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Smoothing discrete Morse theory

BRUNO BENEDETTI

Abstract. After surveying classical notions of PL topology of the Seventies, we
clarify the relation between Morse theory and its discretization by Forman. We
show that PL handles theory and discrete Morse theory are equivalent, in the sense
that every discrete Morse vector on some PL triangulation is also a PL handle
vector, and conversely, every PL handle vector is also a discrete Morse vector on
some PL triangulation. It follows that, in dimension up to 7, every discrete Morse
vector on some PL triangulation is also a smooth Morse vector; the viceversa is
true in all dimensions. This revises and improves a result by Gallais.

Some further consequences of our work are:

(1) For d 6= 4, every simply connected smooth d-manifold admits locally con-
structible triangulations. In contrast, the Mazur 4-manifold has no locally
constructible triangulation. (This solves a question by Živaljevic̀ and com-
pletes a work by the author and Ziegler.)

(2) The Heegaard genus of 3-manifolds can be characterized as the smallest
g for which some triangulation of the manifold has discrete Morse vector
(1, g, g, 1). (This allows for heuristics to bound the Heegaard genus of any
3-manifold.)

(3) Some non-PL 5-spheres admit discrete Morse functions with only 2 critical
faces. (This result, joint with Adiprasito, completes the Sphere Theorem by
Forman.)
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Introduction

The term “d-dimensional manifold” was introduced by Riemann in 1854 [57, 58].
Since then, the notion has been used and adapted so many times, that it is rare to
find two books adopting the same definition. Here by topological manifolds we
mean “compact Hausdorff spaces locally homeomorphic to Rd”, or, in the case of
manifolds with boundary, to a closed halfspace of Rd .1 Many topological man-
ifolds carry also other important structures. For example, smooth manifolds are
locally diffeomorphic to Rd , which allows us to do differential calculus on them.
Finally, triangulable manifolds are homeomorphic to simplicial complexes, which
allows us to tackle them algorithmically. These three structures (topological, dif-
ferential, combinatorial) are inequivalent: smooth manifolds are only some of the
triangulable manifolds, which in turn are only some of the topological manifolds.

In the Thirties, Morse had the idea to analyze a smooth manifold by consider-
ing a generic smooth real-valued function defined on it. The highlight of the theory
is that it suffices to look at the finitely many critical points (maxima, minima, sad-
dles) of the function, to understand the homotopy type of the whole manifold.

Theorem 0.1 (Morse [50]). If some d-dimensional smooth manifold M admits a
generic smooth function f : M ! R that has ci critical points of index i (i =

0, . . . , d), then M is homotopy equivalent to a cell complex (calledMorse complex)
with ci cells of dimension i .

From now on, the assumption above will be shortened as “M hasMorse vector
c = (c0, . . . , cd)”. The Morse vector in general does not determine the Morse com-
plex nor the homotopy type of M , but it yields useful information: using cellular
homology, one can see that the Morse vector is always coordinate-wise greater than
or equal to the Betti vector � = (�0(M), . . . ,�d(M) ).

In 2000, Forman published a combinatorial version of Morse theory, which
applies to arbitrary simplicial complexes – hence in particular to triangulations of
manifolds. Simplifying a bit Forman’s definition, a discrete Morse function on a
simplicial complex C is a map f : C ! Q that satisfies three properties:

(i) (Monotonicity) If � ⇢ ⌧ , then f (� )  f (⌧ );
(ii) (Semi-injectivity) For each q 2 Q, the cardinality of f �1(q) is at most 2;
(iii) (Genericity) If f (� ) = f (⌧ ), then either � ⇢ ⌧ or ⌧ ⇢ � .

If one defines critical faces as the faces � at which f is injective (i.e., the cardinality
of f �1( f (� )) is equal to 1), Forman discovered that it suffices to look at critical
faces to understand the starting complex up to homotopy, exactly like in Morse
theory:

Theorem 0.2 (Forman [21]). If some d-dimensional simplicial complex C admits
a discrete Morse function f : C ! Q that has ci critical faces of dimension i

1 Other authors adopt weaker definitions, e.g., by removing the Hausdorff requirement, or by
dropping the compactness assumption in favour of paracompactness.
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(i = 0, . . . , d), then C is homotopy equivalent to a cell complex with ci cells of
dimension i .

Let us shorten the assumption above as “C has discrete Morse vector c =

(c0, . . . , cd)”; as before, the discreteMorse vector does not determine the homotopy
type of C , but it bounds coordinate-wise the Betti vector of C from above. This
naturally leads to the following problem.
Problem 0.3. What is the relation between Morse vectors and discrete Morse vec-
tors on a fixed topological manifold?

A first important contribution to this problem came in 2010 from Gallais:

Theorem 0.4 (Gallais [25]). If a smooth manifold M admits a Morse vector c, then
there exists a PL triangulation T of M that admits c as discrete Morse vector.

The proof in [25] (which aims at discretizing the triangulation alongside the
gradient flows) contains a gap, which we are able to fix in this paper (cf. Remark
2.29). In addition, here we provide an alternative proof of the following, stronger
fact:
Main Theorem A (Theorem 2.28 and Remark 1.8). If a smooth manifold M ad-
mits a Morse vector c, then for any PL triangulation T of M one can find an integer
r such that the r-th derived subdivision of T admits c as discrete Morse vector.

Our proof of Main Theorem A is based on three ingredients:

(1) handle decompositions, a classical topological tool to chop the d-manifold
into d-balls (called “handles”) with controlled intersection; see, e.g., Rourke-
Sanderson [60];

(2) the shelling and collapsing techniques for d-balls established in Adiprasito’s
PhD thesis [1], (cf. also [3] and [2, Main Theorem VI]); these tools allow
us to simultaneously triangulate all handles nicely, with a suitable (iterated)
barycentric subdivision;

(3) the duality for discrete Morse functions on manifolds with boundary, and the
theory of composing together (dual) discrete Morse functions, as developed by
the author in [8].

By looking at (differences of) sublevel sets, every smooth Morse function provides
automatically a handle decomposition, with each handle containing exactly one of
the critical points in its interior. In 2009, Jer s̆e and Mramor discovered that discrete
Morse functions yield a similar way to decompose (part of) a triangulation C into
“descending regions”, each containing one critical face [33]. There are however
two main differences between this decomposition and the classical handle decom-
position:

(i) The Jer s̆e-Mramor descending regions are not necessarily full-dimensional.
(This can be fixed, however, by passing to regular neighborhoods.)
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(ii) The union of the neighborhoods of the descending regions is not the whole
complex C (unless C is a manifold with empty boundary [33, Proposition 2]),
but rather a deformation retract of it. This retract need not be homeomorphic
to C , as highlighted in Remark 2.6.

The example in Remark 2.6, however, is not a PL triangulation. Here PL means
Piecewise Linear, and refers to the technical assumption that each vertex star must
have a subdivision isomorphic to some subdivision of the simplex.

Our new result is that if C is a PL triangulation, the union U of the regular
neighborhoods of the descending regions is indeed homeomorphic to C – and a
discrete Morse function on the descending regions can be extended to C without
adding further critical cells. This was first conjectured by Bauer andMramor-Kosta,
in private communications to the author, for which we wish to thank them. The key
technical tool is once again the shelling technique of Theorem 2.8, cf. [3, Theorem
5.3], which allows us to strengthen Whitehead’s Regular Neighborhood theorem
(Corollary 2.9).

Combining this with the known relations between smooth Morse vectors and
PL handle vectors (see Section 2 for the definition), we obtain the following new
result, converse to Main Theorem A and reflecting joint work with Adiprasito:
Main Theorem B (Theorems 1.30 and 2.2). For manifolds admitting PL triangu-
lations, every PL handle vector is also a discrete Morse vector on some PL trian-
gulation, and the other way around. Moreover, if the manifold is smooth and has
dimension  7, then every discrete Morse vector on some PL triangulation is also
a smooth Morse vector.

In conclusion, if we restrict ourselves to PL triangulations and to dimensions
up to 7, smooth and discrete Morse theory are equivalentwhen it comes to bounding
Betti numbers.

Using duality, we can provide an application to locally constructible (or shortly,
LC) triangulations, introduced in [18] and studied in [10]. These are triangulations
of simply connected manifolds that enjoy a special inductive combinatorial struc-
ture; see Section 2.6 for the precise definition. In 2009 Živaljevic̀ conjectured that
every simply connected smooth manifold admits some LC triangulations (personal
communication). Here we are able to confirm the conjecture in all dimensions ex-
cept 4, in which it is false:
Main Theorem C (Theorem 2.46). Let d � 2. Every simply connected smooth d-
manifold, d 6= 4, admits LC triangulations. (In fact, any PL triangulation of such
manifold becomes LC after subdividing it barycentrically suitably many times.) In
contrast, the Mazur 4-manifold admits no LC triangulation.

The proof makes use of Perelman’s solution of the 3-dimensional Poincaré
conjecture. In fact, for d = 3 the statement above is a combinatorial reformulation
of the Perelman-Poincaré theorem, since Durhuus-Jonsson showed with elementary
methods that all LC closed 3-manifolds are spheres (Theorem 2.40).

Let us spend a few more words on the case d = 3. All triangulations of 3-
manifolds are PL. Hence, Main Theorems A and B imply that a closed 3-manifold
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M admits a Heegaard splitting of genus g if and only if some triangulation of M has
discrete Morse vector (1, g, g, 1). This allows us to re-write in the language of dis-
crete Morse theory a recent result by Li [40]: for every g > 0, there is a 3-manifold
M such that any discrete Morse function on any triangulation of M has more than
g + rank(M) critical edges (Corollary 2.35). This shows a topological obstruction
to the existence of nice discrete Morse functions. Unlike the knot-theoretic obstruc-
tion discussed in [8], this obstruction cannot be removed by performing convenient
subdivisions. Moreover, it allows for quick experimental methods to understand the
Heegaard genus, or at least to bound it from above.

Finally, we turn to an issue left open by Forman’s Sphere Theorem, which
claims that every closed manifold with discrete Morse vector (1, 0, . . . , 0, 1) is
homeomorphic to the d-sphere. Forman’s proof distinguishes two cases: the PL
case, where the conclusion follows from a result by Whitehead, and the non-PL
case, in which one has to use the Poincaré conjecture. However, due to the lack of
examples, it is unclear whether the non-PL case is void or not. Here using a result
by Adiprasito, we show it is not:

Proposition D (Proposition 2.37). For each d � 5, some non-PL triangulation of
the d-sphere admits a discrete Morse function with only two critical faces.

In particular, there exists a non-PL 5-ball B that is endocollapsible, that is, a 5-
ball B that after the removal of any facet collapses onto @B. In [8] we proved (using
Smale’s solution of the Poincaré conjecture) that all endocollapsible manifolds are
balls. This statement implies Whitehead’s theorem (“all collapsible PL manifolds
are balls”) and in view of the 5-ball B above, the implication is strict.

Structure. The paper is organized as follows. For the sake of clarity and self-
containment, we decided to start with a background chapter gathering together the
differential and PL topology we need. These notions can also be found in many
textbooks (for example [13, 43, 46, 60]), though the notation vastly differs from
book to book, which often creates confusion. The reader already familiar with PL
triangulations and handle decompositions should skip directly to Section 2.

ACKNOWLEDGEMENTS. Special thanks to Karim Adiprasito, who was of great
help and allowed me to include some results of joint work (like Theorem 2.2 or
Proposition 2.37). A very early version of this work emerged in 2010 after a ques-
tion by Rade Živaljevic̀ and an inspiring conversation with Rob Kirby; to both of
them the author is indebted. Thanks also to Alex Suciu, John Shareshian, Marty
Scharlemann, Elmar Vogt, Günter Ziegler, Lou Billera, Ed Swartz, Anders Björner,
Neža Mramor, Ulrich Bauer, and Jonathan Barmak, for stimulating conversations
and helpful references. Finally, thanks to Liviu Nicolaescu for pointing out the ref-
erence [25], to José Samper for correcting typos, and to the anonymous referee for
improving the presentation.
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1. Background

In this section we recall a few classical results on how to triangulate manifolds and
decompose them into handles, either in the smooth or in the PL sense.

Notation

A topological d-manifold (with boundary) is a compact Hausdorff space, locally
homeomorphic to Rd (or to a halfspace in Rd ). For simplicity, all the manifolds we
consider here are connected and orientable. A chart on a topological d-manifold M
is a pair (U,�), where U is an open subset of M , and � is some homeomorphism
that maps U into an open subset �(U) of Rd . An atlas is a collection of charts
(Ui ,�i ) such that the Ui are open sets that cover M , and the induced transition
maps between any two charts are smooth (that is, C1). A smooth d-manifold is a
topological d-manifold that admits an atlas. (Different atlases may give rise to the
same manifold, so one usually requires the atlas to be maximal; see [38, Lemma
1.10] for details.)

A (simplicial) complex is a non-empty, finite family C of simplices in some
Rk such that any two of them intersect at a common face, and every face of every
simplex in C is also an element of C . The dimension of a complex is the maximum
dimension of a simplex in it; d-complex is short for “d-dimensional simplicial com-
plex”. A d-complex is pure if all inclusion-maximal simplices in it have dimension
d. The face poset of a complex is the set of all of its simplices, ordered by inclu-
sion. Two complexes are called combinatorially equivalent if their face posets are
isomorphic as posets. The underlying space |C| of a simplicial complex C is the
topological space given by the union of the simplices of C . If X is any topological
space homeomorphic to |C|, the complex C is called a triangulation of X . A sub-
division of a simplicial complex C is a complex C 0 with |C| = |C 0

|, such that for
every face F 0 of C 0 there is a face F of C with F 0

⇢ F .
Two complexes are called PL-homeomorphic if some subdivision of one is

combinatorially equivalent to some subdivision of the other. Two triangulations
that are PL homeomorphic can always be connected by a finite sequence of bistellar
flips: see Pachner [53]. If F is a simplex of a simplicial complex C , the star of F
in C is the smallest subcomplex of C that contains all faces of C containing F . A
PL ball (respectively a PL sphere) is a complex PL-homeomorphic to a simplex
(respectively to the boundary of a simplex). A PL triangulation of a given manifold
is a triangulation in which the star of every face is a PL ball.

1.1. The Poincaré conjecture

A homology sphere is a topological d-manifold with the same homology of the
d-sphere. Not all homology spheres are spheres: Poincaré constructed homology
3-spheres that are not simply connected, cf. [11]. However he conjectured that all
simply connected homology spheres must be spheres. After a century of progress,
the conjecture proved right.
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Theorem 1.1 (Perelman(d=3) [54], Freedman (d=4) [22], Smale (d�5) [63]).
Every simply connected homology d-sphere is homeomorphic to the unit sphere in
Rd+1.

Corollary 1.2. Every contractible d-manifold with simply connected boundary is
homeomorphic to the unit ball in Rd .

It is natural to ask whether for a smooth manifold, as in the previous two state-
ments, “homeomorphic” can be replaced by “diffeomorphic”. The answer is

• positive in dimension d 2 {1, 2, 3, 5, 6, 12, 61};
• unknown for d = 4;
• negative if d  64 and d /2 {1, 2, 3, 4, 5, 6, 12, 61} [35, 47]; see the very recent
work by Behrens et al. for further cases [6], e.g., for 64  d  126;

• unknown for large even values of d.

However, in Theorem 1.1 and in Corollary 1.2 the conclusion “homeomorphic” can
indeed be strengthened to “PL-homeomorphic”, except possibly in dimension four:

Theorem 1.3 (Perelman [54], Smale [63], Stallings [64], Zeeman [67]). Every
simply connected PL homology d-sphere, if d 6= 4, is PL-homeomorphic to the
boundary of the (d + 1)-simplex.

Corollary 1.4. Every PL contractible manifold of dimension d 6= 4 and with sim-
ply connected boundary is a PL ball.

In dimension d = 4, the situation is quite unclear: see Section 1.5.

1.2. All smooth manifolds can be PL triangulated

To show that all smooth manifolds can be triangulated there are several ways; the
argument we present here is due to Cairns [14]. Without loss of generality, we may
focus on smooth submanifolds of Euclidean space: in fact, byWhitney’s embedding
theorem, every smooth d-manifold is diffeomorphic to some submanifold of R2d .
If B(x, ") denotes the open ball of radius " and center x in R2d , then obviously

[
x2M

B(x, ") � M.

Since M is compact, finitely many of these balls actually suffice to cover M . Any
finite set of points x1, . . . , xs such that the union of the balls B(xi , ") contains M is
called an "-net of M .

Theorem 1.5 (Cairns [14]). Every smooth manifold can be PL triangulated.

Sketch of proof. Let {x1, . . . , xs} be an "-net of M . Consider now the Voronoi di-
agram V 2 R2d associated to these s points. For each i , let us denote the cell
containing xi by Zi . Consider the sets Ci := Zi \ M . Since the Zi partition R2d ,
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we have C1 [ . . . [ Cs = M . Cairns showed that if " is small enough the Ci ’s are
cells, and the intersections Ci \C j are also cells. Hence, the Ci form a regular cell
complex. In general, a regular cell complex need not be a simplicial complex, but
its barycentric subdivision is.

The triangulation constructed in Theorem 1.5 is called a Whitehead triangu-
lation of M . Up to PL-equivalence, it is the unique PL structure that satisfies the
so-called Whitehead compatibility condition, cf. [37, 66] for details. In particular,
any two PL triangulations obtained via Theorem 1.5 (with different choices of "-
nets) are PL-homeomorphic. In other words, up to PL-equivalence it makes sense
to speak of theWhitehead triangulation of M .

1.3. Not all PL triangulations come from smooth structures

A smooth structure on a topological manifold X is an equivalence class of smooth
manifolds M homeomorphic to X that are related by orientation-preserving diffeo-
morphisms. We saw that from a smooth structure one can always pass to a PL
structure. How about the converse? Can we pass from a PL structure to a smooth
structure? The answer, in general, is negative.

Intuitively, the problem is this: two triangulated d-manifolds A and B (with
non-empty boundary) can always be glued together. For this we just have to specify
two combinatorially equivalent (d � 1)-submanifolds SA ⇢ @A and SB ⇢ @B, and
then identify SA ⌘ SB . If A and B are PL triangulations, their union will also
be PL. In contrast, if we take two smooth d-manifolds A and B, and we identify
diffeomorphic (d � 1)-submanifolds SA and SB of their boundaries, we might not
obtain a smooth structure on the union. In fact, we should explain how to smoothly
extend the attaching diffeomorphism (of SA and SB) into (part of) the interiors of A
and of B. This is not always possible, as demonstrated by the following non-trivial
counterexample, due to Kervaire [34].
Example 1.6 (PL manifolds with no smooth structure). Kervaire’s 10-dimen-
sional topological manifold admits a PL triangulation. However, this triangulation
is not homeomorphic to, and not even homotopy equivalent to, any smooth mani-
fold [34]. Munkres and Hirsch developed an obstruction theory to the existence of
a smooth structures compatible with a given PL manifold [30,52].

But supposing a smooth structure exists, can one recover it from a given PL
structure? The answer in this case is also negative: Even if a compatible smooth
structure exists, it need not be unique.
Example 1.7 (PL spheres with many compatible smooth structures). Milnor
constructed a smooth 7-manifold homeomorphic to, but not diffeomorphic to, the
unit sphere S7 inR8 [48]. The usual terminology is to speak of exotic smooth struc-
tures on the 7-sphere. A single exotic structure produces many other exotic struc-
tures, just by taking connected sums. (It is a deep result in topology that smooth
structures on Sd form a finite Abelian group with respect to the connected sum [35],
except possibly for d = 4.) By Theorem 1.3, all spheres of dimension different
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than 4 admit a unique PL structure. In other words, if we apply the construction
of Theorem 1.5 to all of Milnor’s exotic 7-spheres, we get PL triangulations that
are PL-homeomorphic (and can be connected to each other via a finite sequence of
bistellar flips), even if they come from different smooth structures.

However, all these problems occur in higher dimensions. If the dimension of
the manifold is sufficiently small, any PL triangulation induces a unique smooth
structure.

Theorem 1.8 (Kervaire-Milnor [35], Hirsch-Mazur [30], Munkres [52]). If d

7, every PL d-manifold has at least one compatible smooth structure; and if d  6,
the compatible structure is unique up to diffeomorphism.

We stress that the result above does not say that 6-manifolds have a unique
smooth structure. It says that the number of (non-diffeomorphic) smooth structures,
for d  6, is the same as the number of (non-PL-homeomorphic) PL triangulations.
In dimension d 2 {1, 2, 3}, this number is one, by the work of Papakyriakopoulos
and Moise [49]. However, if d 2 {4, 5, 6}, several PL structures may appear. For
example, Hsiang-Shaneson proved that the 5-torus admits many smooth structures
[31].

1.4. Lack of (PL) triangulations

In Section 1.2, we reviewed Cairns’ result that every smooth manifold admits a
PL triangulation. This raises two natural questions: (1) Does every topological
manifold admit a triangulation? (2) Is every triangulation PL?

The answer to both questions is negative, as we will see. Let us start with a
positive result:

Theorem 1.9 (Moise (d  3), Perelman (d = 4)). For d  4 all triangulations of
any d-manifold are PL.

In particular, a 4-dimensional topological manifold admits a triangulation if
and only if it admits a PL structure; by Theorem 1.8, this is equivalent to the exis-
tence of a smooth structure.
Example 1.10 (Freedman [22]). Using a theorem by Rokhlin [59], Freedman con-
structed a 4-dimensional topological manifold, the so called E8-manifold, that does
not admit any smooth structure. It follows from Theorem 1.9 (or alternatively, from
Casson’s work, cf. [46]) that E8 does not admit a triangulation either.

Whether all topological manifolds of dimension> 4 admit a triangulation was
a long-standing open problem, recently solved by Manolescu, after it had been
reduced to a question on 3-dimensional homology spheres (compare Galewski-
Stern [24] and Ranicki [56]):

Theorem 1.11 (Manolescu [42]). For each d � 5 there exist topological d-mani-
folds that cannot be triangulated.
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In addition, Theorem 1.9 does not extend to higher dimensions: in the Seven-
ties Edwards and Cannon discovered that some triangulations are not PL, as we will
now explain.

Recall that a homology sphere is a manifold with the same homology as a
sphere. Homology spheres need not be simply-connected. A homology manifold
is a pure simplicial complex in which, for every face ⌧ , the (dimC � dim ⌧ � 1)-
complex Link (⌧,C) has the same homology of a (dimC�dim ⌧�1)-sphere. Every
triangulation of a manifold is a homology manifold. The converse is false: some
homology manifolds are not manifolds. This is a consequence of the following
characterization.
Theorem 1.12 (Cannon [15], Edwards [19,20]). Let C be any homology mani-
fold. The following are equivalent:

(i) C is a manifold;
(ii) for every vertex v of C , Link (v,C) is simply connected.

A famous instance of this criterion is the so called Double Suspension theorem.
Recall that the suspension of a simplicial complex C is the complex

6(C) = {x, y} ⇤ C,

where x and y are two new vertices. In other words, 6(C) is the join of C and a
0-sphere.
Corollary 1.13 (Double Suspension theorem). Let H be any d-dimensional ho-
mology sphere. The double suspension 62(H) = 6(6(H)) is a manifold, home-
omorphic to Sd+2. Since four edge links in 62(H) are combinatorially equivalent
to H , if H is not a PL sphere, then the sphere 62(H) is not a PL manifold.

In a non-PL closed manifold, the subcomplex of faces whose link is not a PL
sphere is called PL singular set. Inside62(H) = S0 ⇤ S0 ⇤H , the PL singular set is
S0 ⇤ S0, a 4-cycle formed by the apices of the suspensions: in fact, the link of each
edge in this cycle is H .

For each d � 5, the sphere Sd admits both PL triangulations, like the bound-
ary of the (d + 1)-simplex, and non-PL ones, like the double suspension of some
homology (d�2)-sphere (cf. Corollary 1.13). One could wonder if there exist man-
ifolds that admit only non-PL triangulations. This is indeed the case, as discovered
by Kirby and Siebenmann:
Example 1.14 (Kirby-Siebenmann [37]). For every d � 5, there exists a d-man-
ifold that admits a triangulation, but does not admit any PL triangulation. In fact,
any d-manifold M , with d � 4, can be PL triangulated if and only if the Kirby-
Siebenmann invariant (M) 2 H4(M, Z/2Z) vanishes. This in particular implies
that all manifolds with H4(M, Z/2Z) = 0 can be PL triangulated. Thus, all con-
tractible manifolds can be triangulated! In fact, Gleason even discovered that all
contractible manifolds admit a smooth structure, cf. [30].

Clearly, by Theorem 1.5 the manifolds of Example 1.14 do not admit any
smooth structure.
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1.5. The case of 4-manifolds

The 4-dimensional case, as far as manifolds are concerned, is the most bizarre and
complicated. On one hand, by the work of Perelman, all triangulations of all 4-
manifolds are PL (Theorem 1.9). Furthermore, every PL structure corresponds to a
unique smooth structure (Theorem 1.8). However, exotic structures on 4-manifolds
are far from being understood. One of the big remaining open problems in topology
is the question of whether exotic 4-spheres exist.

Problem 1.15 (Smooth Poincaré conjecture). Is there a manifold homeomorphic
to S4, but not diffeomorphic to it?

Since smooth structures are in bijection with PL structures, one could rephrase
the question above in the PL category as “are there PL structures on S4 other than
the boundary of the 5-simplex?”. By definition, PL spheres are precisely spheres
that are PL-homeomorphic to the simplex boundary. In [3] Adiprasito and the au-
thor characterized PL spheres as those that become shellable after sufficiently many
barycentric subdivisions. Hence, a third way to rephrase Problem 1.15 is: “Are there
triangulations of S4 that remain unshellable after any finite number of barycentric
subdivisions?”

At the moment we have no invariant to distinguish smooth structures on S4.
(Very recently Rasmussen’s splice invariant has sparkled some optimism in this
direction, cf. [23].) Some evidence in favor of the smooth Poincaré conjecture
is that all reasonable candidates for counterexamples have been proven standard:
see Akbulut [5] and Gompf [27]. Some evidence against the conjecture, instead,
is represented by the discovery that some 4-manifolds have many exotic smooth
structures. So, a priori there could be infinitely many exotic 4-spheres; or some;
or none. The only thing we know is that there can be at most countably many of
them.

1.6. Handle decompositions

Handle decompositions can be viewed as a “divide and conquer” method: to under-
stand an arbitrary d-manifold, we chop it into d-balls, which are glued together at
(d � 1)-submanifolds of their boundaries. These submanifolds have a prescribed
topology, namely, they are required to be products of balls and spheres.

By Bd we denote from now on the unit ball in Rd .

Definition 1.16 (Attaching a 0-handle). Let M 0 be either the empty set, or a topo-
logical manifold (respectively a PL triangulation manifold, respectively a smooth
manifold) of dimension d. Let H (0) be a topological manifold homeomorphic to
Bd (respectively a PL triangulation of the Bd , respectively a smooth manifold dif-
feomorphic to Bd ). We say that the disjoint union M = M 0

[ H (0) is the result of
attaching a 0-handle to M 0 in the topological (respectively PL, respectively smooth)
category.
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Definition 1.17 (Attaching an i-handle). Let 1  i  d be integers. Let M 0 and
H (i) be two d-dimensional topological manifolds (respectively PL manifolds, re-
spectively smooth manifolds) with non-empty boundary. Suppose that:

• H (i) is homeomorpic (respectively PL homeomorphic, respectively diffeomor-
phic) to Bd ;

• Some (d�1)-submanifold A0 of @M 0 and some (d�1)-submanifold A of @H (i)

are both homeomorphic to Si�1⇥Bd�i (respectively combinatorially equivalent
to each other and both homeomorphic to Si�1 ⇥ Bd�i , respectively diffeomor-
phic to Si�1⇥Bd�i via a diffeomorphism that can be extended to the interior of
M 0 and of H (i)).

Let M be the d-manifold obtained by gluing M 0 to H (i) via the identification A0
⌘

A. We say that M is the result of attaching an i-handle to M 0 in the topological
(respectively PL, respectively smooth) category. With slight abuse of notation, we
will write M = M 0

[ H (i) and say that M is the union of M 0 and H (i).
Definition 1.18 (Handle decomposition). Let M be a topological d-manifold (re-
spectively a PL d-manifold, respectively a smooth d-manifold) with possibly empty
boundary. A topological (respectively PL, respectively smooth) handle decomposi-
tion for M is an expression of the form

M = H (0)
0 [ H (i1)

1 [ . . . [ H (ik)
k

where H (0)
0 is a 0-handle and every H (ih)

h is an ih-handle attached to the union of the
previous ones, in the topological (respectively PL, respectively smooth) category.

For typographical reasons, we will often use the expression “handles of index
i” instead of “i-handles”.
Example 1.19. For every d, the ball Bd admits a smooth handle decomposition
into one handle of index 0. (One can also come up with more complicated de-
compositions: For example, one can obtain Bd also by attaching one 0-handle, one
(d�1)-handle, and one d-handle.) Conversely, any manifold with a smooth handle
decomposition consisting of only one handle is, by definition, diffeomorphic to the
unit ball in some Euclidean space.
Example 1.20. The standard d-sphere Sd admits a smooth handle decomposition
into one handle of index 0 and one handle of index d. It follows from the work
by Cerf [17] on twisted diffeomorphisms that also all exotic d-spheres, for d � 7,
admit a smooth handle decomposition into one handle of index 0 and one handle of
index d.
Example 1.21. If any exotic 4-sphere exists, then it cannot have a smooth handle
decomposition into one 0-handle and one 4-handle. This is because all orientation-
preserving diffeomorphisms S3 ! S3 are isotopic to each other, by the work of
Moise [49]. (The smoothing of the attaching diffeomorphism is unique, by The-
orem 1.8.) It follows that if a closed 4-manifold M has a smooth handle decom-
position into two handles, attached via some diffeomorphism S3 ! S3, then M
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is diffeomorphic to the standard 4-sphere. This could be considered a reason why
exotic 4-spheres are difficult to find (if they exist): to construct them, one needs to
deal with complicated smooth handle decompositions.

Every manifold of dimension different from 4 admits a topological handle de-
composition. In contrast, the 4-manifolds admitting topological handle decomposi-
tions are precisely those that admit a smooth structure.
Example 1.22. The E8 4-manifold by Freedman does not admit any topological
handle decomposition.

In the next sections we will see that all smooth manifolds admit a smooth
handle decomposition (Theorem 1.25 and Proposition 1.26), and that all PL trian-
gulated manifolds admit a PL handle decomposition (Corollary 2.11).

1.7. From Morse theory to smooth handles, and backwards

Let M denote a closed smooth manifold. Let f : M ! R be a smooth function. As
we know from calculus, the critical points of f are the points at which the gradient
of f vanishes. If f is generic, it will have a finite number of isolated critical points
(at which the Hessian of f will be non-singular), and the critical points will have
different images under f . Since M is closed and compact, and f is continuous, by
Weierstrass’ theorem f must have a maximum and a minimum; so, if dimM > 0,
f will have at least two critical points. From now on, a generic smooth function
will be called aMorse function, or sometimes a smooth Morse function, to highlight
the difference with discrete Morse theory.
Definition 1.23 (Index of Critical Points). Let f : M ! R be a Morse function.
The index of a critical point p 2 M of f is the dimension of the largest subspace
of the tangent space TpM on which the Hessian of f is negative-definite.

Intuitively, the index is the number of independent directions around p in
which f decreases. Any local minimum has index 0; any local maximum has index
equal to the dimension of M .

Lemma 1.24 (Morse). Let M denote a closed smooth manifold. Fix a generic
smooth function f : M ! R, and let p1, . . . , pk be its critical points. For any
real number a, let us denote by Ma the preimage under f of the closed interval
(�1, a].

1. Suppose the interval [a, b] contains none of the critical values. Then Mb is
diffeomorphic to Ma .

2. Suppose the interval [a, b] contains exactly one of the critical values, say f (p),
in its interior. Let i be the index of the critical point p. Then Mb is diffeomor-
phic to the manifold obtained by attaching to Ma a handle of index i in the
smooth category.

Proof. See Milnor [47] or Matsumoto [43].
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Theorem 1.25. Let M be a closed smooth manifold. Let f : M ! R be an ar-
bitrary (smooth) Morse function. Then, M admits a smooth handle decomposition
into ci handles of index i , where ci counts the number of index-i critical points of f .

Proof. Let p1, . . . , pk be the critical points of f . Up to relabeling them, we can
assume f (p1) < f (p2) < . . . < f (pk). Choose k+ 1 real numbers �0, �1, . . . , �k
such that

�0 < f (p1) < �1 < f (p2) < �2 < . . . < �k�1 < f (pk) < �k .

Since the minimum and the maximum of f on M are points at which the gradient
of f vanishes, the minimum of f on M must be p1, and the maximum of f on M
must be pk . In particular, �0 < { f (x) : x 2 M} < �k . Hence M�0 is empty,
while M�k = M . The conclusion then follows by applying Lemma 1.24 to all the
intervals [�i , �i+1], in this order.

The converse also holds: every smooth handle decomposition comes from a
Morse function, as the following, well-known result shows:

Proposition 1.26. Let M be a closed smooth manifold. If M has a smooth handle
decomposition into ci handles of index i , some Morse function on M has ci critical
points of index i .

One can extend to manifolds with boundary the definition of smooth Morse
vector, as follows:
Definition 1.27. A manifold with boundary hasMorse vector (c0, c1, . . . , cd) if it
admits a smooth handle decomposition with ci handles of index i .

By Theorem 1.25 and Proposition 1.26, if M has empty boundary this defi-
nition coincides with the one in terms of the number of critical i-cells of a Morse
function.

1.8. From smooth to PL handles, and backwards

Let us quickly review the relation between Morse theory and PL handles theory.
Remark 1.28 (Smooth handle decompositions are also PL handle decomposi-
tions). Suppose a smooth manifold M (with or without boundary) has a smooth
handle decomposition into smooth handles H si . By Theorem 1.5, both handles can
be PL triangulated to obtain a family of PL handles HPLi that are attached along PL
homeomorphisms of their boundary. The manifold resulting from gluing the HPLi is
M , and the resulting triangulation is PL homeomorphic to the standard triangulation
of M obtained from Theorem 1.5.

The converse of Remark 1.8 is more delicate: as we have seen in Section 1.3,
associated to a given PL manifold there might be no smooth structure, or more than
one. However, in low dimensions, the obstruction theories of Munkres [52] and
Hirsch [30] yield the following:
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Proposition 1.29 (Hirsch [30], Munkres [52]). Let M be a PLmanifold of dimen-
sion d  7, with or without boundary, that admits a PL handle decomposition into
ci handles of index i . Then M admits a smooth handle decomposition with ci han-
dles of index i .

Combining this with Remark 1.8, Theorem 1.25 and Proposition 1.26, we ob-
tain:

Theorem 1.30. Let M denote a manifold of dimension d  7 (with or without
boundary). The following are equivalent:

(i) M admits a smooth Morse function with ck critical points of index k;
(ii) M admits a smooth handle decomposition with ck handles of index k;
(iii) M admits a PL handle decomposition with ck handles of index k.

For d > 7, one has (i) , (ii) ) (iii), but the converse of the last implication is
false.

2. Main results

Recall that a smooth d-manifold has Morse vector (c0, c1, . . . , cd) if it admits a
smooth handle decomposition with exactly ci handles of index i . If the manifold is
closed, this is equivalent to admitting aMorse function with exactly ci critical points
of index i . Analogously, a d-dimensional simplicial complex has discrete Morse
vector (c0, c1, . . . , cd) if it admits a discrete Morse function with exactly ci critical
i-cells. Finally, we say that a PL manifold has PL handle vector (c0, c1, . . . , cd) if
it admits a PL handle decomposition with exactly ci handles of index i .

As we explained in the previous section, it is known that

{Morse vectors of M} ⇢ {PL handle vectors of M} ,

with equality if the dimension of M is at most seven. In this section, we prove the
following result:

Theorem 2.1. For any PL d-manifold M , with or without boundary,

�
PL handle vectors of M

 
=

n discrete Morse vectors
on PL triangulations of M

o

⇢

ndiscrete Morse vectors
on triangulations of M

o
,

and the inclusion on the right is not an equality in general.

The proof will be organized as follows. In Section 2.1 we will show that ev-
ery discrete Morse vector on a PL triangulation of M is also a PL handle vector.
In Section 2.3 we will prove the converse, namely, that every PL handle vector is
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also a discrete Morse vector on some PL triangulation. (In fact, we show some-
thing stronger, namely, that any PL triangulation can be used, up to subdividing it
barycentrically a suitable number of times.) Finally, Example 2.36 is a 5-manifold
on which (1, 0, 0, 0, 0, 0) is a discrete Morse vector (on some non-PL triangula-
tion), but not a PL handle vector.

2.1. From PL discrete Morse vectors to PL handles

Recall that a discrete Morse function on a complex C is any map f : C ! Q that
satisfies:
(i) (Monotonicity) If � ⇢ ⌧ , then f (� )  f (⌧ );
(ii) (Semi-injectivity) For each q 2 Q, the cardinality of f �1(q) is at most 2;
(iii) (Genericity) If f (� ) = f (⌧ ), then either � ⇢ ⌧ or ⌧ ⇢ � .
The critical faces of C for f are the faces at which f is injective. Let us denote by
sdmC the m-th iterated barycentric subdivision of a complex C , recursively defined
as sdmC = sd(sdm�1C). Our first goal is to prove the following result:
Theorem 2.2. If a topological manifold has a PL triangulation M on which some
discrete Morse function has ci critical i-faces, then for some r the complex sdr M
has a PL handle decomposition with ci i-handles.

The proof of Theorem 2.2, which reflects joint work with Adiprasito, relies
on three results in PL topology. Two of them are very old and due to Whitehead
(Lemma 2.3 and Theorem 2.1); the other is very recent (Theorem 2.8). Aside from
these tools, the proof is inspired by the 2009 paper by Jers̆e and Mramor-Kosta
[33], which shows how to divide a (PL or non-PL) triangulation into “descending
regions”. These regions may be lower-dimensional, but there is a standard trick
to fix this, namely, one can thicken them by passing to regular neighborhoods, as
we will now explain. If D is a subcomplex of a manifold M , the m-th derived
neighborhood of D in M , usually denoted by Nm(D,M), is the subcomplex of
sdm(M) formed by the cells whose closure intersects |D|. For any m � 2, the
underlying space of Nm(D,M) is called in the literature a regular neighborhood
of D in M . The regular neighborhood of any subcomplex collapses onto it after
appropriate subdivision:
Lemma 2.3 (Whitehead, cf. Glaser [26, Lemmas III.9 and III.10]). Let C be a
subcomplex of a (PL or non-PL) triangulated manifold M . For each m � 2, the
m-th derived neighborhood of C collapses onto sdm(C).

In particular, if we have a discrete Morse function defined on a subcomplex of
some PL manifold, we can lift it to a discrete Morse function defined on a regular
neighborhood of the subcomplex:
Lemma 2.4. Let C be a subcomplex of a PL triangulated manifold M . Suppose C
admits a discrete Morse function with ci critical i-faces. For any n � 0 and m � 2
integers, also the complex sdnNm(C,M) admits a discrete Morse function with ci
critical i-faces.
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Proof. The barycentric subdivision of C also admits a discrete Morse function with
ci critical i-faces; and by induction, so does sdn+mC . By Lemma 2.3, the regular
neighborhood sdnNm(C,M) = Nm(sdnC, sdnM) collapses onto sdn+mC , whence
we conclude.

Collapses are not internal operations with respect to the class of triangulated
manifolds. However, using regular neighborhoods, as explained for example in
Rourke-Sanderson [60], it is possible to introduce a structure that allows us to speak
in the language of manifolds.

Definition 2.5 (cf. Rourke-Sanderson [60, page 40]). Let M be a PL triangulated
d-manifold. Let1 be a d-face of M . Let M 0 be the submanifold of M that contains
all d-faces of M , except 1. If M collapses onto M 0, the reduction from M to M 0

is called elementary shelling. We say that M shells to M 0 if some sequence of
elementary shellings reduces M to M 0.

Remark 2.6. Each elementary shelling maintains the homeomorphism class. So,
if M shells to M 0, then M and M 0 are homeomorphic. In contrast, if a manifold
M collapses onto a manifold M 0, then M and M 0 need not be homeomorphic: This
can be seen by barycentrically subdividing the 5-manifold in Example 2.36 below.
The result is a non-PL 5-manifold that collapses onto a 5-ball, without being home-
omorphic to it.

In the following, a polytopal complex is a finite non-empty collection C of
polytopes in some Rk , such that any two of them intersect at a common face, and
every face of any polytope in C is also an element of C .

Theorem 2.7 (Whitehead, cf. Rourke-Sanderson [60, Theorem 3.26 and Corol-
lary 3.27]. Let C be a subcomplex of a PL triangulated manifold M . Suppose that
C collapses to some subcomplex D. Then a regular neighborhood of C shells to a
regular neighborhood of D. In case D is a single vertex, this regular neighborhood
of C is a PL ball.

Theorem 2.8 (Adiprasito-Benedetti [3, Theorem 5.3]). Let C , D be polytopal
complexes. Suppose that some subdivision C 0 of C shells to some subdivision D0 of
D. Then, for n large enough, sdnC shells to sdnD.

By merging the latter two theorems, we obtain the following consequence:

Corollary 2.9. Let C be a subcomplex of a PL manifold M . Suppose C collapses
to some subcomplex D. Then for n and m large enough, sdnNm(C,M) shells to
sdnNm(D,M).

Next, we recall a well-known fact in PL topology. Given a simplicial complex
C , a subcomplex D of C of is called full if any face � of C whose vertices are all in
D belongs to D as well. For example, for any complex C and for any subcomplex
D of C , the barycentric subdivision sd D is always full in sdC [68, Section 3].
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Lemma 2.10. Let k < d be non-negative integers. Let C be a k-dimensional full
subcomplex of a PL d-manifold M . Let D be the subcomplex of C obtained by re-
moving fromC a k-cell � . Then N2(C,M) is obtained from N2(D,M) by attaching
a k-handle.

We are now ready to prove the main theorem of this section.

Proof of Theorem 2.2. We proceed by induction on the number |c| of critical cells
of the discrete Morse function f on M .

|c| = 1 If M has only one critical face, then this face is a single vertex. By White-
head’s Theorem 2.1, M is a PL ball.

|c| > 1 Let us assume the claim holds for PL manifolds that admit a discrete Morse
function with less than k critical faces. Let M be a PL triangulated mani-
fold with exactly k critical faces. Let ⌧ be the critical face with the highest
value under f , and let t = dim ⌧ be its dimension. Let ⇥ denote the sub-
complex of M of faces with a value lower than f (⌧ ) under f . By Corollary
2.9 and Lemma 2.10, for large n andm, the complex sdnNm(M,M) can be
decomposed into the complex sdnNm(⇥,M) with a PL t-handle attached.
By Lemma 2.4, sdnNm(⇥,M) admits a discrete Morse function with ci
critical cells of dimension i 6= t , and ct � 1 critical cells of dimension t .
By the inductive assumption, sdnNm(⇥,M) admits the desired PL handle
decomposition, and so does M .

Corollary 2.11. Every PL manifold admits a PL handle decomposition (possibly
after some iterated barycentric subdivisions).

Proof. Any simplicial complex admits a discrete Morse function, possibly with
many critical faces. If the complex is a PL triangulation, we can conclude via
Theorem 2.2.

2.2. Intermezzo: Duality for Morse functions

The Betti numbers of any closed manifold2 are palindromic, i.e.,

(�0,�1, . . . ,�d�1,�d) = (�d ,�d�1, . . . ,�1,�0).

This is a consequence of Poincaré duality, a well-known property of closed man-
ifolds. In the language of Morse theory, the property can be stated as follows:
Suppose a smooth, closed manifold M admits a generic smooth function f , with ci
critical points of index i . Then � f is also a generic smooth Morse function on M ,
and it has cd�i critical points of index i . In fact, each index-i critical point of f is
also a critical point for � f , with index d � i .

2 In the present paper, for simplicity, all manifolds are assumed to be orientable. For non-
orientable manifolds, Poincaré duality holds only if one takes homology and cohomology with
coefficients in the integers mod 2. For further details, see Hatcher [29, Sections 3.3 and 3.H].
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Corollary 2.12. Let M be a closed topological manifold.

(1) If (c0, c1, . . . , cd�1, cd) is a Morse vector on M , so is (cd , cd�1, . . . , c1, c0)
(with respect to the same smooth structure).

(2) If (c0, c1, . . . , cd�1, cd) is a PL handle vector on M , so is (cd , cd�1, . . . , c1,c0)
(with respect to the same PL structure).

There is also a version of Poincaré duality for triangulated manifolds, due to For-
man. It involves the notion of dual block complex T ⇤ of a triangulation T , for
which we refer the reader to Munkres’ book [51, page 377]. The “blocks” forming
the complex are PL-homeomorphic to the stars of the faces of T , so they might not
be homeomorphic to balls if T is not PL. However, if T is PL, then the dual blocks
are balls, and T ⇤ is a regular CW-complex. In particular, the barycentric subdivi-
sion of T ⇤ is a simplicial complex, combinatorially equivalent to the barycentric
subdivision of T .

Proposition 2.13 (Forman). If a triangulated, closed manifold M (not necessarily
PL) admits a discrete Morse function f with ci critical i-faces, then the dual block
complex M⇤ admits some discrete Morse function with cd�i critical i-faces. (For
example, take on M⇤ the function

� ⇤

7�! � f (� ),

that assigns the value � f (� ) to the dual block of each face � . With slight abuse of
notation, this function is usually denoted by � f .)

Corollary 2.14. Let M be a closed PL manifold. If (c0, c1, . . . , cd�1, cd) is a dis-
crete Morse vector on some PL triangulation of M , then so is (cd , cd�1, . . . , c1, c0).

Proof. By Proposition 2.13, (cd , cd�1, . . . , c1, c0) is a discrete Morse vector on
M⇤, and thus also on sdM⇤

= sdM , which is also PL.

Corollary 2.12, Proposition 2.13 and Corollary 2.14 do not extend to manifolds
with boundary. For example, (1, 0, . . . , 0) is the handle vector of the d-ball, but
read from right to left this is not a valid handle vector, because it starts with a 0. To
extend the idea of duality to manifolds with boundary, one usually uses the notion
of (smooth or PL) handle decomposition of a cobordism: For details, see Rourke-
Sanderson [60] or Sharko [62].

In discrete Morse theory, there is a rather direct way to extend duality to mani-
folds with boundary. This was introduced by the author in [8], to which we refer for
the definition of dual block complex M⇤ in case @M 6= ;. (Caveat: if the boundary
is non-empty, (M⇤)⇤ does not coincide with M , but it is basically a collar of M .)
Definition 2.15 (Boundary-critical, interior Morse vector). A discrete Morse
function on a manifold with (possibly empty) boundary is called boundary-critical
if all the boundary faces are critical. A boundary-critical discrete Morse function f
has interior Morse vector (c0, c1, . . . , cd�1, cd), if f has exactly ci critical faces in
the interior of the manifold.



354 BRUNO BENEDETTI

Proposition 2.16 (Benedetti [8]). If a PL triangulated manifold M admits a dis-
crete Morse function f with ci critical i-faces and no critical boundary faces, then
the dual block complex M⇤ admits a boundary-critical discrete Morse function with
cd�i critical interior i-faces. Conversely, if M admits a boundary-critical discrete
Morse function f , with ci critical interior i-faces, then M⇤ admits a discrete Morse
function with cd�i critical i-faces.

Definition 2.17 (Endocollapsible). Let M be a triangulated d-manifold with non-
empty boundary. M is called endocollapsible if M minus a facet collapses onto the
boundary of M .

It is easy to see that all shellable balls are endocollapsible; the converse is false,
cf. [8].

Corollary 2.18. If (c0, c1, . . . , cd�1, cd) is a discrete Morse vector (respectively
an interior discrete Morse vector) on some PL triangulated manifold M , then
(cd , cd�1, . . . , c1, c0) is an interior discrete Morse vector (respectively a discrete
Morse vector) on some other PL triangulation. One can prescribe the latter trian-
gulation to be an iterated barycentric subdivision of M .

Proof. Here we no longer have that sdM⇤
= sdM , so we cannot conclude as in

Corollary 2.14. However, since M is PL, all face stars in M are PL balls. So, for
suitably large r , all face stars in M 0

= sdr M are shellable balls [3]. In particular, all
face stars in M 0 are collapsible and endocollapsible. The conclusion follows then
on sdM 0

= sdr+1M by [8, Theorem 3.20].

Finally, we mention that all shellable manifolds with non-empty boundary are
homeomorphic to balls. This is still true with the weaker endocollapsibility assump-
tion:

Theorem 2.19 (Ball theorem [8]). If a manifold with non-empty boundary admits
an endocollapsible triangulation, then it is homeomorphic to a ball.

Corollary 2.20 (Whitehead). If a manifold admits a collapsible PL triangulation,
then it is homeomorphic to a ball.

Proof. The claim follows at once from Whitehead’s regular neighborhood theory
(Theorem 2.1). Here is an alternative proof: Some subdivision of M is endocol-
lapsible by Corollary 2.18. Via Theorem 2.19 we conclude. See also Remark
2.39.

Remark 2.21. It is easy to extend the definition of “endocollapsible” from simpli-
cial complexes to polytopal complexes, and even to complexes formed by homotopy
cells or homology cells (like the aforementioned “dual block complex” of a trian-
gulation). This way, one could extend Corollary 2.18 to non-PL triangulations of
manifolds, and prove for example that if M is collapsible (but not PL), then M⇤ is
an endocollapsible homotopy-cell complex (but not a cell complex). However, we
stress that in this broader generality Theorem 2.19 is no longer true. We will see in
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Remark 2.39 that some collapsible triangulated manifold M is not homeomorphic
to a ball; so the dual block complex M⇤ is “endocollapsible” in the above sense, but
not homeomorphic to a ball.

In contrast, Theorem 2.19 does extend to the generality of polytopal or regular
cell complexes. The proof is elementary: a single barycentric subdivision preserves
both homeomorphism type and endocollapsibility, yet transforms every regular cell
complex into a simplicial complex (to which we can apply Theorem 2.19.)

2.3. From PL handles to discrete Morse vectors

Here we show that every PL handle vector is a discrete Morse vector on some iter-
ated barycentric subdivision (Theorem 2.28). This reviews and improve the work
by Gallais [25] (cf. Remark 2.29 below). Our proof relies on the following Lemma:

Lemma 2.22 (Adiprasito-Benedetti [3]). For any PL triangulation B of a ball,
there is an integer r such that sdr B is shellable.

Given a PL handle decomposition of an arbitrary PL manifold M , up to sub-
dividing M barycentrically suitably many times, by Lemma 2.22 we can assume
that all handles are shellable. We will now explain how to derive from this a global
discrete Morse function. For this we need a few lemmas.

Definition 2.23 (Perfect Morse function). A discrete Morse function f on a com-
plex C is called perfect if the Morse vector of f coincides with the Betti vector of
C (that is, if f has exactly �i (C) critical i-faces). Similarly, a boundary-critical
discrete Morse function f on a manifold with boundary M is called perfect if the
interior Morse vector of f is the mirror image of the Betti vector of M (that is, if f
has exactly �i (M) critical interior (d � i)-faces, where d = dimM).

For example, if B is a triangulation of a ball (not necessarily PL), B admits
a perfect discrete Morse function if and only if B is collapsible; and B admits a
perfect boundary-critical discreteMorse function if and only if B is endocollapsible.

Definition 2.24. Let C1 and C2 be disjoint complexes. Let gi (i = 1, 2) be a
discrete Morse function onCi . Up to replacing g2 with itself minus a large constant,
we can assume that the maximum value of g2 on C2 is smaller than the minimum
value of g1 on C1. The disjoint union f = g1 t g2 is the function f : C1 tC2 ! R
defined by

f (� ) =

⇢
g1(� ) if � is in C1
g2(� ) if � is in C2.

Lemma 2.25. The function g1 t g2 is a discrete Morse function. Its critical i-faces
are precisely the critical i-faces of g1 plus the critical i-faces of g2. In particular, if
the Ci ’s are (pseudo)manifolds and both gi ’s are boundary-critical, so is g1 t g2.

From now on, by I we denote the unit interval [0, 1] in R.
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Lemma 2.26. