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Prohibiting isolated singularities in optimal transport

YOUNG-HEON KIM AND JUN KITAGAWA

Abstract. We give natural topological conditions on the support of the target
measure under which solutions to the optimal transport problem with cost func-
tion satisfying the (weak) Ma, Trudinger, and Wang condition cannot have any
interior isolated singular points.
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1. Main results

The optimal transport problem is the following: given source and target probability
measure spaces (�, µ),

�
�̄, ⌫

�
, and a measurable cost function c : � ⇥ �̄ ! R,

find an optimal measurable mapping T : � ! �̄ defined µ-a.e., minimizing
Z

�
c(x, F(x))µ(dx) (1.1)

over the set of all measurable F : � ! �̄ with F#µ = ⌫. Here F#µ is the
pushforward measure of µ under F , defined by F#µ(E) := µ

�
F�1(E)

�
for any

measurable E ⇢ �̄. This theory originated with the work of Monge in the 18th
century, and was further developed by Kantorovich in the 1940’s. Since then it
has undergone dramatic advances, finding connections to partial differential equa-
tions, geometry, probability, mathematical physics, economics, among others; for
example, [38] has a good survey of modern developments.
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A fundamental problem in optimal transport theory is to understand the regu-
larity of solutions minimizing (1.1). In the classical case where the cost function
is given by the quadratic cost c(x, x̄) =

1
2 |x � x̄ |2 on Rn

⇥ Rn (or equivalently
c(x, x̄) = �hx, x̄i), by a result of Brenier [4] it is known that the optimal map
minimizing (1.1) (defined Lebesgue a.e.) is given by the gradient of some convex
function u, which satisfies in a weak sense the Monge-Ampère equation

det D2u = F(x,ru(x)).

As a result, regularity theory for the equation can be applied to show the minimizing
map T is Hölder continuous (equivalently, u is C1,↵) [6–8] if the support of the
target measure ⌫ is convex, and µ and ⌫ are absolutely continuous with respect to
Lebesgue measure, with densities bounded above and below on their supports. For
more general cost functions, for example, the geodesic distance squared function
on a Riemannian manifold, one requires certain structural conditions: to extend
the regularity theory, one requires a necessary convexity condition on the supports
of the measures called c-convexity [34], and a fourth order tensorial condition on
the cost, known as the Ma-Trudinger-Wang condition (MTW) [34, 37] (which is
also necessary, [31]). This can also be interpreted as a condition related to the
curvature of a pseudo-metric on the product space � ⇥ �̄, induced by the cost
function (see [25]). The precise conditions of c-convexity and (MTW), along with
other structural conditions (namely (A0), (Twist), and (Nondeg)), are contained in
Section 2. Under these conditions, a minimizer T can again be constructed from the
(a.e. defined) gradient of a real valued function u (known as a Brenier solution, see
Definition 2.6), which also satisfies a fully nonlinear PDE of Monge-Ampère type.
Hölder continuity of the optimal map (or again, C1,↵ regularity of u) is known,
under the assumption that the source and target measures have densities bounded
from above and below, see [15, 16, 29, 31] (see also [21]). For smoother measures
higher regularity is also known, see [30,34,37].

A natural question one can ask is what happens if one of the above structural
conditions is violated. In particular, we focus on the geometric condition of con-
vexity / c-convexity of the support of the target measure, where it is known that
without such conditions optimal maps may not be continuous [8,34]: in [8] there is
an example where the support of the target measure fails to be convex but remains
connected, yet the optimal map is discontinuous (the support of the target measure
consists of two half disks joined by a very thin channel in the middle). There are
partial regularity results, which show that the set of singularities (discontinuities) is
a set of zero measure [10,12,13]. However, it is desirable to further understand the
finer geometric structure of such singular sets.

