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Infinitely many sign-changing and semi-nodal solutions
for a nonlinear Schrödinger system

ZHIJIE CHEN, CHANG-SHOU LIN AND WENMING ZOU

Abstract. We study the following coupled Schrödinger equations which have
appeared as several models from mathematical physics:8>><

>>:
�1u1 + �1u1 = µ1u31 + �u1u22 x 2 �

�1u2 + �2u2 = µ2u32 + �u21u2 x 2 �

u1 = u2 = 0 on @�.

Here � is a smooth bounded domain in RN (N = 2, 3) or � = RN , �1, �2,
µ1, µ2 are all positive constants and the coupling constant � < 0. We show that
this system has infinitely many sign-changing solutions. We also obtain infinitely
many semi-nodal solutions in the following sense: one component changes sign
and the other one is positive. The crucial idea of our proof, which has never
been used for this system before, is to study a new problem with two constraints.
Finally, when� is a bounded domain, we show that this system has a least energy
sign-changing solution, both two components of which have exactly two nodal
domains, and we also study the asymptotic behavior of solutions as � ! �1

and phase separation is expected.

Mathematics Subject Classification (2010): 35J20 (primary); 35J50, 35J60
(secondary).

1. Introduction

In this paper we study solitary wave solutions of the coupled Gross-Pitaevskii equa-
tions (cf. [8]):8>>>>>>><
>>>>>>>:

�i
@

@t
81 = 181 + µ1|81|281 + �|82|281 x 2 � t > 0

�i
@

@t
82 = 182 + µ2|82|282 + �|81|282 x 2 � t > 0

8 j = 8 j (x, t) 2 C j = 1, 2

8 j (x, t) = 0 x 2 @� t > 0 j=1, 2,

(1.1)
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where � = RN (N = 2, 3) or � ⇢ RN is a smooth bounded domain, i is the imag-
inary unit, µ1, µ2 > 0 and � 6= 0 is a coupling constant. System (1.1) arises in
mathematical models from several physical phenomena, especially in nonlinear op-
tics. Physically, the solution8 j denotes the j th component of the beam in Kerr-like
photorefractive media (cf. [1]). The positive constant µ j is for self-focusing in the
j th component of the beam, and the coupling constant � is the interaction between
the two components of the beam. Problem (1.1) also arises in the Hartree-Fock
theory for a double condensate, i.e., a binary mixture of Bose-Einstein condensates
in two different hyperfine states |1i and |2i (cf. [14]). Physically, 8 j are the cor-
responding condensate amplitudes, µ j and � are the intraspecies and interspecies
scattering lengths. Precisely, the sign of µ j represents the self-interactions of the
single state | ji. If µ j > 0 as considered here, it is called the focusing case, in
opposition to the defocusing case where µ j < 0. Besides, the sign of � determines
whether the interactions of states |1i and |2i are repulsive or attractive, i.e., the in-
teraction is attractive if � > 0, and the interaction is repulsive if � < 0, where the
two states are in strong competition when � is negative and very large.

To obtain solitary wave solutions of system (1.1), we set8 j (x, t) = ei� j t u j (x)
for j = 1, 2, where u j (x) are real-valued functions. Then system (1.1) is reduced
to the following elliptic system8><

>:
�1u1 + �1u1 = µ1u31 + �u1u22 x 2 �

�1u2 + �2u2 = µ2u32 + �u21u2 x 2 �

u1 = u2 = 0 on @�.

(1.2)

Here, for the case � = RN , the boundary condition u1 = u2 = 0 on @� means

u1(x), u2(x) ! 0 as |x | ! +1.

It is well known that finite energy solutions of (1.2) correspond to the critical points
of C2 functional E� : H10 (�) ⇥ H10 (�) ! R given by

E�(u1, u2) :=

1
2

Z
�

⇣
|ru1|2 + �1u21 + |ru2|2 + �2u22

⌘
dx

�

1
4

Z
�

⇣
µ1u41 + µ2u42

⌘
dx �

�

2

Z
�
u21u

2
2dx .

(1.3)

Definition 1.1. We call a solution (u1, u2) nontrivial if u j 6⌘ 0 for j = 1, 2, a solu-
tion (u1, u2) semi-trivial if (u1, u2) is type of (u1, 0) or (0, u2). A solution (u1, u2)
is called positive if u j > 0 in � for j = 1, 2, a solution (u1, u2) sign-changing
if both u1 and u2 change sign, a solution (u1, u2) semi-nodal if one component is
positive and the other one changes sign.
Definition 1.2. A nontrivial solution (u1, u2) is called a least energy solution, if it
has the least energy among all nontrivial solutions, i.e., E�(u1, u2)  E�(v1, v2)
for any nontrivial solution (v1, v2) of (1.2). A sign-changing solution (u1, u2) is
called a least energy sign-changing solution, if it has the least energy among all
sign-changing solutions.
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In the last decades, system (1.2) has received great interest from many mathe-
maticians. When � is the entire space RN , the existence of least energy and other
finite energy solutions of (1.2) was studied in [2,5,6,10,16,19–22,27,31] and refer-
ences therein. In particular, when � > 0 is sufficiently large, multiple radially sym-
metric sign-changing solutions of (1.2) were obtained in [22], where the radial sym-
metry of RN plays a crucial role in their proof. Under assumptions �i > 0, µi > 0
and � < 0, Liu and Wang [20] proved that system (1.2) has infinitely many non-
trivial solutions. In fact, they studied a general m-coupled system (m � 2). Remark
that whether solutions obtained in [20] are positive or sign-changing is not known.

When � ⇢ RN (N = 2, 3) is a smooth bounded domain, there are also many
papers studying (1.2). Lin and Wei [17] proved that a least energy solution of (1.2)
exists within the range � 2 (�1,�0), where 0 < �0 <

p

µ1µ2. In case where
�1 = �2 > 0, µ1 = µ2 > 0 and �  �µ1, Dancer, Wei and Weth [13] proved
the existence of infinitely many positive solutions of (1.2), while the same result
was proved for the case �1 = �2 < 0 by Noris and Ramos [24]. When � is a ball,
an interesting multiplicity result on positive radially symmetric solutions was given
in [32]. Remark that, since �1 = �2 and µ1 = µ2, so system (1.2) is invariant under
the transformation (u1, u2) 7! (u2, u1), which plays a crucial role in [13, 24, 32].
Later, by using a global bifurcation approach, the result of [32] was reproved by
[3] without requiring the symmetric condition µ1 = µ2, but in their proof the
assumption �1 = �2 plays a crucial role. Under assumptions �i > 0, µi > 0
and � < 0 without requiring �1 = �2 or µ1 = µ2, Sato and Wang [28] proved that
system (1.2) has infinitely many semi-positive solutions (i.e., at least one component
is positive). Note that all the papers mentioned above deal with the subcritical case
N  3 (i.e., the cubic nonlinearities are all of subcritical growth). Recently, Chen
and Zou [9] studied the existence and properties of least energy solutions of (1.2)
in the critical case N = 4.

In a word, for N = 2, 3, a natural question, which seems to be still open
for both the entire space case and the bounded domain case, is whether (1.2) has
infinitely many sign-changing solutions when � < 0. This is expected by many
experts but no proof has yet been obtained. Here we can give a positive answer to
this open question. Since the results in the entire space case are slightly different
from those in the bounded domain case, in this section we only state our results in
the bounded domain case for the sake of brevity. The results in the entire space case
will be given in Section 6. Our first result is as follows.

Theorem 1.3. Let N = 2, 3, � ⇢ RN is a smooth bounded domain, �1, �2,
µ1, µ2 > 0 and � < 0. Then (1.2) has infinitely many sign-changing solutions
(un,1, un,2) such that

kun,1kL1(�) + kun,2kL1(�) ! +1 as n ! +1.

Remark 1.4. Comparing with [3, 13, 24, 32] where infinitely many positive so-
lutions were obtained, we do not need any symmetric assumptions �1 = �2 or
µ1 = µ2.
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Remark 1.5. All the papers mentioned above and this paper deal with the focusing
case µ1, µ2 > 0. For the defocusing case µ1, µ2 < 0, related results can be seen
in [8, 25, 26, 29, 30]. In particular, Tavares and Terracini [29] studied the following
general m-coupled system(

�1u j � µ j u3j � �u j
P

i 6= j u2i = � j,�u j
u j 2 H10 (�) j = 1, . . . ,m,

(1.4)

where � is a smooth bounded domain, � < 0 and µ j  0. Then [29, Theorem
1.1] says that for each fixed � < 0 and µ1, . . . , µm  0, there exist infinitely
many � = (�1,�, . . . , �m,�) 2 Rm and u = (u1, . . . , um) 2 H10 (�, Rm) such
that (u, �) are sign-changing solutions of (1.4). That is, for each fixed � < 0 and
µ1, . . . , µm  0, � j,� is not fixed a priori and appears as a Lagrange multiplier
in [29]. Our result is different from [29, Theorem 1.1] on two aspects: one is that
we deal with the focusing case µ j > 0, the other one is that � j , µ j and � are all
fixed constants in Theorem 1.3. To the best of our knowledge, our result for system
(1.2) is new.

As pointed out before, Lin and Wei [17] proved for � 2 (�1,�0) that (1.2)
has a least energy solution which turns out to be a positive solution. Since (1.2) has
infinitely many sign-changing solutions for any � < 0, another natural question is
whether (1.2) has a least energy sign-changing solution, which has not been studied
before. Here we can prove the following result.

Theorem 1.6. Let assumptions in Theorem 1.3 hold. Then (1.2) has a least energy
sign-changing solution (u1, u2). Moreover, both u1 and u2 have exactly two nodal
domains.

Theorems 1.3 and 1.6 are both concerned with sign-changing solutions. Be-
sides positive solutions (see [3, 13, 32]) and sign-changing solutions, as defined in
Definition 1.1, it is natural to suspect that (1.2) may have semi-nodal solutions.
Here we can prove the following result.

Theorem 1.7. Let assumptions in Theorem 1.3 hold. Then (1.2) has infinitely many
semi-nodal solutions {(un,1, un,2)}n�2 such that

(1) un,1 changes sign and un,2 is positive;
(2) kun,1kL1(�) + kun,2kL1(�) ! +1 as n ! +1;
(3) un,1 has at most n nodal domains. In particular, u2,1 has exactly two nodal

domains, and (u2,1, u2,2) has the least energy among all nontrivial solutions
whose first component changes sign.

Remark 1.8. Recently, we found that [28, Theorem 0.1] proved that (1.2) has in-
finitely many semi-nodal solutions for any � 2 (�

p

µ1µ2, 0). Theorem 1.7 im-
proves [28, Theorem 0.1] on two aspects: one is that we can obtain infinitely many
semi-nodal solutions for �  �

p

µ1µ2; the other one is that, in [28] no properties
of the form (3) can be obtained by their approach. Our proofs in this paper are
completely different from [28].
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Remark 1.9. Similarly, we can prove that (1.2) has infinitely many semi-nodal so-
lutions {(vn,1, vn,2)}n�2 such that vn,1 is positive, vn,2 changes sign and has at most
n nodal domains. In the symmetric case where �1 = �2 and µ1 = µ2, (un,1, un,2)
obtained in Theorem 1.7 and (vn,1, vn,2) may be the same solution in the sense
of un,1 = vn,2 and un,2 = vn,1. However, if either �1 6= �2 or µ1 6= µ2, then
(un,1, un,2) and (vn,1, vn,2) are really different solutions.

We give some notations here. Throughout this paper, we denote the norm of
L p(�) by |u|p = (

R
� |u|p dx)

1
p , the norm of H10 (�) by kuk2 =

R
�(|ru|2+u2) dx

and positive constants (possibly different in different places) by C,C0,C1, . . . De-
note kuk2�i :=

R
�(|ru|2 + �i u2) dx for convenience. Since we assume �1, �2 > 0

here, k · k�i are equivalent norms to k · k. Define H := H10 (�) ⇥ H10 (�) with norm
k(u1, u2)k2H := ku1k2�1 + ku2k2�2 .

The rest of this paper is organized as follows. In Section 2 we give the proof of
Theorem 1.3. The main idea of this proof is inspired by [29], where a new notion of
vector genus introduced by [29] will be used to define appropriate minimax values.
Some arguments in our proof are borrowed from [29] with modifications. Remark
that the ideas in [29] can not be used directly, and here we will give some new ideas.
For example, to obtain nontrivial solutions of (1.2), the crucial idea in this paper is
turning to study a new problem with two constraints. Somewhat surprisingly, up to
our knowledge, this natural idea has never been used for (1.2) in the literature; see
Remark 2.3 below. In Section 3 we will use general Nehari type manifolds to prove
Theorem 1.6. By giving some modifications to arguments in Sections 2 and 3, we
will prove Theorem 1.7 in Section 4.

