Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5)

Vol. XVI (2016), 183-276

Almost strictly pseudo-convex domains. Examples and applications

ERIC AMAR

Abstract. In this work we introduce a class of smoothly bounded domains €2
in C" with few non strictly pseudo-convex points in 32 with respect to a certain
Minkowski dimension. We call them almost strictly pseudo-convex, aspc. For
these domains we prove that a canonical measure associated to a separated se-
quence of points in 2 which projects on the set of weakly pseudo-convex points
is automatically a geometric Carleson measure. This class of aspc domains con-
tains of course strictly pseudo-convex domains but also pseudo-convex domains
of finite type in C2, domains locally diagonalizable, convex domains of finite type
in C", domains with real analytic boundary and domains like |z} 1?2 + exp{l —
|Z2|_2} < 1, which are not of finite type.

As an application we study interpolating sequences for convex domains of
finite type in C". After proving a Carleson-type embedding theorem, we get that
if Q is a convex domain of finite type in C" and if S C Q is a dual bounded
sequence of points in HP(2), if p = oo then for any ¢ < oo, S is H1(Q)
interpolating with the linear extension property and if p < oo then S is H4(2)
interpolating with the linear extension property, provided that ¢ < min(p, 2).

Mathematics Subject Classification (2010): 32A35 (primary); 32A50 (sec-
ondary).
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1. Introduction

The aim of this work is to study a classical problem in harmonic analysis and com-
plex variables, namely the interpolating sequences in some domains in C". In order
to do this we shall develop notions and tools well adapted to this aim, and which
may be useful in other areas.

The first notion we shall study is the existence of a good family of polydiscs.

Troughout this work, domain will mean bounded open connected pseudo-
convex set with C*° smooth boundary. The Lebesgue measure on a manifold of
real dimension k will be denoted o;. We also use the notation in formula: A :: B ...
which means A such that B . ..

Let Q be a domain in C" and a € U C Q, where U is a neighborhood
of 92 in Q such that we have a well defined normal projection w on 9€2; we

set « := m(a) and to this point ¢ € J€2, we associate a multi-index m(x) =
(1, moy(a), ..., muy(a)), mi < mr < ... < my and an orthonormal basis
b(a) = (Ly,..., Ly) of C" such that L is in the complex normal at « to dQ2 and
(L3, ..., Ly) is a basis of the complex tangent space at « to 2. We set m(a) :=

m(m(a)), d(a) :==d(a, Q).

Now we define a polydisc Q,(8) centered at a of parameter § > O such that it
has a radius 8d(a) in the L direction and radii 8d(a)'/™i®  j =2, ..., n along
the L ; complex direction. We shall say that we have a “good family” Q of polydiscs
if these polydiscs reflect well the geometry of the domain, i.e. there is a parameter
80 > O such that Va € U, Q,(8p) C Q and M(Q) := supyeyo Ma(e) < 00.
For instance if « = m(a) is a point of strict pseudo-convexity then we have that
mo(a) =...=myu(a) = 2.

This notion of good family Q of polydiscs is strongly inspired by the work of
Catlin [11].

This good family Q allows us to define separated sequences of points in Q.
Definition 1.1. Let Q be a domain in C" with a good family of polydiscs Q. We

shall say that a sequence of points S C 2 is § separated if any two distinct points
in S are center of disjoint polydiscs in the family Q with parameter §.

Associated to this good family Q we define w(a) := 2?22 W If Sisa
separated sequence of points in €2, we define its canonical measure to be
vs =Y d(a)' T @s,, (1.1)

aes

where §, is the Dirac measure at a. For instance if €2 is a strictly pseudo-convex
domain, then m(a) = (1,2, ...,2) andvg = ), ¢ d(a)"8,.

We shall see that the sequences of points we are interested in are contained in
the zero set of holomorphic functions.

Let u be a holomorphic function in a domain @, u € H(2), set X := u=1(0)
its zero set and ® := 90 In || its associated (1, 1) current of integration. As usual
we have that Tr®(z) is the trace of the associated matrix and we have ([24, page
551 Tr®(z) = Aln|u(z)|.
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‘We shall define a class of such zero sets which contains the zero sets of Nevan-
linna functions.

Definition 1.2. A holomorphic divisor X in the domain 2 is in the Blaschke class
if, with ® its associated (1, 1) current of integration and d(z) := d(z, 2) the
euclidean distance to the boundary,

1015 = / d()TrO(2) < oo
Q

We shall need to study sequences of points contained in such sets; let ox be the
Lebesgue measure on manifold of real dimension k. Let €2 be a domain equipped
with a good family Q of polydiscs and X a divisor in Q. We set fora € Q, X, :=
XNQ4(8), X the projection of X, on E; :={z € C" :: z; = 0} in the coordinates
in the basis b(«) associated to o = m(a), and A;(X,) = oan—2(X)). As usual
o2n—2(X,) is the measure of the regular points in X, as defined in [24, Proposition
2.48, page 55].
We get:

Theorem 1.3 (Discretized Blaschke condition). Let u be holomorphic in Q2, X :=
u=10) and ® := 391n|u| its current of integration; suppose that ® is in the
Blaschke class. Let S be a § separated sequence in X with respect to a good family
Q of polydiscs with parameter 8y. Then we have

2
D d@an2(Xa) = 110l
0

acs

To go further and get the Malliavin discretized condition, with the right control on
the constants, we need to introduce quasi convex domains with respect to the good
family Q, i.e. Q quasi convex domains. This is a class of domains containing
the convex ones and the lineally convex ones and adapted to our aim. They will be
defined precisely by Definition 3.9.

Theorem 1.4 (Discretized Malliavin condition). Let Q = {p < 0} be a domain
equipped with a good family Q of polydiscs with parameter 8y and which is Q quasi
convex. Let ® be a current in the Blaschke class and S a § separated sequence in

X NU. Then we have
n
D> Aj(Xa) <ClIB,
aeS j=2

where C is a constant depending only on the M(Q) + 1 first order derivatives of p
and on §, 8y, and the constant of quasi convexity.
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Together these two results gives the following:

Theorem 1.5. Let Q be a domain equipped with a good family Q of polydiscs
such that Q is Q quasi convex; let S be a § separated sequence of points which is
contained in the Blaschke divisor X. Then

32y d@)" < y (@Ol

aes

where y (Q2) depends only on the CM O+ norm of p, on n and 8y, the parameter
of the family Q, and on the constant of quasi convexity.

We have that 1 4+ 2u(a) < n and equality holds for a point a such that 7 (a) is
a strictly pseudo-convex point, hence in general this is not enough to deal with all
types of sequence in 2. So we are lead to introduce a class of domains with “few”
points non strictly pseudo-convex, i.e. few “bad” points. If 2 is a domain in C”,
throughout this work W C 92 will denote the set of non strictly pseudo-convex
points of 9€2.

Let o € 92 by linear change of variables we can suppose thata =0 € 92 C
C", z; = 0 s the equation of the complex tangent space. The projection 7 locally
near 0 € 9Q can be seen as a C* diffeomorphism 7 : dQ — Tp(dR), 7T =
(T 08)
Definition 1.6. The pseudo-convex domain € in C" is said to be almost stricly
pseudo-convex, aspc at 0 € 9% if there is a neighbourhood Vj of 0 and a basis
b :={Ly,..., Ly} of C", with L; a complex normal unit vector, such that, with
(z1, ..., zn) its associated coordinates, the slices

aWnW) N{zi=0N{za=a}N...N{zy—1 = an—_1}

have homogeneous Minkowki dimension less than 2 — 8, 8 > 0.
2 is said to be aspc if this is true for all points in 92 with the same 8 > 0.

This means that we need only to find a particular coordinate system zy, ..., 2,
such that the slices of non s.p.c. points along the z,, direction of the tangent space
to 02 have small Minkowski dimension.

Of course the strictly pseudo-convex domains are aspc because W = (. The
homogeneous Minkowski dimension is defined precisely in Section 4 and it quanti-
fies the fact that bad points are few.

This class of domains contains a large family of interesting domains such as
strictly pseudo-convex domains, convex domains of finite type, etc., as shown in
Section 5.

And also non finite type domains as {7 € C?: |z + exp(l — 122]72) < 1}.

Usually we think that strictly pseudo-convex points are easier to deal with than
non strictly pseudo-convex ones but for these domains and the properties we are
interested in, this is not the case. In fact we have a good control on what happen for
points projecting on weakly pseudo-convex points.
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Theorem 1.7. Ler Q be a good family of polydiscs on a aspc domain Q in C",
and S be a § separated sequence of points in Q2. Let W be the set of non strictly
pseudo-convex points on 9Q2. If 1 (SNU) C VNW, where V is an open set of 922,
then we have:

02,-1(V)

o (12

Y d@)' PO =57 N 03,(04(8) < C(RQ)

aeSNU aeSNU

where C(2) depends only on p, n, M(Q), and the constant B in the Minkowski
dimension of W C Q2.

In fact this theorem says that the canonical measure associated to such a se-
quence is a geometric Carleson measure. So, for these domains, it remains to con-
centrate only on points which project on strictly pseudo-convex points on 9€2. As
an application we get:

Theorem 1.8. Ler Q be a aspe domain in C". Let Q = {Q,(80)}aecq be a good
family of polydiscs for Q and suppose that Q is Q quasi convex. Let S a 8 sepa-
rated sequence of points contained in a divisor X of the Blaschke class of Q2 which
projects on the open set ) C 0S2. Then we have, with o the Lebesgue measure on
082,

Y d@)'MY < y(@)|Ox ]l + C(R)o (V) < oo.

aes

The interpolating sequences are defined via the Hardy spaces of the domain 2.

Definition 1.9. Let Q be a domain in C" defined by the function
peC®CY, Q:={z€C"::p(x) <0}, Vz €0, dp(z) #0.

Let f be a holomorphic function in €2, we say that f is in the Hardy class H? (2)
if
171 = [ 1f @I douto) < .
{p(2)=—€}

e>0

We say that f is in the Nevanlinna class N () if

1 f Ly = sup f log™ | £(2)] doe(z) < oo.
{p(z)=—¢}

€>0

Here do. is the Lebesgue measure on the smooth manifold {p(z) = —e} for € small
enough.

These spaces are independent of the choice of the defining function [34].

As we shall see, the study of interpolating sequences is intimately linked to p
Carleson measures.
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Definition 1.10. Let x be a positive Borel measure on the domain € and p > 1.
We shall say that p is a p Carleson measure in 2 if:

3C, >0 Vf € H(S). / 1P dp < CRIFID.
Q

This means that we have a continuous embedding of H”(2) in L” (u).
Usually we have only a geometric condition to work with:

Definition 1.11. Let  be a positive Borel measure on the domain €2 equipped with
a good family of polydiscs Q. We shall say that u is a geometric Carleson measure
in Q if:

AC >0::Vae 2, n(2N Qy(2)) <Co (32N Q4(2)).
So we need a way to go from geometric Carleson measures to p Carleson measures
and this is why we need to restrict to convex domains of finite type. For them we
have a Carleson embedding theorem.

Theorem 1.12. Let 2 be a convex domain of finite type. If the measure p is a
geometric Carleson measure we have

Vp = 1,36, > 05 ¥f € HY@. [ 1517 die < CLIFIG,.
Q

Conversely if the positive measure | is p Carleson for a p € [1, ool, then itis a
geometric Carleson measure, hence it is q Carleson for any q €]1, ool.

It remains to see when the canonical measure associated to a separated se-
quence is a geometric Carleson measure. In the unit ball B of C” this is done by an
easy generalization of a lemma of Garnett: a measure p is Carleson in the ball B iff
all its images under the automorphisms of B are uniformly bounded measures [5].
In a general domain there is only the identity as automorphism, so we have to over-
come this issue.

We do it by building sub-domains associated to a point a € €2 and which are
equivalent to Carleson windows. This can be done with the right control of the
constants if 2 is a well balanced domain; this notion will be defined later. Convex
domains, linearly convex domains are well balanced.

The space H 2(Q)isa subspace of the Hilbert space L2(32) hence there is an
orthogonal projection S L?(32) — H?(S). We shall denote k,(z) the kernel of
this (Szegd) projection, it is a reproducing kernel for H>().

Now we have the tools needed to deal with interpolating sequences.

Definition 1.13. We say that the sequence S of points in Q is H?(R2) interpolat-
ing if

(i) Yaes, k, € HP,(Q); (this is always true if p > 2.);

(i) YA € £P(S), 3f € HP(Q) = Va € S, f(a) = Aallkall

with p’ the conjugate exponent of p, i.e. — + — = 1.

1,1
p
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We have a weaker notion than interpolation:

Definition 1.14. We shall say that the sequence S of points in 2 is dual bounded in
HP (Q) if there is a bounded sequence of elements in H”(2), {ps}aes C HP(R2)
which dualizes the associated sequence of reproducing kernels, i.e.

(i) Yae S, k, € H”/(SZ); (this is always true if p > 2.)
(i) 3C >0::VYa €S, llpall, <C, Ya,b €S, (pa, kp) = 8apllkpll -

Clearly if S is H?(€2) interpolating then S is dual bounded in H? (2): just interpo-
late the basic sequence of £7(S). In the unit disc of C the converse is true, here we
have a partial converse of this.

Theorem 1.15. Ler Q be a convex domain of finite type in C" and let S C Q2 be
a dual bounded sequence of points in HP (2), if p = oo then for any g < oo, S
is H9(2) interpolating; if p < oo then S is H1(S2) interpolating, provided that
q < min(p, 2).

Let us give a rough sketch of the proof.
Take a sequence S in the convex domain €2; to apply a general result on inter-
polating sequences done in [2] we need the following facts:

e alink between the H”(£2) norm of the reproducing kernels k, and the geom-
etry of the boundary of 9€2, the p regularity of the domain €2, which says

3C > 0:Va e Q. [kall,” < Co(d2n Qa(2)).

where p’ is the conjugate exponent of p. We shall see that this is true for
convex domain of finite type.

e Structural hypotheses for the Lebesgue measure on 9<2. These are reverse
Holder inequalities for the norms of the reproducing kernels k,. We shall see
that this is also true for convex domain of finite type.

e The fact that the canonical measure associated to S, vs:=)_ ¢ d(a) 2@,
is g Carleson.

And this is the main difficulty. To achieve this we use the fact that a convex domain
of finite type is almost strictly pseudo-convex, so, with W the set of weakly pseudo-
convex points in 9Q2, we have that the measure v := ) c g1 (w) @ (a)!F2m@s,
is already a geometric Carleson measure in 2 by Theorem 1.7.

It remains to deal with the points which project on the strictly pseudo-convex
points in 9€2.

By assumption S\ {a} is contained in the zero set of p, € H”(Q) C N(R). So
we can use Theorem 1.5 to get, because a convex domain is quasi convex, that v :=
Y qes d(a)"8, is a bounded measure in Q. To prove that v is a geometric Carleson
measure we construct sub-domains €2, associated to points a € €2 and which are
comparable to the Carleson windows 2N Q,(2). Because we have a precise estimate
of the bound of )", ¢d(a)"8, in terms of Q2 and of the holomorphic function u,
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whose zero set contains S, we can apply what we have done to the sub-domain €2,
and getthat ), _ SN d(b)"§p is bounded by a uniform constant times 07, —1 (324N
0€2) which means that v := ), _¢d(a)"8, is a geometric Carleson measure in .

Now we use the Carleson embedding Theorem 1.12 to get that the measure
vi=) ,cgd(@)8, is a g Carleson measure for any g €]1, ool.

For “good points”, i.e. those which project on strictly pseudo-convex ones we
have that 1 4+ 2u(a) = n, hence gluing with the estimate coming from the aspc
side, we get Theorem 1.15 as an application of the notion of aspc domains.

The general organization is as follow.

In Section 2 we define the good family O of polydiscs in a domain 2 and we
give two characterisations of them:

e an analytic one in term of finite linear type;

e a geometric one in term of complex tangentially ellipsoid at every point o €
0%2.

In Section 3 we define precisely the Blaschke class of divisors X in €2, the notion of
@ quasi convexity, and we prove the discretized Blaschke and Malliavin conditions.

In Section 4 we introduce the notion of almost strictly pseudo-convex domains
and we use a nice theorem of Ostrowski to get Theorem 1.8.

In Section 5 we prove that domains of finite type in C2, locally diagonalizable
domains, convex domains of finite type, domains with real analytic boundary, are
all aspc domains, together of course with the strictly pseudo-convex domains.

In Section 6 we set the geometric properties we need for convex domain of
finite type and in Section 7 we study Carleson measures in such domains and state
and prove the Carleson embedding Theorem 1.12.

In Section 8 we construct the sub-domain associated to a point a € €2 which
is equivalent to the Carleson window Q,(2) N €2 and which allows us to overcome
the lack of automorphisms.

In Section 9 we define the notion of p regularity making a link between the
HP(2) norm of the reproducing kernels and the geometry of 9<2. Then we prove
Theorem 1.15 via a tour around properties of reproducing kernels.

Finally in the Section 10 we state and prove the facts we need from potential
theory.

ACKNOWLEDGEMENTS. I am deeply grateful to the referee who not only had to
deal with the mathematics in this paper but also gave me a lot of valuable sugges-
tions on the presentation of it. Hence even if the results here are essentially the same
as in the preprint A weak notion of strict pseudo convexity, I have done in 2009, the
presentation is completely rewritten, the statements are precised and the proofs are
detailed.
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2. Good family of polydiscs

In this section we shall study domains with a good family of polydiscs and get some
properties of these domains we shall use later.

Let 2 be a domain in C", recall that here this means a bounded open connected
set with a C* smooth boundary. Let I/ be a neighbourhood of €2 in  such that
the normal projection 7 onto d<2 is a smooth well defined application. For a € Q
setd(a) := d(a, Q2°) the distance from a to the boundary of 2.

We shall need the notion of a “good” family of polydiscs, directly inspired by
the work of Catlin [11].

Let « € 0Q2 and let b(0) = (L, Lp,..., Ly) be an orthonormal basis of
C" such that (Lo, ..., L,) is a basis of the tangent complex space Toic of 02 at «;
hence L is the complex normal at « to 2.

Let m(a) = (my, mp, ..., m,) € R" be a multi-index at o with m| =
L,Vj>2 mj>2.

Fora e U, leta = n(a) € 902, b(a) := b(a), m(a) := m(a), and § > 0; set
Q.(6) = ]—[’}: 1 8D; the polydisc such that 6 D; is the disc centered at a, parallel
to L j(a) with radius Sxd(@)V/mi@ j=1,... n.

This way we have a family of polydiscs Q := {Q,(8)}4cis defined by the fam-
ily of basis {b(x)}qegq, the family of multi-indices {m(«)}ycso and the number 6.

It will be useful to extend this family to the whole of 2. In order to do so
let (z1,...,zy) be the canonical coordinates system in C" and for a € Q\U, let
0,(8) be the polydisc of center a, of sides parallel to the axes and radius §d(a) in
the z; direction and 8d(a)!/? in the other directions. So the points a € Q\U have
automatically a “minimal” multi-index m(a) = (1, 2, ..., 2).

Now we can set

Definition 2.1. We say that Q is a “good family” of polydiscs for Q if the m j(a)
are uniformly bounded, i.e. M(Q) = sup;_; _,cqm (@) < oo, and if there
exists o > 0, called the parameter of the family Q, such that all the polydiscs
{04(80)}acq of Q are contained in . In this case we call m(a) the multi-type at a
of the family Q.

We notice that, for a good family Q, by definition the multi-type is always
finite. Moreover there is no regularity assumptions on the way that the basis b(«)
varies with respect to o« € 9€2.

We can see easily that there is always good families of polydiscs in a domain €2

in C" for a point o € 32, take any orthonormal basis b(«) = (L1, La,..., Ly),
with L] a complex normal vector to 9€2, and the “minimal” multi-type m(«x) =
(1, 2,..., 2). Then, because €2 is of class C? and relatively compact, we have the

existence of a uniform 8y > 0 such that the family Q is a good one.

2.1. Examples of domains with a good family of polydiscs

The stricly pseudo-convex domains in C" they have a good family of polydiscs
associated with the best possible multi-type, the one defined by Catlin [11], which
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is also the “minimal” one in this case:

YVaeld, m =1, Vj=2,...,n, mj(a) =2.

Moreover these polydiscs are associated to the pseudo balls of a structure of spaces
of homogeneous type (Koranyi-Vagi [22], Coifman-Weiss [13]).
The finite type domains in C? : also here we have the best possible multi-type
and a structure of spaces of homogeneous type. (Nagel-Rosay-Stein-Wainger [31].)
The bounded convex finite type domains in C” : again we have the best multi-
type and a structure of spaces of homogeneous type. (McNeal [26].)

2.2. An analytical characterisation by linear finite type

We shall recall precisely the definition of the multi-type [11] and the linear multi-
type (McNeal [25], Yu [36]). We shall take the definitions and the notation from J.
Yu [36].
Let ©2 be a domain in C" defined by the function p, and let p € 92 be fixed.
Let I';, be the set of the n -tuples of numbers A = (mq,...,m,) with 1 <
m j < oo and such that

(i) my <mpy <...<my.
@ii) for all k = 1,...,n, either my = —+o00 or there are non negative integers
ai, ..., a such that gy > 0 and Z’;Zlaj/mj =1.

This condition (ii) is automatically fulfilled in the case all m ; are integers.
An element in I',, will be called a weight. The set I';, of weights can be ordered
lexicographically:

A=(my,...,my) <A =(@m},...,m))

if thereisak suchthatVj <k, m; = m’J and my < mj,.

