where we have also used (2.7);. The corollary follows from this inequality, from
(2.51), (2.54) and from the fact that, by (2.71), the last expression in (2.72) is in-
creasing with r. Therefore, for r > rg, for some r9 > 0, we can assume

o = %czqz (1 —¢ (ro, ro + %))2. (2.73)

O

2.3. Estimating ¢"(¢) = [lu(-, ¢) —u()lls

Let u be as in Theorem 1.4 and /g, ¢° as in Lemma 2.1 and assume that ¢ is such
that

lut, o) —uG)ll = q°, (2.74)

for some [ > lp. Then u € C?XP (22, R™) implies that there is ry > 0 independent
of [ > Iy such that

lu(-. &) —u)ll; = g, for|§ —¢| <ro. (2.75)

Let jo > 0, be minimum value of j that violates the inequality

g )’ 1 1
al—(1+2) ¢ (t+G+ D" =+ o). @76
2 Cy
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where c1 and C; are the constants in Corollary 2.8 and Lemma 2.5. Let [° > [y be
fixed so that

n—1

Co(ro + joo)"'e ™ < 16, 02 ,

2.77)

where Cy is defined in Lemma 2.4 and 0, is the measure of the unit ball in R”,

Proposition 2.9. Let 1, 0,g € (0,g°) and [° > Iy be fixed as before and let r® =

ro+ joo where jo > 0 is the minimum value of j that violates (2.76). Assume l > [°

and assume that Clr szg (¢) C Q satisfies

d (Cﬂzg(g), 89) >4 (2.78)
Then
q"(¢) = llu, &) —uCllp3 <q° (2.79)

Proof. Suppose instead that

lu(-, ¢) — ﬁ(~)||,+% >q°, (2.80)
and set
rg_l
0o =6, 7 (2.81)

Then! > [° > Iy and (2.75) imply
H""1(Az N B,y () > 200. (2.82)

ForeachO < j < joletr; :=ro+ jo and let v;, wj, w? and w; be the maps

v, w, w? and w defined in Lemma 2.4,Lemma 2.5, Lemma 2.6 and Lemma 2.7
with [ > [° and r = r;. Then from these Lemmas and Corollary 2.8 we have

J(W) —JW;) -, > —Cor" e ",
( )Czi;rzg(g) ( j)clgze(g) > —Cor;
n—1 _ 553
J(vj)clri‘i-k'(g) - J(wj)clri:l@(g) >-C/H (Aq N (BS‘J’_/#I \ Brj(g))) )

(2.83)

J (U)J)Cr] +20

- J q I > 0,
. (©) (w")C jtee

i (€

q “1(A-AR
JWP) e = @) e = aH" ! (Ag N Bg,).

(RN I+
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From this and the minimality of u it follows

0= _Cor;}ile—k!o ~CyH! (Aé N (§§a”j+l \ Brj(g))) 2.84)
+caH" (4G N B,
Define
oj:==H"" (AN B, (5)) — oo, forj > 1. (2.85)
For j = 0 the inequality (2.84), using also (2.77), implies
0> —cjo90 — Ci(o1 + 09) + 2C100 + 2c100 > cio90 — Ci1(01 —ap). (2.86)
If j > 01in a similar way we get
0> —cio0 — Ci(0j—1 —0j) +ci(0j +00) =ci0j — C1(0j+1 —0j). (2.87)

From (2.86) and (2.87) it follows

j
oj > (1 n c—1> %, (2.88)

and therefore, using also (2.81),

e\’ ! , _ _
o (1 + C—ll) 01— = C1 (01— 0f) = Cibun (K =r17") . (289)

This inequality is equivalent to (2.76). It follows that, on the basis of the definition
of jo,putting j = jo in (2.89) leads to a contradiction with the minimality of . [

2.4. Conclusion of the proof of Theorem 1.4: the exponential estimate

Lemma 2.10. Assume r > r°® 4+ 20 andl > [° + A and assume that Cl’(go) CcQ
satisfies

d (C] (c0), 09) > L. (2.90)

Then there are constants K| and k1 > 0 independent of r > r°+2p andl > [°+ A
such that

lu(-, g0) — il < Kje ™ ", (291)

Proof. From r > r° 4 2p it follows that |[¢ — ¢o| <r — (r° 4 20) implies

a(c ). 02) = 1 (2.92)
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Therefore we can invoke Proposition 2.9 to conclude that
lut, ¢) —ully < ¢°, for|g —gol =r — (r° + 20). (2.93)
Let ¢ : Br_(o420)(50) — R be the solution of
Ap =c?p  in Br_(o420)(50)

(2.94)

]

Y=4q on 8Br7(r°+2g)(§0)-

Then we have
lu(-, o) —ul; < ¢(s), for ¢ € By (ro120)(50)- (2.95)

This follows by the same argument leading to (2.65) in the proof of Lemma 2.7.
Indeed (2.93) shows that u satisfies the assumptions on w? in Lemma 2.7 with ¢°
instead of ¢ and therefore if (2.95) does not hold, then by proceeding as in the proof
of Lemma 2.7 we can construct a competing map o that satisfies (2.95) and has less
energy than u contradicting its minimality property. In particular (2.95) implies

(-, g0) — ullr < ¢(<0)- (2.96)

On the other hand it can be shown, see Lemma 2.4 in [16], that there is a constant
ho > 0 such that
¢0,r) < e M for r > ro

From this and (2.96) we get

0(50) = (0,7 — (r° +20)) < ge " HeThr — k17T (297)

This concludes the proof with K| = ge0°+20) and k; = hy. O

We are now in the position of proving the exponential estimate (1.15) in The-
orem 1.4. We distinguish two cases:

Casel x = (s,&) € Qsatisfiess > %d(x, 02). In this case, taking also into
account that 2 satisfies (1.7), we have

d(x, Q") > %d(x, Q). (2.98)

From this and Theorem 1.3 it follows

lu(s, &) —u(s)| < lu(s, &) —al + lu(s) —al

. ) (2.99)
< Koefkod(x,dﬂ*') +Koefk0s < 2K0€f%kod(x,ds2),

where we have also used (2.2).
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Case2 x = (5,&) € Qsatisfies0) < s < %d(x, d€2). In this case, elementary
geometric considerations and the assumption (1.7) on €2 imply the existence of
@ € (0, 1) (& = § will o) such that

Cff;?(x) (§) C Q and (2.100)

d (Cfféﬁ(x)(é), asz) > 5 4 ad(x),
where we have set d(x) := d(x, 0§2). From (2.100) and Lemma 2.10 it follows
I, &) — itlls+aac) < Kie X125 | for ad (x) > max{r°+20, [°+1}. (2.101)

This and Lemma 2.3 imply

2
s, &) — ii(s)] < CrK } ¢~ 3h1ed(x.0Q) (2.102)

The exponential estimate follows from (2.99) and (2.102).

2.5. Proof of Theorem 1.7

If 2 = R” the proof of Theorem 1.4 simplifies since we can avoid the technicalities
needed in the case in which € is bounded in the s = x; direction and assume
[ = 4o00. The possibility of working with [ = 400 is based on the following
lemma:

Lemma 2.11. Let u : R® — R™ be the symmetric minimizer in Theorem 1.3.
Given a smooth open set O C R" ™ let R x O the cylinder R x O = {(s,£) : s €

R, & € O} and let Woléz(]R x O, R™) be the subset of W;’z(]R x 0, R™) of the
maps that vanish on 9(R x O). Then it results

Jrxo) = Jrxo (V) (2.103)

for each map v € u + WO1 _’gz(R x O, R™) that satisfies the assumptions in Theo-
rem 1.3.

Proof. Assume there are n > O and v € u + Woléz(R x O; R™) that satisfie the
assumptions in Theorem 1.3 and the inequality

Jrx0 W) — Jrx0 (V) = 1. (2.104)
For each/ > 0 define v € u + W(;éz(]R x 0; R™) by

v for s € [0,[], and & € O
v=3U+Il—s)v+(6—-Du for se[l,l+1],and& € O
u for s e[l +1,400), and & € O.
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The minimality of u implies

0> Ji—i—t+11x0 W) — Jj—i—1,1+11x0 (V)

_ (2.105)
= Ji——1,411x0W) — J—1.nxo () + O (6 kl) ,

where we have also used the fact that both u and v satisfy (1.11). Taking the limit
for I/ — 400 in (2.105) yields

0= Jrxo ) — Jrxo(v)
in contradiction with (2.104). O

Once we know that u satisfies (2.103) the same arguments leading to Proposition 2.9
imply the existence of ° > 0 such that

R x Bro(§) CR" = |lu(,§) —illoo <4g°, (2.106)

where B,o(£) ¢ R"! is the ball of center £ and radius 7°. Since the condition
R x By (£) C R" is trivially satisfied for each £ € R*~! we have

lu(-, &) —iilloo < ¢q°, forevery & e R"1.

To conclude the proof we observe that everything that has been said concerning ¢°
can be repeated verbatim for each g € (0, ¢°). It follows that for each g € (0, g°]
there is a r(g) > 0 such that (2.106) holds with ¢ in place of ¢° and r(g) in place
of r°. Therefore we have

lu(-, &) —itlloo < gq, forevery £ e R"1.
Since this holds for each g € (0, ¢°] we conclude
u(-,€) =i, forevery & e R""!

which complete the proof of Theorem 1.7.
Theorem 1.6 can also be proved by the method in [6, see Theorem 7.1]. This
is due to Lemma 2.1 that allows one to work with infinite cylinders.

3. Proof of Theorem 1.8

From an abstract point of view the proof of Theorem 1.8 is essentially the same as
the proof of Theorem 1.4 after quantities like g* and v* etc. are reinterpreted and
properly redefined in the context of maps equivariant with respect to the group 7" of
the equilateral triangle. We divide the proof into steps pointing out the correspon-
dence with the analogous steps in the proof of Theorem 1.4. We write x € R” in
the form x = (s, £) withs = (s1,5) € R?and & = (x3, ..., x,) € R" 2.
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Step 1
From assumption (1.24) in Theorem 1.8 and equivariance it follows

lu(x) —al =46, |lu(x) —y—al >4, for x € yy D, d(x,dy4+D) > dy,

3.1
lu(x) —al =6, |lu(x) —yyal >4, for x € y_D, d(x,dy—_D) > dy G-D

where y, &y are defined in the Introduction. From this and assumptions H/; and
Hit it follows that we can apply Theorem 1.4 with Q = {(s1, 52, &) € R" : 51 < 0}
and a1+ = y+a to conclude that there exist k, K > 0 such that

u(st, 52, 8) —ii(s2)| < Ke 11, for x € {(s1,52,8) e R" 151 <0}. (32)

In exactly the same way we establish that
(51 5) = i(s2)| < Ke ™, for s € (51,50 e R 11 <0} (33)
From (3.2), (3.3) and equivariance it follows
lu(s, &) —ii(s)| < Ke ™ ! for s € R?, and &£ € R" 2. (3.4)

Let C EXp (R", R™) the set of lipshizt maps v : R” — R™ which are equivariant
under 7 and satisfy
u(s, §) —ii(s)| < Ke P,
IVsu(s, &) — Vyii(s)| < Ke ¥II for s € R?, and & € R" 2. (3.5)
IVev(s, &) < Ke ¥,
We remark that from (3.4) we have u € C?XP(R”, R™) for the minimizer u in
Theorem 1.8.

Step 2
Set B = {s € R? : |s| <I},] > 0 and let (-, -); denote the standard inner product
in L2(B;, R™) with associated norm || - ||;.

Set || -l =1l - llwr2ep, mm)-
Note that u € C ?Xp (R™, R™) implies
lu(. &)1y < C. for & e R"

for some constant C > 0.
Define

B2 ={ve WiABLR" :v=00n 98;, JuC, )l < C|
and

S = {v e WhA(BLR™) :v =0o0n 9B, |v]; = 1}
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In analogy with the definition of e;(v) in Lemma 2.1, we define the effective poten-
tial E;(v) : Bll’2 — R for the case at hand. We set

E/(v) = %((V?ﬁ + Vyu, Vsu + Vgu) — (Vsa, VSIZ)I)

(3.6)

+/ (W@ +v) — W(a))ds.
By

From this definition and assumptions Hs and Hg, arguing exactly as in the proof of
Lemma 2.1, we prove:

Lemma 3.1. Assume Hs and Hg. Then there exist g° > 0 and ¢ > 0 such that

quE(qV) = c? forq €10,4q°], v e S
E(qv) > E(¢°v) forq® <q, veSsS
E(gv)>E(p,q,v) (3.7)
=E(pv)+DzE(pv)(q—p) for0<p<qg=<q°, veS
DpE(P,q,U)ZO, for0<p<gq<gq° veSs.
Step 3

In Section 2 replace the interval [—/, /] with the ball B; C R2, the cylinder C (¢)
with the product B; x B, (¢), B,(¢) C R"~2 the ball of center ¢ € R"~? and radius
r, and observe that, for O € R"~2 open bounded and smooth, the energy of a map
vE W}’2(Bl x O, R™) can be expressed in the polar form

1
JBxo (W) = /0 (5 (|ng”|2 + (qv)Z Z(\)é’j, vgi)l) —l—E(qUUv)) dg, (3.8)

J

where gV and vV are defined by

q" () = llv(-,§) —il;, for & €O

V(s ) = % it 4°) > . (39

Then we can follow step by step the arguments in Section 2 to prove statements
analogous to Lemmas 2.3-2.7, Corollary 2.8 and establish the analogous of
Proposition 2.9. Actually, since we are working in R” and therefore there is no
boundary, the argument simplifies and the condition corresponding to (2.22) in
Lemma 2.3, (2.29) in Lemma 2.4 and Proposition 2.9 are not needed. In conclu-
sion, by arguing as in Section 2, we prove that, given g € (0, ¢°], there are /(g) > 0
r(g) > 0 such that

B xB(§) CR", and [>1(q), r=r(g) = q"E)=|u(,§) — i) <q. (3.10)
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Since the condition on the left hand side of (3.10) is trivially satisfied for all £ €

R

2 and for all ¢ € (0, g°] we deduce

u(s, £) = ii(s), for s € R?, and £ € R"~2

which concludes the proof.
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