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Extremal holomorphic maps in special classes of domains

 LUKASZ KOSIŃSKI AND W LODZIMIERZ ZWONEK

Abstract. In this paper we discuss three different notions of extremal holomor-
phic mappings: weak m-extremals, m-extremals and m-complex geodesics. We
discuss relations between them in the general case and in the special cases of the
unit ball, the classical Cartan domains, the symmetrised bidisc and the tetrablock.
In particular, we show that weak 3-extremal maps in the symmetrised bidisc are
rational, thus giving a (partial) answer to a problem posed in a recent paper by
J. Agler, Z. Lykova and N. J. Young ([4]).

Mathematics Subject Classification (2010): 32F45 (primary); 30E05, 93B50
(secondary).

1. Introduction

Throughout the paper D will always denote the unit disc in the complex plane.
Let D be a domain in Cn . Let m � 2 and let �1, . . . , �m 2 D be distinct

(distinct means in the paper pairwise distinct) and z1, . . . , zm 2 D. Following [4]
we say that the interpolation data

� j 7! z j , D ! D, for j = 1, . . . ,m, (1.1)

are extremally solvable if there is a map h 2 O(D, D) such that h(� j ) = z j , for
j = 1, . . . ,m, and there is no f 2 O(D, D) (i.e. f is holomorphic on some neigh-
bourhood of D and its image lies in D) such that f (� j ) = z j , for j = 1, . . . ,m.

We say that h 2 O(D, D) is m-extremal if for all choices of m distinct points
�1, . . . , �m 2 D the interpolation data

� j 7! h(� j ), D ! D, for j = 1, . . . ,m, (1.2)

are extremally solvable. Note that if h is m-extremal then it is (m + 1)-extremal.
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Generally, the fact that for a fixed m the interpolation data are extremally solv-
able for some �1, . . . , �m does not imply that the interpolation data are extremally
solvable for all other m points µ1, . . . , µm . This is already not the case generally
for m = 2. In other words extremals with respect to the Lempert function for some
pair of points need not be extremal for the Lempert function for any pair of points
(see Section 5 for a definition of the Lempert function). In particular, there are do-
mains, e.g. the annulus in the complex plane, possessing no 2-extremals. For basic
properties of the Lempert function (and other holomorphically invariant functions)
that we shall use we refer the Reader to [14].

Therefore, it is natural to introduce a weaker notion of m-extremal map which
is equivalent to the notion of extremal in the sense of Lempert when m = 2.
This may be done as follows: if an analytic disc f : D ! D and fixed points
�1, . . . , �m 2 D are such that the problem � j 7! f (� j ) is extremally solvable, then
we shall say that f is a weak m-extremal with respect to �1, . . . , �m . Naturally, f
will be said to be a weak m-extremal if it is a weak extremal with respect to some
m distinct points in the unit disc.

Of course m-extremals are weak m-extremals for any system of m distinct
points �1, . . . , �m 2 D. In general, the class of weak m-extremals is strictly bigger
than the class of m-extremals (as already mentioned even if m = 2 with D being
for instance the annulus). Similar problems concerning some kind of m extremality
in several variable context were considered for instance in [7, 10].

Certainly these two notions coincide in the case of domains for which the as-
sertion of the Lempert theorem holds. Recall this theorem in the form it would be
convenient for us (see [17] and [18]).

Theorem 1.1. Let D be a bounded convex or smooth strongly linearly convex do-
main in Cn . Then for any w, z 2 D, w 6= z there are a holomorphic mapping
f : D ! D such that w and z lie in the image of f and a holomorphic function
F : D ! D such that F � f is the identity idD.

In fact the function f in the above result is extremal for the Lempert function
of w and z whereas F is extremal for the Carathéodory distance of w and z. Let us
call the function F a left inverse of f . Recall also that the Lempert theorem holds
for the symmetrised bidisc and the tetrablock (see [6, 9] and [11]).

Note also that (weak)m-extremals (for �1, . . . , �m) are (weak) (m+1)-extrem-
als (for �1, . . . , �m+1 with arbitrarily chosen �m+1 2 D distinct from �1, . . . , �m).

The existence of left inverses in the Lempert Theorem suggests another notion
of extremal mappings. Namely, we generalise the notion of a complex geodesic
(see e.g. [14, Section 8.2]) as follows.

Let f : D ! D be a holomorphic mapping, m � 2. We say that f is an
m-complex geodesic if there is a function F 2 O(D, D) such that F � f is a non-
constant Blaschke product of degree at most m� 1. Note that 2-complex geodesics
are simply complex geodesics and any m-complex geodesic is an (m + 1)-complex
geodesic.

The aim of the paper is to try to understand the relations between the notions
of m-extremals, weak m-extremals and m-complex geodesics in special classes of
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domains (convex ones, classical Cartan domains, the unit ball, symmetrised bidisc
and tetrablock).

We also see that in some class of domains (containing for example classical
Cartan domains) the notions of weak m-extremals and m-extremals are equiva-
lent (Proposition 2.7). Clearly, in the polydisc all m-extremals are m-complex
geodesics. This is not the case for the Euclidean unit ball. We show that there are
4-extremals in the unit ball which are not 4-complex geodesics (Proposition 3.2).

Finally we present a new method for describing (weak) m-extremals in the
symmetrised bidisc. In our approach the crucial role is played by the geometry of
the tetrablock - the domain that, similarly to the symmetrised bidisc, arises natu-
rally in the control-engineering problems. Then some arguments allow us to reduce
the problem to already investigated classical domains. The results giving the de-
scription of weak m-extremals are given in Theorem 4.6 (arbitrary m) and in Theo-
rems 4.8 and 4.10 (m = 3).

In particular, we show that all weak 3-extremals in the symmetrised bidisc
are rational and map T into the Shilov boundary . As a corollary we get that all 3-
extremals in the symmetrised bidisc are rational of degree at most 4 (Theorem 4.11)
which gives answer to a problem posed in [4] in case m = 3 (this case was also
studied in [4]).

Finally, Proposition 5.2 shows that the identity is m-extremal (in a more gen-
eral sense – see Section 5) which answers a problem also posed in [4].

Here is some notation: for ↵ 2 D let m↵(�) =
↵��
1�↵̄� , � 2 D, be a Blaschke

factor. Moreover, T is the unit circle in the complex plane and Ck⇥l stands for
the space of k ⇥ l complex matrices. We shall denote by Aut(D) the group of
holomorphic automorphisms of a domain D of Cn . Moreover, @s D denotes the
Shilov boundary with respect to the algebraO(D) \ C(D) of a bounded domain D
of Cn .

ACKNOWLEDGEMENTS. The authors would like to thank the anonymous referee
for many remarks which improved the presentation of the paper.

2. Results on (weak) m-extremals and m-complex geodesics.
General case and classical Cartan domains

We start with some basic properties and relations between different notions of ex-
tremal mappings.

Proposition 2.1. Let f : D ! D be a holomorphic mapping. Assume that F :

D ! D is such that F � f is a Blaschke product of degree m. Then f is (m + 1)-
extremal.

Proof. Recall that it is well-known that the Blaschke product F � f : D ! D is
(m + 1)-extremal (see e.g. [19]). Suppose that f is not an (m + 1)-extremal. Then
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there is a holomorphic mapping g : D ! D with g(D) ⇢⇢ D such that for some
m + 1 distinct points �1, . . . , �m+1 we have g(� j ) = f (� j ), for j = 1, . . . ,m + 1.
Then (F � g)(� j ) = (F � f )(� j ), for j = 1, . . . ,m + 1 and (F � g)(D) ⇢⇢ D
which contradicts the (m + 1)-extremality of F � f .

Corollary 2.2. Let f 2 O(D, D), F 2 O(D, D). Assume that the function B :=

F � f 2 O(D, D) is a Blaschke product of degree m and B1 is a Blaschke product
of degree k. Then the function D 3 � 7! f (B1(�)) 2 D is an (mk + 1)-extremal.

The three notions introduced in the preliminary section have clear relations: an
m-complex geodesic is anm-extremal and anm-extremal is a weakm-extremal (for
any system of m pairwise points). Recall that a weak m-extremal need not be an
m-extremal. Already in the case m = 2 the example of the holomorphic covering
of the annulus is a weak 2-extremal for (some) pairs of points and yet it is not 2-
extremal for all pairs of points - it follows from the fact that the Lempert function
of two different points from the annulus is equal to the Poincaré distance of some
two points from the unit disc which belong to the preimages of the given points
of a holomorphic covering of the annulus - consult [14, Chapter V] for details.
Recall also that it follows from the celebrated Lempert theorem that all weak 2-
extremals are 2-complex geodesics. In our paper we get some results on the lacking
implications in special classes of domains.

We start with the analysis of properties of extremals in classical domains. We
shall focus on classical Cartan domains of the first, second and third type denoted
by Rn,m

I and Rn
I I and Rn

I I I , respectively. In particular, Bn = R1,n
I is the unit

Euclidean ball. Note that results obtained here work for other classes of domains,
not necessarily symmetric, like the Lie ball. In this section we shall use the letter
R to denote any of these domains or their Cartesian products. We just demand R
to be a bounded, convex and balanced domain in Cn whose group of holomorphic
automorphisms acts transitively.

Since classical domains of C2⇥2 play a crucial role in the paper, we putRI :=

R2,2
I and RI I := R2

I I . For definitions and basic properties of the Cartan domains
that we shall use in the paper we refer the Reader to [12] and [13].
Remark 2.3. Assume that D is a bounded balanced pseudoconvex domain and as-
sume that f : D ! D is a weak m-extremal for �1, . . . , �m such that f (0) = 0.
We may write f (�) = � (�), where � 2 D for some analytic disc  . Let µD
denote the Minkowski functional of D. Pseudoconvexity of the domain D guaran-
tees that logµD is plurisubharmonic (see e.g. [15, Proposition 2.2.22]). Note that
logµD � f < 0 on D, whence lim sup

|�|!1 logµD( (�))  0. As a consequence
of the maximum principle for subharmonic functions we get that logµD �  0 on
D. In particular, the image of  lies in D̄. The maximum principle for subharmonic
functions implies that if logµD( (0)) = 1, then logµD � ⌘ 1 and consequently
the image of  lies entirely in @D. Otherwise, µD � < 1, whence is an analytic
disc in D.

If the first possibility holds, i.e. µD �  ⌘ 1 then µD( f (�)) = |�|, which
easily implies that f is a weak 2-extremal for 0 and arbitrary � 2 D \ {0}.
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If the second possibility holds, i.e.  : D ! D, then in the case � j 6= 0 for
any j the mapping  is a weak m-extremal for �1, . . . , �m . If, on the other hand,
�m = 0 and m � 3, then  is a weak (m � 1)-extremal for �1, . . . , �m�1.

As a consequence of the above remark we get the following procedure which
for producing “new” extremals from the existing ones.
Remark 2.4. Let f : D ! D, where D is a balanced pseudoconvex domain,
be a weak m-extremal for distinct points �1, . . . , �m 2 D. Then the function g
given by the formula g(�) := m�m+1(�) f (�), for � 2 D, where �m+1 6= � j , for
j = 1, . . . ,m, is a weak (m + 1)-extremal for �1, . . . , �m+1.

Note that in the above remarks we made extensive use of the pseudoconvexity
of the balanced domain D – this is equivalent to the fact that the Minkowski func-
tional µD is logarithmically plurisubharmonic (and certainly homogeneuous). The
class of such domains obviously contains the balanced convex domains. Actually,
we make use of the above remarks only in that type of domains; however, the gen-
eral case is interesting, too; so we decided to leave the proof in the more general
setting as it is essentially the same in both cases.

Proposition 2.5. Let f : D ! R be a weak m-extremal for some m distinct points
in a classical Cartan domainR, for m � 2. Then f is proper.

Proof. We proceed inductively with respect to m. In case m = 2 it follows from the
transitivity of the group of automorphisms and the fact that any weak 2-extremal
f : D ! R with f (0) = 0 is such that µR( f (�)) = |�|, for � 2 D, where µR is
the Minkowski functional ofR.

Let now f be a weak m-extremal for �1, . . . , �m in R, for m � 3. Due to
transitivity of R we may assume that �m = 0 and f (0) = 0. To finish the proof it
is sufficient to make use of Remark 2.3 and inductive assumption for  as defined
in Remark 2.3 (in the case  does not lie in the boundary ofR).

Remark 2.6. Recall (see e.g. [12,13]) that the classical domains are homogeneous
(i.e. their group of holomorphic automorphisms acts transitively), balanced and
convex.

Proposition 2.7. Any weak m-extremal in any of the the classical Cartan domains
R is an m-extremal.

Proof. We will proceed inductively. For m = 2 the assertion is a simple conse-
quence of the Lempert Theorem.

So assume that m � 3, any (m � 1)-weak extremal is an (m � 1)-extremal
and let f be a weak m-extremal with respect to �1, . . . , �m . Composing f with a
Möbius map we may assume that �m = 0. Thanks to transitivity of Aut(R) one
may moreover assume that f (0) = 0. Then f (�) = �'(�), where ' is an analytic
disc inR.

If '(0) 2 @R, then f is a weak 2-extremal for 0, � for any � 2 D \ {0} (see
Remark 2.3) and thus, in view (for instance) of the Lempert theorem 2-extremal.
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In the other case, ' is an analytic disc inR and it is a weak (m�1)-extremal for
some system of points and thus, due to the inductive assumption (m � 1)-extremal
in R. Take any points �1, . . . , �m 2 D. We claim that f is a weak extremal
with respect to them. If � j = 0 for some j (without loss of generality assume
that j = m) then the fact that f would not be a weak m-extremal for �1, . . . , �m
would deliver an analytic disc lying relatively compactly inR coinciding with ' at
points �1, . . . , �m�1 contradicting the (m�1)-extremality of '. So suppose that � j
does not vanish. Seeking a contradiction, assume that one may find a holomorphic
mapping g : D ! R such that g(� j ) = f (� j ), for j = 1, . . . ,m. Let 9a denote
the automorphism ofR such that 9a(a) = 0, 9a(0) = a.