Lemma 2.2. The entries m; of a weight m = (my, ..., my) are rational numbers.
Given M > 0 there is only a finite number of weights m = (my, ..., my) such that
my, < M. Moreover if m; = 1 thenm, € N.

Proof. We have by (ii) that 3a; € N :: 2L = 1 hence m| = a; € N. Again by (ii)

my

a  a
daj,apeN:: —+ = =l=a<m <M, ap<mp <M,
mi mj

hence we have only a finite number of possible m, a;, a>. For each of such pos-
sibility we have
1 _ 1 ) al
my  a mi)’

hence only one solution and a rational one.
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So we have only a finite number of solutions for m, and all are rational num-
bers. We notice that if m; = 1, thena; = 0 and my = ap € N.

Suppose now that mq, ..., m; are in finite number, then, as we just seen,
ai, ..., ai are also in finite number and a1 < my41 < M so only a finite number
of ar4+1. Now as above for each choice of ay, ..., axt+1, m1, ..., mig we have only

one solution my 4 for

1 1 (1 ai ak>
Mgl Qg mi my

which is rational and the lemma is proved by induction. O

A weight is said to be distinguished if there exist holomorphic coordinates

21, ..., Zn, in a neighbourhood of p with p mapped to the origin and such that:
n
4+ B: _
SUER S i =0, @.1)
iz M
where 0% := % and 9# := ﬁaL_
8z, ..0zy" az)t .oz

Definition 2.3. The multi-type M(92, p) is the smallest weight M = (my, ...
...,my) in 'y (in lexicographic sense) such that M > A for every distinguished
weight A.

Because 0€2 is smooth at p, we always have m; = 1.

We call a weight A linearly distinguished if there exists a complex linear
change of variables near p with p mapped to the origin and such that (2.1) holds in
these new coordinates.

Definition 2.4. The linear multi-type L£(3S2, p) is the smallest weight £ :=
(my, ..., my,) such that £ > A for every linear distinguished weight A. We shall
say that Q2 is of linear finite type if

ImeN:VpedQ, LOKX, p)<(m,...,m).
Clearly we have L(3Q2, p) < M(3Q, p).

If, for p € 9% fixed, Q is of linear finite type L(3R2, p) = (my,...,my),
then there is a C -linear change of variables such that [36]:

n ) . ~
ZM <1 = 3%3%5(0) =0,

" m;
i=l !

where p is the defining function of 2 in these new coordinates ¢ = ({1, ..., ).
Set m), := [m,] = mingeN k>m, k.
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Lemma 2.5. We have

PO =R+ Y Awpt®lf +o(iz™),

2<|a|+|Bl<m,,

with Agg # 0 only if Y 1_; “EB > 1,

m

Proof. We expand p by Taylor formula near 0 up to order m), and we compute
%3P 5(0) = a!BlAgp.

Butif Y7, O"m—Jrl’B’ < 1 then 3%3% 5(0) = 0 because the linear multi-type of €2 at 0
ism=(1, ma,..., my).

Because j > 2 = m; > 2, fixing j > 2 and taking o; = 1,0; = O fori # j
and B; = 0 for all i we get

o + i 1
Serh_ L
= m m;
hence Vj > 2, 5—5(0) —0.

Replacing aj by B; we getVj > 2, 2?—E/’N'(O) = 0 hence the complex tangent
J
plane to 02 at 0 is still ¢; = 0, and the ¢;, j > 2 are coordinates in the complex

tangent space.
So multiplying ¢; by a complex constant of modulus 1 if necessary, we have

&Y=+ Y Awpt®CP +o(gI™),

2<|a|+|Bl<m),
with Y7, 4ot < 1 = 9756 5(0) = 0. O
The aim of this subsection is to show:

Theorem 2.6. If Q is a domain in C" of finite linear type, then there is a good
family Q of polydiscs such that the multi-type associated to Q is precisely the linear
multi-type of Q2.

Proof. Going back to the previous coordinates, this means that there are complex
directions vy, vy, ..., v, with vy the complex normal at p, v, ..., v, in the com-
plex tangent space, such that:

no ) _
=1 M
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3Bl
AT

with now 95 := % and 3¢ :=
dv " - dvy
v;. We can suppose that p = 0.
To define the polydiscs we need to have an orthonormal basis at p and we shall
built it with the vectors v;, j=2,..., v,.
We have already that v; is the complex normal direction, so choose e; in the
direction vy and with norm 1. Now we use the Gram-Schmidt orthogonalisation

procedure in the complex tangent plane Span(vz, v3, ..., Uy):

are the derivatives in the directions

take e, parallel to v, and of norm 1;
in Span(e;,, v,—1) take e,_1 of norm 1 and orthogonal to ¢,;

and proceed this way to get an orthonormal basis (ez, .. ., e,) of TO(C(B ) and com-
plete it with e to get an orthonormal basis b(p) = (ey, ..., e,) at p (= 0). By this
construction we have, with ¢; the coordinates associated to the basis b(p),

&1 =z, §2=bgzz, e =b2o . Dz,

i.e. the matrix of change of coordinates is triangular.
So the lemma gives, still with m/, := [m,],

POY=Re+ Y Apg®ZP +o(lg™),

2<la|+|Bl=m;,

with Agg # 0= Y7, “Hb > .

Where now the ¢; = b -z are seen as linear forms on z. Fix # > 0 small enough
sothata := (—t,0,...,0) € U, hence w(a) = 0 = p. Suppose that z € Q,(5) the
polydisc based on b(p) with § to be fixed later; this means ¢ = d(a) and

Vji=1,....n, |z;] <8d(@"™.

This implies, because m| = 1 <my < ... < my, that
/ k : k 1
= 3t = 3o
k=1 k=1
J
< sd@"" (3 || ) = sBjd@!
k=1
with B := Y/ _, ‘blj“ So we get

|| < sl«IB!! ]i[d(a)'%,
j=1
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with B :=max;_1,__, \B.,-| . Replacing «; by §; in the previous proof, we get

.....

- n Bi
|§5| < 518l glAl 1_[ d@)™i,
j=1
SO
_ n ajth; s ajthj
|§a§ﬁ| < slel+18] glal+|8] l—[d(a) mp o _ 5la|+|ﬁ|B|al+|ﬂ\d(a) j=1"m;
j=l1
In the sum, in order to have Ayg # 0, we have Z?:l % > 1, hence
p@ <Nzi+ Y. AapdHPBITlG(a) +o(1z1™)
2<|a|+|Bl<m,,

< Nz1 +8d(@)C + o(|z]™)

with
C = Z Aaﬂ(g(lclerlﬁl—l)BlaHIﬂl'
2<|a|+|Bl<m),

Moreover we have |77 — d(a)| < dd(a) so
p(2) < —d(a) + 8d(a) + 8d(a)C + o(|z|™) = d(a)(—1 + 5(1 + C)) + o(|z|"™).

The constant C depends on a finite number of derivatives of p. Because the domain
is of finite linear type AM(Q) :: Vp € IR, m,(p) < M(Q), by the compactness of
02 we have 3D > 0, C = C(p) < D for any p € 9<2. Hence if §o(1 + D) < 1/2
we have p(z) < 0 if |z| is small enough to absorb the 0(|z|m;1). This means that
Q4 (do) C 2.

So we find a 89 > 0 such that, shrinking I/ if necessary to absorb the 0(|z|’";1),
we getVa e U, Q,(80) C Q. O

Proposition 2.7. If Q is equipped with a good family Q with multi-type {m(a)}acq,
then it is of linear multi-type smaller than {(1, [m,(@)], ..., [my(@)])}ecsq-

Proof. Let o € 92 and suppose, by rotation and translation, that « = 0, p(z) =
Nzy +T(Q[zy; ) withz = (za, ..., z0).

We have that for any point a € U such that 7(a) = «, the polydisc Q,(8p) is
contained in £2.

This means that, for § < &g, the point A5 := (—d(a), 8z2,...,8zj,...,8z,)
with |zj| = d(a)!/™/ is in , hence the real segment I := {As}sc[0,5,) centered at
a is contained in 2.

Fix (0,7) € T;C(asz) and set Mz; = v(87)), & € [0, &y the graph of IR
over the segment I, i.e. v(8z') is such that (v(8z), 8z') € 9%2; then we have that
V§ € [0, 8o[, v(8z") < d(a). (See the following picture, with N the inward normal),
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02

v(67")

- T,(08)
o 62'

So the distance from the point §z" € TO(F (0Q)toa(=0)is é,/ Z;;z d(a)?/mi.

Recall that the order of contact of €2 with the real direction v at « € 92 is the
order of vanishing of p(« + tv) — p(«) whent — 0.

Setting t := &, /Z’;Zz d@?*™mi, x =d(a) and u = Z?:z x2/™j we have

n 2 —142/m;
dt Y X /mj

J=2 mj
dx ) 2/u 70
and finite for x # 0, so by the implicit function theorem we have a smooth function
f () such that d(a) = f(¢) for d(a) # 0.

Now we make the change of variables §z' = ¢¢’, still with ¢’ € TO(F(E)Q), we
have v(8z") = v(t¢’) < f(t) = d(a); hence the order of contact of 92 with the
direction z’ is bigger than the order of contact of f(z) at r = 0. So fix § < §y and
let d(a) — 0; because for any a :: w(a) = o we have Q,(8p) C 2, we get

n
t/(Sd(a)l/m”(“) — Z d(a)?/mi=2/mn
=2

and because d(a)%/™i=2/mn — ( if mj < mp, we get

t/8d (@)™ — /l(a)

where /() is the number of j :: mj = m,, hence 1 <l(a) <n —1.

Sot ~ JI()8d(a)!/" @ = f(1) = d(a) ~ I(a) ™ @/25=Mn M hence
the order of contact of f(¢) at O is m, («) hence the order of contact of 92 in the
real direction 7’ is at least m, (o).

We have proved that for any real direction in TO([C(B 2) the order of contact of
02 is at least m,, («).
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Let us make any linear change of variables keeping Toic (0€2) and sending « to
0. Let us expand p in these new coordinates

pw, B = Y Aa,ﬂw“wﬂ+0(|w|’<+1).
le|+[Bl=k

Setw; =0, fix¢ =(,¢,...,¢)andsetw = ¢ € TO(F(BQ). Then we have

pw,d) =15 3 Aupt®tf + 0O (tk+1) .
ol HTBl=k

We already know that the order of contact of d€2 with any real direction of T(;C(a Q)
is bigger than m,, and this is still true if we change coordinates /inearly provided
that we keep TO((C(B 2). So the order of vanishing of p along the real line ¢ is bigger

. atp

than m,(a) hence in order to have Ay g = M(O) not all zeros for |a| +
n ojtB;
j=2 Tl 2

|B| = k, we need to have k > m,, hence k > [m,]. This implies
no @tk _
=2k — . . .
This means that for this change of variables the weight (1, [m,], ..., [m,])
is linearly distinguished and hence 02 at « is of finite linear type. Moreover
the linear multi-type (1, m}, ..., m}) of Q2 at « being smaller than the weight
(1, [my,], ..., [my,]) by definition, we have

Vi=2,...,n, m’j(a) < [mu(a)]. o

Theorem 2.6 and Proposition 2.7 give the characterization:

Corollary 2.8. The domain Q2 has a good family Q of polydiscs associated
to {m(a)}uecaq iff the linear multi-type of 2 is smaller than {(1, [m,(a)], ...
coos [map(e) D}eesg-

2.3. A geometrical characterisation by existence

of inner complex tangential ellipsoids

First we set tools we shall need. Recall the standard notation

glal
T (x, p), x* == x]" . xp
aalxl e 8anxn

Lemma 2.9. Let f(x,p) be a C*®°(R"<xR™) function; then there exist C*° (R" x R™)
functions fg, for a« € N", such that:

Ya=(ai,...,a,)€N", 3% f(x, p) =

1 1
fa P =fO.p+. .+ mZ_kxﬁaﬁﬂo, P+ | ;ﬂx"fa(x, P).

The fy are given explicitly by the formulas:

1
Jalx, p) = /0 3% f(tx, p)(1 — n)¥dr.
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Proof. Set,fort € R, g(¢, p) := f(tx, p). Then, we have

akg
gV p) = p 6 p) = Y X0 fax, p).
lo|=k

Apply to g the Taylor formula with integral remainder

(k) 1

g®,p) 1

g, p) =80, p) ...+ =— =+ | g“Va pa—nfar.
: - JO

We get
f@p) =FO.p)+...+ Y 290, p)

=k

1 1

_ B B ok

+ 4 > ox /0 3P ftx, p)(1 — p)kdr.
|Bi=k+1

Now set fg(x, p) := [y 8F f(tx, p)(1 — )kdt, then, deriving under the integral

sign, we have that fg is C* in the two variables x, p. O

We suppose we are given a family of orthonormal basis and multi-types
{bor, m(a)}acon-

First, without loss of generality, we make the assumption that the normal
derivative of p is 1 at any point @ € 32, and p € C>*(C").

Fix o € 992; by translation we can suppose @ = 0, i.e. with py(z) := p(z+ )
we have p, (0) = 0.

Now we make the rotation U, sending the standard basis of C" to b, i.e.
0a(2) := p(Uyz + a). In these new coordinates, we have that 7’ = (z», ..., z,) are
the coordinates in the complex tangent space and z; = x1 4 iy; is the coordinate in
the normal complex plane and x; is the coordinate in the real normal at o (= 0).

Set ho(Z) i= pa(0,2) € C®(C" 1) then py (z) —ho () =0ifz; =0, VZ' €
cr.

Set
8a (X1, ¥1,2) 1= —x1 + pa(2) — ha(Z)) € CZ(CM);
we have py(z) = x1 + g4(z1, 7)) + he(2'). Recall that x; is the coordinate on the
real normal, so g%‘;‘ (0) = 1 by assumption and, because y; is a tangent coordinate,

we have %(O) =0, so

0 0 0 0
284 0,0) = 1+ 22%(0,0) =0, 25%(0,0) = 2% (0,0) = 0.
0x1 0x1 ay1 ay1

Lemma 2.10. There is a number R > 0, independent of « € 02, such that, after
the change of coordinates above, we have the estimate

1
Vo € 92, ¥z € B(0, R). |ga(2)| = 7 |21l
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and the factorization

ga(x1,y1,2) = x181(x1, y1,2) + y182(x1, y1, 2,
withVz € BO,R), j=1,2, |g;(2)| <3/10.

Proof. We apply Lemma 2.9 to g := gq(x1, y1, 2') to order 1 with 7’ as the param-
eter p. We get

d d
g(x1, y1.2) = 8(0,0,2)) + x1—(0,0,2) + y1—2-(0,0, )
0x1 dy1
+ xfg(z,O) (x1, y1,2) + x1y18a,1(x1, y1, 2) +y12g(0,2)(x1, y1, 7).

Since g(0, 0, ') = p4 (0, ') — he(z") = 0, there remain the other terms.
Because

g =8u=—x1+ pu(2) —ho(@) = —x1 + p(Usz + @) — p(Ug(0,2) + @)

all its derivatives are controlled by the derivatives of p in a neighborhood of Q,
because Uy, is a rotation independent of z, so they are controlled uniformly in . So

are the integrals of them, hence the functions g(; x). Because ag 0,0,0) =0, we

have that 3—;”1(0, 0, 7') is small when ]z ] is small and this is uniform with respect
to the point o € 9€2.
The same for %(0, 0, z'). Moreover the functions g(; x) are bounded again

uniformly with respect to the point « € 2. So finally we can choose R’ > 0 small
enough and independent of the point o € 9€2 to get

/ / ag /
|| <R = e 0,020 < 1/10, < 1/10.
X1

0
28 0,0,2)
Y1

Take R” small enough to have
Vz € BO,R"), i, j=0,1,2, |z1l[ga. ;@] < 1/10;
then, with R := min(R’, R”, 1/6) we get

|z1] |z1]
gx,y. 2| < —(|x1| + Iyl +3R |z1]) < —(2+3R) =

Vz € B(0, R), T

Now setting

0g
gi(xr, y1,2) = ﬁ(O, 0,2") +x182.0)(x1, y1,2) + yiga.n(x1, y1,2)

and
g2(x1,y1,2) == y180.2 (1, y1,2),
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we have

3
Vz € B(0, R), |g1(z)| < 0 lg2(2)| < 1/10,

and the factorization

g(x1, y1.2) = ga(x1, y1,2) = x181(x1, y1, 2) + y1g2(x1, y1, 2). O

Lemma 2.11. If Q2 has a good family of polydiscs for « € 02, there is a complex
tangentially elliptic domain C = Cy, with aperture I' > 0 near the point o € 0€2,
of class C* and such that

- Cy C 2, neara,
- Cy and 2 meet at o,
- dA>0,Vaeld:n(a)=aoa Qi) C Cy provided that

1
82 <min (I, ———, 1/4).
4(n—1)A

Proof. We shall build C. We make the change of variables above; then we can write

0a(2) = x1 + 8a(2) + ha(zl)a

where 71 =x1+iy1,2 = (22, ..., 2n) and go €C®(C"), he eC®(C" 1), go() =
he(a”) =0. Let

(@) = x1 + 84 (2) + A(lz2™ + ... + [zal™),

with m = m(«). We fix an aperture I' > 0 and we shall choose A in order to have
that
C:={u<0}N{ly] < —-Txy}

fills the requirements of the lemma.

This domain C = C, is what we shall call a “complex tangentially elliptic
domain with aperture I' > 0 ”. As the referee remarks this can also be seen as the
classical “approach regions” to the boundary in the strictly pseudo-convex case.

Fixa=(—1,0,...,0),7€R, (—t,2) € B(0, R) in order to have |go (1, )| <
t/4, by Lemma 2.10; consider the slice S;, of Cq

Vzi i (z1,2) € B(O, R),
Sz, = {z/ = (z2,...,20) : A(|Zz|m2 + ...+ Iznlm") <—T+ 2)x1}.
Then

71=—t=>y1=0=>
=S ={ =@ ....z) = A(l22]™ + ...+ 1zal™) < T +2)1}.
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, DS |m; . 1 I/mj _
Ifz € S, thenVj > 2, Alz;[" < T+t = |z < Tyt

d(a)l/m]
(A/@T+2)"i
Henceif A > 122 thenV;j > 2, (A/(T+2)/™Misy = (A/(T+2))/mnsy > 1

mp (o)
3y n

hence
d(a)l/mi
(A/(T +2))1/mi
< 8od (@)™ = (—1,7)) € Qu(d0) C Q.

eSS =Vj=2,...,n, ‘zj| <

Soif (=t + iy, z') € C, we have |y;| < I't and

(=t +iy1,z) = =1 + g (2) + A(lz2|™ + ... + |za]™) <0
= Alz2l™ + ..+ |zal™) <t — gu(—1 +iy1, 7).

But, in the ball B(0, R), we have |gq (=7 +iy1,z)| < 2 + L, hence
A(lz2l™ + -+ 1zal™) <t = go(—t +iy1,2) <t +1/44|y1] /4 < (T +2)1,
then 2’ € S_; 4y, and (=t +iy1,2) € Qu(d0) C Q = po(—t +iy1,2') <0

provided that |y;| < 8o, hence we need to take the aperture I' < §y. To have the
same A for all the boundary points, we take

I+2
= % with M(Q) = sup m,(a),
3 a€dQ

which is bounded because Q is a good family.
With this choice of A, we have that

(=t +iy1,z) € CNBO, R) = (—t +iy,7) € Qa(80) C
so (=t +iy1,2") <0 = p(—t +iy;, ') <0, ie.
(@) = —1 + ga(—t + iy, 2) + Alz2/™ + ... + |za/™) <O,

hence
A(lz2]™ + - -+ lzal™) < t = ga(—1 +iy1, 2,

and this implies py(z) < 0, i.e.
h()l(zl) <t-— g()l(_t + lyla Z’)a

so necessarily Ay (7)) < A(Izzl’"2 +...+ |Zn|m”), because if not suppose there is a
7' such that
A(lz2]™ + - -+ 1zal™) < h(2),
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take a r > 0 with
A(lz2l™ + -+ lzal™) <t —g(—1.2) < h(Z),
then the point (—¢, z’) belongs to C, because we have y; = 0 < I't, but not to 2,

which is a contradiction.
Hence we proved

z2€CyNBO, R) = he(Z) < A(lz2I™ + - - + za™). 22

So over any point of B(c, R) N {|y1] < —I'x1} we have a domain of class C?,
because m; = 1 = my € N by Lemma 2.2 hence

922" 0%(22z2)™/?  ma(my —2) 2|24 32

= = Zn.
323 323 4 2
If mo = 2 then 212" — 0 and this term is C2. If m > 3 then
dw?

9% |zal™  mama—2) 4
) = |ZZ| 2y
925 4

and this is continuous, so again this term is C2.

Now we have m j > m; for j > 3 hence all the other terms are also C2.

It remains to prove the last item of the lemma.