As a first step in this direction, in this paper we analyze the case of isolated
singular points (throughout this paper, by singularity or singular point we indicate
a point where an optimal map is discontinuous, or equivalently, where its Brenier
solution u is not differentiable). In our main theorem we prove that under the Ma-
Trudinger-Wang (MTW) condition on the cost function, if the support of the target
measure has no “holes” (by which we mean a bounded, open, connected component
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of the complement of the support of the target measure, see Definition 2.11 for a
rigorous definition), then the corresponding Brenier solution cannot have an isolated
singular point in the interior of the support of the source measure. In particular,
our theorem prohibits isolated singularities when the target measure has bounded,
contractible support; however, it should be noted that the condition under which
isolated singularities can happen is more restrictive. Throughout this paper, we
will denote the closure, interior, and boundary of a set A by Acl, Aint, and A@

respectively. Our main result is as follows:

Theorem 1.1. Let M and M̄ be n-dimensional Riemannian manifolds, and � and
�̄ be bounded, open subsets in M and M̄ , respectively. Let c be a cost function
c : �cl

⇥ �̄cl
! R that satisfies (A0), (Twist), (Nondeg), and (MTW), and assume

that � and �̄ are c-convex with respect to each other. Relevant definitions can be
found in Section 2. (See also Remark 1.3).

Consider two absolutely continuous probability measures µ = f dVol and
⌫ = g dVol on M and M̄ , respectively, with supports sptµ ⇢ � and spt ⌫ ⇢ �̄.
Assume that spt ⌫ \ �̄@

= ; and that there exists a constant 0 < 3 < 1 such that

3�1
 f, g  3 (1.2)

on their supports.
Finally, let u be a Brenier solution (see Definition 2.6) to the optimal transport

problem with cost c. For each x0 2 (sptµ)int, if there are no holes (see Definition
2.11) in spt ⌫ that are c-convex with respect to x0, then x0 cannot be an isolated
singular point of u.

Remark 1.2. The preceding theorem shows that even with some topological holes,
as long as the holes are not c-convex, the optimal map cannot have an interior
isolated singular point. In the special case when M and M̄ are open subsets of Eu-
clidean space and c(x, x̄) =

1
2 |x � x̄ |2, c-convexity reduces to ordinary convexity

(we will henceforth refer to this setting as the Euclidean case). Thus in the Eu-
clidean case, there is no interior isolated singular point for an optimal map if the
target measure has no convex holes in its support.

Remark 1.3. The conditions (A0), (Twist), (Nondeg) are satisfied for a large class
of examples. In particular, the important example of c(x, x̄) =

1
2d
2(x, x̄) given

by the geodesic distance squared on a Riemannian manifold satisfies the various
conditions outside the cut locus (we will refer to this as the Riemannian case). On
the other hand, the condition (MTW) is more restrictive. In the Riemannian case, it
is necessary that the sectional curvature be nonnegative everywhere [31] (however,
this is not sufficient [24], see also [18]). Known Riemannian examples which do
satisfy (MTW) include the round sphere [32] and its products and quotients [26],
as well as small perturbations [11, 17, 20, 33]. Additionally, many non-Riemannian
examples can be found in [27,28,34,37]. For a survey of these results, we refer the
reader to [38].
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Remark 1.4. In the two dimensional Euclidean case, Figalli [12] studied the geo-
metric structure of the singular set by giving characterizations for all of its possible
behaviours, and the above result on isolated singularity follows as a special case. In
higher dimensions, it seems that no result on the geometric structure of singular sets
(similar to the one in [12]) is currently known. For some previous related works in
the Euclidean case, see [2, 23], [39], and [9, Section 5] in the case of dimension 2,
and [3, 35] in higher dimensions.

While the other results mentioned above consider isolated singularities of the
Monge-Ampère equation, the papers [39] and [9, Section 5] deal specifically with
the case of the optimal transport problem (however, still in the Euclidean case).
Both results discuss the finer question of Lipschitz or C1 propagation of singulari-
ties, but assume stronger conditions aside from just topological restrictions on the
support of the target measure. Specifically, [39] assumes that all singular points
have a subdifferential of affine dimension at most one, while [9] requires the sup-
port of the source measure be convex. Our main result applies to a more general
class of c, and also requires no hypothesis on sptµ; in fact we obtain the condition
required for [39] in the course of our proof (see Proposition 3.2).

2. Relevant definitions and preliminaries

In this section we gather some relevant definitions and facts about c-convex poten-
tial functions in relation to solutions of the optimal transport problem. Some good
references are [22,38].