In Section 5, we will study the limit behavior of solutions obtained here as
� ! �1 by applying results in [26] directly. It turns out that components of
the limiting profile tend to separate in different regions. This phenomenon, called
phase separation, has been well studied for L1-bounded positive solutions of (1.2)
in the case N = 2, 3 by [26, 32, 33]. For other kinds of elliptic systems with strong
competition, phase separation has also been well studied, we refer to [7, 12] and
references therein. The main result of Section 5 is Theorem 5.1.

Finally in Section 6, we will introduce existence results of infinitely many
radially symmetric sign-changing and semi-nodal solutions in the entire space case.
The main results are Theorems 6.1 and 6.2. The main ideas of the proof are the
same as those in Sections 2-4. However, we will see that some ideas and arguments
are quite different from those in the bounded domain case.

After this paper was submitted, we learned from Z.-Q. Wang of a recent work
[18], where infinitely many sign-changing solutions of the general m-coupled sys-
tem (m � 2) were obtained via a quite different method. We should point out that
our approach here also works for the general m-coupled system (m � 2).

ACKNOWLEDGEMENTS. The authors wish to thank the anonymous referee very
much for careful reading and valuable comments.
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2. Proof of Theorem 1.3

In the sequel we assume that assumptions in Theorem 1.3 hold. Since we are
only concerned with nontrivial solutions, we denote eH := {(u1, u2) 2 H : ui 6=

0 for i = 1, 2}, which is an open subset of H . Write Eu = (u1, u2) for convenience.

Lemma 2.1. For any (u1, u2) 2
eH , if

|�|
2
✓Z

�
u21u

2
2

◆2
� µ1µ2|u1|44|u2|

4
4, (2.1)

then
sup

t1,t2�0
E�

�p
t1u1,

p

t2u2
�

= +1.

Proof. By (2.1) there exists ↵ > 0 such that

↵|�|

Z
�
u21u

2
2 � µ1|u1|44,

1
↵

|�|

Z
�
u21u

2
2 � µ2|u2|44,

which implies

E�
⇣
p

tu1,
p

↵tu2
⌘

=

1
2
tku1k2�1 +

1
2
↵tku2k2�2

�

1
4

⇣
t2µ1|u1|44 + ↵2t2µ2|u2|44

⌘
+

1
2
↵t2|�|

Z
�
u21u

2
2

�

1
2
tku1k2�1 +

1
2
↵tku2k2�2 ! +1 as t ! +1.

This completes the proof.

Lemma 2.2. For any Eu = (u1, u2) 2
eH , if

|�|
2
✓Z

�
u21u

2
2

◆2
< µ1µ2|u1|44|u2|

4
4, (2.2)

then system (
ku1k2�1 = t1µ1|u1|44 � t2|�|

R
� u

2
1u
2
2

ku2k2�2 = t2µ2|u2|44 � t1|�|

R
� u

2
1u
2
2

(2.3)

has a unique solution8>>>>><
>>>>>:

t1(Eu) =

µ2|u2|44ku1k
2
�1

+ |�|ku2k2�2
R
� u

2
1u
2
2

µ1µ2|u1|44|u2|
4
4 � |�|

2 �R
� u

2
1u
2
2
�2 > 0

t2(Eu) =

µ1|u1|44ku2k
2
�2

+ |�|ku1k2�1
R
� u

2
1u
2
2

µ1µ2|u1|44|u2|
4
4 � |�|

2 �R
� u

2
1u
2
2
�2 > 0.

(2.4)
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Moreover,

sup
t1,t2�0

E�
�p

t1u1,
p

t2u2
�

= E�
⇣p

t1(Eu)u1,
p
t2(Eu)u2

⌘

=

1
4

⇣
t1(Eu)ku1k2�1 + t2(Eu)ku2k2�2

⌘

=

1
4

µ2|u2|44ku1k
4
�1

+ 2|�|ku1k2�1ku2k
2
�2

R
� u

2
1u
2
2 + µ1|u1|44ku2k

4
�2

µ1µ2|u1|44|u2|
4
4 � |�|

2 �R
� u

2
1u
2
2
�2

(2.5)

and (t1(Eu), t2(Eu)) is the unique maximum point of E�(
p

t1u1,
p

t2u2).

Proof. It suffices to prove (2.5). Recall that (t1(Eu), t2(Eu)) is the solution of (2.3),
we deduce that

2t1t2|�|

Z
�
u21u

2
2  t21

t2(Eu)
t1(Eu)

|�|

Z
�
u21u

2
2 + t22

t1(Eu)
t2(Eu)

|�|

Z
�
u21u

2
2

= t21µ1|u1|
4
4 + t22µ2|u2|

4
4 �

t21
t1(Eu)

ku1k2�1 �

t22
t2(Eu)

ku2k2�2 .

Hence for any t1, t2 � 0,

E�
�p

t1u1,
p

t2u2
�

=

1
2
t1ku1k2�1 +

1
2
t2ku2k2�2

�

1
4

⇣
t21µ1|u1|

4
4 + t22µ2|u2|

4
4

⌘
+

1
2
t1t2|�|

Z
�
u21u

2
2



 
t1
2

�

t21
4t1(Eu)

!
ku1k2�1 +

 
t2
2

�

t22
4t2(Eu)

!
ku2k2�2



1
4

⇣
t1(Eu)ku1k2�1 + t2(Eu)ku2k2�2

⌘

=E�
⇣p

t1(Eu)u1,
p
t2(Eu)u2

⌘
.

Therefore (2.5) holds and (t1(Eu), t2(Eu)) is also the unique maximum point of
E�(

p

t1u1,
p

t2u2) in [0,+1)2.

Define

M⇤

:= {Eu 2 H : |u1|4 > 1/2, |u2|4 > 1/2} ;

M⇤

� :=

�
Eu 2M⇤

: Eu satisfies (2.2)
 
;

M⇤⇤

� :=

(
Eu 2M⇤

: µ1µ2 � |�|
2
✓Z

�
u21u

2
2

◆2
> 0

)
;

M := {Eu 2 H : |u1|4 = 1, |u2|4 = 1} , M� :=M \M⇤

� .

(2.6)
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ThenM� = M \M⇤⇤

� . By taking 'i 2 C1

0 (�) such that |'i |4 = 1 for i = 1, 2
and supp('1)\supp('2) = ;, we have ('1,'2) 2M� , namelyM� 6= ;. It is easy
to check thatM⇤,M⇤

� ,M⇤⇤

� are all open subsets of H andM is closed. Define a
new functional J� :M⇤

! (0,+1] by

J�(Eu):=

8><
>:
1
4

µ2ku1k4�1+2|�|ku1k2�1ku2k
2
�2

R
� u

2
1u
2
2+µ1ku2k4�2

µ1µ2 � |�|
2 �R

� u
2
1u
2
2
�2 if Eu2M⇤⇤

� ,

+1 if Eu2M⇤
\M⇤⇤

� .

By the Sobolev inequality

kuk2�i � C|u|24, 8 u 2 H10 (�), i = 1, 2, (2.7)

where C is a positive constant, it is easy to check that J� is continuous onM⇤

and infM⇤ J� � C1 > 0 for some constant C1 independent of � < 0. Moreover,
J� 2 C1(M⇤⇤

� , (0,+1)), and since any Eu 2 M� is an interior point ofM⇤⇤

� , a
direct computation and (2.4) yield that

J 0

�(Eu)(', 0) = t1(Eu)
Z
�
(ru1r' + �1u1') + t1(Eu)t2(Eu)|�|

Z
�
u1u22', (2.8)

J 0

�(Eu)(0, ) = t2(Eu)
Z
�
(ru2r + �2u2 ) + t1(Eu)t2(Eu)|�|

Z
�
u21u2 (2.9)

hold for any Eu 2 M� and ',  2 H10 (�) (remark that (2.8)-(2.9) do not hold for
Eu 2M⇤⇤

� \M�). Note that Lemmas 2.1 and 2.2 yield

J�(u1, u2) = sup
t1,t2�0

E�
�p

t1u1,
p

t2u2
�
, 8 (u1, u2) 2M. (2.10)

To obtain nontrivial solutions of (1.2), we turn to study the new functional J� re-
stricted toM� , which is a problem with two constraints.
Remark 2.3. To obtain nontrivial solutions of (1.2), in many papers (see [9,13,16,
17,27,32] for example), people usually turn to study nontrivial critical points of E�
under the following Nehari manifold type constraint�

(u1, u2) 2
eH : E 0

�(u1, u2)(u1, 0) = E 0

�(u1, u2)(0, u2) = 0
 
,

which is actually a natural constraint for any � <
p

µ1µ2 (see [27, Proposition
1.1] for example). To the best of our knowledge, our natural idea (i.e., to obtain
nontrivial solutions of (1.2) by studying J� |M� ), has never been introduced for
(1.2) in the literature.

In the following, we always let (i, j) = (1, 2) or (i, j) = (2, 1). Recall that
ti (Eu) is well defined for Eu 2M⇤

� . For any Eu = (u1, u2) 2M⇤

� , let w̃i 2 H10 (�) be
the unique solution of the following linear problem

�1w̃i + �i w̃i + |�|t j (Eu)u2j w̃i = µi ti (Eu)u3i , w̃i 2 H10 (�). (2.11)
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Since |ui |4 > 1/2, so w̃i 6= 0 and
Z
�
u3i w̃i =

1
µi ti (Eu)

✓
kw̃ik

2
�i + |�|t j (Eu)

Z
�
u2j w̃

2
i

◆
> 0.

Define
wi = ↵i w̃i , where ↵i =

1R
� u

3
i w̃i

> 0. (2.12)

Then wi is the unique solution of the following problem(
�1wi + �iwi + |�|t j (Eu)u2jwi = ↵iµi ti (Eu)u3i , wi 2 H10 (�),R
� u

3
i wi dx = 1.

(2.13)

Now we define an operator K = (K1, K2) :M⇤

� ! H by

K (Eu) = (K1(Eu), K2(Eu)) := Ew = (w1, w2). (2.14)

Define the transformations

�i : H ! H by �1(u1, u2) := (�u1, u2), �2(u1, u2) := (u1,�u2). (2.15)

Then it is easy to check that

K (�i (Eu)) = �i (K (Eu)), i = 1, 2. (2.16)

Lemma 2.4. K 2 C1(M⇤

�, H).

Proof. It suffices to apply the Implicit Theorem to the C1 map

9 :M⇤

� ⇥ H10 (�) ⇥ R ! H10 (�) ⇥ R, where

9(Eu, v,↵) =

✓
v + (�1+ �i )

�1
⇣
|�|t j (Eu)u2jv � ↵µi ti (Eu)u3i

⌘
,

Z
�
u3i v � 1

◆
.

Note that (2.13) holds if and only if 9(Eu, wi ,↵i ) = (0, 0). By computing the
derivative of9 with respect to (v,↵) at the point (Eu, wi ,↵i ) in the direction (w̄, ↵̄),
we obtain a map 8 : H10 (�) ⇥ R ! H10 (�) ⇥ R given by

8(w̄, ↵̄) :=Dv,↵9(Eu, wi ,↵i )(w̄, ↵̄)

=

✓
w̄ + (�1+ �i )

�1
⇣
|�|t j (Eu)u2j w̄ � ↵̄µi ti (Eu)u3i

⌘
,

Z
�
u3i w̄ dx

◆
.

If 8(w̄, ↵̄) = (0, 0), then we multiply the equation

�1w̄ + �i w̄ + |�|t j (Eu)u2j w̄ = ↵̄µi ti (Eu)u3i
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by w̄ and obtain

kw̄k
2
�i  ↵̄µi ti (Eu)

Z
�
u3i w̄ dx = 0.

So w̄ = 0 and then ↵̄µi ti (Eu)u3i ⌘ 0 in �. Since µi > 0, ti (Eu) > 0 and |ui |4 � 1/2,
we see that ↵̄ = 0. Hence 8 is injective.