Take a pointa € 2, m(a) = o thena = (—t¢,0, ..., 0) after the usual change
of variables; fix a § > 0 to be precised later. If (x| + iy, z) € Q. (8), then

Vj=2,...,n,

Zj| < &tl/imi, |x1 +t] <6t = x1 < —t(1 —3), |y1] < é¢,
so we already choose § < I' to have |y;| < —I'xy, and
n
Alz2l™ 4 -+ 4 lzal™) < 1A 8™,
j=2

hence
i, y1,2) = x1+ 8@ + A(lz2l™ + ...+ |za™)

n
< —t(1—-8)+ tAZ(SmJ' + 1g(2)].
j=2

Because m; > 2, A§™/ < 82A, so

w(xi, yi,2) < —t(1 =8) + (n — 8%t A + |g(2)] .
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But, by Lemma 2.10, the smooth function g(z) is bounded on B(0, R) by zlt |z1],
and we have |y;| < T |x1] so

, t 3 r
wixy, yi,2) < —t<1—8)+<n—1)52m+1<1+r>=t (5 — - 1)8%A + Z) :
if wechoose I' < I, (n — 1)8?A < £, § < 1 andz € B(0, R) we get

(x1,2) <1t AP
x,z)<t|l—+-+=-+-] <0,
pi < 475757y

. . . . 1
ie. Qu(8) C C. It remains to choose § with § < min (F, EN(CEYS 1/5), I' <

min(dp, 1) and z € B(0, R) to have Q,(8) C C.
The family {C} is determined by {b(x), m(c)}ycoq, the aperture I' and the
number A. O

It would be nice to have an actual ellipsoid domain osculating 2 at «, instead
of a conic domain whose slices parallel to the complex tangent space centered on
the real normal are convex ellipsoids.

But this is not true in general as shown by the following simple example in C2.

Take 2 = {p < 0} near 0, with:

p(2) = x1 +ayf +blzl™ + cyixa,

withm > 3, ¢ > 0. Then there is no way to have that C := {y < 0} C Q near 0
with:
1(2) = x1 + Ayf + B |22

for any choice of A and B.

2
Just take points y; = %2, y» =0thenz € 0C = —x| = A;i—% + Bxg” and at
this point we have

x x5
p(z) = (a— A)k—2 + (b — B)xy' + e

and this is not negative for k big enough and x; small enough if m > 3.
Now we shall see that we have a converse to Lemma 2.11.

Lemma 2.12. [f a domain Q2 contains a family of complex tangentially elliptic do-
mains {Cy}acaq based on {b(a), m(a)}gcoq, aperture I > 0, ' < 1, and number
A, then Q2 possesses a good family of polydiscs still based on {b(a), m(a)}yecsQ

and with parameter §y = min (F, ﬁ, 1/5).
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Proof. This is a remake of the proof of the last item in Lemma 2.11.

Again we make the canonical change of variables associated to the basis by;
we have

Pa(z) = x1 + ga(2) + hOt(Z/)a

where z1 = x1 +iy1, 7 = (z2,...,zp) and g = g4 € C®(C"), h = hy €
Cx(C* Y, gla) = h() =0.

Leta = (—t,0,...,0) and fix a § > O to be precised later; if (x| + iy, 7)) €
0. (6) then

Vji=2....n |z;| <8tVMi jxp 1] <8t = xp < —t(1-9), Iyl <8,

so we already choose § < I" and

n
Moo -t ) < 143087
Jj=2

hence .
pnxi, y1,2) =x1+ 8@ + tA(lz2l™ + ...+ |za™)

n
<—t(1=8)+1AY 8" +1g().
j=2

We get, because m; > 2, A8 < 82A,

pw(xt, y1,2) < —t(1—=8) + (n — DS A+ 1g(2)| .

But, by Lemma 2.10, the smooth function g(z) is bounded on B(0, R) by zlt lz1],
with R > 0 independent of «. So as in the proof of the last item in Lemma 2.11, if
F<1,8<1 8(n—1A <1, wehave 0,(8) C C.

It remains to choose I' < 1, § with § < min (F, ﬁ, 1/5>, which is

independent of &, and z € B(0, R) to have Q,(8) C C.
This means that

(z1,2)) € BO,R) N Q4(8) = (z1,.2)) € C.

For d(a) < %RM(Q) < %Rm"("‘), because we can always choose R < 1, with
M(Q) = sup,cyq Mn(a) <00, then Q,(8p) C B(w, R) hence in this case Q,(50) C
C cQ. O

Together these lemmas proved:

Theorem 2.13. Let Q2 be a domain in C"; there is a good family of polydiscs in
Q with multi-type {b(a), m(a)}qcoq iff there is a family of complex tangentially
ellipsoids {Cy}qcyq with parameters {b(a), m(a)}yeyq such thatVo € 92, Cy N
B(a, R) C 2N B(a, R), where R is given by Lemma 2.10.
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3. Divisors of the Blaschke class

Let u be a holomorphic function in a domain 2, set X := u! (0) its zero set and
® := 00 In |u| its associated (1, 1) current of integration. We shall define a class of
such zero sets containing the zero sets of Nevanlinna functions.

Definition 3.1. A holomorphic divisor X in the domain 2 is in the Blaschke class
if, with © its associated (1, 1) current of integration,

1015 = / d()TrO(2) < oo
Q

Let S be a separated sequence of points in €2 contained in the zero set X in the
Blaschke class of 2. The aim of this section is to show that the measure v :=
Y aes d(@)"8, is finite.

We shall need the easy lemma:

Lemma 3.2. Let Q = {Q,(8), a € Q} be a good family of polydiscs for Q with
parameter &y and § < &g. Then we have

VYa € Q, Yz € Q,400), d(a) < d(z,09).

80— 96

Proof. We have by definition Q,(80) C €2, hence Vz € Q,(5), d(z, Q) >
d(z, Qq(80)°), but because m j(a) > mi(a) = 1,d(a) < d(a)'/™i@ by the con-
struction of the polydisc Q,(8) we have

Vz € Qq(8), d(z,0R2) > d(z, Qa(80))

> min (8 —8)d(@)"" W > (- 8d(@). [
Jj=1,..., n

3.1. The discretized Blaschke condition

Let u € H(2), i.e. u is holomorphic in €2, and let X := u=1(0); put ® := 99 In |u|
the (1, 1) current associated to X. Recall that Aln|u(z)| = Tr ®, the trace of ®,
and O is a positive current, hence its trace controls all its coefficients.

We have, for any open set )V C €2, the equality (see for instance [24, page 55])

/ Tr® =o02,2(XNYV). (3.1)
1%

Let E; := {z € C" :: z; = 0}, this is the subspace orthogonal to the z; complex
plane. Let €2 be a domain equipped with a good family Q of polydiscs and X a

divisor in 2. We set fora € 2, X, := X N Q,(8), X the projection of X, on E;
and A;(X,) = o20-2(X}).
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‘We have the discretized Blaschke condition:

Theorem 3.3 (Discretized Blaschke condition). Let u be holomorphicin 2, X :=
u~'(0) and ® := 391In|u| its current of integration; suppose that ® is in the
Blaschke class. Let S be a § separated sequence in X with respect to a good family
Q of polydiscs with parameter 8y. Then we have, provided that § < 8y/2,

2
> d(a)or-—2(Xa) < %”®”B‘ (3.2)

aes

Proof. Let a € §; then by Lemma 3.2 we have Vz € Q,(5), d(z) = d — & >
%d(a). Now

> awtes [a@me=iels.
Qa(9) Q

aes
because S is § separated, hence the polydiscs Q,(§) are disjoint. Then
8o do
10l > - Zd(a)/ Tr® == ) d(@omn-2(Xa). -
a(®)

aes aes
3.2. The discretized Malliavin condition

Letussety :=1i Z’}:l dzj A dzj, we have that 0y = dy =0 and y is a positive
(1, 1) form. We shall follow the proof by H. Skoda [33, page 277].
Set B := y"("=2) and apply Stokes formula to p® A dp A B

0=/ p@AépAﬁ=/@AapAépAﬂ—/p@)AaépAﬂ,
a2 Q Q

because ® and S are closed. Hence

/@)AapAépAﬂ‘:'/ p® A ddp [\ B
Q Q
< ||aép||oo||ap||oo||ﬂ||oo/ d(z. ) TrO
Q

< 830 N9pllclBllcl®l 5 < 0o,

because the trace of ® controls all its coefficients and (—p(z)) < [|9pllod (z, 0L2).
The norm ||l is a constant depending only on the dimension 7, hence
we can set C(p) = H88,0HOO||<’J)/0||OO||,B||oo which depends only on the first two
derivatives of the defining function p.
Hence we proved

<Jodnnpl, [ oo

Lemma 3.4. We have the estimate:

/QG)/\B/) Adp ABl < C(p)IOB]lp.

Set m), := [my].
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Lemma 3.5. [f a real smooth function h(z) verifies
n
m
@) <) |z|™
j=1

with mj > 2 and |z;|"/ < d(a), then dh A 3h = d(a)T(z), where I'(z) is a
positive bounded (1, 1) form with its sup norm controlled by the m), + 1 derivatives
of h.

Proof. We shall use Lemma 2.9, this time using complex variables notation, for the
function & with no parameter; there are smooth functions f g(z, z) for |a|+ |8 =
m), such that

m),—1
=) D> a4+ Y fap@ D
k=0 a,p,lo|+|Bl=k o, B.le|+|Bl=my

with z% := z{" - - z;" and the same for z#. Consider the path ¢ € [0, €] — z;(t) :=
g“jtl/’”-i then
Za — g-‘)‘t)/(ol)7

®j

with y (a) = Zf}zl e hence

h@®)= Y agpPrr@t®
o p.lal +1Bl<m,

+ Y fapG@®, 2@ @O,

a.B.la|+|Bl=m),

We also have
Dol =y [
j=1 j=1

hence let s = y(a) + y(B), then for |«| + | 8] = m), we have

=3,

J

n n n
N Y Bj o
=2t sl
]:

n
Bi
=1 Mn 5= M -1 My

. /
because m; < m, < m,.
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The function s = y (&) + y(B) can take only a finite number of values, say
S1 < ... < Sk, then because |h(z(2))| < tZ?:l |{j|m'/, ifs; <1,

n

Yo gt <t g™

o, B,y (@)+y(B)=s| j=1
Sk
+ Zts_sl Z g pc°CP
s=5) a,B, y(@)+y(B)=s
+ Z |fa,ﬂ(Z(t))| |é—|lt¥|+|/3| Y@ty (B)—s1
o, B, lal+Bl=m;,

In the last sum we have y (@) +y(8) > 1 because |a|+ || = m), and the functions
fo.p are bounded. Letting r — 0, we get

Z aa,gé‘ai’ﬁ =0.
a,B, y(@)+y(B)=si

We can repeat the same computation for s2, ..., s; provided that s; < 1, and we

get
> agpCCP = 0.
B, vty (B)<l

So in the expansion of % it remains only «, 8 such that y (@) + y (8) > 1.
Now we compute

n n
o
9z% = ZO[J'Za/Zdej =2z Z—{de.
= =1 %

And
558 2": 67 dz —Biﬂfd—
0zF = Biz"/zjdzj =2 —dz;.
j=1 j=1%

Set w(z, ) := Z’}Zl Z—jdz]-, we have

oh = > a0, p oz, 0) + Y fap@ Dok )
o, B.1=y (@) +y (B)<m, o.B.lal+|Bl=m)
+ Z z“Zﬁafa,ﬂ(z, 2).
o, Blal+|Bl=m)

and

bh=" > awpPoe )+ Y fupDPoG B
@By (@+y(p)=1 o.B.lal+|Bl=m)

+ ) PO fapz )
o, B.lal+|Bl=my,
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So we have as the generic term for 3k A dh

_ /_ /dZ‘ de
Adz; Ad7g =722 At Ay il
zZj Zk

hence

|A| — |Zl|0{|+/31+oli+,3; nlan+,3n+0l;l+/3,/l

—1 _
.z |l2j| ™ Lzl !
with |z;]™ < d(a) we get
|A] < d(a)y(a)+y(ﬁ)+7(a/)ﬂ/(ﬂ’)d(a)*1/mjd(a)*1/m < d(a),
because
y@+yB) +y@)+y(B) =2 and mj >2,myp > 2.
The special terms are of the forms
_ /_ /dZ i dz
Bdzj AdZy i= fup(2)2% T ZPTF 2L A —£
Zj Zk

and, by the same argument, they verify

|B| < || fap|  d(@);

or
8 / ! d_
Cdzj NdZy := MZO‘JFO‘ Prh dzj A ﬁ

Zj Lk

and they verify a fortiori |C| < H 0fw.p ||Ood(a); or

_ /_ /dZ' dz
Ddzj A d7g = fup(2) fur.p(2)2*TC PP Z—J A Z_k
j k

and they verify |D| < | fu.p fu g

OOd(a); or

3 8 .4 / /
Edzj ndZy = Wep e ' a8 g i AdZk
dz; 0z

and they verify |E| < ||3fa,ﬁ5fa’,ﬁ/|

OC’d(a); or

0 g dz
fOl,,B fa,ﬂ(Z)Za-Hx Zﬂ-i—ﬂ dZJ A __k
9z 2k

Fdzj ANdzy =

and they verify |F| < || Jor.pr0fa,p H «d(a); and the conjugates of these expressions
are also bounded. All the bounds are controlled by the m), + 1 derivatives of & and
we have a finite set of such smooth coefficients so

dh A dh = d(a)T(2),

where I'(z) is a positive bounded (1, 1) form controlled by the m], + 1 derivatives
of h. O
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We shall evaluate the integral |, 04(6) O A dp Adp A B, and we start first with
the following function u, defining a complex tangential ellipsoid C as in the previ-
ous section, Lemmas 2.9, 2.10, but here we choose twice the previous one to ease
the computations,

w(z) = 2x1 +2x181(2) + 2y182(2) + 2A(|z2|™ + ... + [z,|™).

We have, witha = (a1,0,...,0), a; <0,

9 9
ou(z) = (1 +81(2) —ig2(2) +2xla;g1 +2 1%) dzy

+2x0 ) —(z)dzj +2y1 ) —(z)dzj

J>2 J>2
ny (mz 122" 2 Zadzs + . . .+ my |2o]" 2 anzn)

and

- 0g1 082 981
In(z) = (1 +81(2) +iga(z) + 2x1F +2 18—) dzi + 2x; Z szj

jz2
2 9g2 my—2 = my—2 =
+ )HZTCZZ]‘ + A (m2 |z2] 22dZo + ...+ my |2, 2ndzn ),
j=2 0%
because
d |w|™

= 8, (Dw)™?) = 2 (@wy™> 1% = = |w™ 2 xw.
ow 2 2

Lemma 3.6. We have

n
¥z € Qu(8). duAdp = B@dz AdZi+ Y Ci@) o™ da A dz;
j=2

n
+3 D@ |z " dzj AdZ +d@T (@),
i=2

where B, C;, D; are bounded with bounds depending only on the the C ' norms of
g1, & and T is a (1, 1) form with bounded coefficients depending only on the the
C" norms of g1, g>.

Proof. Because Vz € Q,(8) we have |71| < dd(a) = |x1| < éd(a), |y1| < dd(a)

andVj > 2, |zj‘ < 8d(a)'/™i, so the terms in o A a,u containing a or g‘gz or

982
55

981

9z; or

can be put in I'. For the terms in

Ay mm |z 2 lal™ 22 jzdz; A dZ
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we have
mj—l +mk_1

i—1 — e
2" et < 8@ T

Vi k=2,

suppose that m ; > my, then

mj—1+mk—1>mj—1+mk—l>ﬂ:1

m; mr m; T omj
because Yk > 1, my > 2. Hence they also can be put in I'. It remains

B(2)dzi AdZ; with B(z) == (1+g1)2 + g2,

n
> Ci) 25" 2jdzy AdZ; with Cj(z) == (1+ 81(2) — ig2(2) Amj,
=2

and

n
ZD]'(Z) |Zj|mj_2 zjdzj ANdzy with Dj(z) := (1 + g1(2) +ig2(z))Am;.
=

Clearly the bounds on those terms and in ' depend only on the C' norms of
81, 82- 0

Lemma 3.7. Let © be a positive (1, 1) current and F(z;) a function, then for all
n > 0 we have

_ _ 1 _
2(0© A Fzj)dzi AdZj AB| < n@/\dzl/\dzl/\ﬂ—}—;@/\|F(zj)|2dzj/\dzj/\,8.
Proof. By Cauchy-Schwarz, because ® A B is positive, we get

|© Adzi AF(z))dZ AB|7 <IOAdzi AdZIABI|O A F(z))dz; AF (z2))dZ AB

hence, because 2ab < na2 + %bZ,

_ _ 1 _
2 [OAdz AF(2))dZAB| <n®Adzi AdZIAB + ;@/\|F(Zj)|2dzj'/\d2j/\,3. O

Let us go back to the general case. Fixa € Q, o = 7 (a), we know by Lemma 2.11
that there is a complex tangential ellipsoid C = C, with exponents {m ;(«)} meet-
ing 02 at o and contained in 2. Moreover we have, after the canonical change of
variables of Lemma 2.10, and multiplying by 2 the functions to make the following
computations slightly easier,

p(z) = 2x14+2x181(2)+2y182(2) +ho (z') = 2x14+2x181(2) +2y182(2) + (0, 2),
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as the defining function for 2 and
p(z) :=2x1 + 2x181(2) + 2y182(2) + 2A(|z2™ + ... + 1za™), Iy1]l < =Txq,

as the defining functions for C,. We notice that the functions g; in u are the same
as the functions g; in p and depend only on p. In particular the C! norms of the g j

are controlled by the C> norm of p hence they are uniformly bounded with respect
to o.

Lemma 3.8. We have, with © a positive (1, 1) current,
/ @/\dzl/\dzl/\ﬂSS/ OAIuUAIUAB+Td) Tr®.
Qa(8) 04 (8) 04 (9)
with the constant T depending only on the C* norm of p, on n and 8.
Proof. Using Lemma 3.6, we get
OANIAIUAB—B(R)O Adzy AdZ1 A B
n

Ci@ |z 72;0 Adzi AdZ; A B

j=2

n
+ 3" D@ [2j]" 20 Adzj AdZ A +d@O AT AB.
j=2

Hence
B)OAdzy AL AB=OAIUAIUAB —U —d@)O AT AB,
with .
U= Ci@|zj|" 2,0 Adzi ndZj A B
j=2

n
+3 D@ |¢|" 220 Adzj Adz AP
=

By Lemma 3.7 we get, with n > 0 to be fixed later,

2 ‘C‘,-(z) |z,,-|mf’1®Adzmdszﬁ‘ <n® Adzi AdZi AP

+%|cj|2| 7@ Adzj AdZj A B.

J

But for z € Q,4(8) we have |z;[*" 72 < |z;|™

hence

8d(a) because |z;|" < 8d(a)

2|C(@) [ @ ndzindzAB| 1O Az AdZiAB

1 _
+ 1C? |z,]™ 7 8d(@)© Adzj ndZj AB.
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Set C} =2 |Cj |2 |zj |mj_2 whose bound depend on the C! norm of the g;j we get

1
< E(n —Dn® Adzy Adzi A B

n
> Ci@ |7 Tz 0ndz AdZ AP
j=2

5 n
+ Ed(a)ZC}@/\dzj/\de/\,B.
=2

Doing exactly the same proof, with D/i :=2|D; ’2 |z |mj_2 we get

1
< 51— Dn® Adzy AdZi AP

n
> D@ |z 20 Adzjndzinp
=2

8 n
+ Ed(a)ZD}@/\dzJ-/\de/\,B.
j=2
So we get
_ 8 2 _
Ul < (n—1Dn® Adzy AdZ) A B+ ;d(a) > (C+ D)O Adzj ndzjAB.
j=2

J

Now we choose 1 := m and we get, because ® A dp A du A B and B(z)® A
dz1 A dZ1 A B are positive,

B(2)OAdzi AdZIAB<OANIuAIuAB+|U|+d@)|®AT AB.
Hence
- 1
B(z)G)/\dzl/\le/\ﬂ§®A8M/\8,u/\,8+1®/\dzl/\d21/\ﬂ
+d@)@n—138(a) | AT AB|+ 10 AT A BI.

with

n n
.= ZC}dzj AdZj +ZD}de Adz;.
j=2 j=2

Finally

1 _
(B(z) - Z) OAdZINAZIAB<OANIUNIUAP

+d(a)(4(n — 1)8(a) |OAT'AB| + |OAT A )
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Recall that B(z) = (1 + g1(2))> + g2(z)*> > 0 and we know by Lemma 2.10
that Vz € B(0, R), |g1(z)] < % hence, provided that Q,(5§) C B(0, R), i.e.

d(a) < RVMQ  with M(Q) = sup,cyq mn(a) < o0 because Q is a good family,

2
(1+81)* + g2 — 1/4 > (l) o
10 4 100

So dividing by B(z) — 3 we get
OANdzi AdZIAB <50 Adu NI A B
+5d(a) (4(n — D8(a) |® AT AB| + 51O AT ABI).

Integrating, we get the lemma because the trace of ® controls all its coeffi-
cients. U

We shall need the following definition.

Definition 3.9. The domain 2, equipped with a good family Q, will be said quasi
convex at a € Q if, with « = w(a), m = m(x), taking the coordinates associated
to the basis b(«), centered at «, we have with p, a defining function for €2,

Vz € Qa(2) i pe(0,2) <0, —pu(0,2) < y(Iza™ + - - - + [za™).
The domain will be said quasi convex if Q2 is quasi convex at a foralla € U N Q

with the same constant y.

A convex Q2 or a lineally convex €2 are quasi convex because for them N
TL(3R2) = ¥ hence p(0,7') > 0.
We have ©® = Z?,j:l ©;jdz; A9z and

n
OAndzi AdZiAB= ) O;jdzi ADZj A dzi A dZ1 A B.
i,j=2
In the integral f 046) ® Adz) Adz) A B, it remains precisely the sum of the o7,
areas of the projections of X, on the E;, j > 2, see [24, Proposition 2.48, page
55]. So recall that fora € 2, X, := X N Q4(8), X the projection of X, on E; is
denoted X, and A ;(X,) := 02,—2(X7); we get

n
/ @/\dZ1/\dZ1/\ﬂ:ZAj(Xa)-
04(5) j=2

So by Lemma 3.8 we have

n
ZA,-(X@: / O Adzi AdZL A B
= 04(8)

55[ OAIUAIUAB+Td(a) Tr®.
0a(8) 04(5)
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Hence, because if z € Q,(8), by Lemma 3.2,d(a) < (So%sd(z), then

n . r
ZAj(Xa)SS/ OANIUAILA B+ / d(2)Tr®.
= 04(8) 30 =3 J0.)