Since g(�1) = �1'(�1) we see that an analytic disc  given by the formula
 (�) =

1
m�1 (�)

9�1'(�1)(g(�))mapsD intoR (note that the image of cannot lie in
@R). We shall show that is a weak (m�1)-extremal inR. This would give a con-
tradiction as  ( ¯D) ⇢ R. It suffices to show that � : � 7!

1
m�1 (�)

9�1'(�1)(�'(�)) is
a weak (m � 1)-extremal, as it agrees with  at points � j , for j = 2, . . . ,m. Note
that �(0) = '(�1).

If � were not an (m�1)-extremal then we would be able to find an analytic disc
�̃ : D ! R such that �(0) = �̃(0) and �(� j ) = �̃(� j ) for j = 3, . . . ,m. Then
'̃(�) :=

1
�9�1'(�1)(m�1(�)�̃(�)) would be well defined (we remove singularity at

0) and would agree with ' at �3, . . . , �m . Moreover, it follows immediately from
the definition that '̃(�1) = '(�1). This gives a desired contradiction.

Problem: Does a similar result hold for the symmetrised bidiscG2 or the tetra-
block E if m � 3? Does a similar result hold for any convex domain?
Remark 2.8. In the classical domains the fact that all weak extremals are extremals
allows us to produce new extremals from the existing ones. For instance, let f :

D ! R be an m-extremal. Then, in view of Remark 2.4 the function m↵(�) f (�)
is a weak (m + 1)-extremal for �1, . . . , �m,↵ for m distinct points �1, . . . , �m , ↵
where ↵ 6= � j and thus it is (m + 1)-extremal. Consequently, the function B · f
where B is a Blaschke product of degree k is an (m+ k)-extremal. In particular, the
function g given by the formula g(�) = �k f (�), for � 2 D, is an (m+ k)-extremal.
This observation will be used later.

3. m-complex geodesics and m-extremals in the unit Euclidean ball

Let f : D ! Bn be a 3-extremal in the unit ball that is not a 2-extremal, n � 2.
Composing it with an automorphism of Bn we may assume that f (0) = 0. Let us
write f (�) = �g(�), where g is 2-extremal in Bn . Composing g with a unitary
automorphism of Bn we may additionally require that g passes through points of
the form (a1, b1, 0, . . . , 0) and (a1, b2, 0, . . . , 0), where a1 � 0. Since any 2-
extremal in Bn is the image of � 7! (�, 0, . . . , 0) under an automorphism of Bn ,
making use of the description Aut(Bn) (see e.g. [14, Appendix]) we easily find that
g(�) =

⇣
a1,

q
1� a21m(�), 0, . . . , 0

⌘
, for � 2 D, for some Möbius map m.
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Consequently, any 3-extremal in the unit ball is, up to a composition with an
automorphism of Bn , of the form

� 7!

✓
�a1,

q
1� a21�m(�), 0, . . . , 0

◆
, (3.1)

where m is a Möbius map and a1 � 0. We do not know whether such 3-extremals
are 3-complex geodesics but we are able to show it at least in the case when m is a
rotation.

Proposition 3.1. Let f 2 O(D, Bn), n � 2 be a 3-extremal of the form � 7!⇣
�a1,

q
1� a21�

2, 0, . . . , 0
⌘
, where a1 � 0. Then f is a 3-complex geodesic.

Proof. It suffices to observe that the left inverse to the 3-extremal f (given by the
formula f (�) =

⇣
a1�,

q
1� a21�

2, 0, . . . , 0
⌘
) may be chosen as follows:

F(z) :=

z21
2� a21

+

2
q
1� a21
2� a21

z2, for z 2 Bn. (3.2)

It is simple to see that F 2 O(Bn, D) and F( f (�)) = �2, for � 2 D.

It is not clear from the first view why the left inverse in the above result is of the
form as given above. In fact, the idea that resulted in that form will be more clear
after the study of the proof of the next result where we shall prove that there are 4-
extremals in the unit ball which are not 4-complex geodesics. Note that making use
of the procedures described in the preceing section one may relatively easily pro-
duce necessary form for m-extremals. Another way of finding the necessary form
of m-extremals (in more general domains called complex ellipsoids) was presented
in [10].

Proposition 3.2. Let k � 2. The function

f : D 3 � 7!

✓
a1�k,

q
1� a21�

k+1
◆

(3.3)

where a1 2 (0, 1) is a (k + 2)-extremal in the unit ball B2 which is not a (k + 2)-
geodesic.

Proof. We already know that the analytic disc f is a (k + 2)-extremal (use Re-
mark 2.8). Suppose that there is an F 2 O(B2, D) such that F(0) = 0 and F � f is
a non-constant Blaschke product of degree at most k+1. First we consider the case
k � 3. Expanding around 0 and comparing the Taylor coefficients on both sides of
the equality:

F
✓
�ka1, �k+1

q
1� a21

◆
= B(�) (3.4)
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we easily get (multiplying by a unimodular constant) that B(�) = �k or B(�) =

�km� (�) for some � 2 D. Write the Taylor expansion of F in the form ↵z1+�z2+
. . .. In the first case |↵a1| = 1 which gives |↵| > 1 -contradiction. Consider now
the second case. The coefficient at the left side at �k+2 is 0 which means that � = 0.
Write F(z1, z2) = ↵z1+�z2+o(z1, z2). Since lim sup|�|!1 |(F(�(z1, z2)))/�|  1
we easily get that ↵z1 + �z2 2 D for any z 2 B2 which shows that |↵|

2
+ |�|

2
 1.

Then the coefficient at �k+1 on the left side is �
q
1� a21 which cannot have absolute

value one as it does on the right side.
Now we assume that k = 2.

F
✓
�2a1, �3

q
1� a21

◆
= B(�). (3.5)

where B(�) = �2m� (�) (the case when the degree of B is one or two is simple).
Write the Taylor expansion of F as ↵z1 + �z2 + . . .. Comparing the coefficients
at �2 and at �3 leads us to equalities |↵a1| = |� |, |�|

q
1� a21 = 1 � |� |

2. We
also know that ↵z1 + �z2 2 D for any z 2 B2 which is equivalent to the inequality
|↵|

2
+ |�|

2
 1. Consequently,

|� |
2

a21
+

(1� |� |
2)2

1� a21
 1. (3.6)

The last inequality is equivalent to

|� |
2(1� a21) + (1� |� |

2)2a21 � a21(1� a21)  1 (3.7)

or
(a21 � |� |

2)2 + |� |
2(1� |� |

2)(1� a21)  0. (3.8)
The last inequality does not hold for any � 2 D, a1 2 (0, 1) - contradiction.

Problem. It would be interesting to know whether 3-extremals in the unit ball
are 3-complex geodesic. Even if the answer to this question is positive we think that
a counterpart of the Lempert theorem for 3-extremals in the convex domains does
not hold, i.e. there is a convex domain D and a 3-extremal f in D for which there
is no left inverse F such that the composition of F � f is a non-constant Blaschke
product of degree at most two.

4. (weak) m-extremals in the symmetrised bidisc

In the present section we get results that show how (weak) m-extremals in the sym-
metrised bidisc look like. Recall that the symmetrised bidisc G2 is the image of D2
under the mapping (z1, z2) 7! (z1 + z2, z1z2). In our attitude and important tool
will be played by the tetrablockE and the possibility of embedding the symmetrised
bidisc in E so we start this section by recalling basic properties of this domain.
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4.1. Geometry of the tetrablock

Recall that the tetrablock is a domain inC3 denoted by E and given by the formula

E = {(x1, x2, x3) 2 C3 : |x1 � x̄2x3| + |x2 � x̄1x3| + |x3|2 < 1}.

It is well known that E may be given as the image of the Cartan domain of the first
typeRI under the mapping ⇡ : C2⇥2 ! C3

z = (zi, j ) 7! (z11, z22, det z).

Basic properties of the tetrablock that we use may be found in [2, 3, 11, 16, 20]
and [22].

What is more, ⇡ restricted toRI I maps properlyRI I onto E and the locus set
of this proper mapping {(x1, x2, x3) 2 D3 : x1x2 = x3} coincides with the royal
variety of E which we denote by T .

In the sequel we shall make use of the structure of the group of automorphisms
of E and its connection with the group of automorphisms ofRI I (see [16]). Recall
that the group of automorphisms ofRI I is generated by the linear isomorphisms

LU : x 7! UxUt ,

where U is a unitary matrix, and the mappings

8a : x 7! (1� aa⇤)�
1
2 (x � a)(1� a⇤x)�1(1� a⇤a)

1
2 , (4.1)

where a 2 RI I (see [12, Section 3] and [13]). Note that8a(0) = �a and8a(a) =

0. Moreover, 8�1
a = 8�a .

It follows from [16] (see also [20]) that any automorphism  of the tetrablock
is of the form

 � ⇡ = ⇡ �8

for some automorphism 8 of RI I . Moreover, such an automorphism 8 is gen-

erated either by 8A, where A =

✓
a1 0
0 a2

◆
, for a1, a2 2 D, or by LU , where

U =

✓
!1 0
0 !2

◆
or U =

✓
0 !1
!2 0

◆
, where !1,!2 2 T.

Some simple computations lead to the description of the group of automor-
phism of E (see also [20]). More precisely, the automorphism 8A of RI I , where

A =

✓
a 0
0 b

◆
, for a, b 2 D, induces the automorphism  of E given by

 (x1, x2, x3)

=

✓
x1� a � b̄x3+ ab̄x2
1� āx1 � b̄x2 + āb̄x3

,
x2 � b � āx3 + ābx1
1� āx1 � b̄x2 + āb̄x3

,
x3� ax2 � bx1 + ab
1� āx1� b̄x2 + āb̄x3

◆
.
(4.2)
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Moreover, LU , where U is a unitary diagonal or anti-diagonal matrix, induces au-
tomorphisms of E generated by

(x1, x2, x3) 7! (!x1, ⌘x2,!⌘x3),

where !, ⌘ 2 T, and by

(x1, x2, x3) 7! (x2, x1, x3).

In the sequel we shall make use of the following:
Remark 4.1. The point ⇡(x), where x 2 @RI , lies in the topological boundary
of E if and only if |x12| = |x21|. This is an immediate consequence of Lemma 9
in [11] and the properness of ⇡ |RI I : RI I ! E.

In particular, for x 2 RI such that ⇡(x) 2 @E the following statement is a
consequence of the description of the Shilov boundary of the tetrablock (see e.g.
[16, Remark 13]):

x 2 @sRI if and only if ⇡(x) 2 @sE.

4.2. (Weak) m-extremals in the symmetrised bidisc intersecting 6

At this point we may outline the idea of study of weak m-extremals in the sym-
metrised bidisc. First we concentrate on a more difficult problem of description of
m-extremals intersecting the royal variety 6 (definition is given below).

Since ⇡ : RI I ! E is proper, ⇡ restricted toRI I \ ⇡�1(T ) is a holomorphic
covering of E\T . Therefore, an analytic disc in E omitting its royal variety may be
lifted to an analytic disc in the classical Cartan domain of the second type. Of course
this does not have to be true if the analytic disc intersects the royal variety of the
tetrablock. But then we may lift it to an analytic disc inRI or, up to a composition
with an automorphism of the tetrablock, it is of the form � 7! (0, 0, a(�)) for some
a 2 O(D, D) (see [11, Lemma 7]).

At this point it would be reasonable to recall the close relationship between
the tetrablock and the symmetrised bidisc G2. First recall that the symmetrised
bidisc (denoted by G2) is a domain which may be defined as the image under the
(proper and holomorphic) mapping (z1, z2) 7! (z1 + z2, z1z2) of the bidisc D2 or
equivalently

G2 :=

n
(s, p) 2 C2 : |s � s p| + |p|2 < 1

o
. (4.3)

A similar role to that of T (in E) is played by the royal variety of the symmetrised
bidisc, i.e. the set 6 := {(2�, �2) : � 2 D}. We have a natural embedding

◆ : G2 3 (s, p) 7! (s/2, s/2, p) 2 E.

On the other hand the mapping

p : E 3 x 7! (x1 + x2, x3) 2 G2

satisfies the equality p � ◆ = idG2 . We shall use these facts extensively.
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Consequently, if f : D ! G2 is an analytic disc, then ( f1/2, f1/2, f2) is an
analytic disc in the tetrablock E. Therefore, we may lift it to an analytic disc inRI .
It is much more comfortable and natural to lift f to an analytic disc in the classical
Cartan domain of the second type

To do it let us denote the action permuting columns of a given matrix a 2

C2⇥2 by ⌧a. These observations lead us to Lemma 4.2 enabling us to transport
the problem of the study of (m-extremals) analytic discs in the symmetrised bidisc
to that in the Cartan domain of the second type. Similar ideas appear also in [8].
However, it is quite convenient to pass to the tetrablock. The geometry of this
domain and its properties described in [3] turn out to be very helpful (e.g. we shall
show that properness of weak m-extremals in the symmetrised bidisc is a simple
consequence of the fact that the tetrablock may be given as the image of the Cartan
domain under a proper holomorphic mapping).

Lemma 4.2 (see also [8]). Let ' : D ! G2 be an analytic disc. Then there is an
analytic disc f : D ! RI I such that

⇣'1
2

,
'1
2

,'2
⌘

= ⇡ �
⌧ f.

Proof of Lemma 4.2. The result may be deduced from [8, Theorem 1.3]. For the
convenience of the Reader we shall present a simple proof involving geometry of
the tetrablock. This is also justified by the fact that we shall use more properties
and relations between the tetrablock and the Cartan classical domains in the sequel.

To prove the assertion it suffices to observe that ◆ � ' is an analytic disc in E
and then apply [11, Lemma 7].

Of course, the result presented above is the most interesting in the case when
'(D) intersects 6. Note that it is trivial if '(D) is contained in 6, because then
' = ('1,

'21
4 ), where '1 2 O(D, D).

Remark 4.3. Importance of Lemma 4.2 is a consequence of the following simple
observations:

• ' : D ! G2 is a (weak) m-extremal inG2 if and only if ('12 , '12 ,'2) is a (weak)
m-extremal in the tetrablock,

• if ⇡ �
⌧ f : D ! E is a (weak) m-extremal, where f 2 O(D,RI I ), then f is

m-extremal inRI I .

Note that a lifting map f appearing in Lemma 4.2 may be chosen in a specific way:

Lemma 4.4. Let ' : D ! G2 be an analytic disc. Then there is an analytic disc
f : D ! RI I such that ⇣'1

2
,
'1
2

,'2
⌘

= ⇡ �
⌧ f
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and either

• f lies in the boundary of RI and then ' is, up to a composition with an auto-
morphism of the symmetrised bidisc, of the form (0,'2), or

• f is an analytic disc inRI I such that | f ⇤

11| = | f ⇤

22| a.e. on T and f11 vanishes
nowhere on D.

Moreover, if ' is a weak m-extremal, then f is an m-extremal inRI I .

To prove the above lemma we need the following observation:
Remark 4.5. Suppose that f : D ! E is a (weak) m-extremal in the tetrablock
such that f (0) = 0 and both f1 and f2 are not identically equal to 0. Suppose addi-

tionally that f = ⇡ � G, where G : D ! RI is of the form G =

✓
f1 B1g1

B2g2 f2

◆
,

and B1 and B2 are Blaschke products.
Then, of course, the mapping G is an m-extremal in RI . Comparing non-

tangential limits we also see that the mapping H :=

✓
f1 g1

B1B2g2 f2

◆
maps D into

RI . Note also that g1(0) lies in the unit disc. Actually, otherwise g1 would be a
unimodular constant and therefore f1 ⌘ f2 ⌘ 0 (as tangential limits of f1 and f2
would vanish on T). Thus H is an analytic disc in RI . Since ⇡ � H = f , we get

that H =

✓
f1 g1

B1B2g2 f2

◆
is an m-extremal inRI .

Proof of Lemma 4.4. The existence of f is guaranteed by Lemma 4.2.
If ' does not intersect 6, then one may assume that ⌧ f is an analytic disc in

RI I and the assertion is clear. So suppose that '(D) \6 6= ;. Composing ' with
an automorphism of G2 we may assume that '(0) = 0.

If f is an analytic disc contained in @RI , then the assertion follows from
Lemma 7 in [11]. In the other case let us denote g = (gi j ) =

⌧ f . Note that if
g12g21 ⌘ 0 then we may assume that g12 = g21 = 0 and we are done.

If g12g21 6⌘ 0, then one may find a Blaschke product such that g12g21 = bh,
where h : D ! D does not vanish. Then g̃ given by the formula

g̃ =

✓
g11

p

h
b
p

h g22

◆

maps D intoRI I and satisfies ⇡ � g̃ = '.
The second part of the lemma is a direct consequence of Remark 4.5.

The above lemma suggests that m-extremals ' such that

(†) ' is, up to Aut(G2), of the form (0,'2) (4.4)

should be considered separately.
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Using Lemma 4.2 we get the following:

Theorem 4.6. Let ' : D ! G2 be a weak m-extremal. Assume that ' is not of
the form (†). Then there is 1  n  m � 1 and there are a1, . . . , an 2 RI I , a
holomorphic function Z : D ! D fixing the origin and unitary matrix U such that
✓
'1(�)

2
,
'1(�)

2
,'2(�)

◆
= ⇡(⌧8a1

✓
�8a2

✓
· · · �8an

✓
U
✓
� 0
0 Z(�)

◆
Ut
◆◆◆

,

for � 2 D.
We may additionally assume that the lifting disc

f (�) := 8a1

✓
�8a2

✓
· · · �8an

✓
U
✓
� 0
0 Z(�)

◆
Ut
◆◆◆

, for � 2 D

is chosen so that f11 does not vanish on D.

Before we start the proof of Theorem 4.6 let us recall the description of com-
plex geodesics in RI I due to Abate. For the convenience of the Reader we shall
present in the end of the paper a very elementary outline of the proof of this fact.

Lemma 4.7 (see [1], Proposition 2.1). Let f : D ! RI I be a complex geodesic
inRI I such that f (0) = 0. Then, there are a unitary matrix U and a holomorphic
function Z : D ! D vanishing at the origin such that

f (�) = U
✓
� 0
0 Z(�)

◆
Ut , for � 2 D.

Proof of Theorem 4.6. Let f : D ! RI I an analytic disc lifting ' to the Car-
tan domain RI I whose existence is guaranteed by Lemma 4.4. It follows from
Remark 4.3 that f is a weak m-extremal in RI I , whence it is an m-extremal, by
Proposition 2.7. Let 1  n  m � 1 be the smallest n such that f is an (n + 1)-
extremal. If n = 1, then f is a complex geodesic and the assertion follows from
Lemma 4.7. Otherwise let us denote a1 := � f (0). Then8�a1 � f = 8�1

a1 � f is an
(n + 1)-extremal such that 8�a1 � f (0) = 0. Making use of Remark 2.3 we get an
analytic disc f1 in RI I such that f (�) = 8a1(� f1(�)), for � 2 D. Repeating this
procedure inductively we get the assertion.

It seems that Z appearing in Theorem 4.6 must be rational but we could not
prove it. However, we are able to show it for m = 3:

Theorem 4.8. Let ' : D ! G2 be a weak 3-extremal with respect to 0, �1, �2 2 D,
intersecting 6. Then, either

(1) ' is, up to a composition with an automorphism ofG2, of the form (0,'2), where
'2 is a Blaschke product of degree 2, or
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(2) ' lies entirely in6, i.e. ' =

✓
'1,

'21
4

◆
, where '1 is a Blaschke product of degree

at most 2, or
(3) there are a1, a2 2 RI I , and a unitary symmetric matrix U such that

✓
'1(�)

2
,
'1(�)

2
,'2(�)

◆
= ⇡

�
⌧8a1(�8a2(U�))

�
, for � 2 D,

(4) there is a 2 RI I , a unitary matrix U and a Möbius function m such that
✓
'1(�)

2
,
'1(�)

2
,'2(�)

◆
= ⇡

✓
⌧8a

✓
U
✓
� 0
0 �m(�)

◆
Ut
◆◆

, for � 2 D.

To prove Theorem 4.8 we need the following preparatory result.

Lemma 4.9. Any m-extremal in the tetrablock or in the symmetrised bidisc is
proper.

Proof of Lemma 4.9. Since the embedding ofG2 intoE is proper it suffices to show
the assertion for the tetrablock. First recall that any m-extremal inRI I or inRI is
proper (see Proposition 2.5).

Recall that ⇡(x) lies in the topological boundary of E, where x 2 @RI , if and
only if |x12| = |x21| (see Remark 4.1).

Now assume that f : D ! E is a weak m-extremal. Then, using Lemma 4.4
we may lift it to an m-extremal g inRI such that |g⇤

12| = |g⇤

21| almost everywhere
on T. Thus, to get the assertion it suffices to make use of the fact that g is proper.

Proof of Theorem 4.8. Composing ' with an automorphism of G2 we may assume
that '(�0) = 0 for some �0 2 D. If '(D) ⇢ 6 or ' is of the form (†) the assertion
is clear.