Let M and M̄ be n-dimensional Riemannian manifolds and � and �̄ be
bounded, open subsets in M and M̄ , respectively. Let c be a measurable cost func-
tion c : �cl

⇥ �̄cl
! R. We start out by stating the various assumptions we may

require on our cost function c.
Smoothness of cost:

c 2 C4(�cl
⇥ �̄cl). (A0)

Twist:
We will say c satisfies condition (Twist) if each of the mappings

�̄ 3 x̄ 7! �Dc(x0, x̄) 2 T ⇤

x0M,

� 3 x 7! �D̄c(x, x̄0) 2 T ⇤

x̄0 M̄,
(Twist)

are injective for each x0 2 � and x̄0 2 �̄. Here, D, D̄ denote the usual differential
in the x or x̄ variable.
Remark 2.1. We use the standard notation expcx0(·) and exp

c
x̄0(·) to denote the in-

verses of the above two mappings. Also, for any A ⇢ �, x̄ 2 �̄ or Ā ⇢ �̄, x 2 �,
we will write

[A]x̄ : = �D̄c(A, x̄),⇥
Ā
⇤
x : = �Dc(x, Ā).
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We also comment here, for the cost c(x, x̄) = �hx, x̄i on Rn
⇥Rn , these mappings

are both just the identity map.
Definition 2.2 (c-convexity of a set [34]). If A ⇢ � and x̄ 2 �̄, we say that A is
c-convex with respect to x̄ if the set [A]x̄ is a convex subset of T ⇤

x̄ M̄ . If Ā ⇢ �̄ and
x 2 �, we define when Ā is c-convex with respect to x and A and Ā are c-convex
with respect to each other in the obvious way.
Nondegeneracy
We say c satisfies condition (Nondeg) if, for each x 2 � and x̄ 2 �̄, the linear
mapping

�D̄Dc(x, x̄) : Tx̄ M̄ ! T�Dc(x,x̄)
�
T ⇤

x M
�

⇠
= T ⇤

x M (Nondeg)

is invertible (and consequently, so is its adjoint mapping, �DD̄c(x, x̄) : TxM !

T ⇤

x̄ M̄).
We say c satisfies the condition (MTW) if, for any x 2 �, x̄ 2 �̄, and V 2

TxM , ⌘ 2 T ⇤

x M with ⌘(V ) = 0,

�(ci j,pq � ci j,r cr,scs,pq)cp,kcq,l(x, x̄)V iV j⌘k⌘l � 0. (MTW)

Here we fix coordinate systems on M and M̄ and take all derivatives with respect
to these coordinates; lower indices before a comma denote derivatives of c with
respect to the x variable, and lower indices after a comma denote derivatives with
respect to the x̄ variable. Also, a pair of raised indices denotes the inverse of a
matrix.

We next define some basic concepts of use in c-convex geometry.
Definition 2.3. A real valued function u defined on � is said to be c-convex if for
any x0 2 �, there exists some x̄0 2 �̄ and �0 2 R such that

�c(x0, x̄0) + �0 = u(x0),
�c(x, x̄0) + �0  u(x)

for all x 2 �. Any function of the form �c(·, x̄0) + �0 is called a c-affine function
(with focus x̄0), and if it satisfies the above relations is said to support u from below
at x0.

We also define the c-subdifferential of a c-convex function, and the subdiffer-
ential of a semi-convex function.
Definition 2.4. The subdifferential of a semi-convex function u at a point x 2

(dom (u))int is defined by the set

@u (x) :=

�
p̄ 2 T ⇤

x M | u(x) + hv, p̄i + o(|v|)  u(expx (v)), TxM 3 v ! 0
 
,

here expx is the Riemannian exponential mapping on M .
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Similarly, the c-subdifferential of a c-convex function u at a point x 2 (dom (u))int
is defined as the set

@cu(x) :=

�
x̄ 2 �̄ | �c(y, x̄) + c(x, x̄) + u(x)  u(y), 8y 2 dom (u)

 
.

If A ✓ �, we write

@cu(A) :=

[
x2A

@cu(x).

Remark 2.5. Note that if u is semi-convex, each @u (x) is a nonempty, convex
set, and for any point x where u is differentiable, we have @u (x) = {Du(x)}.
Additionally, it is known that if c satisfies (A0), then a c-convex function is semi-
convex, hence in particular it is differentiable a.e.