At this point we shall use equation (2.2) which says, (recall we multiply by 2 the
defining function p of the domain and the defining function p of the cone)
Vz € CoNBO,R), p(0;2) <24 (12l + ... + |zal™).
So either p(0; z') > 0, then we have
0<p0;2) <24 (1z2™ + ...+ |zal™) ,
or p(0, z') < 0, then we use that 2 is m(«) quasi convex at o to get
—00,2) <y (Iz2]™ 4+ ... + |zal™) .
In any case we can apply Lemma 3.5 with z’ instead of z to
h(z) = —p=2A(22" +... 4 |zal™) — p(0; 2,

to get B
Oh(Z) A dh(Z) =d(a)T(2),

with the sup norm of I" controlled by the m, (a) + 1 derivatives of A.
So we have . = p + h, with dh A 0h = d(a)T'(Z), hence

OAIUANIUAB=OANIPAIPAB+OAIAIAPB
+OANPAIUABFOAILAIPAB,

by Cauchy-Schwartz, because ® A 8 is positive, we get
@A AdpABIT<|O@AdpAdpAB||OAIRADHAB
hence, because 2ab < a? + b2,
2[@AANIPAB<OANIPAIPAB+OANILAINAP

and
OANIUANIUAB <20AIPAIPAB+20AdLAINAB.

Finally

OAIUAIUAB<20AIPAIpAB+2da)O AT(Z) AB.
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So we have, with " = %%5 supZEQu(l;)(F(z’), v), still controlled by the m,,(a) + 1
derivatives of &,

/ @AaMASMAﬁS/ @AapAépAﬁ+r’/ d(z)Tr®.
04(5) 04(5) 04(5)
Hence

OAdpAdIpAB+5T / d(z)Tr®.
0a(6)

>4 =5 [
j=2 0

By use of Lemma 3.4 and setting S’ := S N U, we have, because the polydiscs
04(8), a € §' are disjoint

a(8)

33 Aj(Xa) < ClOxllse), (33)

ae$’' j=2

where C = 5C(p) + 5T . Notice that the constant C does not depend on o
and depends only on the derivatives of p up to order M(Q) + 1, with M(Q) =
SUp,cq Mn(a) < oo, because Q is a good family.

So we proved the discretized Malliavin condition:

Theorem 3.10 (Discretized Malliavin condition). Ler Q be a domain in C"
equipped with a good family Q of polydiscs with parameter &, and which is Q
quasi convex. Let © be a current in the Blaschke class and S a § separated se-
quence in X NU with respect to the family Q. Then we have

D) 4,(X) =L@l (3.4)

aeS j=2

where C is a constant depending only on the derivatives of p up to order M(Q)+1,
on 8, 8y and on the constant of quasi convexity.

3.3. A geometrical lemma

Let © be a domain in C". Leta € U, a = 7(a) and Q,(8) the polydisc of a good
family Q associated to 2.

Let D" be the unit polydisc in C", and let ®, be the bi-holomorphic application
from D" onto Q, ()

VZ=(z1,...,za) €D, 1 < j<n, Zj=a; +8d(a)/™1Dz;L;.
If X is the zero set of a holomorphic function in 2 with a € X, we can lift X, :=

X N Qy(8) in D" by <I>a_1. Set Y, := CIDtjl(Xa), and recall that the multi-type is
such that m| = 1 and m,, is always bounded, m, (a) < M(Q). We have:
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Lemma 3.11.

() o2—2(Xa) = 212 Aj(Xa);
(i) Vi=1,...,n, Aj(Xe)=82""2d(@)?"/ D A;(Yo), with pj(@) =", ; sas:
(i) withmy <mp < ... < my,

Ir\l/l(_Ql) = pi@) = p2a) = ... < puna) =n/2;
n 1 n—1
Ml(a)—l;mk(a) =T

(iv) ¢y < 022(Ya).

Proof. The (i) is classical ([24, Proposition 2.48, p 55]).

The application &, sends Ey = {zx = 0} in Fy := { the orthogonal to Lj axis}
and the jacobian of this restriction at the point a, J;®, is Jy® = 8”_1d(a)“’<(“).
Because the application is holomorphic, we get that the jacobian for the change of

real variables is
|Jil? = 82" 2d (@)? (@,

which gives the (ii).
For the (iii) we notice that
1 n—2
< .
2

1
<-=

2<jk<n, >2= <
< j k< n, ma) @ =2

Kt j 2k=n k(@)

Hence if 2 < j < n, 1j(@) = Y4sjochen iy + 1 < 0/2: i j = 1, (@) <

2=l < n/2. Hence (iii).
The (iv) is the Wirtinger inequality [19], adapted from the ball to the polycube
as follows: Y, N B(0, 1) C Y, hence by Wirtinger inequality we get

cn <022 (Yo N B(O, 1)) < 02,2(Ya),

so the lemma is proved. O

34. The result

Theorem 3.12. Let Q be a domain in C" equipped with a good family Q of poly-
discs and which is Q quasi convex. Let S be a § separated sequence of points which
is contained in the Blaschke divisor X. Then

8723 " d(@)" < y(Q)1Oxllp,
acs

where y (2) depends only on the derivatives of p up to order M(Q) + 1, on n and
80, the parameter of the family Q, and on the constant of quasi convexity.
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Proof. We have by Lemma 3.11
Vi=2,....n, Aj(X,) = 8" 2d(a)*"I D A;(Y,),
but for j > 2, 2u;(a) < n, hence
Vi=2,...,n, Aj(X,) > 8" 2d(a)" A;(Yy).
For j =1 we have 1 4+ 2u;(a) < n, by Lemma 3.11, (iii), hence
A1(Xq) = 8" 2d(@)" A1 (Ya).

Then Theorem 3.10 gives

n

Cloxllg = D D Aj(Xa) =82 d@)" Y Aj(Xa).
2 j=2

a€s j= aes

And the Blaschke condition gives

2
5 1€l = > d(a)Area(X,)

aes

> Y d@)Ai(Xe) = 8772 d(a) O A (Y,),

aes aes

hence 5
5 1€l = 82723 " d(a)" Ay (Ya).

aes

So
2
2n—2
52 Zd(a)"<A1<Ya> + ZA"(Y“)) = €+ )10l
aes Jj=2
Now with A((Y,) + Z/.>2 Aj(Yy,) = c, by Wirtinger inequality, we get the
theorem. o O

We already have defined in the introduction (1.1) the canonical measure asso-

ciated to a sequence S
vs = Y d(a) @,
aeSNU

with w(a) := Zi}zz W .

The theorem says that the measure ), ¢~ d(a)"8, is bounded which is
weaker than the fact the measure vg is bounded, unless S is a separated sequence
projecting on points of strict pseudo-convexity, because there we have 1 +2u(a) =
n. In the next section we shall introduce domains for which we can control the right
measure vgs.
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4. Almost strictly pseudo-convex domains

We shall introduce a family of domains © with “few” non strictly pseudo-convex
points on 9€2.

This family will be big enough to contain interesting cases, as convex domains
of finite type for instance and will allow us to manage these “bad” points.

4.1. Minkowski dimension

4.1.1. Definitions and first properties

Lemma 4.1. Let f be a function Lipschitz @« > 0, a < 1, on the closed interval
I = [0, h] of R. Then the graph

G:={(x,y)ux€el, y=f(x) cR?

of f can be covered by N,(h) < Chr*~2 disjoint discs D(a,r) centered ata € G
and of radius r, provided that r < h.

Proof. This is corollary in [18, 11.2, page 147]. The proof is as follows. Let 0 <
r < 1 and m the least integer greater than or equal to 4 /r. We have by proposition
in [18, 11.1, page 146]:

m—1 m—1
r Y R (A D) S Ne(h) <2m 47" Y O RpGr (G4 D), (4)
j=0 j=0

with Ry (t1, 1) = SUP;, <t u<t |f(t) — f(u)|. Because f is Lipschitz « we have
Ry¢(t1,) < C|t; — 12|* hence R (jr, (j + 1)r) < Cr®. Putting this in (4.1) we
get

Ny (h) < 2m 4+ mCro !,

But provided that m > 0, i.e. h > r, we have m < 2h/r so

h
Ny(h) < 4= +2Chr*% < C'hr* 2. O
r

We shall define an homogeneous Minkowski dimension. Denote #A the number of
points in the set A.

Definition 4.2. Let W C R2 be a bounded set and « > 0: let D(a, h) be a disc
centered at @ and of radius &; let R, (W N D(a, h)) be a covering of W N D(a, h)
by discs of radius r; we shall say that W has homogeneous Minkowski dimension o
if:

AC >0, Vae W, Vh >0, Vr >0, r <h,

AR, (W N D(a, h)) :: #R, (W N D(a, h)) < max(1, Chr=%).
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The number C will be called the constant of W with respect to the homogeneous
Minkowski dimension «.

Clearly if W has homogeneous Minkowski dimension o with constant C then
it has upper Minkowski dimension « (see [18]), but the converse is false as can
be seen with the canonical example of W = {0,1,1/2,1/3,...,1/n,...} which
has Minkowski dimension 1/2 but it is not homogeneous, i.e. W N D(0, h) has no
covering with the property above for any # > 0.

On the other hand, Lemma 4.1 gives examples of such sets.

The following result is a corollary of a nice theorem of Ostrowski [32].

Corollary 4.3. Let P(y) be a monic polynomial of degree d in the real variable y
whose coefficients are C* functions of x € R. Then the graph of the zero set of P
has homogeneous Minkowski dimension less than 2 — %.

Proof. By a theorem of Ostrowski [32] we have that locally the roots y of the equa-
tion
PO =y"+ay" " +.. . +as=0,

are Lipschitz % functions of the coefficients a ;. Composing with the C* function
x—ax):={ajx), j=1,...,d},

we get that the roots yi(x), k < d, are still Lipschitz 5 and we can apply
Lemma 4.1 to the graph of each root. Because there is at most d such graphs,
the corollary is proved. O

4.1.2. Domains in C"

Let D(p) be the disc in C of center 0 and radius p and denote o5, the Lebesgue
measure in C" = R?". We have the lemma:

Lemmad4d4. Let W C D := D(d)xD(R)"*xD(h) C C" and @ > 0 such that
the homogeneous Minkowski dimension of

Wn{zi=ai, ..., Za—1 = an-1}

is2—aforalla = (ay,..., a,_1) € D(d)xD(R)* 2. Let S C W and let another
orthonormal basis b = {L, .., L,} with w = (wy, ..., wy) as coordinates; let P,
be a polydisc with respect to the basis b(a) centered on a € S, b(a) varying with
a € S, P, with fixed radii (r, lor ..., l,r), and such that these polydiscs are
disjoint. Let | = maxj—> . ,l;. Then

ac : ZUZH(PQ) < Chd*R*" 2% = Ch™ ' oy, (D)I%r°.

aes
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Proof. Denote by C the canonical basis of C" with the z; as coordinates.

First set C (b, Ir) a polycube, i.e. a polydisc with all its radii are equal, with
respect to the canonical basis C in D, centered at b and of radii (Ir, ..., [r). Any
polydisc P, with a in C (b, Ir) is contained in the “double” polycube C (b, 2(2)"Ir),
the 2" because of the “angle” between the two bases; hence the measure of the
union of all those polydiscs P, is bounded by the measure of C (b, 2"*!Ir). These
polydiscs being disjoint we get

Y 0(Pa) S o2(C(b, 27 r)) = 22 2y,
aeSNC (b, Ir)

Each polydisc verifies 02, (P,) = rr”l% .. .l,%rZ”, hence the number of points N¢ of
Sin C(b, [r) can be estimated by:

lZn
Nc < 22n+lnn12nr2n/n,nl% . lgr2n — 22n+1 12

2...12

n

Letb’ = (b1, ..., b,_1) be fixed, then the set C((b’, by), Ir)N {7 =b"} C D(h)
is a disc centered at b, € D(h) and of radius /r. The homogeneous Minkowski
assumption gives that there is a subfamily of these discs which covers S whose
number n g of elements verifies

ng < Ch(lr)*2.

Define the slice of depth Ir to be B(V',Ir) := UbneD(h) C((V', by),Ir); then the
number Np of points of S in this slice verifies

lZn

Ng <ngxN¢ < Ch(zr)“*zxzz"“ﬁ.
2.2

2 p2(n—2)
d R hence the total

The number of such slices, when b’ varies, is bounded by LR

number N of points in S can be estimated by:

NBdZRZ(n72) )
o < 22T PRI ChI Y ———.
= 2(—1);2(n-1) — l% o 22

So the total measure of the polydiscs P, is
A=Y 02(Pa) = Nxa"ly « - Lor® < 22" > R¥=2 Chi*r®
aes

= C'h~ Lo, (D)I%r",

with C’ = 22"+ 7 C which depends only on C, the Minkowski constant of W. [
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4.2. Almost strictly pseudo-convex domains

Let W be the set of weakly pseudo-convex points of 9€2, i.e. W is the zero set of
the determinant of the Levi form £ of d2. Let 7 be the normal projection from 2
onto 92, defined in a neighbourhood I/ of 92 in 2.

Let o € 92; by linear change of variables we can suppose that =0 € 92 C
C", z; = 0 s the equation of the complex tangent space. The projection 7 locally
near 0 € 92 gives a C* diffeomorphism 7 dQ2 — Tp(dRQ), 7 := (7T|T0(BQ))_1~
Definition 4.5. The pseudo-convex domain € in C" is said to be almost stricly
pseudo-convex, aspc, at 0 if there is a neighbourhood Vjy of 0, a positive number g,

and a basis b := {Ly, ..., L,} of C", still with L a complex normal unit vector,
such that the slices in the associated coordinates for the basis b,

aWnW)N{zi=0N{zx=a}lN...N{zs—-1 = ap—1}

have homogeneous Minkowki dimension less than2 — 8, 8 > 0.

Q is said to be aspc if this is true for all points in €2 with the same g > 0 and
the same underlying constant.

The basis b is in general different from the basis b(«) used in the definition of
the good family Q.

Of course the strictly pseudo-convex domains are aspc because W = (.

4.3. Sequences projecting on weak pseudo-convex points

We still shall use the notation:

Yaeld,a:=mn(a), m(a) =m(a)=mi(a),...,m,(x)) is the multi-type of a
point;
W is the set of non strictly pseudo-convex points on 92;

Ya e, pa) = Z?:Z —L__is the weight exponent.

mj(a)

Theorem 4.6. Let Q be a good family of polydiscs on a aspe domain Q in C",
and S be a § separated sequence of points in Q. If t(SNU) C VNW, where V is
an open set of 0S2, then we have:

D d@' O =572 N 02,(Qa(8)) < C(Q)02-1(V), (4.2)

aeSNU aeSNU

where C(2) depends only on p, n, the good family Q and the constant B in the
Minkowski dimension of W C 0€2.

Proof. The polydisc Q,(8) has radius y := §d(a) in the normal direction and in its
conjugate and has radii

(sa@"m@, .. sd(@' /™)
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in the complex tangent directions. Let us denote Ly, ..., L, the complex tangent
directions in the basis b(«) associated to 7 (a) with multi-type (m2(a), ..., m,(a)).

Now fix { € W C 9Q and let Vi := B({, €) N 9€2 be a neighbourhood of ¢ in
0<2 such that 77 is a diffeomorphism from V; on a neighbourhood of ¢ on the (real)
tangent space T; . One can choose the radius of the euclidean ball B(¢, €), € > 0 to
be fixed independently of ¢, because 92 is of class C? and compact.

Because Q2 is aspe, we know that there is a basis b = {vy, ..., v,} of C" such
that vy = L is still in the complex normal space, and a complex direction in the
complex tangent space at £, say v,, along which W is of homogeneous Minkowski
dimension 2 — B, B > 0. l.e. these two basis are different in the complex tangent
space only.

Let § € Q :: w(S) C W be the § separated given sequence. First we shall
prove the theorem with V = V; and then complete it.

The proof will follow from several reductions.

4.3.1. Reduction to a layer parallel to the complex tangent space

As usual we suppose that { = 0, NRz; = 0 is the tangent space Tp(9€2).

By use of the C* diffeomorphism 77, we can suppose that 92 ~ Tp(3€2) in
a ball B(0, ¢) with a uniform € > 0 which depends only on Q via its defining
function p.

Consider the polydisc, in the basis b, Py(R,h,d):= D(d)x D(R)"2xD(h)C
B(0, €) where D(r) is a disc centered at O and of radius r. We can manage it to have
€/2y/n <d < handstill Py(R, h,d) C B(0, €).

In this ball B(0, €) we consider 2 as a half space Ty(9€2) x]0, €] by use of the
diffeomorphism 7.

From now on we shall restrict everything to Py(R, h, d), which means, in par-
ticular, that z € Py(R, h,d) = |z1] < d.

Let C,, C Py(R, h,d) be a layer parallel to Tp(0€2) at a distance y < d from
the boundarys, i.e.

a=(ay,..., ay) € Cy, < NRa; ~d(a) € [(1 =8y, (1+y],

with & the separating constant.
Now let S, :=SNC), N Py(R, h,d).

4.3.2. Reduction to a fixed multi-type

There is only a finite set of possible multi-types for the points of S because we have
a good family of polydiscs and the multi-type is uniformly bounded by Lemma 2.2.
Hence it is enough to show the inequality (4.2) for the points @ € S with a fixed

multi-type, m(a) = (1, ma, ..., m,). Of course the axes of the polydisc Q,(5) are
dependent on a.

We can apply Lemma 4.4 to the sequence S, ; because my < ... < m,, we
set:

1 1

o= yl/m2’ l = ymn my
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The lemma gives:

> 021(Qa) < CRR¥"2d*1PrP = ChR*"=Ddy P/,

acs,
The measure of the trace of Py(R, &, d) on the real tangent space Tp(9€2) is
o2n-1(Po(R, h, d) N Ty(dR)) = R*"Ph’d,

because the disc D(d) is in the complex normal.
So we get

> 02(Qa) < CRR¥*=2dy Pl

acsy,

J “4.3)
= Czyﬂ/mﬂozn,I(P()(R, h, d) N To(3S2)).

4.3.3. Adding the layers

Because the sequence is separated, the layers can be ordered this way yx =v¥yp, k€
N, where yy < d is the farthest point from the boundary and v = i—jrg <1
We have to add them and, because of inequality (4.3), we get

d m
> 2 02(Qa) = Coom1(Po(R . d) N To(3R)) Y yf™.

keNaeS,y, keN

But y; = vkj/o, k eN, so

B/mn dB/mn

B/mn _ _ B/ma kB/m, Y0
D v M=y Y W = e <
keN keN

Hence we get

Z Z oo (Qa) < C/d

keNa€eS,,

1+B/my

02n-1(Po(R, h,d) N Tp(8R2)),  (44)

: /e 1

4.3.4. Adding for all the multi-types

Because we have a good family of polydiscs the multi-type is bounded, hence Ya €
Q, my(a) < M(Q), so we have that, for any multi-type,

1 1
'D,

/e _
C=Cr—pm =T =
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hence the inequality (4.4) implies

dl+/3/mn
D 2 02(Qa) = D——0n 1 (R(R, b, ) NTH(BR). (45
keNaeSy,

. 148/
Since d < h we have £ B o < dP/mn

Recall that 02,1 (Q4 (8)) = 8~ "d(a) ' T2@ | then we get

D) d@) '@ < D22 dP Mo,y (Py(R, b, d) N To(9R))
keNaes,,

Now set Vg := Py(R, h,d) N Tp(02), d < h; the number of possible multi-types
being finite, we have a finite sum of finite numbers so ), ¢d (a)1121(@ g finite,
for SNUN{d(a) < d} c w~1(Vp), with constant C(Q2)o2,_1(Vo), where C(2)
depends only on the defining function p of 2, the Minkowski constants of W and
of the good family Q.

Now let V be an open set in 9€2; because 92 is a bounded smooth manifold in
R?" we can cover it by a finite number of sets {V¢}rer “almost” disjoint, i.e. such
that

e the union (J V; covers 92;
LER
e any point of 92 belongs to at most N of the V;.
This gives
velJvenv.
CeER

Hence

o2n-1(V) £ Y 020 1(Ve N V),
LeER

On the other hand we just proved, shrinking U to U N {d(a) < d} if necessary,

> d(a) D < C(Q)o2-1(Vy),
aeSNUNT~L(V,NV)

Z d(a)1+2ﬂ(a) < Z Z d(a)1+2l/«(a)

aeSNUNT—1(V) LER aeSNm—1(V;NV)
<C®@ Y om1(V)
LeER

SO

the last inequality because any point of V is covered at most N times. O
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Remark 4.7. In fact this theorem says that the measure

ws = Z d(a)l-‘f-ZM(a)(sa
aeSNU

associated to the a separated sequence S of points projecting on the weakly pseudo-
convex points in €2 is a geometric Carleson measure, as we shall see later.

4.4. Sequence of points in a Blaschke divisor

We shall glue the previous result with the one we got in Theorem 3.12 to have the
control of the canonical measure vg associated to a separated sequence S.

Theorem 4.8. Let Q be a aspc domain in C" equipped with a good family Q of
polydiscs and which is Q quasi convex. Let S a § separated sequence of points con-
tained in a divisor X of the Blaschke class of 2, with © as its current of integration,
which projects on the open set )V C d2. Then we have

Y d@)'HY <y (@)1l + C(Q)02,-1(V) < 00,

aes

where d(a) is the distance from a to the boundary of Q and p(a) = Z?‘:z W,
with (1, mp(a), ..., my(a)) is the multi-type associated to the family Q.