Since the automorphism 83, where 3=

✓
0 0
0 ↵

◆
maps

✓
� 0
0 �

◆
to
✓
� 0
0 m↵(�)

◆
,

it suffices to show that there are an a 2 RI I and 8 2 Aut(RI I ) and a Möbius map
m such that

('1(�)/2,'1(�)/2,'2(�)) = ⇡

✓
⌧8a

✓
�8

✓
� 0
0 m(�)

◆◆◆

or ✓
'1(�)

2
,
'1(�)

2
,'2(�)

◆
= ⇡

�
⌧8(�)

�
, for � 2 D,

Lifting ' as in Theorem 4.6 we get a 3-extremal F : D ! RI I such that ⇡ �
⌧ F =

', where

F(�) = 8a

✓
�8

✓✓
� 0
0 Z(�)

◆◆◆
, for � 2 D. (4.5)
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or
F(�) = 8

✓✓
� 0
0 Z(�)

◆◆
, for � 2 D, (4.6)

for some Z 2 O(D, D), 8 2 Aut(RI I ) and a 2 RI I . First observe that the choice
of F implies, in particular, that the functions |F11| and |F22| are different. Actually,
otherwise F11 = !F22 for some ! 2 T. Since F11 vanishes nowhere on D we find
that ' does not intersect 6, which gives a contradiction.

Note that our aim is to show that Z is a Möbius map in the first case or that Z is
a Blaschke product of degree at most two in the second one. Seeking a contradiction
suppose that it is not the case. Then there is a holomorphic function Z̃ defined on a
neighbourhood of ¯D such that Z̃(�i ) = Z(�i ), for i = 1, 2 (and additionally Z̃(0) =

Z(0) in the second case), which is not a Nash function. Recall that a holomorphic
function f onD is called a Nash function if there is a non-zero complex polynomial
P : Cn

⇥ C ! C such that P(�, f (�)) = 0 for � 2 D. For basic properties of
Nash functions we refer the Reader to [21]. The important fact that will be used in
the sequel of the proof is that the set of Nash functions forms a subring of the ring
of holomorphic functions on the unit disc (see [21, Corollary 1.11]).

Putting

F̃(�) = 8a

✓
�8

✓
� 0
0 Z̃(�)

◆◆
, for � 2 D,

⇣
or

F̃(�) = 8

✓
� 0
0 Z̃(�)

◆
, for � 2 D

⌘
,

we get a 3-extremal in RI I such that ⇡ �
⌧ F̃ is a 3-extremal in E. Note that

F11F22 6⌘ 0 on D.
Using Lemma 4.9 we find that |F̃11| = |F̃22| on T. Thus there are finite

Blaschke products or unimodular constants B1, B2 and a holomorphic function g
such that F̃11 = B1g and F̃22 = B2g. Put f := F̃12 = F̃21. Then

8a

✓
�8

✓
� 0
0 Z̃(�)

◆◆
=

✓
B1(�)g(�) f (�)

f (�) B2(�)g(�)

◆

or
8

✓
� 0
0 Z̃(�)

◆
=

✓
B1(�)g(�) f (�)

f (�) B2(�)g(�)

◆
.

We will modify the above relation so that B1 = 1. Then some technical arguments
will provide us with a contradiction.

First note that at least one of B1 or B2 is not a unimodular constant. Indeed, if it
were not true, then one may use arguments involving the concept of Nash functions.
More precisely, we proceed as follows. Put

F̃(�, z) := 8a

✓
�8

✓
� 0
0 z

◆◆
, for �, z 2 D (4.7)
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⇣
or analogously

F̃(�, z) := 8

✓
� 0
0 z

◆
, for �, z 2 D

⌘
. (4.8)

Since B1, B2 2 T, we find that F̃11(�, Z̃(�)) = !F̃22(�, Z̃(�)) on D where ! is a
unimodular constant ! = B1/B2. Since Z̃ is not Nash, the equality F̃11(�, z) =

!F̃22(�, z) holds for all (�, z) 2 D2. In particular, F̃11(�, Z(�)) = !F̃22(�, Z(�)),
� 2 D, which gives a contradiction (as already mentioned, |F11| 6⌘ |F22|).

Note that
� 7!

✓
g(�) f (�)
f (�) B(�)g(�)

◆
(4.9)

is a 3-extremal mapping in RI I , where B = B1B2. Actually, this follows from
Remark 4.5. Now we are in a position which gives us a contradiction.

Composing (4.9) with a Möbius map we may assume that B vanishes at the ori-

gin. Moreover, after a composition with 8↵̃ , where ↵̃ =

✓
0 f (0)
f (0) 0

◆
, replacing

f and g with other we may assume that f (0) = 0.
Therefore, thanks to the procedure described in Remark 2.3 there are Z 2

O(D, D), and an automorphism 8 ofRI I such that
✓
g(�) f (�)
f (�) B(�)g(�)

◆
= 8C

✓
�8

✓
� 0
0 Z(�)

◆◆
, for � 2 D, (4.10)

or ✓
g(�) f (�)
f (�) B(�)g(�)

◆
= 8

✓
� 0
0 Z(�)

◆
, for � 2 D, (4.11)

where C =

✓
c 0
0 0

◆
and c = g(0). Since the set of Nash functions on a domain of

Cn forms a subring of the ring of holomorphic functions we easily find that Z is not
a Nash function. The goal is to derive a contradiction directly from (4.10). To do
it we will find an explicit formula for 8 and then, to simplify the computations, we
will pass to the tetrablock.

Assume first that (4.10) holds. Put

G(�, z) := 8C

✓
�8

✓
� 0
0 z

◆◆
, for �, z 2 D. (4.12)

Since G22(�, Z(�)) = B(�)G11(�, Z(�)), � 2 D, making use once again of the
fact that automorphisms of the classical domain are rational and Z is not a Nash
function we find that

G22(�, z) = B(�)G11(�, z), for �, z 2 D.

By (4.7), G11(0, ·) ⌘ �c and G12(0, ·) ⌘ G21(0, ·) ⌘ 0. Moreover, G12 ⌘ G21.
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Write G11(�, z) = �c + �g11(�, z), G12(�, z) = �g12(�, z), G21(�, z) =

�g21(�, z), �, z 2 D. Additionally, put g12 := g21.
The explicit formula for 8�1

C is

8�1
C (x) =

0
@

x11+c
1+cx11

p
1� |c|2 x12

1+cx11p
1� |c|2 x21

1+cx11
x22+c det x
1+cx11

1
A , for x = (xi j ) 2 RI .

Write B(�) = �b(�). Composing the relation (4.7) with 8�1
C , dividing by � and

putting � = 0 we infer that

8

✓
0 0
0 z

◆
=

0
B@

g11(0)
1�|c|2

g12(0)
p

1�|c|2

g21(0)
p

1�|c|2
�b(0)c

1
CA , for z 2 D.

The first observation is that the component
✓
8

✓
0 0
0 z

◆◆
22
is a constant not de-

pending on z. Therefore the composition 8 with 8D , where D =

✓
0 0
0 d

◆
and

d = �b(0)c has the property
✓
8D �8

✓
0 0
0 z

◆◆
22

= 0. This means that the the

function a :=

✓
8

✓
0 0
0 ·

◆◆
12
satisfies

det
✓
8D �8

✓
0 0
0 z

◆◆
= a2(z), for z 2 D. (4.13)

Thanks to the form of automorphisms of RI I we see that the function in the left
side in the equation (4.13) is either constant of it is a rational function of degree 1.
Hence, a is constant.

Therefore
8D �8

✓
0 0
0 ·

◆
=

✓
↵(·) a
a 0

◆

for some holomorphic function ↵. Composing the above relation with 8A, where

A =

✓
0 a
a 0

◆
we find that

8A �8D �8

✓
0 0
0 ·

◆
=

 
↵(·)
1�|a|2 0
0 0

!
. (4.14)

Put 9 = 8A � 8B � 8. Using the description of Aut(RI I ) we see that 9 is of

the form 9 = U80Ut , where 0 =

✓
�1 �0
�0 �2

◆
and U is unitary. Comparing the
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determinants in (4.14) we see that

��1(z � �2) � � 20
1� �̄1z

= 0 for any z 2 D,

whence �1 = �0 = 0. Simple calculations show thatU is anti-diagonal. To simplify
the notation let us assume that U =

⌧1 (the argument is the same in the general
case).

Summing up we have obtained the relation

8 = 8�D �8�A �

�
U80Ut� ,

whence

8C

✓
�8�D

✓
8�A

✓
U80

✓
� 0
0 z

◆
Ut
◆◆◆

=

✓
G11(�, z) G12(�, z)
G21(�, z) �b(�)G11(�, z)

◆

for �, z 2 D. In particular, replacing z with m�2(z), we get that the equality
✓
8C

✓
�8�D

✓
8�A

✓
z 0
0 �

◆◆◆◆
22
=�b(�)8C

✓
�8�D

✓
8�A

✓
z 0
0 �

◆◆◆
11

(4.15)

holds for any � and z (whenever it is well defined).
Here it is convenient to pass to E (as it lies in 3-dimensional space). The

equation (4.2) gives the following formula for the automorphism induced by 8C :

 1(z) =

✓
z1 � c
1� c̄z1

,
z2 � c̄z3
1� c̄z1

,
z3 � cz2
1� c̄z1

◆

and the one induced by 8�D:

 2(z) =

✓
z1 + d̄z3
1+ d̄z2

,
z2 + d
1+ d̄z2

,
z3 + dz1
1+ d̄z2

◆
.

Then (4.15) may be rewritten in the following way:
 
 1

 
�. 2

 
z(1� |a|2)
1� ā2�z

,
�(1� |a|2)
1� ā2�z

,
(1� |a|2)2�z � (ā�z � a)2

(1� ā2�z)2

!!!
2

= B(�)

 
 1

 
�. 2

 
z(1� |a|2)
1� ā2�z

,
�(1� |a|2)
1� ā2�z

,
(1� |a|2)2�z � (ā�z � a)2

(1� ā2�z)2

!!!
1
,

where � 7! �.x is an action on C3 given by �.x = (�x1, �x2, �2x3), for x 2 C3,
and � 2 C.
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Thus we have the equality

y2 � c̄�y3
�y1 � c

= b(�),

where y =  2
⇣
z(1�|a|2)
1�ā2�z , �(1�|a|2)

1�ā2�z , (1�|a|2)2�z�(ā�z�a)2
(1�ā2�z)2

⌘
. Consequently

x2 + d � �c̄x3 � �c̄dx1
�c � cd̄x2 + �x1 + �d̄x3

= b(�), (4.16)

where x =

⇣
z(1�|a|2)
1�ā2�z , �(1�|a|2)

1�ā2�z , (1�|a|2)2�z�(ā�z�a)2
(1�ā2�z)2

⌘
.

Recall that �cb(0) = d (or put � = 0 in (4.16)).
Assume first that a 6= 0. Then letting z ! 1 we find that

x2 + d � �c̄x3 � �c̄dx1
�c � cd̄x2 + �x1 + �d̄x3

= b(�) (4.17)

holds for x =

⇣
1�|a|2
�ā2� , 0, �1

ā2

⌘
. Putting this x into (4.17), we get

d + �c̄ 1ā2 + c̄d 1�|a|2
ā2

�c +
1�|a|2
ā2 � � d̄

ā2
= b(�).

Putting � = 0 we find that
1+ c̄ 1�|a|2

ā2

c +
1�|a|2
ā2

=

1
c
,

whence either |a| = 1| or |c| = 1.
If a = 0 the situation is simpler. Indeed, then x = (z, �, �z). Taking z = 0

and putting it into (4.16) we get that

�+ d
�c � cd̄�

= b(�).

Since b is a Blaschke product, |c| = 1; a contradiction.
We are left with the case (4.11). Recall that f (0) = 0 and B(0) = 0. Then

8(x) = 8D(UxUt ), where C =

✓
c 0
0 0

◆
, c = g(0) and U is unitary. Then we

easily get the following relation:

u221�+ u222Z(�) + c̄(detU)2�Z(�)

u211�+ u212Z(�) + c
= B(�).
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Since Z is not a Nash function we easily deduce that the equality

u221�+ u222z + c̄(detU)2�z
u211�+ u212z + c

= B(�)

holds for any �, z 2 D. From this we immediately derive a contradiction (put � = 0
and then z = �cu�2

12 ).

4.3. (Weak) 3-extremals in the symmetrised bidisc omitting 6

In the case when weak 3-extremals do not touch the royal variety we get the follow-
ing:

Theorem 4.10. Let f : D!G2 be a weak 3-extremal inG2 such that f (D)\6=;.
Then there are Blaschke products B1, B2 of degree at most 2 such that

f = (B1 + B2, B1B2).

Proof of Theorem 4.10. If f : D ! G2 is a weak 3-extremal such that f (D)\6 =

;, then we may lift it to D2. Namely, there are '1,'2 2 O(D, D) such that

f = ('1 + '2,'1'2).

Since f is a weak 3-extremal we get that ' = ('1,'2) is 3-extremal in the bidisc.
Therefore one of functions '1 or '2 is a Blaschke product of degree at most 2.
Losing no generality assume that it is '1.

We claim that '2 is a Blaschke product of degree at most 2, too. Otherwise,
one can find a non-rational holomorphic function  : D ! D which agrees with
'2 at 3 given points and such that  (D) ⇢⇢ D. Then ('1 +  ,'1 ) is a weak
3-extremal in G2. It follows form Rouché theorem that the equation '1 =  has at
least one solution in D, whence ('1 +  ,'1 ) is an irrational weak 3-extremal in
G2 intersecting the royal variety 6. This contradicts Theorem 4.8.

4.4. 3-extremals in the symmetrised bidisc are inner
and rational of degree at most 4

As a consequence of Theorems 4.8 and 4.10 we obtain an affirmative answer to a
question posed in [5].

Theorem 4.11. Let ' : D ! G2 be a 3-extremal mapping. Then:

• ' is a rational function of degree at most 4;
• ' is G2-inner, i.e. '(T) ⇢ @sG2, where @sG2 = {(z + w, zw) : |z| = |w| = 1}
is the Shilov boundary of G2.
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Proof of Theorem 4.11. If ' omits 6, the assertion is a direct consequence of The-
orem 4.10. Similarly, the assertion is clear if ' lies entirely in 6.