Additionally, if u is c-convex it is not difficult to see that its c-subdifferential
is c-monotone, i.e. for any x0, x1 2 � and x̄0 2 @cu(x0), x̄1 2 @cu(x1), we have

c(x0, x̄0) + c(x1, x̄1)  c(x0, x̄1) + c(x1, x̄0).

Definition 2.6. Suppose c satisfies (Twist). A Brenier solution (to the optimal
transport problem with cost c(x, x̄)) pushing µ forward to ⌫ is a c-convex func-
tion u defined on sptµ such that

T#µ = ⌫,

T (sptµ) ✓ spt ⌫,

where T is the Brenier map defined for a.e. x (where u is differentiable) by

T (x) : = expcx (Du(x)).

If u is a Brenier solution pushing µ forward to ⌫, then it is well known that T as
defined above is optimal in (1.1).

The following result (discovered by Loeper [31] in Rn , further developed
in [19,25,33,36], and extended to Riemannian manifolds under certain conditions)
details certain geometric properties of c-convex functions. It will play a key role in
our main proof.

Theorem 2.7 (Loeper’s maximum principle [31]). Suppose c, �, and �̄ satisfy
the conditions of Theorem 1.1. Also let x0 2 �, p̄0, p̄1 2

⇥
�̄
⇤
x0
, and x̄(t) :=

expcx0((1� t) p̄0 + t p̄1). Then for any x 2 �,

� c(x, x̄(t)) + c(x0, x̄(t))
 max {�c(x, x̄(0)) + c(x0, x̄(0)),�c(x, x̄(1)) + c(x0, x̄(1))} . (2.1)

An analogous inequality holds with the roles of � and �̄ reversed.
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This theorem has several important consequences, we will require the follow-
ing two of them later; the second of which was first observed and used in [14, 15]
and [29].

Corollary 2.8 ( [31, Theorem 3.1]). Suppose c, �, and �̄ satisfy the same con-
ditions as Theorem 2.7 above, and u is a c-convex function on �. Then for any
x0 2 �,

[@cu(x0)]x0 = @u (x0) , (2.2)

in particular, @cu(x0) is c-convex with respect to x0.

Corollary 2.9. Suppose c, �, and �̄ satisfy the same conditions as Theorem 2.7,
and u is a c-convex function on �. Then, for any x̄0 2 �̄ and �0 2 R, the section

{x 2 � | u(x)  �c(x, x̄0) + �0}

is c-convex with respect to x̄0.

We also state here a fairly standard result concerning c-subdifferentials of c-
cones.

Lemma 2.10. Suppose c, �, and �̄ satisfy the conditions of Theorem 1.1, u is a
c-convex function, m0 is a c-affine function with focus x̄0, and let S0 := {u  m0}
be such that S0 \ �@

= ;. Fix x0 2 Sint0 and define the c-cone over the section S0
with vertex x0 by

Kc
x0,S0(x) := sup

m
m(x),

where the supremum is taken over all c-affine functions m satisfying m  m0 on
S@
0 , and m(x0)  u(x0). Then,

@cK c
x0,S0(x0) ⇢ @cu(S0), (2.3)

and if x̄0 2 �̄int,

�Dc(x0, x̄0) 2

h
@cK c

x0,S0(x0)
iint
x0

. (2.4)

Proof. A proof of (2.3) is contained, for example, in [21, Lemma 3.4].
We will show (2.4). By assumption, m0(x0) � u(x0) > 0. Let us write p̄0 :=

�Dc(x0, x̄0), then recall that expcx0( p̄0) = x̄0. Hence for a sufficiently small r0 > 0,
we have (for some C > 0 depending only on derivatives of the cost c) that for all
p̄ 2 Br0 ( p̄0), the function m p̄(x) := �c(x, expcx0( p̄)) + c(x0, expcx0( p̄)) + u(x0)
satisfies

m p̄(x) = (�c(x, expcx0( p̄)) + c(x0, expcx0( p̄)) + m0(x0)) � m0(x0) + u(x0)
 m0(x) + Cr0 � (m0(x0) � u(x0))
< m0(x)
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for all x 2 S@
0 . Thus m p̄ is admissible in the supremum defining Kc

x0,S0 , and
it must support the c-cone Kc

x0,S0 from below at x0. In particular we have for
all p̄ 2 Br0 ( p̄0) that expcx0( p̄) 2 @cK c

x0,S0(x0), hence by Corollary 2.8, p̄ 2h
@cK c

x0,S0(x0)
i
x0
, proving (2.4).

Finally, we give the precise definition of a hole.

Definition 2.11. Given any set A, we say that O is a hole in A if O 6= ; is a
bounded, open, connected set such that

O \ Aint = ;,

O@
⇢ A@ .

3. Proof of Theorem 1.1

We begin by deriving several intermediate results. We start with stating a very
useful tool in our analysis, due to Albano and Cannarsa:

Proposition 3.1 ([1, Theorem 4.2]). Suppose that u is a semi-convex function and
x0 2 (dom (u))int is a point where u is not differentiable. If there exists an open
neighborhood N of x0 such that u is differentiable on N \ {x0}, then for every
p 2 @u (x0)@ there exists a sequence xk ! x0 such that Du(xk) ! p as k ! 1.

The next result excludes having a full dimensional subdifferential at an isolated
singular point, when the support of the target measure contains no holes. Note that
the result can be shown under just the condition (Twist), and can be strengthened
under (Nondeg) and (MTW). We also comment that this will be the only place
where we use the no-hole condition on spt ⌫, for the proof of Theorem 1.1.

Proposition 3.2. Suppose that c is C1 and satisfies (Twist), u is a c-convex Brenier
solution, and spt ⌫ contains no holes. Then u cannot have any isolated singular
point x0 2 (sptµ)int with affdim @u (x0) = n (here affdim is the affine dimension of
a convex set).

If in addition, c satisfies (A0), (Nondeg), and (MTW), and � and �̄ are c-
convex with respect to each other, we obtain the same conclusion under the weaker
condition that spt ⌫ contains no holes c-convex with respect to x0.

Proof. Suppose by contradiction that x0 2 (sptµ)int is an isolated singular point
of u, and the affine dimension of @u (x0) is n. Since c is C1 and satisfies (Twist),
the mapping expcx0(·) is continuous and injective, thus Brouwer’s invariance of do-
main theorem (see [5]) gives that expcx0(·) is a homeomorphism between the open
set @u (x0)int and its image. In particular, expcx0(@u (x0)int) is a nonempty, open,
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bounded, connected set. Then since x0 is an isolated singularity, by Proposition 3.1
we have

expcx0(@u (x0)@) ⇢ spt ⌫ \ @cu(x0), (3.1)

as Du(dom (Du)) ⇢ spt ⌫ for the Brenier solution u.
We now claim that

expcx0(@u (x0)int) \ @cu(x1) = ; (3.2)

for any x1 6= x0. First, fix such an x1 2 � and define

F(x̄) := c(x0, x̄) � c(x1, x̄),

which is a C1 function satisfying DF(x̄) 6= 0 for any x̄ (by (Twist)). In par-
ticular, F cannot attain its maximum over the compact set expcx0(@u (x0)) except
at the boundary, say at x̄0 2 expcx0(@u (x0)@) ⇢ @cu(x0). Thus if there exists
x̄1 2 expcx0(@u (x0)int) \ @cu(x1), this would imply that

F(x̄1) < F(x̄0)
() c(x0, x̄1) � c(x1, x̄1) < c(x0, x̄0) � c(x1, x̄0)
() c(x0, x̄1) + c(x1, x̄0) < c(x0, x̄0) + c(x1, x̄1),

which is a violation of c-monotonicity of the c-subdifferential of u (see Remark 2.5).
As a result there cannot be such an x̄1, and we obtain (3.2). Since ⌫ = T#µ, we
must then have

expcx0(@u (x0)int) \ spt ⌫ = ;.

However, when combined with (3.1) this exactly implies that expcx0(@u (x0)int) is
a hole in spt ⌫ which contradicts our initial assumption, therefore it must be that
affdim @u (x0) < n.

If c also satisfies (A0), (Nondeg), and (MTW), by Corollary 2.8 we have that
expcx0(@u (x0)int) = @cu (x0)int and is c-convex with respect to x0; the conclusion
thus follows from the same proof as above.

We recall here the definition of extremal point.
Definition 3.3. If K is a convex set, a point x 2 K is said to be an extremal point
of K if, whenever x can be written as x = (1� �)x0 + �x1 for some � 2 [0, 1] and
x0, x1 2 K , it must be that x0 = x or x1 = x .

In the next lemma, we extend to c-convex functions the following easy result
about convex functions. Namely, if a convex function u is equal to some affine
function (supporting from below) along a line segment containing a point x0, then
either

1. the gradient of this affine function is an extremal point of the convex set @u (x0);
or

2. u is not differentiable at any point in this line segment.
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Our extension is, in particular, to cost functions such that Loeper’s maximum
principle, Theorem 2.7 holds.

Lemma 3.4. Suppose that c satisfies (A0), (Twist), (Nondeg), and (MTW) (so that
Loeper’s maximum principle, Theorem 2.7 (2.1) and its consequences, Corollary
2.8 (2.2) and Corollary 2.9 hold). Also let u be a c-convex function on � and
assume that x0 is an isolated singular point of u. Then if p̄0 is not an extremal point
of the convex set [@cu(x0)]x0 and x̄0 := expcx0( p̄0), the contact set

S0 := {x 2 � | u(x) = �c(x, x̄0) + c(x0, x̄0) + u(x0)}

consists only of the single point x0.

Proof. Fix a p̄0 that is not an extremal point of [@cu(x0)]x0 . There exist p̄± 6= p̄0
such that p̄± 2 [@cu(x0)]x0 and p̄0 =

1
2 ( p̄+ + p̄�); let us write x̄± := expcx0( p̄±).

Now, suppose by contradiction that there exists some x1 2 S0 with x1 6= x0.
Consider the c-segment x(�) := expcx̄0((1� �)p0 + �p1), for � 2 [0, 1] from x0 to
x1 where p0 := �Dc(x0, x0) and p1 := �Dc(x1, x0); observe from Corollary 2.9
that x(�) 2 S0 for all � 2 [0, 1]. Also using that x̄± 2 @cu(x0), we must have

max {�c(x, x̄+) + c(x0, x̄+), �c(x, x̄�) + c(x0, x̄�)} + u(x0)  u(x) (3.3)

for all x 2 �. In particular,

�c(x(�), x̄±) + c(x0, x̄±) + u(x0)  u(x(�))

= �c(x(�), x̄0) + c(x0, x̄0) + u(x0)

for all � 2 [0, 1]. At the same time by using Theorem 2.7 (2.1),

�c(x(�),x̄0)+c(x0,x̄0)max{�c(x(�),x̄+)+c(x0,x̄+),�c(x(�),x̄�)+c(x0,x̄�)},

thus by combining these we must have the equality

max {�c(x(�), x̄+) + c(x0, x̄+), �c(x(�), x̄�) + c(x0, x̄�)} + u(x0) = u(x(�))

for all � 2 [0, 1]. Together with (3.3), this implies that for each � 2 [0, 1], either
x̄+ 2 @cu(x(�)) or x̄� 2 @cu(x(�)). Since x̄+, x̄� 6= x̄0 by construction, and clearly
x̄0 2 @cu(x(�)) for all � 2 [0, 1] this implies all points x(�) in the c-segment must
be singular points, contradicting that x0 is an isolated singular point. This proves
S0 = {x0}.

In order to prove the main theorem, we require a modified version of the es-
timate [15, Lemma 6.10] (see also [21, Theorem 4.1]) (this is proven in the same
vein as [13, Proposition 1] for the Euclidean case of c(x, x̄) = �hx, x̄i). By the
notation |·|L, we denote the volume of a set in M , M̄ or an associated cotangent
space, induced by the Riemannian metric on either M or M̄ (which will be clear
from context).
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Lemma 3.5. Suppose c, u, �, �̄, µ, and ⌫ satisfy the conditions of Theorem 1.1.
Also let m0 be a c-affine function with focus x̄0, let S0 := {u  m0} with S0 \�@

=

;, fix two parallel planes 5+ and 5� in T ⇤

x̄0 M̄ supporting the (convex) set [S0]x̄0
from opposite sides, and let `5± be the length of the longest line segment orthogonal
to 5± that is contained in [S0]x̄0 . Finally, suppose that for some � > 0, x0 2 Sint0
is such that there exists p̄� 2

⇥
@cu(x0) \ (spt ⌫)int

⇤
x0
with d

⇣
p̄�,

⇥
(spt ⌫)@

⇤
x0

⌘
� �.

Then (writing p0 := �D̄c(x0, x̄0)) there exists a constant C > 0 depending only
on �, n, 3, diam (spt ⌫), and c such that

(m0(x0) � u(x0))n 

C min
�
d
�
p0,5+

�
, d

�
p0,5�

� 
`5±

|S0|2L .

Proof. First, one can use (1.2) and follow a proof analogous to [13, Lemma 3.4]
(using Remark 2.5, and replacing the Legendre transform of a function by the c-
transform, see [15, Section 3]), to obtain���[@cu(S0)]x0 \

⇥
spt ⌫

⇤
x0

���
L

= C |@cu(S0) \ spt ⌫|L  32C |S0|L ,

where C > 0 depends on the cost function c. Now let Kc
x0,S0(·) be the c-cone over

the section S0 with vertex x0. Then, by using [13, Lemma 3.1], we calculate����
h
@cK c

x0,S0(x0)
i
x0

����
L

 C(�, diam (spt ⌫))

����
h
@cK c

x0,S0(x0)
i
x0

\ B� ( p̄�)

����
L

 C(�, diam (spt ⌫))
���[@cu(S0)]x0 \

⇥
spt ⌫

⇤
x0

���
L

 C |S0|L ,

where the final constant C depends on c, 3, �, and diam (spt ⌫). Combining this
with the original proof of [15, Lemma 6.10], we immediately obtain the claim.

With all of the preceding ingredients in hand, we are ready to prove the main
theorem.

Proof of Theorem 1.1. Suppose by contradiction that u has an isolated singular
point x0 2 (sptµ)int.

We begin by a localization of u around x0. [@cu(x0)]x0 is convex by Corollary
2.8 (2.2) and contains more than one point since u is singular at x0; thus there must
exist at least one non-extremal point p̄0 of [@cu(x0)]x0 . Let us define a family of
sections around x0 using c-affine functions with focus x̄0 := expcx ( p̄0), for h > 0
let

Sh := {x 2 � | u(x)  �c(x, x̄0) + c(x0, x̄0) + u(x0) + h} .

Notice that by Lemma 3.4, it holds the section is a singleton when h = 0, i.e.
S0 = {x0}. As a result Sh can be made sufficiently small around x0 for small
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enough h > 0. Thus by the assumption that x0 is an isolated singularity, we may
assume h > 0 to be small enough that Sh ⇢ (sptµ)int and u is differentiable on
Sh \ {x0}.

On the other hand, by Proposition 3.2 we see that the affine dimension of
@u (x0) is strictly less than n, and in particular @u (x0) = @u (x0)@ . Hence by
Proposition 3.1, the definition of Brenier solution, and closedness of spt ⌫, we see
that

@cu(x0) = expcx0(@u (x0)) ⇢ spt ⌫. (3.4)

In particular, x̄0 2 spt ⌫. Since u is differentiable on Sh\{x0}, (3.4) and the definition
of Brenier solution imply

@cu(Sh) ⇢ spt ⌫. (3.5)

Now consider the c-cone Kc
x0,Sh (x) over Sh with vertex x0 as in Lemma 2.10.

From the condition spt ⌫ \ �̄@
= ;, it holds x̄0 2 �̄int, therefore we can apply

Lemma 2.10 (2.3) and (2.4) to see

�Dc(x0, x̄0) 2

h
@cK c

x0,Sh (x0)
iint
x0

⇢ [@cu(Sh)]x0 .

From (3.5), this implies �Dc(x0, x̄0) 2

⇥
spt ⌫

⇤int
x0
.

However if this is the case, then one can follow the proof of [15, Theorem
8.3], using Lemma 3.5 above (with � = d

⇣
�Dc(x0, x̄0),

⇥
spt ⌫

⇤@
x0

⌘
> 0) in place

of [15, Theorem 6.11], to obtain that u is differentiable at x0; this contradicts that
x0 is a singular point, completing the proof.
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