Moreover the constants C (), y (), depend only on the CM Q@+ pnorm of the
defining function p, n, 8 and 8y the parameter of the good family Q, the Minkowski
constants of the aspc domain 2 and the constant of quasi convexity.

Proof. Let Bg be the set of (bad) points in the sequence S, i.e. which project on
the weakly pseudo-convex points in V C 92; let Gg be the set of (good) points in
the sequence S, i.e. which project on the strictly pseudo-convex points in V C 9€2;
then S = Bg U G and we have by Theorem 3.12

Yo d@" <) d@" S0l = Y d@)' Y <y ()8,

aeGg aes aeGg

because, for these points we have m; = 1, my = 2,..., m, = 2, hence n =
1 4+ 2u(a). By Theorem 4.6 we have

Y d@)' MY < ()02 1(V) < o0,

acBg

so adding these two inequalities, we get

Y d@'"PHD <y @)1Ox |5 + C(Q)020-1(V) < o0. 0

aes
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5. Examples of almost strongly pseudo-convex domains
An example of aspc domain not of finite type is the following

112 4+ exp(l — 22172 < 1,

because the set W of its weakly pseudo-convex points is the circle 71| = 1, z2 = 0,
hence it has Minkowski dimension 1.

The other examples are mainly based on the following theorem.

Let 2 be a domain in C" and L its Levi form. Set D := det L; then the set W
of points of weak pseudo-convexity is W := {z € 9Q :: D(z) = 0}.

Theorem 5.1. Ler Q2 be a domain in C" of finite linear type, and D the determinant
of its Levi form. Suppose that:

9*D
Vo €99, I e T, (99) = 3k €N, ——(@) £0,
v

then Q2 is aspc and can be equipped with a family of polydiscs whose multi-type is
the given linear multi-type.

Proof. The fact that there is a good family of polydiscs associated to the linear type
is given by Theorem 2.6.

It remains to verify the condition on the smallness of the set W of weakly
pseudo-convex points.

Let o € 0€2, we may suppose that « = 0 and that the complex normal is the
Z1 axis.

Because 2 fullfills the hypothesis of the theorem, thereisa j 1 1 < j <
n, a real direction, for instance the y j axis, with z; = x; + iy;, and an integer
m, such that, with D being the restriction of D to the z j complex plane via the
diffeomorphism 7, D:=Dox

"D amD
8—’”(0) = —m(O) # 0.
Vi 8)’j

The differentiable preparation theorem of Malgrange gives that there is a polyno-
mial with C* coefficients,

m
P(xj. yj) = YT+ Y ax(xp)yr*
k=1

and a C* function Q(x;, y;), Q(0) # 0 such that

f)(xp yj) = Q(xj, yj))P(xj, yj).
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Hence the zero set of D is the same as the one of P and we know, by Corollary 4.3,
that the homogeneous Minkowski dimension of it is less than of equal to 2 — %

Because D and D are C*° functions, %’;;mﬁ # 0 in a neighbourhood of 0 with

the same number m, hence we have that the homogeneous Minkowski dimension
of {D = 0} is less that of equal to 2 — % in all the slices parallel to the z; axis in a
neighbourhood of 0, and we are done. O

A natural question, asked by the referee, is: Is the condition Ya € 92, Jv €
T(f{C(BQ) »dk e N, ‘?Tl,?(a) # 0 actually necessary ?

I have no answer to it, but we shall see that for convex domains this condition
is a consequence of the linear finite type of €.

We shall need the definition.

Definition 5.2. Let f be a function defined on an openset V C R", f € C*(V);
we shall say that f is flatata € V if Vo € N, —L(a) = 0,

«,
L0

5.1. Pseudo-convex domains of finite type in C?

Lemma 5.3. Ler f(z2) be a real valued smooth function of z € D, the unit disc in
C; if Af is flat at O then for any m € N there is a harmonic function h in D such
that f — h = O(|z|™) at the origin.

Proof. Take the Taylor expansion of f at O:
m+2
fO+iyy =Y auxby' +0(z1").

k,I=0

We get the expansion of A f near O:

Afriv)= D Kk = Dagd* 2y + Y 10 = Dawey' 240 (o).

k=2,1=0 k=0,1=2
Hence
m
Af i)=Y [k + Dk +Dagsai+ + DU+ Dagr2] 55 +0 (1214,
k,[=0

But Af flat at 0 means that [(k + 1) (k +2)ak42., + (+ 1) +2)ag 1+2] = 0, hence
setting



230 ERIC AMAR

we have that
m
Ah(x +iy) = D [(k+ Dk +Darras + ( + D+ Dag r42lx"y' =0
k,1=0

because all the coefficients are zero. So we get that & is harmonic and f — h =
O(IzI"*). O

Theorem 5.4. Let Q be a domain of finite type in C2; then Q is aspe.
For the proof of this theorem we shall use the following lemma.

Lemma 5.5. Let h be a real valued harmonic function in a disc D(0, R) C C;
then h cannot have isolated zeroes.

Proof. Suppose that 1(0) = 0, i ¢ 0, then by the mean formula we have for any
0<r <R,

1 2w .
0=hn0) = —/ h(re'®)do.
2w 0
But /4 being real valued on the circle C (r) := {|z| = r}, h cannot be always positive
or always negative, hence it must change sign on C(r) so it must be zero at least

twice, because & is continuous. This is true for any 0 < r < R, hence the lemma is
proved. O

Proof of Theorem 5.4. Let @ C C? be defined near the origin by
p(2) =Rz + FSz1, 22).
We have that
p(z) =Nz1 + f(0,22) + (fRz1, 22) — (0, 22)).

Suppose that D := Af(0, z») is flat at 0; then by Lemma 5.3 for any m € N there
is 1(z2) harmonic near zo = 0 and such that

£, z2) = h(z2) + O(|z2|™).

There is a conjugate h to h such that u := h + ih is holomorphic in z; near 0 and
h(0) =0 = u(0) = 0. We have f(Jz1,22) — f(0, 22) = Jz21xg(3z1, 22), With g
smooth as we seen in Lemma 2.9; hence we have

p(2) = Nz1 + h(z2) + Jz1xg(Qz1, 22) + O(lz2|™).

Let X := {z1 = —u(z2)} be this holomorphic variety. By Lemma 5.5 there is a
sequence Z := {wy},en C {z1 = 0} such that 2(w,) = 0 and w, — 0.
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Now take apoint a, = (a,ll, wy) € X = E)?a,l = —h(wy), Nsa = —fz(w,,).
We have that J Asa = —h(wy) = 0 hence

plap) = maé + h(wy) + O(|22]™) = —h(wy) + h(wy,) + O(w,|™) = O(lw,|™),

because Jz1xg(Jz1, z2) = 0 on ay.

Hence the distance from 9€2 to the holomorphic variety X is O(]z2|™) near 0
along the sequence Z going to 0, so the type of 02 is bigger than m at 0.

This being true for any m € N we have a contradiction with the fact that € is
of finite type in D’ Angelo sense [15].

Hence Af (0, z2) is not flat at O and we can apply directly Theorem 5.1 to get
that 2 is aspc. O

5.2. Locally diagonalizable domains

In this context, the domains with a locally diagonalizable Levi form where intro-
duced by C. Fefferman, J. Kohn and M. Machedon [12] in order to obtain Holder
estimates for the 9, operator.

Recall that Q2 locally diagonalizable means that there is a neighbourhood V, C
9Qof e € 9 and (L1, ..., L,) abasis of C" depending smoothly on ¢ € V,, and
diagonalizing the Levi form L.

We shall need the following lemma.

Lemma 5.6. Let Q be a domain locally diagonalizable in C" and of finite linear
type. Then the determinant of its Levi form is not flat on the complex tangent space
of 092.

Proof. Let « € 9L, then there is a neighbourhood V,, of « and (Ly,..., L) a
basis of C" depending smoothly on z € V,, and diagonalizing the Levi form L,
with L; the complex normal direction, so we have, restricting £ to the complex
tangent space:

M 0 -0 0
L(z) = R
0 -+ 0 Ay
Hence D := detL = A---Ai,. Now suppose that, for any complex direction
Lj, j= 2 ., n, at «, there is a real direction v;, v; € Lj, such that 3k =

ki eN, ’(oz);éO then with k := (kp, ..., k) :

D
— (@) #0,

vy - - duy"
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and D is not flat at «. Hence if D is flat at o, we must have
ok
dL;, Yv;j € Lj, Vk € N, —k(a) =0.
"
J
Now this j is fixed and we slice Q2
Qj = {Z2=...=Zj71 =Zj+1 =...=0}NnQ.
We are exactly in the situation of a domain in C?> and we can use the proof of

Theorem 5.4 to get a contradiction with the fact that p has a finite order of contact
with a real direction in L ; because €2 is of finite linear type. O

Hence we proved

Theorem 5.7. Let Q be a domain locally diagonalizable in C" and of finite linear
type. Then <2 is aspc.

5.3. Convex domains

Theorem 5.8. Let Q be convex in a neighborhood of 0 € R"*!. Suppose that

the tangent space at 0 is x,41 = 0 and 02 = {x,41 = f(x1,...,x,)}, with f
convex. If the determinant of the Hessian of f is flat at O then f is flat in a direction
x = (x1, ..., x,) € R" of the tangent space at 0.

Proof. If f is not flat in any direction, we can find « > 0 and m € N such that
f(x) > a|x|*" inaball B(O, R) C R". Let us consider the functions

o o
hx) =5 x|, g(x) := > X" + e |x|* +3,

with € > 0 and § > 0. Denote H the Hessian of the function f.
Because det H is flat at 0, there is a ball B(0, r) C R" such that:

Vx € B(0,r), det Hp(x) < det Hy(x)
Ve >0, V6 > 0, det H, < det Hg. 5.1)

We choose € and § so small that there is a real ¢ such that
1/2
( S+ 6r2) [
r>t>|2
o

o o
5t2’" >et? 48 = at? > Eth +et?+ 8,

then

hence,
Vxoolxl =1, f(x) > a|x*" > g(x). (52)
On the other hand, because g(0) = § > f(0) =0, and f and g are continuous, we
get
s >0, s <t:Vx, |x| <s, f(x) <gkx).
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The maximum principle for the Monge-Ampere operator says [6]:

Lemma 5.9. Let v be a convex function (i.e. H, > 0 ) defined in a bounded open
set 'V and a regular function p such that

detH,(x) > detH,(x), v < p

ondV.Thenv <ponV.

Because det H, > det Hy in B(0,r) by (5.1) and g < f on dB(0, ¢) by (5.2),
we can apply this principle, i.e. g < f everywhere in B(0, t) which is a contradic-
tion in the ball B(0, s). Hence f has to be flat in some direction. O

Corollary 5.10. Let Q be a convex domain in a neighbourhood of 0 € 0Q C R”.
If 02 is flat in no direction of its tangent space at 0, then the determinant of the
Hessian of Q2 is not flat at 0.

Proof. If not we have a contradiction with Theorem 5.8. O

Let us see now the case of a convex domain of finite type in C". We shall need
the following lemma.

Lemma 5.11. Let Q be a convex domain of finite type in C" then for any complex
line L in the tangent complex space at 0 € 0S2 there is at most one real direction v
in L such that 02 is flat in this direction at 0.

Proof. We can choose p(z) = Niz1 — f(3z1, 22, - .., Zn) as defining function for
with f a positive real valued convex function and with the z, axis L, as the given
L. (The complex normal direction is L as usual.)

Suppose there are two such directions vy, vz in L,; this means

ak
vkeN, =2 =0, j=1,2
8vj

The vector v; can be seen as a point a; in the complex plane P, = {71 =z = -+ =
Zn—1 = 0} and also v, corresponds to the point a; € P,. Lett € [0, 1], a; :=ta; +
(1 —t)ay € P,, because f is convex this implies that 0 < f(a;) < tf(a;) + (1 —
t) f (az) and this means that the order of contact in the direction v = tv; + (1 — ) v,
is bigger than the minimum of the order of contact in the directions v and v,, hence

k
Vk e N, 8—'0(0) =0, j=1,2,
vk

with v = tv; + (1 — #)vy. This being true for any 7 € [0, 1] we have that f is flat in
the sector of P, between v; and vy, but f being C* this implies that f is flat at 0.

By a result of Boas and Straube [9] we have that for a convex domain the
multi-type or the order of contact with real lines is the same; the multi-type of 02
being finite, this means that there is a real direction in L which is not flat, hence a
contradiction which gives the lemma. O
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Corollary 5.12. Let Q be a convex domain of finite type in C" near 0 € 9Q2. There
is a complex line L in the tangent complex space at 0 and a real vector v € CL,
such that the determinant of the Levi form of a defining function for Q2 near 0 is not
flat in the direction v.

Proof. Let Ly, ..., L, be an orthonormal basis of TOC(B 2). Because 2 is of finite
type, we know by Lemma 5.11 that in any complex direction L, 2 < j < n, there
is at most one real direction in which 9€2 is flat; we can always take that direction to
be the y; axis without changing the ambiant complex structure. If such a direction
does not exist we still take the y; axis in the following.

We set E to be the subspace E :={y, =--- =y, =0}N{z; =0}.

We write the defining function as usual

p(z) =Nz — fRz1,22, .-+, 2n)s
hence the domain €2 N E has defining function
ﬁ(-x) = —f(O, X2y ey -xl’l)'

Let £(z1, ..., zx) = 00p(z) be the Levi form of Q, we have

_ 32 f
90 f(x,0) = —=L(x, 0) = (x, 0) = H;(x) (5.3)
0xj0xg )
jk=2,...,n
with f(xg, ..., Xp) == f(0, x), and the new convex set 21 := Q N E still verifies

the conditions of Corollary 5.10: f)(x) :=detH f(x) is not flat because we get rid
of the flat directions. Hence there is a real vector v in the tangent space at 0 for 9€2;
such that D is not flat in the direction v. This means

%D
dk e N:: ——(0) #£0;
vk
but, using (5.3), we get
D 0y = ¥ gy 0
vk vk ' -

Theorem 5.13. Let Q be a convex domain of finite type in C"; then 2 is aspc.

Proof. By use of Corollary 5.12, it remains to apply Theorem 5.1. O
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5.4. Domains with real analytic boundary

Lemma 5.14. Let Q2 be a bounded domain with real analytic boundary. Then 2 is
of finite linear type.

Proof. Take a point @ € 92 and suppose that a real line through o has a contact
of infinite order with d€2, then, using Lojasiewicz [35] we get that the line, which
is real analytic, and 0€2 are regularly situated, hence the line must be contained in
d€2. But this cannot happen because 9€2 is bounded. O

In fact we have a better result because we know, by the work of K. Diederich
and J. E. Fornaess [16], that €2 is of finite type.

The function D = det L is also real analytic, hence if D is flat at a point
a € 0R2. This means in particular that Vv € T,(0R2), Vk € N, %](T?(a) = 0,
hence D is identically zero on d2. This says that all the points of 92 are non
stricly pseudo-convex points. But this is impossible because €2 is compact, hence
contains at least a strictly pseudo-convex point, because of the following simple and
well known lemma [23]:

Lemma 5.15. Let Q be a bounded domain in R", with a smooth boundary of class
C3. Then 32 contains a point of strict convexity.

Now let @ € 9€2 and suppose that D is flat in all the complex tangent directions
of TgF(a 2). Then, because 92 is of finite type, we can recover the derivatives in
the “missing direction”, namely the real direction conjugate to the normal one, by
brackets of derivatives in the complex tangent directions.

Hence we have that D is also flat in the direction conjugate to the normal one,
but this would imply that D is flat at the point «, and this is forbidden by the lemma.
So we can apply Theorem 5.1 to conclude:

Theorem 5.16. Let Q be a domain in C" with real analytic boundary, then Q is
aspc and of finite linear type.

6. Convex domains of finite type

McNeal [26], introduced tools for studying the geometry of convex domains of
finite type: a family of polydiscs and a related pseudo-distance which are well
suited to these domains.

These tools were used and a little bit modified by different authors: McNeal
and Stein [29], J. Bruna, P. Charpentier and Y. Dupain [10], K. Diederich and E.
Magzzilli [17], A. Cumenge [14] and also T. Hefer [20], among others.

We start first with notation and definitions taken from Hefer [20] in order for
the reader to follow easily the citations we use. This means that the polydiscs in the
family seem different but we shall show, in Section 7, that they are the same than
the ones defined in Section 2.
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Let r be a defining function for 2, Q := {z € C" :: r(z) < 0}, where Q is a
convex domain of finite type.
Hefer uses the € distance in the direction v:

(¢, v, €) :=sup{c [FrC+r)—r@)| <e VAeC: Al <c}, (6.1)

and builds two € extremal bases (introduced in [10]), a variant of the original one
of McNeal [26], which are equivalent, from which we keep one:

be(;) - (v1(€7 6)7 soey vl’l(é" 6))5
and the € distance in the direction vg:
Vk=1,..., n, w(¢, €) =71, vk, €).

This allows him to define a family of polydiscs

n
V>0, tP(¢):= z=§+z w, vk (¢, €) eC" = Vk=1,...,n, |wi| <ty (2, e)} ,
k=1
(6.2)
and the pseudo-distance d(z, ¢) := inf{e :: z € P.(¢)} associated to it. See the
nice introduction in [20] to see why this definition is relevant.
From his theorem of [20, 1.7] I just keep the “geometrical” part.

Theorem 6.1. Let Q C C" be a smooth convex domain of finite type and let
(my, ..., my) be its multi-type.

If U is a sufficiently small compact neighborhood of 02 , if ¢ € U and if
(m1(2), ..., my(g)) is the multi-type of 02, = {z € C" 1 r(z) = r({)} at the
point ¢, then there are constants ¢, C > 0 depending only on U (and on the fixed
defining function r of Q2 ) such that

ce'/mi®) < 1;(g,€) < /M@, (6.3)
Hence we have a family of polydiscs
P = A{Pe(O)}cett,e>0 (6.4)

which is equivalent to the family used by McNeal and Stein [29].

We shall extract from [20, proposition 2.7] the following facts we shall need
later.

Vt > 0, Jc;, 3C; depending only on ¢ such that

Vi elU, Pee(§) CtP(8) C Pee(f). (6.5)

There are constants C; > 1, ¢ < 1 and ¢3 > 0, independant of ¢ and €, such that

1
V; EZ/{, Ve > O’ EPE(g) C C1P€/2(§)7

Ve >0, Vt < cpe, V¢, C1P (L) C Pe(8);
Vi e Q, e3P (¢) C . (6.6)
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There is a constant C3 independent of z, ¢ € U, and independent of s > O such
that

Pg(z) N Pg(8) # 0 = Ps(z) C C3P(0). (6.7)
This implies, with 07, (P) the euclidean volume of P,

1
o (B(©) = ou(Py(@) = C o (P(©):
3

But 02, (Ps(¢)) = 11(¢, )2 ]—[;5:2 7 (¢, s)? and 7 (¢,s) ~ s, so we have

J

PN P@) #D= ]t 9°~
j=2

Ti(z, )% (6.8)
j =2

If m(2) is the projection of z to €2, then we have the estimate
dz, 1(@) = |r@)); z€ Pe(Q) > d(z, §) <€ 2¢ Pe({) > d(z, §) 2 €

and
d(z, ) <e=z¢€ P()

forallr 2 eandd(z, ¢) > € = z ¢ Pi(¢) forall 7 < e.

6.1. Szego6 and Poisson-Szego kernels

We shall continue with notions introduced by McNeal and Stein [29]; we modify
slightly the previous notation: Vx,y € 9092, p(x,y) := d(x,y) is the pseudo-
distance which, proved by McNeal [25], gives a structure of space of homogeneous
type to 0€2.

The “distance” in Q, p*(z, w) is defined by:

p*(z, w) = [r@)| + [r(w)| + p((2), 7(w)),
where 7 is the normal projection on the boundary 92 of 2, well defined in U,
(shrinking U if necessary).
We have, still following McNeal and Stein [29]:
e the pseudo-balls on €2 are defined by
Ya € 02, B(a, €) := Pe(a) N 0L2;

o the “tents” are defined in i/ N Q, where U is a sufficiently small compact neigh-
borhood of €2 defined in Theorem 6.1,by Va e U N R, T,(€) = P.(a) N Q.
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‘We shall also need this notation:
VzeQ, YweQ, T(z,w)

is the smallest “tent” containing the two points z and w. The € underlying this tent
is equivalent to p*(z, w) as done in [29].

Let S(z, w) be the Szego kernel of €2, i.e. the kernel associated to the orthog-
onal projection from L?(3<2) onto the Hardy space H>(S2).

We have ([29, page 521]):

1)
< - - e ¥
V(z, w) € QxQ\A, |S(z, w)| S TG0 d:=p (z,w).

Keeping z € 2 and pushing w to €2, we still have

V(z, y) € @x0Q, [S(z, »)| S 8 :=p"(z, y). (6.9)

on(T(z,¥)’
We also have the following estimates ([29, page 525])

n

om-1(B(x, ) ~ €[] 1jx, &%
/=2 (6.10)

om(To(€) ~ e []rj(x, ) ~ €021 (Blx, €)).
j=2

We have, by its very definition (6.1), that Vk € N, 7;(x, 2ke) > Tj(x, €), hence
using (6.10)

Vk € N, o2,—1(B(x, 2%€)) 2 200, 1(B(x, €)). (6.11)
Letz € Q, x = m(z) € L2 be fixed and cover 92 by annuli
Cr:=B(x, 288)\B(x, 2¥718), k>1 and Co:=B(x, §) with § = p*(z, 2) =2 |r (2)| .

Lemma 6.2. Withz € Q, x =n(z) € 02, 8 := p*(z,2) =2|r ()|, we have:

Vz € Q,Vy €9, Sz )| < 1B(x,85 ()
Y NN o (B, 8/2)) PO
| 6.12)

+ I, (y)-
£ 1 (Blx, 288))

Proof. This is a well known technique of harmonic analysis (we already used it
in [4] for the same goal, for instance).
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By inequality (6.9) we get, with y € 32 N Cy, hence p(x, y) < 2"5,

* k
1Sz )] < 0"z, y) _ lr @)+ p(x,y) < (1 +2%)8 .
02,(T(z,)) oo (T (z,y)) oo (T (z,y))
So .
8 (1+2%6
S| S —— Mg, —~ 22 4.
S@NNIS T ’5)(y)+,;02n(7"(z, oy T

If y € Cx, k > 1, we have 02,(T (2, y)) 2 02, (T, ( 2k_18)) and for y € B(x, §)
we have
02 (T (2, y)) 2 022 (T (17 (2)])) = 024(T-(8/2)),

SO

8 (1+ 258
1SS —m= 1B V) + ) ——— 1, ().
oo (T.(8/2) " ; oo (T.(248))
Now by the equivalences (6.10) we have 02, (T;(h)) =~ hoy,—1(B(x, h)), so we get
8 1+ 258

NERIIBS 1 + 1 ,
SEINS S Bay oY) ,; 51+ 29321 (BN
hence 0 ;

5G| < B(x,8)() . (y) 0

om-1(B(x,8/2)) = oan—1(B(x,2k18))"

Lemma 6.3. We have, withz € Q, x =m(z) € 02, § := p*(z,2) =2r(2)|,

1
om—1(B(x, 8)V/r"’

1SCz, ), S

where p' is the conjugate exponent of p.

Proof. Lemma 6.2 gives us

1B(x,5)(y) Ic,(y)

S 5 < ’
SEINS B 8/2) T & m(Blr, 27T8))

hence integrating on 92, we get

oon—1(B(x, 3)) 02n—1(Ck)
om—-1(B(x,8/2))P £ oon—1(B(x, 28-18))P"

1Sz, )y <

From Cy C B(x, 2%8), we get 02,—1(Cy) < o2,—1(B(x, 2%8)), hence

om-1(B(x, §)) 1
02m-1(B(x,8/2))P & 0p—1(B(x, 26718))P=1"

1Sz, )b <
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Because these pseudo-balls are associated to a space of homogeneous type, there is
a constant K such that oy, (B(x, 2h)) < Kop,—1(B(x, h)). Using also inequal-
ity (6.11) we get, with t = §/2 = |r(2)|

1 1
Sz, )5 <
IIS(z )HP ~ oan_1(B(x, t))p—l + ]; 2(p—Dk oon—1(B(x, f))p_l

1 1 1
< 1 < .
™~ o2—1(B(x, 1))P~! ( +,; 2(”_1)]‘) ~ oop—1(B(x, 1)P~!

for p > 1, we get the estimate:

1

Sz I < o1 (Bx, NP = (1S, ), < -
” (Z )”[)NJZH 1( ()C )) ” (Z )HPNO'znfl(B()C,a))l/p

O

Now let Kq(z, w) be the Bergman kernel of €2, i.e. the kernel associated to the
orthogonal projection L2(2) — A2(2), where A? is the Bergman space of square
summable holomorphic functions in €2.

We have a lower bound ([26, Theorem 3 .4]):

1

> T, R
Kq(a,a) 2 Hr](a, O = B (6.13)

here with § = |r(a)| and a in a neighbourhood V), of the point p € 92 and o =
7 (a). We also have an upper bound ([26, Theorem 5.2]:

1

S 6.14
o2(T (2, a)) (19

n
Ko@,2) S [ 7 =
j=1

always in a neighbourhood of uniform size of p € 92, and here with
§=lr@l|+Ir@l+ pr(a), 7)) = p*(a,2).

So, with o € 9% fixed, 7 (a) = &, and V a neighbourhood of « valid for these two
estimates, we have:

Lemma 6.4. We have, with x = w(a), § = |r(a)],

1
Ka(a, )y, S
IKa(a, gy 8Paon—1(B(a, 8))P~!

and
1

oan—1(B(a, 8))1/P"" (6.15)

I1S(a, I are) =
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Proof. From the inequality (6.14) and using the annuli
Ci:= B(x, 20\B(x, 20719), k = 1, Co = B(x,9),

we already used in the proof of Lemma 6.2 we get, exactly as before, with x =
m(z), and § = 2[r(2)|,

1 B(x,s5)(w) n Z I, (w)

<
Kole )l S 5 (Bx.3/2) 261500, 1(B(x, 2K-18))”

k>1
Hence, with o = 7 (a),

oon—1(B(a, 8))
8Po2,—1(B(a, §/2))P

/ [Ka(a, )| do(2) S
VNir()=-6/2)

02,-1(Cg)
+ .
; 2pk=16P 0y, 1 (B(at, 2K8)P

Hence, again as before,

1
|Ka(a, 2)|P dozy—1(z) < :
/1/m{r(z)=—3/2} " 8Poru—1(B(a, 8))P~1

Ouside of V, Kgq(a, -) is bounded because by [28, page 178]:

|Ka(a, I S ——,

o2n(T (a, 2))

and if z ¢ V then 1 < 02,(T(a, z)) uniformly ina € Q.
Hence

IKa(a, )N, =/ |Ka(a,2)I” do(z)
UN(r()=—38/2)

+/ |Kq(a, 2)|P do(z)
BN (2)=—8/2)
1 1

S +c 3 ,
™ 8Po-1(Bla, §)P71 ™ 8P02—1(B(a, 8))P7!

because c is uniformly bounded, hence

1
Kaa, )%, < ’
IKa(@IMur S 55— B syr

which proves the first part of the lemma.
Notice that even if K¢ is linked to Bergman space, we have an estimate of its
Hardy HP (£2) norm.
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Using the lower bound (6.13) and the previous inequality, we get

Kql(a,a) 1 1/p 1
> x802,—1(B(a, 8)) /7 = R
1Ka(@ )y ) ~ d02m-1(B(e. )) o 1(B(ct, )17

Hence, because

IS(@, gr =supllf @] =I(f. S, NI feH' Q. Ifll,y=1)

we get
1

om—1(B(a, §))1/7'

1S(a, e = (6.16)

by the choice of f(z) := __Ka(a,z) -

= IKela)l

Recall that the Poisson-Szego kernel is

1S YIF1SG )P

VzeQ, yed, P(z,y) = = .
ISG 3. SG2)

We have that this kernel reproduces the holomorphic functions:

1
S(z,2)

Vf e A(Q), / FOP(z, y)do(y) = (fS(@z ), Sz, ) = f(2),
El9)
because of the reproducing property of the Szegd kernel. The kernel P(z, y) is
positive and has a L'(3S2, doa,—1) norm equal to one.
Also recall the Hardy-Littlewood kernel

Vx, y € 092, P,O(x, y) = B,n ().

—_— 1
o2—1(B(x, 1))
‘We have

Lemma 6.5. The Poisson-Szegd kernel P(z,y) is dominated by the Hardy-Little-
wood one: this means precisely that we have, with x = 7 (z), t = |r(z)],

1
VzeQ, Yy edQ, P y) S Py )+ ) ooy P, (5 9).
keN

Proof. Using (6.12) we get, still with x = 7 (z), t = |r(z)],

1 1
|S(Z,y)|2 5 B(x,20)(y) . Ck()’) .
om-1(B(x, 1) = o2a-1(B(x, 2%1))
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Because Cy C B(x, 2K*!t) we have 1¢, < 1p,, with By := B(x, 2¥*t), hence
setting

1
Vx, y € 0Q, P(x, y) = —————— 1 pu.n(y),
! om_1(B(x, 1)) 7

the Hardy-Littlewood kernel, we have

5GP S —— Py, )+ )

201 (B(x 0) oo 1(B<x 2y P )

But by (6.11) we have 02, _1(B(x, 21)) > 2¥02,_1(B(x, 1)), hence

1
|S(Z»)’)|2§m< 2,( )’)+sz 2kt(x )’)>

k>1
By (6.16) we have, with p = 2,

1

NE = YR
1@ Iy = Sta. ) =2 == =5y

Hence we get for the Poisson-Szego kernel, still with ¢ = |7 (2)|, x = 7(2),
P(z,y) S Py (x, y) + Z Py, (x, ).
k>1

Combining the previous results we have:

Theorem 6.6. Let Q be a convex domain of finite type in C", then, with S(z, y)
its Szego kernel we have, setting

x =7m(z), t =|r@z)|, Co:= B(x,1), Yk > 1, Cx := B(x, 20)\B(x, 2711,

1 1 .
o VzeQ,Vyeo2, |S(z,y)l 5 mﬂB(x, 2[)(y)+k§:1 mﬂck(y),

1

o IS@Iurey > — g7

And with P,0 (x, y) the Hardy-Littlewood kernel and P(z, y) the Poisson-Szego ker-
nel

o Py SPL(x, )+ X 5Py (x, ).
k>1
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7. Carleson measures

7.1. Harmonic analysis

We start by a “copy and paste” from [4], where we introduced the notion of Carleson
measures of order .

Let (X, p, do) be a homogeneous type space [13]. Denote B(x,t) :={y €
X 2 p(x,y) < t} the pseudo-ball centered at x and of radius ¢ > 0.

We define the Carleson windows (or “tents”) on R* x X in the following way:
let A be an open set in X, then

W(A) = {(t,x) e R"xX : B(x, 1) C A}.
We set W(A) instead of T (A) to differentiate notation from the case of the

convex domains of finite type we seen in the previous section.

Definition 7.1. We say that the mesure & on R* x X is a homogeneous geometric
Carleson measure of order « if, for any open set A C X,

lul (W(A)) = Ca(A)“.

The usual homogeneous geometric Carleson measures are those with o« = 1.

We shall abbreviate homogeneous geometric Carleson measure by h.g. Car-
leson measure.

In the case « = 1 it is enough to test on the sets A = B(x, t) because the
pseudo-balls generate all open sets in a homogeneous type space [13]. In the case
o = 1 we shall speak simply of h.g. Carleson measure.

The action of a kernel P; on a function f will be denoted P; f, precisely

Pif(y) 1=/XPz(x,y)f(X)d0(X)-

Now we have the abstract Carleson embedding theorem.

Theorem 7.2. Ifthe kernel P; is dominated by the Hardy-Littlewood kernel, and if
w is an h.g. Carleson measure on R™ x X, we have

VfeLl(X, o), /X RS @I Il @0 S 1 1

Proof. This is quite well known and implicitly contained in Hormander [21, Theo-
rem 2.4]. But I shall give a proof taken from [4] where the same notation as here is
used and which uses h.g. Carleson measures of order «.

Let V0 the space of finite measure on RT x X, V! the space of h.g. Carleson
ones and, with o :=1—1/p, W% := (VO, V])(a,p) the intermediate class by the
real interpolating method. We proved in [4, Proposition 1, page 30] that

weW® « JueV!, Jhell(p): dw=hdu. (7.1)

Moreover the norm of w in W¢ is equivalent to the norm of / in L” ().
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Because P;, being dominated by the Hardy-Littlewood kernel, verifies the
(H 1) hypothesis of [4, Theorem 2, page 27], we have that

Yw e W¥, Vg € L7 (o), /R Pig)] d |wl (1,%) < Cullgll oy (72)
xX

Now let u be a geometric Carleson measure and f € LY (X, o); we want to prove

that P, f(x) € L? (u). Let h € L? (1) and set dw := hdu then w € W< by (7.1).
We have by (7.2)

/ [Pt f (x)] dlwl(l,x)=/ [P f (ol lhl d Il (2, x)
RtxX RtxX
< ClAll oo 1 1 o

but this being true for all functions % in L? (i), we have that P; f(x) € LY () and
the theorem is proved by exchanging p’ and p. O

7.2. Carleson measures in convex domain of finite type

Now to define the geometric Carleson measures in our domains we have 2 possibil-
ities for a positive Borel measure on 2

edC >0:VaeQ, e:=2|r(a)|, u(T,(e)) < Co (02N Pc(a)),
with Pc(a) € P is the family defined in (6.4).
edC>0:VaeQ, a=mn(a), p(NW(B(a, [r(@)]) < Co(B(a, |r(a)l)),

where B(a, |r(a)l|) is the pseudo-ball on 9€2 of center « and radius |r(a)|, and
W(B(a, |r(a)|)) is the Carleson window defined in the previous subsection. For
this section we set 0 = o9;,_1.

We shall show that they are equivalent. We have that

YaelUNQ, €:=|r(a)|, Bla,€) := 02N Pc(a),
by definition of the family P. Then we want to show:

Lemma 7.3. There is a constant y, independent of a, such that
W(B(a, |r(@)) C Ta(y Ir(@)).
Proof. We have, by definition of the Carleson window:
2 € W(B(, Ir(@)])) <= B(x, Ir(2)) C B(a, |r(a)]),

where x = m(z). This implies, because 0€2 is a space of homogeneous type, that
we have |r(z)| < c|r(a)|, with a uniform constant ¢ > 1.
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But with § := |r(z)|, Ps(z) N B(x, §) # ¥ hence with e = |r(a)],
Ps(z) N B(a, €) # ¥ = Ps(z) N Pe(a) # .
Let s = max(§, €) then
Ps(z) N Pe(a) # 0 = Ps(z) N Pg(a) # 0 = Ps(z) C C3P5(x)

by (6.7).
Butif s = § then s < ce and if s = € then again s < ce because ¢ > 1; so in
any case s < ce and this implies

Ps(z) C Ps(z) C C3Ps(a) C CaPe(a) C Pye(),

by (6.5) witht = C4, y = C;.
And again because Pc(a) N B(a, €) # ¥, we get P,(a) C Pyc(a) by (6.7)
and (6.5) ; and finally P5(z) C Pyc(a). Cutting with Q2 we get

2€Ps@)NQC Pre(@)NQ=T,(ylr@). O
We shall use the following definition for geometric Carleson measure in a convex

domain of finite type to continue with the same notation.

Definition 7.4. Let u be a positive Borel measure on the bounded convex domain
of finite type 2. We shall say that u is a geometric Carleson measure in 2 if:
AC >0::Vae 2, e=2|r(a)], u(Ty(e)) < Co (02N Pc(a)).

7.3. Carleson embedding

We are in position to prove a Carleson embedding theorem for convex domains of
finite type.
To prove it we shall need the lemma:

Lemma7.5. Leta € 2, o = w(a), § = |r(a)l|; there is a uniform constant y > 0

such that
c

al > —————.
doon-1(B(a, §))
Proof. We have the lower bound (6.13) of the Bergman kernel

Vz € y Ps(a), |Ka(z, (7.3)

n
1
Ko(a,a) 2 [[rj@ 7~ ——rn—r,
i 8020-1(B(at, 8))

the last equivalence by equations (6.13) and (6.14) and a upper bound of its deriva-
tives ([26, Theorem 5.2], and [27])

n
049y Koz, a)| < Cp [ [ i@, Y2717, (74)
j=1

with 8 = p*(a, 2).
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Setfort € [0, 1], f(t) := Kq(a+1t(z—a), a), then f being complex valued,

we have f(t) = (f1 +if2).
Apply the mean value theorem:

3, nel0, 1] f(D)=FO)=(f{t)+if3(0) = [f(1)—f0)] =2 S[l(l)pl] |f'@)]-
tell,

Hence

oK
|Kq(z,a) — Ko(a,a)] <2 sup Z(ZJ a)) ola+t(z—a), a)
1€[0.1] 3z,

|ZJ
<;w p L l'[r (@, p)~*

by inequality (7.4); so

|zj — aj|

Bor-1(B@, B) & 7@, B’

|Kq(z,a) — Kq(a,a)| S

by equations (6.13) and (6.14).
Now choose z such that |Zj —aj] <vyti(a, §) = B < & and the homoge-
neous nature of €2 gives that tj(a, B) =~ t;(a, §) hence

|Zj_aj| < ny

_ <
|Ka(z,a) — Kq(a,a)| < Boan — 1(B@.8) Z @ 8) ~ bom 1 (B@d)

Take y uniformly small enough to compensate the constant in the last inequality
above to get
1

1
K ) - K ’ S 5 Soon_1(B(a, 8))’
|Ka(z,a) — Ka(a, a)] 2" S020_1(B(, 8))

this means that, for z in the polydisc y Ps(a), we have |Kq(z, a)| >

S
< i ) d02n-1(B(e.8))°
the positive constants ¢, y being uniform. O

‘We shall need the definition.

Definition 7.6. Let  be a positive Borel measure on the domain 2 and p > 1. We
shall say that u is a p Carleson measure in 2 if:

3C, >0, Vf € HP(Q), /Qlfl” di < Coll fllgg

This means that we have a continuous embedding of H”(2) in L? (u).
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Now we have:

Theorem 7.7. If the measure | is a geometric Carleson measure we have
¥p 1,30, = 0. ¥F € HY@. [ 117 diu < CEUFIY,
Q
Conversely if the positive measure (v is p Carleson for a p € [1, ool, then itis a

geometric Carleson measure, hence it is q Carleson for any g €]1, ool.

Proof. We apply Theorem 7.2 to the Poisson-Szeg6 kernel P(z, y) which is dom-

inated by the Hardy-Littlewood kernel. Because a function in A(£2), the algebra

of holomorphic function in €2 continuous up to 9€2, is reproduced by P(z, y) and

because this algebra is dense in H”(£2), the first part of the theorem is proved.
Suppose now that w is p Carleson for a p € [1, oo[, then we have

3C >0, Va e Q, / K )” du() < ClKal, )%,
Q

with Kq(z, a) the Bergman kernel at a. Using the inequality (7.3) of the lemma,
we get

1 p
Va € Q, U N o < [ 1Kot )
‘ /QﬂyPa(a) <80(B(oz, 8))) n </Q| oz @)l” du(z)
< Cl|Kq(, a)||‘;’1p,

We can use the estimate of ||Kq(-, a)||y» done in lemma (6.4)

1
8Po(B(a, 8))P~1’

IKaC, a)lis S

to get

1
870 (B(a, 8))P~V’

Ya € Q, (m)pu(ﬂ NyPs(a) <C
hence
Ya € @, u(2NyP~Psa) <Co(B(a, §)).
Still by homogeneity we have y Ps(a) D P.s(«) and
B(a, §) C CB(«a, ¢8) = o(B(a, 8)) < C'o(B(a, b)),

SO
Va € Q, (N Pes(a)) < CC'o(B(a, cd)),

and the measure u is a geometric Carleson measure, hence it is a ¢ Carleson mea-
sure by the first part of the theorem. O
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If Q is a convex domain of finite type, with the family P of polydiscs of Mc-
Neal, we define a related family Q of polydiscs:

Ya e U\OR2, Vt > 0, € :=[r(a)], Qu() :=tPc(a),
where ¢ P (a) si the dilated polydisc as defined in (6.2).

Lemma 7.8. The family Q := {Q,(t), t > 0, a € U} is a good family of polydiscs
in Q.

Proof. By (6.6) ((3) of Proposition 2.7 in [20]), we get that 369 > 0, such that
ae€QNU = 3Py w)(a) C Q2

because d(a) := d(a, Q2°) =~ |r(a)|, the constants being independent of a € 2, we
have with
Qa(t) :==1Pc(a), t =0, € = |r(a)| =d(a),

that
aeQNU = 0,8 C Q,

which means precisely that the family Q = {Q,(f)}scting, r>0 is a good family of
polydiscs in the sense of Section 1. Moreover the Hefer’s Theorem 6.1 gives that
the size of the sides of Q,(¢) are precisely equivalent to

Ir(a)|/™i = d(a)t/™mi,

which means that the multi-type for this family in the sense of Definition 2.1 is
precisely m(a), j =2, ..., n. O

So we can give a general definition for geometric Carleson measures equivalent
to the one we gave in the case of convex domains of finite type.

Definition 7.9. Let u be a positive Borel measure on the domain €2 equipped with
a good family of polydiscs Q. We shall say that u is a geometric Carleson measure
in Q if:

AC >0::VaeQ, n(N Q,(2)) <Co(d2N Q4(2)).

8. Construction of balanced sub-domains

In the unit ball of C" a measure whose images by all automorphisms of the ball
is uniformly bounded is a geometric Carleson measure, and this is a fact we used
for instance in [3]. Unfortunately in a general domain, even convex ones or strictly
pseudo-convex ones, there is just the identity as automorphism, so we have to over-
come this issue.

The aim now is to build a sub-domain €2, associated to a point a € 2 near the
boundary such that the restriction to it of the measure we want to study is bounded
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by the right bound. If the domain €2, is equivalent to a Carleson window, as defined
at the beginning of Section 7, then it will work.

The main difficulty here is to get bounds independent of a € 2. We shall start
with convex domains and define later a more general kind of domains for which our
methods work.

Let © be a C*® smooth convex domain in C", a € Q. By translation and
rotation we can suppose thata =0, o = w(a) = (d(a), 0, ....,0) and the defining
function p = d(a) + Nzy + T'(z), with T'(z) = O(z|?). Let &,, &/ be smooth
complex ellipsoids centered ata = 0

n n

. n .. |Zj|2 . n.. |Zj|2
5a.:{ZEC ..ZW<4” "%': zeC "ZW<5”

j=1 j=1

Consider the convex domain £, N2 and smooth it to get a smoothly bounded convex
domain €, such that £ N Q C Q, C &£, N Q. This can be done as in [1, page
129]. Suppose that « = 7 (a) = 0 and, as usual, p(z) = Rz; + f(Jz1, 7)), with
7 = (22, ...,2n). Then there is a function S(x, y), convex and C>(R?) such that

a defining function p, for €, is given by p, = S(2 13211 + {Z/ 2, p); hence

any C¥ norm of p, is controlled by the C¥ norm of the defining function p of €2,
ie. Yk € N, |lpallce < Ckllpllck.- Moreover we have that the outward normal
derivative g—f; is uniformly bounded below because of the compactness of 9€2 and

we have also 33%‘ > 52—2 > 0 independently of a, by the construction of €2,.

We shall need this last fact when we shall apply Theorem 10.11 to interpolating
sequences in Section 9; see Remark 10.12.

Let S be the unit sphere in C" and because 2, is convex it is starlike with
respect to a (= 0), 92, admits a spherical parametrization, i.e. there is a function
R() € CX(S), R(¢) > 0, such that:

0, ={ze€C"::3C €8S, z=R(©)Z}.
Let ¢ € S and define D, to be the complex plane slice through ¢
D¢ = {tR("0)e'%c, 6 € [0,2n], t € [0, 1[}.
We shall use the notation

Vi €S, de(0)= inf R(¢): demax(0) = sup R(e0).
0€l0.27] 010,27

Lemma 8.1. We have
0a(2)N Q2 C QR C Qa(V5n).
and

v/5n
V¢ € 02, dimax(0) < Wd;(o)-
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n 2
Proof. € 0u@) NQ = Yj=1,....n,|zj| < 2d(@"™ =Y '2/2'/ <4n =
j=1

— d@)"
2€&NQC Q. Ifz€Q, CE, then

Zd(k;iz‘/m, <5Sn=Vj=1,...,n, |zj| < «/%d(a)l/m-/ =z € Qa(\/%),
a

and the first assertion follows.

Let us see that a is “in the middle” of the slices Dy .

Choose 6 such that d;(0) = R(e? ), then the real segment from O to
R(ei9§)6i9§ € 0%, cross the boundary of Q,(8p) at a point tR(ei9§)6i9§ with
0 <t < 1because Q,(8y) C 2.

Butifz = (z1,...,20) € 0Q4(80) then 3j :: |zj| = 8od(a)'/™i, so we have
here _

3j = tR("¢) |¢;| = Sod(a)!/™i

and because 0 < ¢ < 1 we get
Sod (@)™ < R(’¢) |¢5] = de (0 |¢] -

On the other hand, because 2, C Q,(~/5n) which is a polydisc with sides parallel
to the axes, we have

Vk=1,...,n, Yo €[0,21], R(e"¢)|c| < v/5nd(a)'/™
= dr max (0) 12| < ~/5nd(a)/™;

in particular for ¢ = 6 and k = j we get

Sod(@)'/™ < dg(0) [¢j] < demax (0)[¢5] < V/5nd(@)' /™.

is implies . < —%© < Vond@'"™i _ /3n
This implies 1 = sedia)™ and dg max (0) < & =% d; (0). ]
Let D be a bounded convex domain in C; take a biggest disc contained in D, say
D(0,r) with 0 € D being its center and D(0, R) the smallest disc containing D
with the same center 0.

Now parametrize the boundary dD of the convex D by polar coordinates
s(0)e!? and set y 1= %.
Lemma 8.2. Let D be a convex domain in C, 0 € D with the previous notation;
let s’ be the derivative of s, then we have

<yr-1L

/
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Proof. We have that D(0,r) € D C D(0, R). Let z € 9D such that tan V is
minimal, where V is the angle between (0, z) and the tangent at z to d D. Take the
segment tangent 7" from z to ¢ on the circle d D(0, r); because D is convex we have
T C D and the points w € 9D near z are such that the angle between (w, z) and
(0, z) is bigger than the angle o between (¢, z) and (0, z), hence the angle V is
bigger than «.

1

A yi-1

Now we have that |sina| = & > g.

i , hence |tanco| >

, where y :=

1

r
R
/

S| —
So, because || = vy We have

N

We shall apply this lemma to the slices D, of €2,.

Recall that U, (9) = R(e'?¢) is precisely the polar coordinates parametrization
of 3D, in the coordinates of C¢ and d(0) is the distance from a(= 0) to d D¢,
hence here we have r = d; (0), R = d; max(0).

We shall say that €2, is y balanced with respect to a (Definition 10.6) if V¢ €

S, dg max (@) < yd; (@) and |U} ()| = yd; max(@); with this we have

Lemma 8.3. Because Q2 is such that all its slices Dy = Q,N{z :z=a+A{, A €

C} are convex we have that Q4 is y balanced with y = %

Proof. By Lemma 8.2 with s(6) := U, (0), we have

/
Y%

Us

<Vri*—1<y=|Ul| <y |U < yd;max(0).

Now using Lemma 8.1 y = § hence we have that 2, is y balanced with y =

/5n O
So

All we have done works as soon as the domain €2 verifies the following defini-
tion.
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Definition 8.4. A smoothly C”*, m > 2 bounded domain 2 with a good family
of polydiscs is well balanced if 3R > 2, 3¢ > 0, Iy > 0 :: Va € Q, d(a) <
€, 3R, y balanced such that Q,(2) N Q2 C 2, C Q.(R).

And we have the theorem

Theorem 8.5. If Q is a smoothly C™, m > 2, bounded convex domain in C", with
a good family of polydiscs then 2 is well balanced.

Proof. This is Lemma 8.3. O

Theorem 8.6. If Q2 is well balanced, then for any a € Q, d(a) < €, thereisa y
balanced sub-domain Q24 :: Q,(2) N Q C Q, C Qu(R) with the property

Vu e N'(Qq), Inlu(a)|=0 then, with ©:=3 In |ul, / d@DTrO <Cllullng,)»

Qa
where the constant depends only on Q2 and not on a.

Proof. We apply Theorem 10.11 to €2,, then we have that

/ d(@)Tre < Cllulla g,

Qq

where the constant C depends only on 2. O

Remark 8.7. If Q2 is locally biholomorphic to a well balanced domain, then we
have an analogous result by constructing the €2, via the biholomorphism. Pre-
cisely let p € 92 and ® a biholomorphism of & N B(p, R) on a well balanced
domain Q' N ®(B(p, R)). Then we build the sub-domains Q’q)( @ and consider
Qq = d! (Qép(a)). Because ® is biholomorphic in a neighborhood of QN B(p, R)
we get easily that Theorem 8.6 is still valid.

In particular if €2 is strictly pseudo-convex, then it works.

9. Interpolating and dual bounded sequences in H?($2)

Let ©2 be a domain in C" equipped with a good family of polydiscs. We shall study
interpolating sequences in €2 and generalise previous results we got for the unit ball
to convex domains of finite type.

9.1. Reproducing kernels

Let S(z, ¢) be the Szegd kernel of Q, i.e. the kernel of the orthogonal projection
from L%(92) onto H*(S).
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To any point @ € 2 we associate the vector k,(-) = S(,a) = S(a,-) €
H?(R). This is a reproducing kernel for a because

Vf e HX(Q), fa) = /m f(©)S(a, ¢)do(¢)

by the definition of the Szego kernel, but

/ FO)S(@, O)do () = / FORE)dT (@) = (f, k),
Q2 Q2

by the definition of k.

Definition 9.1. We say that the sequence S of points in Q2 is H?(S2) interpolating
if

(i) Va e S, k; € HP,(Q); (this is always true if p > 2.)

(i) YA € £P(S), 3f € HP(Q) =Va € S, f(a) = Aallkall ,r,
=1

with p’ the conjugate exponent of p, i.e. = +

1, 1
p

A weaker notion is:

Definition 9.2. We shall say that the sequence S of points in €2 is dual bounded in
HP (Q) if there is a bounded sequence of elements in H”(2), {ps}qes C HP(R2)
which dualizes the associated sequence of reproducing kernels, i.e.

(i) Ya €S, k, € Hp/(Q); (this is always true if p > 2.)

(i) IC>0:VaesS, llpall, <C, Va,b €S, (pa, kp) = Sabllkpll -
Clearly if S is H?(2) interpolating then S is dual bounded in H?” (£2), just interpo-
late the basic sequence of £7(S).

Definition 9.3. We say that S has the linear extension property if S is HP (2) in-
terpolating and if moreover there is a bounded linear operator E : ¢7(S) — HP(R2)
making the interpolation, i.e.

AC > 0, YA € £P(S), Ya € S, E(M)(a) = Aallkall

and
IEM I r) < ClIA .
9.2. The p regularity

Let us introduce a link between the H” norm of the reproducing kernels and the
geometry of the boundary of 2, with respect to the good family O.



ASPC DOMAINS 255

Definition 9.4. We shall say that Q is p regular with respect to the family Q if:

3C > 0:Va e Q. llkall,” < Co(d2N Qa(2)),
where p’ is the conjugate exponent of p. Here we use the convention that if k, ¢
HP (L), then |[kqll, = +00 = ||ka||;p = 0, so the inequality is true in this case.

Lemma 9.5. If Q is a convex domain of finite type in C", then Q is p regular for
any p > 1.

Proof. Theorem 6.6 gives

Ikall r@) = 1S(@, I Hr()
1 1

~

om—1(Bla, d@NVP" 02,132 N QNP

12

which, by the Definition 9.4 of p regularity, implies the p regularity of 2. O

Proposition 9.6. Letr Q be a convex domain of finite type in C", a € Q and Q, the
sub-domain associated to a. The measure dos,_1)3Q,\00 is a geometric Carleson
measure in 2.

To prove this proposition we shall use the following lemmas.

Lemma 9.7. Let U be an open set in R* and V a graph in R¥t! over U, i.e.
={G. ) eR* iy =f(x), x=(x.....x0) € U},
with f of class C'(U). Then oy (V) = ox(U).

Proof. We shall use the formula for the Lebesgue measure for such a graph given
in [7, page 203, formula 6.4.1.1]: let (U, g) be a parametrization of V, then we have
that:

ox;  0x;
where M = <§—i | aBTg,) is the matrix of the scalar product of the vectors g—fi and
g ‘
Wj-
Here we have that g(x) = (xy, ..., x¢, f(x)) hence
dg /
——=100,...,0,1,0,...,0, f;(x)),
0x;
with the 1 at the j* position and f = ax . So we get
dg 0g o, g 0g A e
if and (5, 8y =14 (f])" if i =,
<8x, 8x> fifi i) <8xj 0x; /) =
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Hence the matrix M can be written M = [ + FF! where F is the column vector

F :=(f{,..., f}), and F" is the transpose line matrix.
Clearly the matrix FF' is positive, because for any vector v = (v1, ..., Uk)
we have
x 2
V' FF'v = (V' F)(F'v) = (Z f;vj) :
j=1
The eigenvalues A; of FF' are all O but one because FF'v = 0 as soon as

ZIJ‘.: W f ]’ v; = 0 which is a hyperplane and hence the only non zero eigenvalue,

Ak, is such that Ay = TrFF! = Z/;:1 (f,/-)2 because the sum of the eigenvalues is
the trace of the matrix. ‘

Now we have that the eigenvalues of M are 1 + A, hence the determinant of
M is their product, so

k
detM =1+x =1+ (f)*= 1.
j=1

The case k = 2 was already done in [7, page 204], and here we provide the gener-
alisation.
Now we have

ak(V)=/ vdethx1~--dxk2/ dxy -+ -dx; = or(U). O
U U

Remark 9.8. In fact this lemma just says that the measure of the orthogonal projec-
tion U of V on R¥ has a Lebesgue measure smaller than the measure of V. Le., the
orthogonal projection is contracting for the Lebesgue measure, which seems quite
natural.

Lemma 9.9. Letb € 2, B = n(b) and Tg(0R2) be the real tangent space to 02
at B. Let Fy := Tg(02) + d(b)ng, where ng is the outward real normal at B to
dQ and By := F, N Qp(2), the “bottom” of Qp(2); a sufficient condition to have
7(R2N 0p(2) C w (32N Op(2)) is that L N By, = .

As a consequence if Q is convex then (2N Qp(2)) C (02 N Op(2)).

Proof. Suppose that Q2 N B, = @ and take 7z € 2, take ¢ = m,(z) where 7, is the
orthogonal projection on Fp; then we have { € By hence ¢ ¢ Q2 so p(¢) > 0.On the
otherhand z € Q = p(z) < 0, hence p being continuous on the real segment [z, ¢],
there is a w €]z, ¢] such that p(w) = 0, so w € 9Q2. Now T5(3€2) and F}, being
parallel the segment [z, ¢] is orthogonal to T (0€2) hence 7 (z) = Tg(d32) N[z, ¢] =
m(w). Hence, because w(w) € mw(9€2) we have (2N Qp(2)) C (a2 N Op(2)).

If © is convex then it lies on the same side of 75(3€2) hence we have
QN B, =407. O
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Proof of the Proposition 9.6. We have to see that
AC >0::Vb e Q, 02,-1(02, N Qp(2)) < Co2,—1(02 N Op(2)).

Of course we take b such that (0€2,\9€2) N Op(2) # ¥ and take the convex hull E
of (082,\92) N O (2); because the domain Qp(2) is convex, E C Qp(2) hence,
by [30, Corollary 7.2.9, page 82], we have that

021-1(0E) < 02,-1(8 Qp(2));
but, because 2, C 2 is convex,
(02,\02) N Op(2) CIE = 02,-1((02,\0€2) N Op(2)) < 02p-1(E).

‘We have

3052) = |J @D;b.d®)"/"®)y T De(b.d®)"/™®),
Jj=1 k#j,k=1

where D (b, r;) is the disc of center b in the direction L ; given by the basis of the
good family at the point 7 (b). So

n

n
azn-l(aQb(z))=Zznd(b)1/mj<b> 1‘[ wd (b)Y ™ ®
Jj=1 k#jk=1

n
< 2" Zd(b)ZM(b)-FZ—l/mj(b)
j=1

because 2u(b) =Y }_» mlk; butvVj=1,...,n, 2—1/m; > 1 and we can restrict
ourself to b such that d(b) < 1 because we need to test only with the b near the
boundary. Hence

021-1(005(2)) < 27" nd (b)' "),

So far we have

02,-1((082,\092) N 0p(2)) < 02,—1(OE) < 02,—-1(00p(2))

< 27"nd(b)' 210, O-b
To get d(b)1+2“(h) < 024—1(022 N Qp(2)) we shall use Lemma 9.7. Set k =
2n—1, U = Qp(2) N Tg(9L2) where B = m(b) € 32 and V = 32 N Q4 (2). For
b uniformly near €2, V is a graph over U’ := 7 (V) C U, with 7 the orthogo-
nal projection on the real tangent space Tg(0<2), and we have by Lemma 9.7 that
02,-1(V) > 02,_1(U’) so it remains to estimate o2, _1(U’).

Recall that, by the definition of a good family, we have Qp(5p) C €2 hence
7(Qp(d0)) C (2N Op(2)).
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We apply Lemma 9.9 to 2 convex to get w(Qp(80)) C w (V) = U’. So

02n—1(U") > 0201 (7 (Q5(80))).

Because the basis for Qj, is the basis at 8 = 7 (b) and Tg(9<2) is the real tangent
space, the only missing direction is the real normal at 8, hence we have

n
021 (T (Qp(30)) = dod (b) x [ | 83 (b)*/"/® = 85" (b) 21,
j=2

Finally we get
5§n+ld(b)1+2u(b) < o9y 1(V) = 091 (32N Op(2))
and by (9.1)
021-1((0R2\0R) N Qp(2)) < 2" nd (b)'+24®)

hence
n

2
02n-1((082,\952) N Op(2)) = Jﬁn@n—l(aﬁ N 0p(2)),
0

which says precisely that the measure doy,—1)30,\s is a geometric Carleson mea-
sure in 2. 0

In order to continue we shall need the easy remark:

Remark 9.10. For any smoothly bounded domain €2 we have the inequality

Ve HP(Q), Iflae < ¥om10DN fllgr)-

Proof. We have Int | f| < |f]|, so, with o, the 07,1 Lebesgue measure on the
manifold r (z) = —e,

v =sp [ Wt if@lde@ ssp [ 171 det)

e>0 e>0

hence || fliag) =< ||f||H|(Q). But 0 (d€2) being finite, we have ||f||H1(Q) <
o1 @D £l (- -

Proposition 9.11. If S is a H? dual bounded sequence in a convex domain of finite
type, then S is separated.

Proof. The hypothesis on the sequence S implies that

AC >0, 3p, € H () =2 lpall, < C, (pas ko) =0, [pa, ka)l Z llkall s

lka = Kol = || 2 ko — ki
ol

then
1
> el {oa> ka)l Z lkall - 9.2)
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Now for € > 0 we get the existence of y such that, if we suppose that b € Q,(¢)
forat <y,
I{pa, ka —kp)l = Cllka —kplly = Cellkall

and a contradiction with (9.2) if we choose € small enough. O

Theorem 9.12. Let Q be a convex domain of finite type in C". If the sequence of
points S C Q is dual bounded in HP (2), then the measure v := ) _,_¢d(a)"8, is
a geometric Carleson measure in Q2.

Proof. We have to show that

Va € Q, v(Q2N Q04(2)) = Z d()" < Cozp—1(32N Qa(2)).
beSNQ4(2)

Dual boundedness means that we have a sequence {0, }qcs C H?(£2) such that

<C.

Va,b €S, pa(b) =Saplkall s llpall, =

This implies that

Va € S, pa/pa(@llriy < Cllkall '

In the case of the unit ball [5] we used the automorphisms and a classical lemma by
Garnett to pass from bounded measures to geometric Carleson ones. Here of course
we have to overcome the lack of automorphisms.

Because S is dual bounded it is a separated sequence of points in 2. Consider
the sub-domain €2, associated to the point a, built in Section 8 and the sequence
S, =85NQ, C Q.

Leta € S and u := p,/ps(a); we have u € HP(2) by hypothesis. We
notice that S\{a} C u~!(0), and that u(a) = 1, so we get by Theorem 3.12, with
X =u"'(0) N Q, and O its (1, 1) current of integration,

> d(©)" <T(Qa)]Olp.

ceS,

where I"(€2,) depends on the CM( QD+ norm of the defining function of 2, which,
by construction of €, is controlled by the CM(*! norm of the defining function

of Q.
Now because €2 is convex of finite type, €2, is % balanced by Lemma 8.3
with respect to a, hence by Theorem10.11 we get [|®|p < C|lul|p(q,). the con-

stant C depending only on €2 and not on a. So

Y d(©" = CTlulnre,)

ceS,

and again the constants are independent of a.
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By the Remark 9.10 we get

> d(©)" < CTlullng,) < CT ¥o2m-10) lull gr(g,)-

ceS,

Set C(€2) := CTI" which depends only on €2, we get

Z dc)" < C(Q) ¥ 02n-100R) |lull gr(g,)-

ceS,

The measure dojyq,\sq is a geometric Carleson measure in £2 by Lemma 9.6 hence
by the embedding Carleson Theorem 7.7 we have

u € HP(Q) and lullgr(q,) =< Cllullgr ).

with the constant C independent of a.
Hence

Va €5, ) d(©)" = CQ) Y0210 ullnrg,-

ceS,

The dual boundedness then gives, because u := p,/pq(a),
Va €, lullurey S lkall s

hence
Va €S, Y d©)" = C@llull g < C@llkall,,

ceS,

where the (new) constant C (€2) is still independent of a.
Finally the p regularity of 2 gives

lkall ! < (020-1(3R N Q@) 7,

hence )
Ya €5, ) d(©)" = C©0m-102)"" Ikl
ceS, 9.3)
< C(R)02,-1(02 N Qa(2),

because we have that 07, _1(02,) >~ 02,—1(02 N Q,(2)), still with the constant
independent of a.

So we have proved the correct inequality for a point a € S. It remains to have
it for any point in €2.

Fix b € Q; take apointa; € SN Qp(2) such that d(ay) := d(a;, 92) is as big
as possible. Now set E1 := Qp(2)\Qq4,(2) and take a point a; € § N E; such that
d(ay) = d(ap, 9L2) is as big as possible; set £ := E1\Qq,(2) and take a point
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az € SN E, such that d(a3) := d(a3z, 02) is as big as possible etc. In this way we
have a sequence G := {a;} of points in Qp(2) N S with d(a ) decreasing.
Moreover we have

o0
SN Q@ =[] SN 04,
j=1
Forany j =1, ... we have, by 9.3
—1
Y d©" 5 kel = C(@020-1(02 N Q; (2).

CGSaf

Now define P,(8) := Q,(8) N T,(0K2), where T,(0€2) is the parallel hyperplane
to the tangent to 92 at o passing through a. We have that if a € Q N U then
02n—1(Py(8)) = 02,1 (w (P, (8))), where the constants behind the sign ~~ are inde-
pendent of a, because the projection 7 is a diffeomorphism from P, (8) onto its im-
age in 9€2. Its jacobian J is still a smooth function, hence we have that C = || J || 5
is uniformly bounded by the compactness of 92, and so is H J! || o

Because the sets O, ; (8) are disjoint we get that

o 7(P;(8)) are disjoint and 02,1 (Pa; (8)) = 02,1 (7 (Pa, (8))),

2n
o a1 (P ) = (3) 7 0201 (P, (9)).
So

9 2n—1
02n—1(Pa;(2)) =~ (E) 02n—1(7 (Py; (8))).

We want to estimate

D de) = Z > dO" S Zazn 102N 04, (2),

ceSy j=1 ceSa
but
o0
Zazn—l(ﬂ(Pa,- (8))) < 02,-1(32N Op(2)),
j=1
because the yr(Pa -(8)) are disjoint and contained in 32 N Qp(2) and

Zozn 1T (Py (8))>>Zozn 1(Pa; (8)))
Jj=1 Jj=

oan-1(Pa;(2)) 2D 020-1(02 N Qu; (2)).

,:1 j=1
So
> de)" S Zozn 102N Qy;(2) S Zazn 1T (Pa; (6)))

cESp j= j=
S 020102 N 0p(2)).
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Theorem 9.13. Let Q be a convex domain of finite type in C". If the sequence
of points S C K is dual bounded in HP(2), then the canonical measure v =
Y aes d(a)'THDs, s a geometric Carleson measure in 2.

Proof. We take advantage of the fact that a convex domain of finite type is aspc to
separate the sequence S in two parts S = Bg U Gg. For the bad points we need not
the hypothesis of dual boundedness because Theorem 4.6 gives

02,-1(0822N Q4(2))
82 ’

Y. dMHO<c@
ceBsNQq(2)

which is true for any a € €2, and this is precisely the definition of a geometric
Carleson measure, so we get that the measure vy := }_,cp.d (@) T2HD5, is a
geometric Carleson measure.

We.have Vg 1= D ucGs d(a)' @5, < = .Zaesd(a)%a’ and p is a
geometric Carleson measure by Theorem 9.12. So adding vj, and v, we get that v
is a geometric Carleson measure. O

9.3. Interpolating sequences

We shall need the definition

Definition 9.14. The sequence S is a g Carleson sequence if

ka

A
2 l1kallg

acs

AD > 0, VA € £9(S), < D[ Al gacs)-

q

In [2], we proved by duality that if the canonical measure v := ) ¢ d(a) 2@y,

is a ¢’ Carleson measure and if ||ka||q_q ~ d(a)"2*@ then S is a q Carleson
sequence. We shall do it again in this setting.

Lemma 9.15. If Q is a convex domain of finite type in C" and if S C Q is a dual
bounded sequence of points in HP (Q2), then S is a q Carleson sequence for any
q €]1, ool.

Proof. Because the Szegd projection is bounded on L?(92) for 1 < p < oo ([29,
Theorem 5.1]) we have that the dual of HP () is Hp/(Q), with p’ the conjugate
exponent of p. Hence we can evaluate the norm this way

kq sup f(a)
al —_— al
o5 Mkallg |, penr@.ipn, < locs  lkallg
’ 1/4/
< [f(a)?
S A e sy sup 7
feHd @), Ifl,<1laes llkallg
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by Holder. But

1
o2n—1(B(a, d(a))V/ 7'

lkallp = NSC, a)llpr =

by Theorem 6.6 and we have, by (6.10), 02,1 (B(«, €)) ~ € ]_[;5:2 Tj(a, €)? and
by (6.3) in Hefer’s Theorem 6.1, we have 7;(¢, €) =~ el/mi© hence,

o(B(u, €)) >~ € 1_[ 7j(a, €)? ~ PO () = Z !

j=2 = mi@

We shall apply this with « = w(a), € = d(a) and, because P.(a) N P () # 0, we
have by (6.8)

n n
]_[ Ti(a, d(a))? ~ ]_[ Tj(, d(a))? = d(@)*@ ~ d(a)**®,
j=2 j=2
Putting this in ||k.[|, we get

142(@) .
”ka”q_l ~ d(a) Py = ”ka”qq ~ d(a)l-l-ZM(Ol) ~ d(a)1+2/1«(a)_

Hence

Ve HT(Q), Z'f(“)' ~ ) d@" | f@)

aes llkq ”q aes

But Theorem 9.13 gives that the measure v := Y, _¢d(a)! T?#@§, is a geometric
Carleson measure. We apply the embedding Carleson Theorem 7.7 to v to get

Ya = 1,3C, = 0¥ < HY@, [ 171 v < CLIfIG, g

explicitly

Vfe H' (@), Y @)@ | f@) < chifI,

HY (Q
aes @’

hence

If(a)l
d o ||f||3,q @

aes ||ka| q
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9.4. Structural hypotheses

We get easily the structural hypotheses [2] for the domain 2.

Corollary 9.16. If Q is a convex domain of finite type in C", then the structural
hypotheses SH(q) and SH(p, s) are true for the Lebesgue measure o,—1 on 0$2,
ie. Vg €]1, oo,

SH(q) 1 llkallgllkally S lkall3,
and, for¥p, s € [1, oo], % = % + é,
SH(p,s):  lkally S lkall prllkally -

Proof. Theorem 6.6 gives again

1
om—1(B(a, d(a))V/P'

lkallr @) = 1S(a, Mmr@) =

hence, just replacing,

Ikally lkally = kall3, Tkally = lkall  l1kally - 0

Now we are in position to prove Theorem 1.15:

Theorem 9.17. If Q is a convex domain of finite type in C" and if S C Q is a
dual bounded sequence of points in HP (), if p = oo then for any g < oo, S is
H41(Q) interpolating with the linear extension property; if p < oo then S is H9(2)
interpolating with the linear extension property, provided that ¢ < min(p, 2).

Proof. We shall apply the main theorem from [2]: we state it in the special case of
a domain  C C" and of the uniform algebra A(2) of holomorphic functions in
2, continuous up to 92

Theorem 9.18. Let Q2 be a domain in C" with o the Lebesgue measure on 9<2; if
we have, with Sl = L 4 L that the measure o verifies the structural hypotheses

q
SH(q), SH(p, s);
o S is dual bounded in H? (Q2);
e S is a q Carleson sequence;

then S is H® () interpolating and has the linear extension property, provided that
either p =ocoor p <?2.

All the requirements of Theorem 9.18 are by now verified so we have that for
any g < p, Sis HY(Q2) interpolating with the linear extension property, provided
that p = ocoor p <2.Soif p = oo or p < 2, the theorem is proved.
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If 2 < p < oo, then S dual bounded in H?(2) means 3{p;}qes C HP ()
with:

AC >0:Vae S, llpall, =C, Va,b €S, (pa, kp) = Sapllkpll -

Lets : 5 - —|— 1 then we set

Ya €S, pg = paX = [0all2 <

kq
llkalls
and, by the reproducing property of k,

o )=t
Pa: llkall2 pald lkalls ”kaHZ’

but k,(a) = ||ka||%, and pq(a) = ||k |l by definition, hence

<~ ka > Ikall p xlkall2
Ioaa = .
lIkall2 llkalls

The structural hypotheses, by Corollary 9.16, gives

SH(s) :  llkallylkally < llkall3

and
1 1 1
Vpa NS [1$ OO], - = - + ) SH(p’ S) : ”ka”x’ S ”ka”p/”ka”q/v
s P 4
hence here, with the correct values of p, s

2
llkall3
llkally”

Ikallz < Nkall plikally < llkall

the last inequality by SH(s), hence

lIkal Il .k
< apial <pa, _a>
lIkall lIkall2

So we have that S is dual bounded in H%(2) and by Theorem 9.18 we have that if
Vg < 2 then S is H9(K2) interpolating with the linear extension property. 0

Remark 9.19. The slight improvement from Theorem 9.18 done here relies only
on the structural hypotheses, so it is in fact true in the abstract setting of uniform
algebras.
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10. Potential

Let us recall quickly how Green formula gives us the Blaschke condition [33]:

Inu(p)l =/mln|u(§)|1’(p» g“)da(é)+/§2Aln|u(z)|G(p,z)dm(z),

where p € Q, G(p, z) is the Green kernel of 2 with pole at p and P(p, ¢) is the
Poisson kernel of €2 still with pole at p.
Let p € 2 fixed such that u(p) # 0 and we suppose u normalized to have

u(p) =1=Inlu(p)| = 0. (10.1)

Taking the positive Green function (minus the usual one) we have G > 0, 0 <
P(p, &) < IP(p, s, and we get

/Alnm(z)m(p,z)dm(z):/ 1n+|u|P(p,c>da—f In~ u] P(p, ¢)do,
Q 02 02
/A1n|u<z>|G<p,z>dm(z>sf In* [u(@)] P(p. ¢) do

Q 19

= IP(p, ')Iloofmhfr lu(©)] do ()
= 1P (ps Mool n-

But Aln|u(z)| = Tr ©, the trace of ®, so

/Q G(p, DTHO@dm () < |P(ps lae /a @)l do©). (102

We have the known estimates ([8, Proposition 2.1]):

Proposition 10.1. Ler Q := {x € RN :: p(x) < 0} be a bounded domain of class
C?in RNV, defined by the function p and a € Q2 then there are constants c, c1, ¢y,
depending only on the regularity of p up to second order, such that, with P the
Poisson kernel of 2, with d(x) the distance from x to €2,

d(x) d(x)

V(x, Qx3Q, cj——— < P(x,{) <cp———.
(x,¢) € 2x Cl|§—x|N< (x §)<cz|§_x|N

For the Green function G(x, z) of Q we have,

d(z)d(x)

V(x,z) € @xQ, G(x,z) > ¢ N
|z — x|
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Using Proposition 10.1 we get

Theorem 10.2. Let Q := {z € C" :: p(x) < 0} be a bounded domain of class C?
in C"; let G(p, z) be the positive Green function (minus the usual one) with pole
p € Q and u be a holomorphic function in Q such that u(p) = 1, then we have

2n

/ d(2)TrO(z)dm(z) < C Rzn
Q r

f In* [u(¢)| do(¢)
Ele

where r is the radius of the biggest ball B(p,r) centered at p and contained in 2
and R is the radius of the smallest ball B(p, R) centered at p and containing 2.
The constant C depends only on the regularity of p up to second order.

Proof. We have by Proposition 10.1, ||P(p, )|l < c2d(p)~2"*! and G(p,z) >
[‘lz(z_)—;fl(fn) and, because d(p) = r and |z —p| < R, we get [|P(p, )l <
cr I G(p,2) > Cdlgzzzlr so, putting this in (10.2), we get
" | 4T @)dm(z) < —2 It 4
CRrm o ()TrO(z)dm(z) < ) . n" u(¢)| do (%),
which gives the theorem with C := 2. O

Setting |ullp@) == fmlnJr lu(¢)| do(¢), the Nevanlinna norm of u, this
proves that the zero set of a function in the Nevanlinna class verifies the Blaschke
condition.

Unfortunately the domains €2, we are interested in have not the euclidean ball

property that £ < with a y independent of a; in fact they have it but for complex

- =<
planes slices of €2, with r, R depending on the slices but still with § <y, V¥
independent of the slice, i.e. they have this type of property but for “ellipsoid”

instead of balls. This is why the proofs are a little bit more involved.

10.1. Complex potential theory

In this section we shall use the notation dm := do», for the Lebesgue measure in
C" and do for dop,_1.

Let Q be a domain in C* = R?* and u € N () a holomorphic function in
the Nevanlinna class of €2. With ® := Aln|u| and p be a defining function for €2,
we have the lemma, application of the Green formula,

Lemma 10.3. We have, with n the outward normal to 02,

d
/ (—p)TrOdm =/ In |u| —pda —/ In|u| Apdm.
Q B1e) an Q
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Proof. We have, by the Green formula,

0 0
/,oAvdm—/ vA,odm:/ p—vdo—/ v—'odo;
Q Q o On o 0N

but p = 0 on 92 and changing sign, we get

0
/ (—p)Avdm = —/ vApdm+/ v—'oda.
Q Q s 0N

Now setting v = In |u#| and approximating In |u| by smooth functions as usual, we
get the lemma. O

The aim is to prove, under some circumstances, that we have

/ (—p)Tr® < c/ Int |uldo,
Q IR

with a good control on C.

Definition 10.4. Let S be the unit sphere in C" and 2 a domain in C", 0 € . We
shall say that Q si C! starlike relatively to 0 if 3 admits a spherical parametriza-
tion, i.e. there is a function R(¢) € C'(S), R(¢) > 0, such that:

02 ={zeC"::3c €8S, z=R()¢}.

This implies that Q = {z = tR(¢)¢, ¢ €S, t € [0, 1[}.
Let ¢ € S and define 9€2; to be the complex plane slice through ¢

Q== {R(90)e'%¢, 6 €0, 27]).

The Lebesgue measure do’agg (), n = R(?2)e'?¢, on 0, and d6 on [0, 27r] are
related by

2
dose, (1) = \/ v @ + v @20,

where U (9) := R(e'?¢). Of course if n = ¢!?¢ then 32, = 9Q; and the measure
is the same.

We set H Ugi

o "= SUP gefo 2] U gﬁ (9)‘ . We shall use the notation

V¢ €S, di(0) = inf R(e¢); drmax(0) = sup R(e%¢).
0€[0,2m] 0€l0,2m]
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Now we have.

Lemma 10.5. Let S be the unit sphere of C" and Q a domain in C"*, 0 € Q such
Q is C! starlike with respect to 0. Then

1 1
/ f@dm() = s / ( / ( f(tn)J;(n)tz"lng(n)> dOS({)) ar,
Q 7T Jo S \JoQ,
d;(())z"

Proof. Integrating in spherical coordinates we get, with ¢, = 2nv, /s, where v, is
the volume of the unit ball in C", s, the area of the unit sphere in C",

d{max(o)zn
= 15(77) = d; (0)

with

2
+dr max (0)?
o)

’
Uf

R(©)
[ = /Q Fdm (@) = e /S ( /0 P2 £ )dr o (0).

Sett = ﬁ = dr = R(¢)dt and

R(¢) 1
Ve es, f P2 F oYy = / R FURQ)Odt,
0 0

1 . . .
I =ch— R f(tR(0)e 0)t*" dtdodor,—1(C).
27 Jsx[0,1]x[0,27]

Now we fix ¢ € S; we get
/ RO F(tR(00)e 0)?drdb.
[0,11x[0,27]

Set¢ €S, VO €[0,27], n = R(e¢)e'?¢c € 3Q; and U, (9) := R(e'?¢) then we
have '
Q= {Ug(0)e'?¢, 6 € 0,271}

and

2
dose, () = \/ G AGRT
SO

f R()™ f(tR("¢)ec)do = / FanJe(mydor (n),
[0,27] Clo8

. 2
where J; () = I;)(?();) and D, (n) = \/‘Ugi (9)’ + U (0)2, expressed in 1 coordi-

nates.
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So we have

1 1
I'=cn (/ (/ fan)Je (i~ doy (n)) das(s“)) dt.
T Jo S \Jagx,

Notice that in 92; we have

2
d; (0) = R() = dg man 0) ; e (0) < D () = \/ U]+ demn 0

e

Definition 10.6. The domain Q C C” is said to be y balanced relatively to 0 if:
e Qis C! starlike with respect to 0,
o all its slices d€2; through the origin verify

V¢ €8S, dimax(0) < ydc(0); ” U{/ ”oo < yd¢ max(0).

Set for any function v, v*(z) := max(v(z),0) ; v (z) := — max(—v(z), 0).
Then we have the lemmas.

hence
d; (0)* di max (0)*"

e (0) -

<J:(n) =

2
+ d¢ max (0)?
00

Lemma 10.7. Suppose that v is a subharmonic function in a y balanced domain
D in C, such that v(0) = 0. Then

/ v (2)do(z) < y22 / vt (2)do (2).
oD C1 JoD

Proof. Because v is subharmonic we have

0=v(0)§/ P(O,é)v(é)dG(C)=/ P(O,C)v+(é°)d6(i)—/ P(0,5)v(§)do (£),
aD aD aD

where P (0, ¢) is the Poisson kernel of D for 0 € D. So
[ Po.cw@dow < [ Po.ov @)
aD aD

Now we use the estimates in Proposition 10.1 ;LE?);Z < ﬂl?% < P0,2) < |‘§—2| <

70 to get
c1d(0)
dmax (0)2 oD

- 2 +
Vo) < /aD” (©)do (¢),

hence
¢2dmax (0) 2

/ao v (Ddo(§) < “ad 02 i

v (O)do () < 22 / v (©)do (). O
C1 JoD
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Lemma 10.8. Let Q C C" be a y balanced domain and let v be a pluri subhar-
monic function in 2 such that v(0) = 0, then

/ lv()|dm(z) < <1+2V2”+3C—2)/ v (2)dm(2).
Q (4 Q

1

Proof. We shall use the decomposition of Lemma 10.5

1 1
/ v_(z)dm(z):cnz— / ( / ( / v_(tn)Jg(n)tzn_ldag(n)> dog(;)) dt.
Q T Jo S \Jag,

di max (0)*"

7, 0) hence

But still by Lemma 10.5 we have J: () <

f v (1) Ty (dor (n) < Zmm O™ f v~ (i) doc (n)
FIoR ¢ A 99, e

Doing the same we get

d; (O)Zn

2
+ d{ max (0)2
o0

/ v (n)Je (ndog () > / vt (n)do ().
[loR Clo8

Jle:

Set
_ denax O dr (0)*"
d: (0 T
@ \/HU;’ o de a2
then
/ v (tn)Je(n)doy(n) < A/ v~ (tn)dog (n)
092 3
and

/3 o) = B / ot (imdoy (n).
¢

3%
But Lemma 10.8 gives, because v being pluri subharmonic in €2 is subharmonic
in Q{ s
_ 2
f v (tmdor () < y?= | vt emdo (),
30 c1 Jaq,

SO

/ v () I (n)doe (n) < A / v (mdoc () < A2 [ vt amydo (),
09 09 c1 Joo,
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hence continuing

/ v_(ln)fg(ﬂ)dU;(ﬂ)SAJ/ZC—Z/ vt (tn)dos (1)
99, c1 Jag,

) +
< BCIJ/ /mzv ) Je(mdo ().

So
_ Ac
/ v () I (dog (n) < 2= y? f v () Je (mdog ().
Qe €l aQ,
Now we notice that

2
A dC max (O)zn \/H Ué + d;“ max (0)2
— = oo
B d; (0)2n+1

2

’
Joe]..
d{ max (0)2

< y2n+1 1_|_ < y2n+1 y2 + 1.

Multiplying by #*"~! and integrating on Sx[0, 1] give
,/ v (2)dm(z) < 2V2n+sc_2/ vt (2)dm(z);
Q c1 Jao
but [v(z)| = v+ (z) + v~ (z) hence

/ lv()|dm(z) < (1 +2y2"+3c—2)/ v (2)dm(2). 0
Q c1/) Ja

Lemma 10.9. Let Q be a domain in C* of class C?. If v is a positive subharmonic
function in 2, then

f v(2)dm(2) < 2erdiam(Q) / v(O)do ().
Q 02

Proof. Let P(z, ¢) the Poisson kernel we have, by Proposition 10.1,

d(z) d(z)
V(z,¢) € %02, cij——— < P(z,¢) £ cr—————,
(z,8) € 2x c1 o (2, %) CZ|§ e

so, because d(x) < |¢ — x|, we get

V(z,¢) € 2x082, P(z,¢) < CZW-
—Z
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Hence
V¢ € 0Q / P(z,¢)dm(z) <c / _dm@)
9 b — 2
Q Q¢ —z !
d
<o / _Am@) ¢ diam(@).
2n—1
B0, diam(2)) ¢ — z|

Because v is subharmonic we have
v(2) s/ PGz, O(©)do(©),
Q2

so, by Fubini-Tonnelli, everything being positive,
/ v(z)dm(z) < / P(z, 5)v(§)dm(z)do (§)
Q Qx9Q

< 2c2diam(S2)/ v(¢)do (¢). O
02

Proposition 10.10. Let Q be a domain in C" of class C?, y balanced relatively to
0 € Q; if v is pluri subharmonic in Q2 and v(0) = 0 then

/ lv(z)|dm(z) < 2codiam(€2) <2V2”+32 + 1) / v (§)do (©).
Q c1 bl

Proof. We apply successively Lemma 10.8 and Lemma 10.9, which can be done
because v is still pluri subharmonic in . O
Theorem 10.11. Let Q be a domain in C" of class C?, y balanced relatively to
0 € Q@; ifu is holomorphic in Q2 and |u(0)| = 1 then, with X := u=1(0),

1Ox 5 == /Q d@)TEO < C /8 I luldo ©) = Cllulya,

with a constant C depending only on the constant y and the derivatives of p up to
order 2.

Proof. By Lemma 10.3 we have

0
/ (—p)Tr® =/ In |u| —'Odo —/ In|u| Apdm.
Q IQ an Q

The function In |«| is pluri subharmonic in €2 hence we can apply to it Proposi-
tion 10.10:

1

/|1n|u(z)||dm(z)§2czdiam(S2) <2y2"+3c—2+1>/ InT u(¢)|do(¢).
Q Q2
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so we get, because 0 < g—ﬁ,

9
/(—,o)Tr@:/ lnlul—pda—/ In |u| Apdm
Q a0 an Q

ap
B_H /ln+|u|d0+IIA,0||oo/|1n|M(Z)||dm(Z)
n 0o JOR2 Q

<

< A/ In* ()| do (¢),
Q2

with A := H o H + 1 Al 2eadiam(R) 2y 23 €2 4 1)),
7 0o ¢

But (2)d(2) = (~p(2)) so, with M := | . we get

1
Zan

/d(z)Tr@ < M/ (—p)Tr®.
Q Q

This proves the theorem with C = M A, a constant depending only on y and the
derivatives of p up to order 2. O

Remark 10.12. This theorem will be applied to the domains €2, built in Section 8

and for these domains the derivatives of the defining function p, are controlled

by the derivatives of the global function p; also the derivative %L; is bounded

below uniformly independently of a by g—)’; so the constant C of Theorem 10.11 is

independent of a.
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