Suppose that '(D) touches 6 and '(D) 6⇢ 6.

If
⇣
'1(�)
2 , '1(�)2 ,'2(�)

⌘
= ⇡

✓
⌧8a1

✓
U
✓
� 0
0 �m(�)

◆
Ut
◆◆

, for � 2 D, then

the assertion is clear. So suppose that such a representation is not possible. Let �0
be such that '(�0) 2 6. Since a composition with a Möbius map does not change a
degree of a rational mapping we may assume that �0 = 0. Then, there are a 2 RI I ,
and 8 2 Aut(RI I ) such that✓

'1(�)

2
,
'1(�)

2
,'2(�)

◆
= ⇡(⌧8a(�8(�))), for � 2 D.

Note that if 8(0)=0, then all but one entries of the matrix a are equal to 0 (the el-
ement lying on the diagonal may not vanish). Then a straightforward calculation
shows that8i j are of the form

pi j
q ,where pi j , q are polynomials of degree at most 4.

Therefore, in a general case, that is when '(0) 2 6, it suffices to compose '
with an automorphism of E.

To prove the second part note that 8a(�8(�)) 2 @sRI I for � 2 T, whence
⌧8a(�8(�))2@sRI for any �2T. Since ' is proper, we see that ⇡(⌧8a(�8(�)))2
@E for � 2 T. Thus, the assertion of this part follows from the fact that ⇡(x) lies
in the Shilov boundary of E for any x lying in the Shilov boundary ofRI and such
that ⇡(x) 2 E (Remark 4.1).

5. The identity is m-extremal

We conclude the paper with a simple observation on a more general notion of m-
extremals introduced in [5] and we present a solution of a problem posed there.

Similarly to the case of mappings defined on the unit disc we introduce the
notion of m-extremal mappings defined on a general domain.

Let D be a bounded domain in CN and � a domain in CM . Let m � 2 and
let �1, . . . , �m 2 D be pairwise different points and z1, . . . , zm 2 �. Following [4]
we say that the interpolation data

� j 7! z j , D ! �, j = 1, . . . ,m (5.1)

is extremally solvable if there is a map h 2 O(D,�) such that h(� j ) = z j , for
j = 1, . . . ,m and for any open neighbourhood U of D̄ there is no f 2 O(U,�)
such that f (� j ) = z j , for j = 1, . . . ,m.

We say that h 2 O(D,�) ism-extremal if for all choices ofm pairwise distinct
points �1, . . . , �m 2 D the interpolation data

� j 7! h(� j ), D ! �, for j = 1, . . . ,m (5.2)

is extremally solvable. Note that if h is m-extremal then it is m + 1 extremal.
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The question posed (and partially solved) in [4] (Proposition 2.5 and remark
just before it) is whether the identity is m-extremal. The answer is yes.

Before we present the proof let us recall definition of the Lempert function of
a domain D of Cn . It is a holomorphically invariant function denoted by k̃D and
given by the formula (for basic properties of the Lempert function see [14]):

k̃D(z, w) = inf ⇢(0, � ),

where the infimum is taken over all � > 0 such that there is an analytic disc f :

D ! D, f (0) = z and f (� ) = w. Here ⇢ is the Poincaré distance on D given by
the formula

⇢(�1, �2) :=

1
2
log

1+

��� �1��21��̄1�2

���
1�

��� �1��21��̄1�2

��� , for �1, �2 2 D. (5.3)

Note that we changed the letter denoting the Poincaré distance to avoid the ambi-
guities that could be caused by the earlier use of the letter p in the other context.
Remark 5.1. Recall that the analytic disc passing through z and w lying in D re-
quired in the definition of the Lempert function always exists (see e.g. Remark
3.1.1 in [14]). Note also that applying the definition of the Lempert function to-
gether with the standard reasoning employing the Montel theorem we get for any
bounded domain D inCn and for any w, z 2 D that there is a mapping f : D ! D
such that f (0) = w, f (� ) = z and p(0, � ) = k̃D(w, z). Note that under the
additional assumption that D is taut (i.e. the family O(D, D) is normal) we may
assume that f (D) ⇢ D – see [14, Proposition 3.2.4].

Keeping in mind these observations we are able to prove the following result.
Proposition 5.2. Let D be a bounded domain in CN . Then the identity mapping
idD : D ! D is m-extremal for any m � 2.
Proof. It is sufficient to show that idD is 2-extremal. Suppose that it does not hold.
Then there are pointsw, z 2 D,w 6= z, an openU � D̄ and h 2 O(U, D) such that
h(w) = w, h(z) = z. Making use of Remark 5.1 (i.e. making use of the definition
of the Lempert function and applying standard reasoning employing the Montel
theorem) we get a � 2 (0, 1) such that there is a mapping f : D ! D with f (0) =

w, f (� ) = z and ⇢(0, � ) = k̃D(w, z). Now the function g := h � f 2 O(D, D)
satisfies the following properties g(0) = w, g(� ) = z and g(D) ⇢ h(D) ⇢⇢ D.
For 0 < t < 1 we define g̃(�) := g(�) +

�
t� (g(� ) � g(t� )), for � 2 D. Note that

for 0 < t < 1 sufficiently close to 1 we get that g̃ 2 O(D, D), g̃(0) = g(0) = w,
g̃(t� ) = g(� ) = z so k̃D(w, z)  ⇢(0, t� ) < ⇢(0, � ) – a contradiction.

6. Appendix. Sketch of proof of Lemma 4.7

Sketch of proof of Lemma 4.7. Fix � 2 (0, 1) and let a := f (� ) 2 RI I \ {0}.
Applying the singular value decomposition we find that there is a unitary matrix U
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and 0  �2  �1 < 1 such that a = U
✓
�1 0
0 �2

◆
Ut . Since LU : x 7! UxUt is an

automorphism ofRI I , composing f with L�1
U we may assume that U = 1.

Let g : D ! D be any holomorphic mapping such that g(0) = 0 and g(�1) =

�2. Clearly,

� 7!

✓
� 0
0 g(�)

◆

is a complex geodesic in RI I , as RI I 3 z 7! z11 is its left inverse, whence
k̃RI I (a, 0)=⇢(�1, 0). Since f is a complex geodesic, k̃RI I (a,0)= k̃RI I ( f (� ),0)=
⇢(�, 0). Thus � = �1.

Therefore f11(�1) = �1 and f11(0) = 0 so f11(�) = �, � 2 D by the classical
Schwarz lemma.

Since f (�) 2 RI I for any � 2
¯Dwe find that | f11|2+| f12|2  1 on ¯D. Clearly

| f ⇤

11| = 1 on T, so f12 ⌘ 0. In the same way we infer that f21 ⌘ 0. This finishes
the proof.
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182  LUKASZ KOSIŃSKI AND W LODZIMIERZ ZWONEK

[14] M. JARNICKI and P. PFLUG, “Invariant Distances and Metrics in Complex Analysis”, De
Gruyter Expositions in Mathematics, Vol. 9, 1993.

[15] M. JARNICKI and P. PFLUG, “Extension of Holomorphic Functions”, de Gruyter Exposi-
tions in Mathematics, Vol. 34, Walter de Gruyter, 2000.
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