On the other hand, for any ( f, c) 2 H10 (�)⇥R, let v1, v2 2 H10 (�) be solutions
of the linear problems

�1v1 + �iv1 + |�|t j (Eu)u2jv1 = (�1+ �i ) f,

�1v2 + �iv2 + |�|t j (Eu)u2jv2 = µi ti (Eu)u3i .

Since |ui |4 > 1/2, so v2 6= 0 and then
R
� u

3
i v2 dx > 0. Let ↵0 = (c�

R
� u

3
i v1 dx)/R

� u
3
i v2 dx , then 8(v1 + ↵0v2,↵0) = ( f, c). Hence 8 is surjective, that is, 8 is a

bijective map. This completes the proof.

Lemma 2.5. Assume that {Eun = (un,1, un,2) : n � 1} ⇢M� is bounded in H and
Eun * Eu = (u1, u2) 2 M� weakly in H . Then there exists Ew 2 H such that, up to
a subsequence, Ewn := K (Eun) ! Ew strongly in H .

Proof. Recall the definition ofM� in (2.6), we deduce from (2.4) and (2.7) that
there exists C0 > 0 independent of Eu 2M� such that

ti (Eu) =

µ jkuik2�i + |�|ku jk2� j
R
� u

2
1u
2
2

µ1µ2 � |�|
2 �R

� u
2
1u
2
2
�2 �

1
µi

kuik2�i � C0, 8 Eu 2M� . (2.17)

Since Eun * Eu = (u1, u2) 2 M� weakly in H , so up to a subsequence, un,i ! ui
strongly in L4(�). Then

lim
n!1

 
µ1µ2 � |�|

2
✓Z

�
u2n,1u

2
n,2

◆2!
= µ1µ2 � |�|

2
✓Z

�
u21u

2
2

◆2
> 0,

where the assumption Eu 2 M� is used. Hence we may assume that ti (Eun) are
uniformly bounded for any n � 1 and i = 1, 2, and up to a subsequence, ti (Eun) !

ti > 0. Recall that wn,i = ↵n,i w̃n,i , where ↵n,i and w̃n,i are seen in (2.11)-(2.12).
By (2.11) we have

kw̃n,ik
2
�i  µi ti (Eun)

Z
�
u3n,i w̃n,i dx  C|w̃n,i |4  Ckw̃n,ik�i ,

which implies that {w̃n,i : n � 1} are bounded in H10 (�). Up to a subsequence,
we may assume that w̃n,i ! w̃i weakly in H10 (�) and strongly in L4(�). Then by
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(2.11) and Hölder inequality we getZ
�

rw̃n,ir(w̃n,i � w̃i ) dx + �i

Z
�

w̃n,i (w̃n,i � w̃i ) dx

= � |�|t j (Eun)
Z
�
u2n, j w̃n,i (w̃n,i � w̃i ) + µi ti (Eun)

Z
�
u3n,i (w̃n,i � w̃i ) dx ! 0

as n ! 1. Hence

kw̃n,ik
2
�i =

Z
�
(rw̃n,irw̃i + �i w̃n,i w̃i ) + o(1) = kw̃ik

2
�i + o(1), (2.18)

that is, w̃n,i ! w̃i strongly in H10 (�). Again by (2.11) we know that w̃i satisfies

�1w̃i + �i w̃i + |�|t j u2j w̃i = µi ti u3i .

Since |ui |4 = 1, so w̃i 6= 0 and then
R
� u

3
i w̃i dx > 0, which implies that

lim
n!1

↵n,i = lim
n!1

1R
� u

3
n,i w̃n,i

=

1R
� u

3
i w̃i

=: ↵i .

Therefore, wn,i = ↵n,i w̃n,i ! ↵i w̃i =: wi strongly in H10 (�).

To continue our proof, we need to use vector genus introduced by [29] to define
proper minimax energy levels. Recall (2.15) and (2.6), as in [29] we consider the
class of sets

F = {A ⇢M : A is closed and �i (Eu) 2 A 8 Eu 2 A, i = 1, 2},

and, for each A 2 F and k1, k2 2 N, the class of functions

F(k1,k2)(A) =

8<
: f =( f1, f2) : A !

2Y
i=1

Rki�1
:

fi : A ! Rki�1 continuous,
fi (�i (Eu))=� fi (Eu) for each i
fi (� j (Eu)) = fi (Eu) for j 6= i

9=
; .

Here, we denote R0 := {0}. Let us recall vector genus from [29].
Definition 2.6 (Vector genus, see [29]). Let A 2 F and take any k1, k2 2 N. We
say that E� (A) � (k1, k2) if for every f 2 F(k1,k2)(A) there exists Eu 2 A such that
f (Eu) = ( f1(Eu), f2(Eu)) = (0, 0). We denote

0(k1,k2)
:= {A 2 F : E� (A) � (k1, k2)}.

Lemma 2.7 ([29]). With the previous notation, the following properties hold.

(i) Take A1 ⇥ A2 ⇢ M and let ⌘i : Ski�1 := {x 2 Rki
: |x | = 1} ! Ai be a

homeomorphism such that ⌘i (�x) = �⌘i (x) for every x 2 Ski�1, i = 1, 2.
Then A1 ⇥ A2 2 0(k1,k2).
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(ii) We have ⌘(A) 2 0(k1,k2) whenever A 2 0(k1,k2) and a continuous map ⌘ :

A !M is such that ⌘ � �i = �i � ⌘, 8 i = 1, 2.

To obtain sign-changing solutions, as in many references such as [4, 11, 34], we
should use cones of positive functions. Precisely, we define

Pi := {Eu = (u1, u2) 2 H : ui � 0}, P :=

2[
i=1

(Pi [ �Pi ). (2.19)

Moreover, for � > 0 we define P� := {Eu 2 H : dist4(Eu,P) < �}, where

dist4(Eu,P) := min
�
dist4(ui , Pi ), dist4(ui , �Pi ), i = 1, 2

 
,

dist4(ui , ±Pi ) := inf{|ui � v|4 : v 2 ±Pi }.
(2.20)

Denote u±
:= max{0,±u}, then it is easy to check that dist4(ui ,±Pi ) = |u⌥

i |4.

Lemma 2.8. Let k1, k2 � 2. Then for any � < 2�1/4 and any A 2 0(k1,k2) there
holds A \ P� 6= ;.

Proof. Fix any A 2 0(k1,k2). Consider

f =( f1, f2) : A ! Rk1�1
⇥ Rk2�1, fi (Eu)=

✓Z
�

|ui |3ui dx, 0, . . . , 0
◆

. (2.21)

Clearly f 2 F(k1,k2)(A), so there exists Eu 2 A such that f (Eu) = 0. Note that
Eu 2 A ⇢M, we conclude thatZ

�
(u+

i )4 dx =

Z
�
(u�

i )4 dx = 1/2, for i = 1, 2,

that is, dist4(Eu,P) = 2�1/4, and so Eu 2 A \ P� for every � < 2�1/4.

Lemma 2.9. There exist A 2 0(k1,k2) and a positive constant ck1,k2 2 N indepen-
dent of � < 0 such that supA J�  ck1,k2 for any � < 0.

Proof. Take nonempty open subsets B1, B2 ⇢ � such that B1 \ B2 = ;. Let
{'ik : 1  k  ki } ⇢ H10 (Bi ) be linearly independent subsets, and define

Ai :=

�
u 2 span{'i1, . . . ,'

i
ki } : |u|4 = 1

 
.

Clearly there exists an odd homeomorphism from Ski�1 to Ai . By Lemma 2.7-(i)
one has A := A1 ⇥ A2 2 0(k1,k2). For any Eu = (u1, u2) 2 A, since ui 2 H10 (Bi ),
so u1 · u2 ⌘ 0, which implies Eu 2M� and

J�(Eu) =

1
4µ1µ2

⇣
µ2ku1k4�1 + µ1ku2k4�2

⌘
.

Since all norms of a finite dimensional linear space are equivalent, so there exists
Cki > 0 such that kuik�i  Cki |ui |4 = Cki for any ui 2 Ai . Hence there exists
ck1,k2 2 N independent of � < 0 such that supA J�(Eu)  ck1,k2 for any � < 0.
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For every k1, k2 � 2 and 0 < � < 2�1/4, we define

ck1,k2�,� := inf
A20

(k1,k2)
�

sup
Eu2A\P�

J�(Eu), (2.22)

where

0
(k1,k2)
� :=

⇢
A 2 0(k1,k2)

: sup
A
J� < ck1,k2 + 1

�
. (2.23)

Lemma 2.9 yields 0(k1,k2)
� 6= ; and so ck1,k2�,� is well defined. Moreover,

ck1,k2�,�  ck1,k2 for every � < 0 and � > 0.

Recall that infM J� � C1, so ck1,k2�,� � C1 > 0. We will prove that ck1,k2�,� is a
critical value of E� provided that � > 0 is sufficiently small. As we will see in
Remark 2.14, we can not replace 0(k1,k2)

� by 0(k1,k2) in the definition of ck1,k2�,� .

Lemma 2.10. For any sufficiently small � 2 (0, 2�1/4), there holds

dist4(K (Eu),P) < �/2, 8 Eu 2M, J�(Eu)  ck1,k2 + 1, dist4(Eu,P) < �.

Proof. Assume by contradiction that there exist �n ! 0 and Eun = (un,1, un,2) 2

M such that J�(Eun)  ck1,k2 + 1, dist4(Eun,P) < �n and dist4(K (Eun),P) � �n/2.
Without loss of generality we may assume that dist4(Eun,P) = dist4(un,1,P1).
Recall the definition of J� , we see that Eun 2M� and

ck1,k2 + 1 � J�(Eun) �

1
4

µ2kun,1k4�1 + µ1kun,2k4�2

µ1µ2 � |�|
2
⇣R
� u

2
n,1u

2
n,2

⌘2 . (2.24)

This implies that Eun are uniformly bounded in H . Up to a subsequence, we may
assume that Eun ! Eu = (u1, u2) weakly in H and strongly in L4(�) ⇥ L4(�).
Hence |ui |4 = 1 and Eu 2 M. Moreover, since (2.7) yields kun,ik2�i � C > 0,
where C is independent of n, so we deduce from (2.24) that

µ1µ2 � |�|
2
✓Z

�
u21u

2
2

◆2
= lim

n!1

 
µ1µ2 � |�|

2
✓Z

�
u2n,1u

2
n,2

◆2!
> 0,

that is, Eu 2M� . Write K (Eun) = Ewn = (wn,1, wn,2) and wn,i = ↵n,i w̃n,i as in the
proof of Lemma 2.5. Then by the proof of Lemma 2.5, we see that ti (Eun) and ↵n,i
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are all uniformly bounded. Combining this with (2.13), we deduce that

dist4(wn,1,P1)|w�

n,1|4 = |w�

n,1|
2
4  C

Z
�

|rw�

n,1|
2
+ �1(w

�

n,1)
2 dx

 C
Z
�

⇣
|rw�

n,1|
2
+ �1(w

�

n,1)
2
+ |�|t2(Eun)u2n,2(w

�

n,1)
2
⌘

= �C↵n,1µ1t1(Eun)
Z
�
u3n,1w

�

n,1 dx

 C
Z
�
(u�

n,1)
3w�

n,1 dx  C|u�

n,1|
3
4|w

�

n,1|4

= Cdist4(un,1,P1)3|w�

n,1|4  C�3n |w
�

n,1|4.

So dist4(K (Eun),P)  dist4(wn,1,P1)  C�3n < �n/2 holds for n sufficiently large,
which is a contradiction. This completes the proof.

Now let us define a map

V :M⇤

� ! H, V (Eu) := Eu � K (Eu).

We will prove that (
p
t1(Eu)u1,

p
t2(Eu)u2) is a nontrivial solution of (1.2), if Eu =

(u1, u2) 2M� satisfies V (Eu) = 0.

Lemma 2.11. Let Eun = (un,1, un,2) 2M� be such that

J�(Eun) ! c < 1 and V (Eun) ! 0 strongly in H .

Then, up to a subsequence, there exists Eu 2 M� such that Eun ! Eu strongly in H
and V (Eu) = 0.

Proof. Without loss of generality we may assume that J�(Eun)  c + 1 for all
n � 1. Then by the proof of Lemma 2.10, up to a subsequence, we may assume
that Eun * Eu = (u1, u2) 2 M� weakly in H . By Lemma 2.5, there exists Ew 2 H
such that, up to a subsequence, Ewn := K (Eun) = (wn,1, wn,2) ! Ew = (w1, w2)
strongly in H . Recall V (Eun) ! 0, we getZ

�
run,ir(un,i � ui ) =

Z
�

r(wn,i � wi )r(un,i � ui ) +

Z
�

rwir(un,i � ui )

+

Z
�

r(un,i � wn,i )r(un,i � ui ) = o(1).

Then similarly as (2.18) we see that Eun ! Eu strongly in H . By Lemma 2.4 we have
V (Eu) = limn!1 V (Eun) = 0.

Lemma 2.12. Recall C0 > 0 in (2.17). Then

J 0

�(Eu)[V (Eu)] � C0kV (Eu)k2H , for any Eu 2M� .
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Proof. Fix any Eu = (u1, u2) 2 M� , write Ew = K (Eu) = (w1, w2) as above, then
V (Eu) = (u1 � w1, u2 � w2). By (2.13) we have

R
� u

3
i (ui � wi ) dx = 1 � 1 = 0.

Then we deduce from (2.8)-(2.9), (2.13) and (2.17) that

J 0

�(Eu)[V (Eu)]

=

2X
i=1

ti (Eu)
Z
�

⇣
ruir(ui � wi ) + �i ui (ui � wi ) + t j (Eu)|�|ui (ui � wi )u2j

⌘
dx

�

2X
i=1

ti (Eu)
Z
�

⇣
ruir(ui � wi ) + �i ui (ui � wi ) + t j (Eu)|�|wi (ui � wi )u2j

⌘
dx

=

2X
i=1

ti (Eu)
Z
�

�
ruir(ui � wi ) + �i ui (ui � wi ) � rwir(ui � wi )

� �iwi (ui � wi ) + ↵iµi ti (Eu)u3i (ui � wi )
�
dx

=

2X
i=1

ti (Eu)
Z
�

|r(ui � wi )|
2
+ �i |ui � wi |

2 dx � C0kV (Eu)k2H .

This completes the proof.

Lemma 2.13. There exists a unique global solution ⌘ = (⌘1, ⌘2) : [0,1) ⇥

M� ! H for the initial value problem

d
dt
⌘(t, Eu) = �V (⌘(t, Eu)), ⌘(0, Eu) = Eu 2M� . (2.25)

Moreover,

(i) ⌘(t, Eu) 2M� for any t > 0 and u 2M� .
(ii) ⌘(t, �i (Eu)) = �i (⌘(t, Eu)) for any t > 0, u 2M� and i = 1, 2.
(iii) For every Eu 2M� , the map t 7! J�(⌘(t, Eu)) is non-increasing.
(iv) There exists �0 2 (0, 2�1/4) such that, for every � < �0, there holds

⌘(t, Eu) 2 P� whenever u 2M� \ P�, J�(u)  ck1,k2 + 1 and t > 0.

Proof. Recalling Lemma 2.4, one has V (Eu) 2 C1(M⇤

�, H). SinceM� ⇢ M⇤

�

andM⇤

� is open, so (2.25) has a unique solution ⌘ : [0, Tmax) ⇥M� ! H , where
Tmax > 0 is the maximal time such that ⌘(t, Eu) 2 M⇤

� for all t 2 [0, Tmax) (note
that V (·) is defined only onM⇤

�). We should prove Tmax = +1 for any Eu 2M� .
Fixed any Eu = (u1, u2) 2M� , one has

d
dt

Z
�
⌘i (t, Eu)4 dx = �4

Z
�
⌘i (t, Eu)3(⌘i (t, Eu) � Ki (⌘(t, Eu))) dx

= 4� 4
Z
�
⌘i (t, Eu)4 dx, 8 0 < t < Tmax,
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that is
d
dt


e4t

✓Z
�
⌘i (t, Eu)4 dx � 1

◆�
= 0.

Recalling
R
� ⌘i (0, Eu)4 dx =

R
� u

4
i dx = 1, we see that

Z
�
⌘i (t, Eu)4 dx ⌘ 1 for all 0  t < Tmax.

So ⌘(t, Eu) 2 M, that is ⌘(t, Eu) 2 M \M⇤

� = M� for all t 2 [0, Tmax). As-
sume by contradiction that Tmax < +1, then either ⌘(Tmax, Eu) 2 M \M⇤

� or
limt!Tmax k⌘(t, Eu)kH = +1. If ⌘(Tmax, Eu) 2 M \M⇤

� , then the definition of
J� yields J�(⌘(Tmax, Eu)) = +1. Since ⌘(t, Eu) 2 M� for any t 2 [0, Tmax), we
deduce from Lemma 2.12 that

J� (⌘ (Tmax, Eu)) = J�(⌘(0, Eu)) +

Z Tmax

0

d
dt
J�(⌘(t, Eu)) dt

= J�(Eu) �

Z Tmax

0
J 0

�(⌘(t, Eu))[V (⌘(t, Eu))] dt

 J�(Eu) � C0
Z Tmax

0
kV (⌘(t, Eu))k2H dt  J�(Eu) < +1, (2.26)

a contradiction. So limt!Tmax k⌘(t, Eu)kH = +1. Similarly as (2.26), we see that
J�(⌘(t, Eu))  J�(Eu) < +1 for all t 2 [0, Tmax), and so

1
4µ1µ2

⇣
µ2k⌘1(t, Eu)k4�1 + µ1k⌘2(t, Eu)k4�2

⌘
 J�(⌘(t, Eu))  J�(Eu) < +1,

which means that k⌘(t, Eu)k2H are uniformly bounded for all [0, Tmax), also a con-
tradiction. Hence Tmax = +1 and (i), (iii) hold.

By (2.16) we have V (�i (Eu)) = �i (V (Eu)). Then by the uniqueness of solutions
of the initial value problem (2.25), it is easy to check that (ii) holds.

Finally, let �0 2 (0, 2�1/4) such that Lemma 2.10 holds for every � < �0. For
any Eu 2M� with J�(Eu)  ck1,k2 + 1 and dist4(Eu,P) = � < �0, since

⌘(t, Eu) = Eu + t
d
dt
⌘(0, Eu) + o(t) = Eu � tV (Eu) + o(t) = (1� t)Eu + t K (Eu) + o(t),

we see from Lemma 2.10 that

dist4(⌘(t, Eu),P) = dist4((1� t)Eu + t K (Eu) + o(t),P)

 (1� t)dist4(Eu,P) + tdist4(K (Eu),P) + o(t)
 (1� t)� + t�/2+ o(t) < �

for t > 0 sufficiently small. Hence (iv) holds.
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Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3.
Step 1. Take any � 2 (0, �0). We prove that (1.2) has a sign-changing solution
(ũ1, ũ2) 2 H such that E�(ũ1, ũ2) = ck1,k2�,� .

Write ck1,k2�,� simply by c in this step. We claim that there exists a sequence
{Eun : n � 1} ⇢M� such that

J�(Eun) ! c, V (Eun) ! 0 as n ! 1, and dist4(Eun,P) � �, 8 n 2 N. (2.27)

If (2.27) does not hold, there exists small " 2 (0, 1) such that

kV (Eu)k2H � ", 8 u 2M�, |J�(Eu) � c|  2", dist4(Eu,P) � �.

Recall the definition of c in (2.22), there exists A 2 0
(k1,k2)
� such that

sup
A\P�

J� < c + ".

Since supA J� < ck1,k2 + 1, so A ⇢M� . Then we can consider B = ⌘(2/C0, A),
where ⌘ is in Lemma 2.13 and C0 is in (2.17). By Lemma 2.7-(ii) and Lemma
2.13-(ii) we have B 2 0(k1,k2). Again by Lemma 2.13-(iii), we have supB J� 

supA J� < ck1,k2 + 1, that is B 2 0
(k1,k2)
� and so supB\P� J� � c. Then by Lemma

2.8 we can take Eu 2 A such that ⌘(2/C0, Eu) 2 B \ P� and

c � "  sup
B\P�

J� � " < J�(⌘(2/C0, Eu)).

Since J�(⌘(t, Eu))  J�(Eu) < ck1,k2 + 1 for any t > 0, Lemma 2.13-(iv) yields
⌘(t, Eu) 62 P� for any t 2 [0, 2/C0]. In particular, Eu 62 P� and so J�(Eu) < c + ".
Then for any t 2 [0, 2/C0], we have

c � " < J�(⌘(2/C0, Eu))  J�(⌘(t, Eu))  J�(Eu) < c + ",

which implies kV (⌘(t, Eu))k2H � " and

d
dt
J�(⌘(t, Eu)) = �J 0

�(⌘(t, Eu))[V (⌘(t, Eu))]  �C0kV (⌘(t, Eu))k2H  �C0"

for every t 2 [0, 2/C0]. Hence,

c � " < J�(⌘(2/C0, Eu))  J�(Eu) �

Z 2/C0

0
C0" dt < c + " � 2" = c � ",

a contradiction. Therefore (2.27) holds, and by Lemma 2.11, up to a subsequence,
there exists Eu = (u1, u2) 2 M� such that Eun ! Eu strongly in H and V (Eu) = 0,
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J�(Eu) = c = ck1,k2�,� . Since dist4(Eun,P) � �, so dist4(Eu,P) � �, which implies that
both u1 and u2 are sign-changing.

Since V (Eu) = 0, so Eu = K (Eu). Combining this with (2.13)-(2.14), we see that
Eu satisfies (

�1u1 + �1u1 + |�|t2(Eu)u22u1 = ↵1µ1t1(Eu)u31,
�1u2 + �2u2 + |�|t1(Eu)u21u2 = ↵2µ2t2(Eu)u32.

(2.28)

Recall that |ui |4 = 1 and ti (Eu) satisfies (2.3). Multiplying (2.28) by ui and in-
tegrating over �, we obtain that ↵1 = ↵2 = 1. Again by (2.28), we see that
(ũ1, ũ2) := (

p
t1(Eu)u1,

p
t2(Eu)u2) is a sign-changing solution of the original prob-

lem (1.2). Moreover, (2.5) and (2.10) yield

E�(ũ1, ũ2) = J�(u1, u2) = ck1,k2�,� .

This completes the proof of Step 1.
Step 2. We prove that (1.2) has infinitely many sign-changing solutions (un,1, un,2)
such that

kun,1kL1(�) + kun,2kL1(�) ! +1 as n ! +1. (2.29)
It suffices to prove that

lim
k1!1

inf
0<�2�5/4

ck1,k2�,� = +1. (2.30)

Assume by contradiction that there exist kn1 ! 1, �n 2 (0, 2�5/4
] and a

positive constant C such that ck
n
1 ,k2
�,�n

 C for every n 2 N. Then there exists An 2

0
(kn1 ,k2)
� such that

sup
An\P�n

J�  C + 1, 8 n 2 N.

Let {'k}k ⇢ H10 (�) be the sequence of eigenfunctions of (�1, H10 (�)) as-
sociated to the eigenvalues {3k}k , then 3k ! +1 as k ! +1. Define maps
gn = (gn1 , g

n
2 ) : An ! Rkn1�1 ⇥ Rk2�1 by

gn1 (Eu) :=

✓Z
�
'1u1, . . . ,

Z
�
'kn1�2u1,

Z
�

|u1|3u1
◆

, (2.31)

gn2 (Eu) :=

✓Z
�
'1u2, . . . ,

Z
�
'k2�2u2,

Z
�

|u2|3u2
◆

.

Then gn 2 F(kn1 ,k2)(An) and so there exists Eun = (un1, u
n
2) 2 An such that gn(Eun) =

0. As in the proof of Lemma 2.8, firstly this means Eun 2 An \P�n and so J�(Eun) 

C + 1 for every n 2 N. Secondly, we have un1 2 span{'1, . . . ,'kn1�2}
? and soR

� |run1|
2

� 3kn1�1
R
� |un1|

2. Recall that

C + 1 � J�(Eun) �

1
4µ1

kun1k
4
�1,
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we see that un1 are uniformly bounded in H
1
0 (�). Up to a subsequence, we may

assume that un1 ! u1 weakly in H10 (�) and strongly in L2(�) \ L4(�). SinceZ
�

|un1|
2



1
3kn1�1

Z
�

|run1|
2

! 0 as n ! +1,

so u1 = 0. On the other hand, Eun 2 An ⇢ M yields |un1|4 = 1 for any n, so
|u1|4 = 1, a contradiction. Therefore (2.30) holds and so (1.2) has infinitely many
sign-changing solutions (un,1, un,2) such that E�(un,1, un,2) ! +1 as n ! 1.
By standard elliptic regularity theory, we see that un,i 2 L1(�). Since

4E�(un,1, un,2) = µ1|un,1|44 + µ2|un,2|44 � 2|�|

Z
�
u2n,1u

2
n,2

 µ1|�|kun,1k4L1(�) + µ2|�|kun,2k4L1(�),

so (2.29) holds. Here |�| denotes the Lebesgue measure of �. This completes the
proof.

Remark 2.14. If A 2 0(k1,k2)
\ 0

(k1,k2)
� , we can not consider the set ⌘(2/C0, A) in

the proof of Theorem 1.3, because ⌘(t, ·) can not be defined on the wholeM for
any t > 0 and so ⌘(2/C0, A) is not well defined. Hence we can not replace 0(k1,k2)

�

by 0(k1,k2) in the definition of ck1,k2�,� . Define

e0(k1,k2)
� :=

⇢
A 2 0(k1,k2)

: sup
A
J� < +1

�
.

Then for any A 2
e0(k1,k2)
� , the set B = ⌘(2/C0, A) is well defined. Take Eu 2 A

such that ⌘(2/C0, Eu) 2 B \ P� as in the proof of Theorem 1.3. Then, since we do
not know whether J�(Eu)  ck1,k2 + 1 holds or not, it seems impossible for us to
prove Eu 62 P� , which plays a crucial role in the proof of Theorem 1.3. Therefore we
can not replace 0(k1,k2)

� bye0(k1,k2)
� in the definition of ck1,k2�,� either.

3. Proof of Theorem 1.6

In this section, let k1 = k2 = 2 and take � > 0 small enough such that c2,2�,� is a
critical value of E� . Write c2,2�,� by c for simplicity. By the proof of Theorem 1.3 we
see that (1.2) has a sign-changing solution EU = (U1,U2) such that

E�( EU) = c  c2,2. (3.1)

We will prove that EU is a least energy sign-changing solution. To do this, let us
define

c̃ := inf
Eu2N�

E�(Eu), (3.2)
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where

N� :=

n
Eu = (u1, u2) 2 H : both u1 and u2 change sign,

E 0

�(Eu)(u
±

1 , 0) = 0, E 0

�(Eu)(0, u
±

2 ) = 0
o
. (3.3)

Then any sign-changing solutions belong to N� . In particular, EU 2 N� and so
c̃  E�( EU) = c  c2,2. To prove the opposite inequality c̃ � c, we need the
following lemma.

Lemma 3.1. Let Eu = (u1, u2) 2 N� , then

E�(u1, u2) = sup
t±1 ,t±2 �0

E�
✓q

t+1 u
+

1 �

q
t�1 u

�

1 ,

q
t+2 u

+

2 �

q
t�2 u

�

2

◆
. (3.4)

Proof. Note that E 0

�(Eu)(u
±

1 , 0) = 0 and E 0

�(Eu)(0, u
±

2 ) = 0 yield

µi |u±

i |
4
4 = ku±

i k
2
�i + |�|

Z
�

|u±

i |
2u2j , i = 1, 2.

Then

2|�|

Z
�

����
q
t+1 u

+

1 �

q
t�1 u

�

1

����
2 ����
q
t+2 u

+

2 �

q
t�2 u

�

2

����
2

= 2|�|t+1 t
+

2

Z
�
(u+

1 )2(u+

2 )2 + 2|�|t+1 t
�

2

Z
�
(u+

1 )2(u�

2 )2

+ 2|�|t�1 t
+

2

Z
�
(u�

1 )2(u+

2 )2 + 2|�|t�1 t
�

2

Z
�
(u�

1 )2(u�

2 )2

 |�|

h
(t+1 )2 + (t+2 )2

i Z
�
(u+

1 )2(u+

2 )2 + |�|

h
(t+1 )2 + (t�2 )2

i Z
�
(u+

1 )2(u�

2 )2

+ |�|

h
(t�1 )2 + (t+2 )2

i Z
�
(u�

1 )2(u+

2 )2 + |�|

h
(t�1 )2 + (t�2 )2

i Z
�
(u�

1 )2(u�

2 )2

= |�|(t+1 )2
Z
�
(u+

1 )2u22 + |�|(t�1 )2
Z
�
(u�

1 )2u22

+ |�|(t+2 )2
Z
�
u21(u

+

2 )2 + |�|(t�2 )2
Z
�
u21(u

�

2 )2

= (t+1 )2µ1|u+

1 |
4
4 + (t�1 )2µ1|u�

1 |
4
4 + (t+2 )2µ2|u+

2 |
4
4 + (t�2 )2µ2|u�

2 |
4
4

� (t+1 )2ku+

1 k
2
�1 � (t�1 )2ku�

1 k
2
�1 � (t+2 )2ku+

2 k
2
�2 � (t�2 )2ku�

2 k
2
�2 .
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Hence for any t±1 , t±2 � 0 we deduce that

E�
✓q

t+1 u
+

1 �

q
t�1 u

�

1 ,

q
t+2 u

+

2 �

q
t�2 u

�

2

◆

=

1
2
t+1 ku+

1 k
2
�1 +

1
2
t�1 ku�

1 k
2
�1 +

1
2
t+2 ku+

2 k
2
�2 +

1
2
t�2 ku�

2 k
2
�2

�

1
4

h
(t+1 )2µ1|u+

1 |
4
4 + (t�1 )2µ1|u�

1 |
4
4 + (t+2 )2µ2|u+

2 |
4
4 + (t�2 )2µ2|u�

2 |
4
4

i

+

1
2
|�|

Z
�

����
q
t+1 u

+

1 �

q
t�1 u

�

1

����
2 ����
q
t+2 u

+

2 �

q
t�2 u

�

2

����
2



2X
i=1

 
t+i
2

�

(t+i )2

4

!
ku+

i k
2
�i +

2X
i=1

 
t�i
2

�

(t�i )2

4

!
ku�

i k
2
�i



1
4

⇣
ku+

1 k
2
�1 + ku�

1 k
2
�1 + ku+

2 k
2
�2 + ku�

2 k
2
�2

⌘
= E�(u1, u2).

Letting (t+1 , t�1 , t+2 , t�2 ) = (1, 1, 1, 1), we completes the proof.

Lemma 3.2. c = c̃ and so EU is a least energy sign-changing solution of (1.2).

Proof. Take any Eu = (u1, u2) 2 N� such that E�(Eu) < c2,2 + 1. We define

A := A1 ⇥ A2; Ai := {u 2 span{u+

i , u�

i } : |u|4 = 1}.

As in the proof of Lemma 2.9, one has A 2 0(2,2). For any Ev = (v1, v2) 2 A, there
exist bi , di 2 R such that vi = biu+

i + diu�

i . Then by (2.10) and Lemma 3.1 we
have

J�(Ev) = sup
t1,t2�0

E�
�p

t1v1,
p

t2v2
�

= sup
t1,t2�0

E�
�p

t1
�
b1u+

1 + d1u�

1
�
,
p

t2
�
b2u+

2 + d2u�

2
��

= sup
t1,t2�0

E�
�p

t1|b1|u+

1 �

p

t1|d1|u�

1 ,
p

t2|b2|u+

2 �

p

t2|d2|u�

2
�

 E�(u1, u2),

that is, supA J�  E�(Eu) < c2,2 + 1 and so A 2 0
(2,2)
� , which implies

c = c2,2�,�  sup
Ev2A\P�

J�(Ev)  E�(Eu), 8 Eu 2 N� with E�(Eu) < c2,2 + 1.

Hence c  c̃, that is, c̃ = c = E�( EU). Since any sign-changing solutions belong to
N� , so EU = (U1,U2) is a least energy sign-changing solution of (1.2).
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To continue our proof, we need a classical result by Miranda.

Lemma 3.3 ([23]). Consider a rectangle R =

Qs
1[ai , bi ] ⇢ Rs and a continuous

function 8 : R ! Rs , 8 = (81, . . . ,8s). If 8i |xi=ai > 0 > 8i |xi=bi holds for
every i , then 8 has a zero inside R.

Lemma 3.4. Both U1 and U2 has exactly two nodal domains.

Proof. Since U1,U2 both change sign, so both U1 and U2 have at least two nodal
domains. Assume by contradiction that U1 has at least three nodal domains �1,�2
and �3. Without loss of generality, we assume that U1 > 0 on �1 [�2. Define

u+

1 := ��1U1, u�

1 := ��2U1, u3 := ��3U1,

where

��(x) :=

(
1, x 2 �,

0, x 2 RN
\�.

Then u±

1 , u3 2 H10 (�) \ {0}. By E 0

�(
EU)(u±

1 , 0) = 0 and E 0

�(
EU)(0,U±

2 ) = 0 we
have

ku±

1 k
2
�1 = µ1|u±

1 |
4
4 � |�|

Z
�
(u±

1 )2U22 , (3.5)

kU±

2 k
2
�2 = µ2|U±

2 |
4
4 � |�|

Z
�
U21 (U

±

2 )2. (3.6)

Let

a :=

1
2
min

(
ku±

1 k
2
�1

µ1|u±

1 |
4
4
,

kU±

2 k
2
�2

µ2|U±

2 |
4
4

)
> 0.

From (3.5)-(3.6) one has a<1/2. For any b>1, we define8=( f +

1 , f �

1 , f +

2 , f �

2 ) :

[a, b]4 ! R4 by

f ±

1 (t+1 , t�1 , t+2 , t�2 ) :=ku±

1 k
2
�1 � t±1 µ1|u±

1 |
4
4 + |�|

Z
�
(u±

1 )2
����
q
t+2 U

+

2 �

q
t�2 U

�

2

����
2
,

f ±

2 (t+1 , t�1 , t+2 , t�2 ) :=kU±

2 k
2
�2 � t±2 µ2|U±

2 |
4
4 + |�|

Z
�

����
q
t+1 u

+

1 �

q
t�1 u

�

1

����
2
(U±

2 )2.

Then for any (t+1 , t�1 , t+2 , t�2 ) 2 [a, b]4,

f ±

1 |t±1 =a � ku±

1 k
2
�1 � aµ1|u±

1 |
4
4 �

1
2
ku±

1 k
2
�1 > 0,

f ±

2 |t±2 =a � kU±

2 k
2
�2 � aµ2|U±

2 |
4
4 �

1
2
kU±

2 k
2
�2 > 0.
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Moreover, by (3.5) we have

f ±

1 |t±1 =b = ku±

1 k
2
�1 � bµ1|u±

1 |
4
4 + |�|

Z
�
(u±

1 )2
����
q
t+2 U

+

2 �

q
t�2 U

�

2

����
2

= ku±

1 k
2
�1 � bµ1|u±

1 |
4
4 + |�|

Z
�
(u±

1 )2
⇣
t+2

�
U+

2
�2

+ t�2
�
U�

2
�2⌘

 ku±

1 k
2
�1 � bµ1|u±

1 |
4
4 + b|�|

Z
�

�
u±

1
�2U22

= (1� b)ku±

1 k
2
�1 < 0. (3.7)

Similarly, by (3.6) we have

f ±

2 |t±2 =b  kU±

2 k
2
�2 � bµ2|U±

2 |
4
4 + b|�|

Z
�
U21

�
U±

2
�2

= (1� b)kU±

2 k
2
�2 < 0.

(3.8)

Then by Lemma 3.3 there exists
�
t̃+1 , t̃�1 , t̃+2 , t̃�2

�
2 [a, b]4 such that

f ±

1
�
t̃+1 , t̃�1 , t̃+2 , t̃�2

�
= 0, f ±

2
�
t̃+1 , t̃�1 , t̃+2 , t̃�2

�
= 0.

This implies that
✓q

t̃+1 u
+

1 �

q
t̃�1 u

�

1 ,

q
t̃+2 U

+

2 �

q
t̃�2 U

�

2

◆
2 N� .

Remark that (3.7) and (3.8) hold for any b > 1, so we obtain that

t̃+1  1, t̃�1  1, t̃+2  1, t̃�2  1.

Hence

c  E�
✓q

t̃+1 u
+

1 �

q
t̃�1 u

�

1 ,

q
t̃+2 U

+

2 �

q
t̃�2 U

�

2

◆

=

1
4

⇣
t̃+1 ku+

1 k
2
�1 + t̃�1 ku�

1 k
2
�1 + t̃+2 kU+

2 k
2
�2 + t̃�2 kU�

2 k
2
�2

⌘

<
1
4

⇣
ku+

1 k
2
�1 + ku�

1 k
2
�1 + ku3k2�1 + kU+

2 k
2
�2 + kU�

2 k
2
�2

⌘



1
4

⇣
kU1k2�1 + kU2k2�2

⌘
= E�(U1,U2) = c,

a contradiction. HenceU1 has exactly two nodal domains. Similarly,U2 has exactly
two nodal domains.

Proof of Theorem 1.6. Theorem 1.6 follows directly from Lemmas 3.2 and 3.4.
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4. Proof of Theorem 1.7

The following arguments are similar to those in Sections 2-3 with some important
modifications. Here, although some definitions are slight different from those in
Section 2, we will use the same notation as in Section 2 for convenience. To ob-
tain semi-nodal solutions (u1, u2) such that u1 changes sign and u2 is positive, we
consider the following functional

eE�(u1, u2) :=

1
2

⇣
ku1k2�1 + ku2k2�2

⌘
�

1
4

⇣
µ1|u1|44 + µ2|u+

2 |
4
4

⌘
+

|�|

2

Z
�
u21u

2
2,

and modify the definition of eH by

eH := {(u1, u2) 2 H : u1 6= 0, u+

2 6= 0}.

Then by similar proofs as in Section 2, we have the following lemmas.

Lemma 4.1. For any (u1, u2) 2
eH , if |�|

2(
R
� u

2
1u
2
2)
2

� µ1µ2|u1|44|u
+

2 |
4
4, then

sup
t1,t2�0

eE�(pt1u1, p

t2u2) = +1.

Lemma 4.2. For any Eu = (u1, u2) 2
eH , if

|�|
2
✓Z

�
u21u

2
2

◆2
< µ1µ2|u1|44|u

+

2 |
4
4, (4.1)

then system (
ku1k2�1 = t1µ1|u1|44 � t2|�|

R
� u

2
1u
2
2

ku2k2�2 = t2µ2|u+

2 |
4
4 � t1|�|

R
� u

2
1u
2
2

(4.2)

has a unique solution8>>>>><
>>>>>:

t1(Eu) =

µ2|u+

2 |
4
4ku1k

2
�1

+ |�|ku2k2�2
R
� u

2
1u
2
2

µ1µ2|u1|44|u
+

2 |
4
4 � |�|

2 �R
� u

2
1u
2
2
�2 > 0

t2(Eu) =

µ1|u1|44ku2k
2
�2

+ |�|ku1k2�1
R
� u

2
1u
2
2

µ1µ2|u1|44|u
+

2 |
4
4 � |�|

2 �R
� u

2
1u
2
2
�2 > 0.

(4.3)

Moreover,

sup
t1,t2�0

eE� �pt1u1, p

t2u2
�

=
eE� ⇣pt1(Eu)u1,pt2(Eu)u2⌘

=

1
4

µ2|u+

2 |
4
4ku1k

4
�1

+ 2|�|ku1k2�1ku2k
2
�2

R
� u

2
1u
2
2 + µ1|u1|44ku2k

4
�2

µ1µ2|u1|44|u
+

2 |
4
4 � |�|

2(
R
� u

2
1u
2
2)
2 (4.4)

and (t1(Eu), t2(Eu)) is the unique maximum point of eE�(pt1u1,pt2u2).
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Now, we modify the definitions ofM⇤,M⇤

� ,M⇤⇤

� ,M andM� by

M⇤

:=

�
Eu 2 H : |u1|4 > 1/2, |u+

2 |4 > 1/2
 
;

M⇤

� :=

�
Eu 2M⇤

: Eu satisfies (4.1)
 
;

M⇤⇤

� :=

(
Eu 2M⇤

: µ1µ2 � |�|
2
✓Z

�
u21u

2
2

◆2
> 0

)
;

M :=

�
Eu 2 H : |u1|4 = 1, |u+

2 |4 = 1
 
, M� :=M \M⇤

�,

(4.5)

and define a new functional J� :M⇤
! (0,+1] as in Section 2 by

J�(Eu) :=

8><
>:
1
4

µ2ku1k4�1+2|�|ku1k2�1ku2k
2
�2

R
� u

2
1u
2
2+µ1ku2k4�2

µ1µ2 � |�|
2(
R
� u

2
1u
2
2)
2 if Eu2M⇤⇤

� ,

+1 if Eu2M⇤
\M⇤⇤

� .

Then J� 2 C(M⇤, (0,+1]), infM⇤ J� � C1 > 0 where C1 independent of � <

0, J� 2 C1(M⇤⇤

� , (0,+1)) and (2.8)-(2.9) hold for any Eu 2 M� and ',  2

H10 (�). Note that Lemmas 4.1 and 4.2 yield

J�(u1, u2) = sup
t1,t2�0

eE� �pt1u1, p

t2u2
�
, 8 (u1, u2) 2M. (4.6)

For any Eu = (u1, u2) 2 M⇤

� , let w̃i 2 H10 (�), i = 1, 2, be the unique solutions of
the following linear problem

(
�1w̃1 + �1w̃1 + |�|t2(Eu)u22w̃1 = µ1t1(Eu)u31, w̃1 2 H10 (�),

�1w̃2 + �2w̃2 + |�|t1(Eu)u21w̃2 = µ2t2(Eu)(u+

2 )3, w̃2 2 H10 (�).
(4.7)

As in Section 2, we define

wi = ↵i w̃i , where ↵1 =

1R
� u

3
1w̃1

> 0, ↵2 =

1R
�(u+

2 )3w̃2
> 0. (4.8)

Then (w1, w2) is the unique solution of the problem
8><
>:

�1w1 + �1w1 + |�|t2(Eu)u22w1 = ↵1µ1t1(Eu)u31, w1 2 H10 (�),

�1w2 + �2w2 + |�|t1(Eu)u21w2 = ↵2µ2t2(Eu)(u+

2 )3, w2 2 H10 (�),R
� u

3
1w1 dx = 1,

R
�(u+

2 )3w2 dx = 1.
(4.9)

As in Section 2, the operator K = (K1, K2) : M⇤

� ! H is defined as K (Eu) :=

Ew = (w1, w2), and similar arguments as Lemma 2.4 yield K 2 C1(M⇤

�, H). Since
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un ! u in L4(�) implies u+

n ! u+ in L4(�), so Lemma 2.5 and its proof with
obvious modifications also hold for this new K defined here. Note that

K (�1(Eu)) = �1(K (Eu)). (4.10)

Remark that (4.10) only holds for �1 and in the sequel we only use �1. Consider

F = {A ⇢M : A is closed and �1(Eu) 2 A 8 Eu 2 A},

and, for each A 2 F and k1 � 2, the class of functions

F(k1,1)(A) =

n
f : A ! Rk1�1

: f continuous and f (�1(Eu)) = � f (Eu)
o

.

Definition 4.3 (Modified vector genus, slightly different from Definition 2.6).
Let A 2 F and take any k1 2 N with k1 � 2. We say that E� (A) � (k1, 1) if for
every f 2 F(k1,1)(A) there exists Eu 2 A such that f (Eu) = 0. We denote

0(k1,1)
:= {A 2 F : E� (A) � (k1, 1)} .

Lemma 4.4. With the previous notations, the following properties hold.

(i) Take A := A1 ⇥ A2 ⇢M and let ⌘ : Sk1�1 ! A1 be a homeomorphism such
that ⌘(�x) = �⌘(x) for every x 2 Sk1�1. Then A 2 0(k1,1).

(ii) We have ⌘(A) 2 0(k1,1) whenever A 2 0(k1,1) and a continuous map ⌘ : A !

M is such that ⌘ � �1 = �1 � ⌘.

Proof. The conclusion (ii) is trivial, we only prove (i). Fix any f 2 F(k1,1)(A) and
take any u2 2 A2. Define ' : Sk1�1 ! Rk1�1 by '(x) := f (⌘(x), u2). Then
' is continuous and '(�x) = �'(x). So by Borsuk-Ulam Theorem, there exists
x0 2 Sk1�1 such that '(x0) = 0, that is f (⌘(x0), u2) = 0. Hence E� (A) � (k1, 1)
and A 2 0(k1,1).

Now we modify the definitions of P and dist4(Eu,P) in (2.19)-(2.20) by

P := P1 [ �P1, dist4(Eu,P) := min
�
dist4(u1, P1), dist4(u1, �P1)

 
. (4.11)

Under this new definition, u1 changes sign if dist4(Eu,P) > 0.

Lemma 4.5. Let k1 � 2. Then for any � < 2�1/4 and any A 2 0(k1,1) there holds
A \ P� 6= ;.

Proof. Fix any A 2 0(k1,1). Recall the map f1 : A ! Rk1�1 defined in (2.21).
Clearly f1 2 F(k1,1)(A), so there exists Eu 2 A such that f1(Eu) = 0, which meansR
�(u+

1 )4 =

R
�(u�

1 )4 = 1/2, that is, dist4(Eu,P) = 2�1/4, so Eu 2 A \ P� for every
� < 2�1/4.

Lemma 4.6. Let k1 � 2. There exist A 2 0(k1,1) and a constant ck1,1 2 N inde-
pendent of � < 0 such that supA J�  ck1,1 for any � < 0.
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Proof. Let Bi and {'ik : 1  k  ki } ⇢ H10 (Bi ) be in the proof of Lemma 2.9.
Define

A1 :=

�
u 2 span{'11, . . . ,'

1
k1} : |u|4 = 1

 
, A2 =

n
C
���'21

��� : C = 1/|'21 |4
o

.

Then by Lemma 4.4-(i) one has A := A1 ⇥ A2 2 0(k1,1). The rest of the proof is
the same as Lemma 2.9.

For every k1 � 2 and 0 < � < 2�1/4, we define

ck1,1�,� := inf
A20

(k1,1)
�

sup
Eu2A\P�

J�(Eu),

where the definition of 0(k1,1)
� is the same as (2.23). Then Lemma 4.6 yields

0
(k1,1)
� 6= ; and so ck1,1�,� is well defined. Moreover, c

k1,1
�,�  ck1,1 for any � < 0 and

� > 0.Under the new definitions (4.11), it is easy to see that Lemma 2.10 also holds
here. Now as in Section 2, we define a map V :M⇤

� ! H by V (Eu) := Eu � K (Eu).
Then Lemma 2.11 also holds here. Recall from (4.5) and (4.9) thatZ

�
(u+

2 )3(u2 � w2) dx = 1� 1 = 0, 8 Eu = (u1, u2) 2M� .

Then by similar arguments, we see that Lemma 2.12 also holds here.

Lemma 4.7. There exists a unique global solution ⌘ = (⌘1, ⌘2) : [0,1)⇥M� !

H for the initial value problem

d
dt
⌘(t, Eu) = �V (⌘(t, Eu)), ⌘(0, Eu) = Eu 2M� . (4.12)

Moreover, conclusions (i), (iii) and (iv) of Lemma 2.13 also hold here, and
⌘(t, �1(Eu)) = �1(⌘(t, Eu)) for any t > 0 and u 2M� .

Proof. Recalling V (Eu) 2 C1(M⇤

�, H), (4.12) has a unique solution ⌘ : [0, Tmax) ⇥

M� ! H , where Tmax > 0 is the maximal time such that ⌘(t, Eu) 2 M⇤

� for all
t 2 [0, Tmax). Fixed any Eu = (u1, u2) 2M� , we deduce from (4.12) that

d
dt

Z
�

�
⌘2(t, Eu)+

�4 dx = �4
Z
�

�
⌘2(t, Eu)+

�3
(⌘2(t, Eu) � K2(⌘(t, Eu))) dx

= 4� 4
Z
�

�
⌘2(t, Eu)+

�4 dx, 8 0 < t < Tmax,

that is
d
dt


e4t

✓Z
�

�
⌘2(t, Eu)+

�4 dx � 1
◆�

= 0.

Since
R
�

�
⌘2(0, Eu)+

�4 dx =

R
�(u+

2 )4dx = 1, so
R
�

�
⌘2(t, Eu)+

�4 dx ⌘ 1 for all
0  t < Tmax. Recalling (4.10), the rest of the proof is similar to Lemma 2.13.
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Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7.
Step 1. Fix any k1 � 2. We prove that ck1,1�,� is a sign-changing critical value of E�
for � > 0 small.

By similar arguments as Step 1 in the proof of Theorem 1.3, for small � > 0,
there exists Eu = (u1, u2) 2M� such that

J�(Eu) = ck1,1�,� , V (Eu) = 0 and dist4(Eu,P) � �.

Then u1 changes sign. Since V (Eu) = 0, so Eu = K (Eu). Combining this with (4.9),
we see that Eu satisfies(

�1u1 + �1u1 + |�|t2(Eu)u22u1 = ↵1µ1t1(Eu)u31,
�1u2 + �2u2 + |�|t1(Eu)u21u2 = ↵2µ2t2(Eu)(u+

2 )3.
(4.13)

Since |u1|4 = 1, |u+

2 |4 = 1 and ti (Eu) satisfies (4.2), so ↵1 = ↵2 = 1. Multiply
the second equation of (4.13) by u�

2 and integrate over �, we get ku�

2 k
2
�2

= 0,
so u2 � 0. By the strong maximum principle, u2 > 0 in �. Hence (ũ1, ũ2) :=

(
p
t1(Eu)u1,

p
t2(Eu)u2) is a semi-nodal solution of the original problem (1.2) with

ũ1 sign-changing and ũ2 positive. Moreover, (4.4) and (4.6) yield

E�(ũ1, ũ2) =
eE�(ũ1, ũ2) = J�(u1, u2) = ck1,1�,�  ck1,1.

Step 2. We prove that (1.2) has infinitely many semi-nodal solutions.
Assume by contradiction that there exist kn1 ! 1, �n 2 (0, 2�5/4

] and a
positive constant C such that ck

n
1 ,1
�,�n

 C for every n 2 N. Then there exists An 2

0
(kn1 ,1)
� such that supAn\P�n J�  C + 1 for any n 2 N. Let {'k}k ⇢ H10 (�) be as
in the proof of Theorem 1.3 and recall the map gn1 : An ! Rkn1�1 defined in (2.31).
Then gn1 2 F(kn1 ,1)(An). By the same arguments as in the proof of Theorem 1.3,
we get a contradiction. Therefore, (1.2) has infinitely many semi-nodal solutions
{Eun = (un,1, un,2)}n�2 which satisfy

(1) un,1 changes sign and un,2 is positive;
(2) E�(un,1, un,2) = cn,1�,�n

 cn,1 for some 0 < �n < 2�1/4. Moreover,

kun,1kL1(�) + kun,2kL1(�) ! +1 as n ! +1.

Step 3. We prove that un,1 has at most n nodal domains.
Assume that un,1 has at least n + 1 nodal domains �k, 1  k  n + 1, then

un,1��k 2 H10 (�). For 1  k  n, we see from E 0

�(Eun)(un,1��k , 0) = 0 that

µ1|un,1��k |
4
4 = kun,1��kk

2
�1 + |�|

Z
�

|un,1��k |
2u2n,2, k = 1, . . . , n. (4.14)
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Similarly E 0

�(Eun)(0, un,2) = 0 yields

µ2|un,2|44 = kun,2k2�2 + |�|

Z
�
u2n,1u

2
n,2.

Then, similarly as Lemma 3.1 we have

2|�|

Z
�

���Xn
k=1

p

tkun,1��k
���2 |

p

sun,2|2



nX
k=1

|�|t2k
Z
�

|un,1��k |
2u2n,2 + |�|s2

Z
�
u2n,1u

2
n,2



nX
k=1

t2k
⇣
µ1|un,1��k |

4
4 � kun,1��kk

2
�1

⌘
+ s2

⇣
µn,2|un,2|44 � kun,2k2�2

⌘
.

Recall that un,2 is positive, so for t1, . . . , tn, s � 0,

eE�
 

nX
k=1

p

tkun,1��k ,
p

sun,2

!

=

nX
k=1

 
tk
2

kun,1��kk
2
�1 �

t2k
4

µ1|un,1��k |
4
4

!

+

 
s
2
kun,2k2�2 �

s2

4
µ2|un,2|44

!

+

|�|

2

Z
�

���Xn
k=1

p

tkun,1��k
���2 |

p

sun,2|2

=

nX
k=1

 
tk
2

�

t2k
4

!
kun,1��kk

2
�1 +

 
s
2

�

s2

4

!
kun,2k2�2



1
4

nX
k=1

kun,1��kk
2
�1 +

1
4
kun,2k2�2 .

(4.15)

Now we define

A := A1 ⇥

�
Cun,2 : C = 1/|un,2|4

 
;

A1 :=

�
u 2 span{un,1��1, . . . , un,1��n } : |u|4 = 1

 
.

Then Lemma 4.4-(i) yields A 2 0(n,1), and similarly as Lemma 3.2, we deduce
from (4.6) and (4.15) that

sup
A
J� 

1
4

nX
k=1

kun,1��kk
2
�1 +

1
4
kun,2k2�2 <

1
4

⇣
kun,1k2�1 + kun,2k2�2

⌘

= E�(Eun) = cn,1�,�n
 cn,1,
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and so A 2 0
(n,1)
� , which implies

cn,1�,�n
 sup

A\P�n
J� 

1
4

nX
k=1

kun,1��kk
2
�1 +

1
4
kun,2k2�2 < E�(Eun), (4.16)

a contradiction. Hence un,1 has at most n nodal domains. In particular, u2,1 has
exactly two nodal domains.

Step 4. We prove that (u2,1, u2,2) has the least energy among all nontrivial solutions
whose first component changes sign.

By similar arguments as in Section 3, we can prove that

c2,1�,�2
= inf

Eu2N2,1,�
E�(Eu) = inf

Eu2N2,1,�
eE�(Eu), (4.17)

where

N2,1,� :=

n
Eu = (u1, u2) 2 H : u1 changes sign and u2 � 0, u2 6= 0,

E 0

�(Eu)(u
±

1 , 0) = 0, E 0

�(Eu)(0, u2) = 0
o
.

Let Eu = (u1, u2) be any a nontrivial solution of (1.2) with u1 sign-changing. With-
out loss of generality we assume u+

2 6= 0. Then by a similar argument as Lemma
3.4, there exists t±1 , t+2 2 (0, 1] such that

✓q
t+1 u

+

1 �

q
t�1 u

�

1 ,

q
t+2 u

+

2

◆
2 N2,1,�,

and so

E�(u2,1, u2,2) = c2,1�,�2
 E

✓q
t+1 u

+

1 �

q
t�1 u

�

1 ,

q
t+2 u

+

2

◆



1
4
(ku1k2�1 + ku+

2 k
2
�2)  E�(Eu).

Hence (u2,1, u2,2) has the least energy among all nontrivial solutions whose first
component changes sign. This completes the proof.

5. Asymptotic behaviors and phase separation

In this section, we study the limit behavior of solutions obtained above as � !

�1. Fix any k1, k2 2 N such that k1 � 2 and k2 � 1. Then by the arguments
in above sections we know that, for any � < 0, there exists �� 2 (0, 2�1/4) and
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Eu� = (u�,1, u�,2) 2 H such that Eu� is a nontrivial solution (either sign-changing
or semi-nodal) of (1.2) with

E�(Eu�) = ck1,k2�,��
 ck1,k2 < +1.

Here ck1,k2 is seen in Lemmas 2.9 and 4.6. Recall that

E�(Eu�) =

1
4

⇣
ku�,1k

2
�1 + ku�,2k

2
�2

⌘
,

we see that Eu� are uniformly bounded in H . On the other hand, by Kato’s inequality
(see [15]) we have

1|u�,i | � 1u�,i ·

u�,i

|u�,i |
in (H10 (�))0.

Recall that � < 0, then it is easy to check that

�1|u�,i | + �i |u�,i |  µi |u�,i |
3, |u�,i | 2 H10 (�).

Hence by standard Moser iteration, we see that u�,i are uniformly bounded in
L1(�) for any � < 0 and i = 1, 2. Moreover, by elliptic regularity theory it
holds that u�,i 2 C(�) \ C2(�). The main result of this section is following.

Theorem 5.1. There exists a vector Lipschitz function Eu1 = (u1,1, u1,2) 2
eH

such that, up to a subsequence,

(1) u�,i ! u1,i in H10 (�) \ C0,↵(�) for every 0 < ↵ < 1 as � ! �1;
(2) �1u1,i + �i u1,i = µi u3

1,i in the open set {u1,i 6= 0};
(3) u1,1 · u1,2 ⌘ 0 and |�|

R
� u

2
�,1u

2
�,2 dx ! 0 as � ! �1;

(4) if k1, k2 � 2, then u1,i changes sign for i = 1, 2. Moreover, if k1 = k2 = 2,
then {u1,i 6= 0} has exactly two connected components, and u1,i is a least
energy sign-changing solution of

�1u + �i u = µi u3, u 2 H10 ({u1,i 6= 0}) (5.1)

for i = 1, 2;
(5) if k1 � 2 and k2 = 1, then u1,1 changes sign, {u1,1 6= 0} has at most

k1 connected components and u1,2 is positive in {u1,2 6= 0}. Moreover, if
(k1, k2) = (2, 1), then {u1,1 6= 0} has exactly two connected components,
u1,1 is a least energy sign-changing solution of (5.1) for i = 1, {u1,2 6= 0}
is connected, and u1,2 is a least energy solution of (5.1) for i = 2.

Proof. Since u�,i are uniformly bounded in L1(�) for any � < 0 and i = 1, 2,
then (1) � (3) follows from [26, Theorems 1.1 and 1.2]. Remark that, although
in [26] the results are stated for nonnegative solutions, they also hold for solutions
with no sign-restrictions; all arguments there can be adapted with little extra effort
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to this more general case, working with the positive and negative parts of a solution.
This fact was pointed out in the proof of [29, Theorem 4.3].

It remains to prove (4) � (5). First we consider the case k1, k2 � 2. Since
u�,i 2 C(�) \ C2(�) and u�,i changes sign, so there exists x±

�,i 2 � such that

u�,i (x+

�,i ) = max
x2�

u�,i (x) > 0 and u�,i (x�

�,i ) = min
x2�

u�,i (x) < 0, i = 1, 2.

Then 1u�,i (x+

�,i )  0. Since Eu� satisfies (1.2) and � < 0, so �i u�,i (x+

�,i ) 

µi u3�,i (x
+

�,i ), which implies

u�,i (x+

�,i ) = max
x2�

u�,i (x) �

p
�i/µi , 8� < 0.

Similarly,
u�,i (x�

�,i ) = min
x2�

u�,i (x)  �

p
�i/µi , 8� < 0.

Combining these with (1), we see that u1,i changes sign, and so {u1,i 6= 0} has at
least two connected components.

Now we let (k1, k2) = (2, 2). Assume by contradiction that {u1,1 6= 0} has
at least three connected components �1,�2 and �3. Without loss of generality, we
assume that u1,1 > 0 on �1 [�2. As in the proof of Lemma 3.4, we define u+

1 :=

��1u1,1, u�

1 := ��2u1,1 and u3 := ��3u1,1, then ku1,1k
2
�1

> ku+

1 k
2
�1

+ku�

1 k
2
�1
.

By Theorem 5.1-(2) and (3.3) it is easy to see that (u+

1 � u�

1 , u1,2) 2 N� for all
� < 0, so

1
4

⇣
ku1,1k

2
�1 + ku1,2k

2
�2

⌘
= lim
�!�1

1
4

⇣
ku�,1k

2
�1 + ku�,2k

2
�2

⌘

= lim
�!�1

E�(u�,1, u�,2) = lim
�!�1

c2,2�,��

 lim
�!�1

E�(u+

1 � u�

1 , u1,2)

=

1
4

⇣
ku+

1 k
2
�1 + ku�

1 k
2
�1 + ku1,2k

2
�2

⌘
,

(5.2)

a contradiction. Hence {u1,i 6= 0} has exactly two connected components. If
ui 2 H10 ({u1,i 6= 0}) is any sign-changing solutions of (5.1), then (u1, u1,2),
(u1,1, u2) 2 N� for all � < 0, so similarly as (5.2) we see that ku1,ik

2
�i

 kuik2�i ,
that is, u1,i has the least energy among all sign-changing solutions of (5.1). Hence
u1,i is a least energy sign-changing solution of (5.1), and (4) holds.

Now we consider k1 � 2 and k2 = 1. Then u1,1 changes sign as above. Since
u�,2 is positive, so u1,2 > 0 in {u1,2 6= 0}. Define

Nk1,1,� :=

n
Eu = (u1, u2) 2 H : u1 changes sign and has at least k1 nodal

domains �k(1  k  k1), u2 6= 0, u2 � 0,

E 0

�(Eu)(u1��k , 0) = 0, 8 1  k  k1, E 0

�(Eu)(0, u2) = 0
o
.
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Then the same arguments as (4.14)-(4.16) yield that

ck1,1�,��
 inf

Eu2Nk1,1,�
E�(Eu).

If {u1,1 6= 0} has at least k1 + 1 connected components �k(1  k  k1 + 1), then
✓
u1,1�

[

k1
k=1�k

, u1,2

◆
2 Nk1,1,� 8 � < 0.

Similarly as (5.2) we get a contradiction. Hence, {u1,1 6= 0} has at most k1 con-
nected components.

If (k1, k2) = (2, 1), then {u1,1 6= 0} has exactly two connected compo-
nents. If {u1,2 6= 0} has at least two connected components �1 and �2, then
(u1,1, u1,2��1) 2 N2,1,� for all � < 0, and similarly as (5.2) we get a contradic-
tion. Hence {u1,2 6= 0} is connected. Finally, similarly as above, we can prove that
u1,1 is a least energy sign-changing solution of (5.1) for i = 1, and u1,2 is a least
energy solution of (5.1) for i = 2. This completes the proof.

6. The entire space case

In this final section, we extend some results above to the case where� = RN . That
is, we consider the following elliptic system in the entire space

8><
>:

�1u1 + �1u1 = µ1u31 + �u1u22, x 2 RN ,

�1u2 + �2u2 = µ2u32 + �u21u2, x 2 RN ,

u1(x), u2(x) ! 0 as |x | ! +1.

(6.1)

By giving some modifications to arguments in Sections 2-4 and introducing some
different ideas and techniques, we can prove the following results.

Theorem 6.1. Let N = 2, 3, �1, �2, µ1, µ2 > 0 and � < 0. Then (6.1) has
infinitely many radially symmetric sign-changing solutions, including a special
(u1, u2) such that both u1 and u2 have exactly two nodal domains and (u1, u2)
has the least energy among all radially symmetric sign-changing solutions.

Theorem 6.2. Let assumptions in Theorem 6.1 hold. Then (6.1) has infinitely many
radially symmetric semi-nodal solutions {(un,1, un,2)}n�2 such that

(1) un,1 changes sign and un,2 is positive;
(2) un,1 has at most n nodal domains. In particular, u2,1 has exactly two nodal

domains, and (u2,1, u2,2) has the least energy among all nontrivial radially
symmetric solutions whose first component changes sign.
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Remark 6.3. Let assumptions in Theorem 6.1 hold. Lin and Wei [16] proved that
(6.1) has no least energy solutions. Later, Sirakov [27] proved that (6.1) has a
radially symmetric positive solution which has the least energy among all nontrivial
radially symmetric solutions. Combining these with the introduction in Section 1,
our results here are completely new.

Define Hr := H1r (RN )⇥H1r (RN ) as a subspace of H := H1(RN )⇥H1(RN )

with norm k(u1, u2)k2H = ku1k2�1 + ku2k2�2 , where

H1r (RN ) :=

n
u 2 H1(RN ) : u is radially symmetric

o
,

kuk2�i :=

Z
RN

(|ru|2 + �i u2) dx .

Since the embedding H1r (RN ) ,! L4(RN ) is compact, by replacing H10 (�), H
with H1r (RN ), Hr respectively in all definitions appeared in Sections 2-4 and using
the same notations, it is easy to see that all arguments (with trivial modifications) in
Sections 2-4 hold for system (6.1) except those in Step 2 of proving Theorems 1.3
and 1.7. Hence we only need to reprove Step 2 in the proofs of Theorems 1.3 and
1.7. The following ideas and arguments are quite different from those in Step 2 of
proving Theorems 1.3 and 1.7, and also can be used in the bounded domain case.

Proof of Theorem 6.1. Assume by contradiction that there exists n0 2 N such that
(6.1) has only n0 radially symmetric sign-changing solutions. Fix any k2 � 2, we
define

l := max
n
ck1,k2 : 2  k1  n0 + 2

o
+ 1.

For any k1 2 [2, n0 + 2] and 0 < � < 2�1/4, similarly as (2.22)-(2.23) we define

ck1,k2�,l,� := inf
A20

(k1,k2)
�,l

sup
Eu2A\P�

J�(Eu), (6.2)

where
0

(k1,k2)
�,l :=

⇢
A 2 0(k1,k2)

: sup
A
J� < l

�
. (6.3)

Lemma 2.9 yields that 0(k1,k2)
�,l 6= ;, ck1,k2�,l,� is well defined and c

k1,k2
�,l,�  ck1,k2 for

each k1 2 [2, n0 + 2]. Noting that 0(k1+1,k2)
�,l ⇢ 0

(k1,k2)
�,l , we have

c2,k2�,l,�  c3,k2�,l,�  . . .  cn0+1,k2�,l,�  cn0+2,k2�,l,� . (6.4)

By repeating the arguments in Section 2 we can prove that there exists �l 2(0,2�1/4)
such that, for any � 2 (0, �l),

⌘(t, Eu) 2 P� whenever u 2M� \ P�, J�(u)  l and t > 0, (6.5)
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and so ck1,k2�,l,� is a radially symmetric sign-changing critical value of E� for each
k1 2 [2, n0 + 2] (that is, E� has a radially symmetric sign-changing critical point
Eu with E�(Eu) = ck1,k2�,l,� ). Fix any a � 2 (0, �l). By (6.4) and our assumption that
(6.1) has only n0 radially symmetric sign-changing solutions, there exists some
2  N1  n0 + 1 such that

cN1,k2�,l,� = cN1+1,k2�,l,� =: c̄. (6.6)

Define

K := {Eu 2M : Eu is sign-changing, J�(Eu) = c̄, V (Eu) = 0}. (6.7)

ThenK is finite. By (2.16) one has that �i (Eu) 2 K if Eu 2 K, that is,K ⇢ F . Hence
there exist k  n0 and {Eum : 1  m  k} ⇢ K such that

K = {Eum, �1(Eum), �2(Eum), �Eum : 1  m  k} .

Then there exist open neighborhoods O
Eum of Eum in Hr , such that any two of

O
Eum1 , �1(OEum2 ), �2(OEum3 ) and �O

Eum4 , where 1  m1,m2,m3,m4  k, are dis-
jointed and

K ⇢ O :=

k[
m=1

O
Eum [ �1(OEum ) [ �2(OEum ) [ �O

Eum .

Define a continuous map f̃ : O ! R \ {0} by

f̃ (Eu) :=

(
1, if Eu 2

Sk
m=1 OEum [ �2(OEum ),

�1, if Eu 2

Sk
m=1 �1(OEum ) [ �O

Eum .

Then f̃ (�1(Eu)) = � f̃ (Eu) and f̃ (�2(Eu)) = f̃ (Eu). By Tietze’s extension theorem,
there exists f 2 C(Hr , R) such that f |O ⌘ f̃ . Define

F(Eu) :=

f (Eu) + f (�2(Eu)) � f (�1(Eu)) � f (�Eu)
4

,

then F |O ⌘ f̃ , F(�1(Eu)) = �F(Eu) and F(�2(Eu)) = F(Eu). Define

K⌧ :=

⇢
Eu 2M : inf

Ev2K
kEu � EvkH < ⌧

�
.

Then we can take small ⌧ > 0 such that K2⌧ ⇢ O . Recalling V (Eu) = 0 in K and
K finite, there exists eC > 0 such that

kV (Eu)kH 
eC, 8 Eu 2 K2⌧ . (6.8)
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For any Eu 2 K2⌧ , we have F(Eu) = f̃ (Eu) 6= 0. That is F(K2⌧ ) ⇢ R \ {0}. By (6.7)
and Lemma 2.11 there exists small " 2 (0, 1) such that

kV (Eu)k2H � ", 8 u 2M� \ (K⌧ [ P�) satisfying |J�(Eu) � c̄|  2". (6.9)

Recall C0 in (2.17), we let

↵ :=

1
2
min

⇢
1,
⌧C0
2eC

�
. (6.10)

By (6.2)-(6.3) and (6.6) we take A 2 0
(N1+1,k2)
�,l such that

sup
A\P�

J� < cN1+1,k2�,l,� + ↵" = c̄ + ↵". (6.11)

Let B := A \ K2⌧ , then it is easy to check that B ⇢ F . We claim that E� (B) �

(N1, k2). If not, there exists g̃ 2 F(N1,k2)(B) such that g̃(Eu) 6= 0 for any Eu 2 B.
By Tietze’s extension theorem, there exists ḡ = (ḡ1, ḡ2) 2 C(Hr , RN1�1

⇥ Rk2�1)
such that ḡ|B ⌘ g̃. Define g = (g1, g2) 2 C(Hr , RN1�1

⇥ Rk2�1) by

g1(Eu) :=

ḡ1(Eu) + ḡ1(�2(Eu)) � ḡ1(�1(Eu)) � ḡ1(�Eu)
4

,

g2(Eu) :=

ḡ2(Eu) + ḡ2(�1(Eu)) � ḡ2(�2(Eu)) � ḡ2(�Eu)
4

,

then g|B ⌘ g̃, gi (�i (Eu)) = �gi (Eu) and gi (� j (Eu)) = gi (Eu) for j 6= i . Finally we
define G = (G1,G2) 2 C(A, RN1+1�1

⇥ Rk2�1) by

G1(Eu) := (F(Eu), g1(Eu)) 2 RN1+1�1, G2(Eu) := g2(Eu) 2 Rk2�1.

By our constructions of F and g, we have G 2 F(N1+1,k2)(A). Since E� (A) �

(N1 + 1, k2), so G(Eu) = 0 for some Eu 2 A. If Eu 2 K2⌧ , then F(Eu) 6= 0, a
contradiction. So Eu 2 A\K2⌧ = B, and then g(Eu) = g̃(Eu) 6= 0, also a contradiction.
Hence E� (B) � (N1, k2). Note that supB J�  supA J� < l, we see that B ⇢ M�

and B 2 0
(N1,k2)
�,l . Then we can consider D := ⌘(⌧/(2eC), B), where ⌘ is in Lemma

2.13 and eC is in (6.8). By Lemma 2.7-(ii) and Lemma 2.13 we have D 2 0(N1,k2)

and supD J�  supB J� < l, that is D 2 0
(N1,k2)
�,l . Then we see from (6.2)-(6.3)

and (6.6) that
sup
D\P�

J� � cN1,k2�,l,� = c̄.

By Lemma 2.8 we can take Eu 2 B such that ⌘(⌧/(2eC), Eu) 2 D \ P� and

c̄ � ↵"  sup
D\P�

J� � ↵" < J�(⌘(⌧/(2eC), Eu)).
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Since J�(⌘(t, Eu))  J�(Eu) < l for any t � 0, (6.5) yields ⌘(t, Eu) 62 P� for any
t 2 [0, ⌧/(2eC)]. In particular, Eu 62 P� and so (6.11) yields J�(Eu) < c̄ + ↵". Then
for any t 2 [0, ⌧/(2eC)], we have

c̄ � ↵" < J�(⌘(⌧/(2eC), Eu))  J�(⌘(t, Eu))  J�(Eu) < c̄ + ↵".

Recall that Eu 2 B = A \K2⌧ . If there exists T 2 (0, ⌧/(2eC)) such that ⌘(T, Eu) 2

K⌧ , then there exist 0  t1 < t2  T such that ⌘(t1, Eu) 2 @K2⌧ , ⌘(t2, Eu) 2 @K⌧
and ⌘(t, Eu) 2 K2⌧ \K⌧ for any t 2 (t1, t2). So we see from (6.8) that

⌧  k⌘(t1, Eu) � ⌘(t2, Eu)kH =

����
Z t2

t1
V (⌘(t, Eu)) dt

����
H

 2eC(t2 � t1),

that is, ⌧/(2eC)  t2 � t1  T , a contradiction. Hence ⌘(t, Eu) 62 K⌧ for any
t 2 (0, ⌧/(2eC)). Then as Step 1 in the proof of Theorem 1.3, we deduce from (6.9)
and (6.10) that

c̄ � ↵"< J�(⌘(⌧/(2eC), Eu)) J�(Eu) �

Z ⌧/(2eC)

0
C0" dt < c̄ + ↵" � 2↵"= c̄ � ↵",

a contradiction. Hence (6.1) has infinite many radially symmetric sign-changing
solutions. This completes the proof.

Proof of Theorem 6.2. It suffices to prove that (6.1) has infinitely many semi-nodal
solutions. This argument is similar as above, we omit the details.
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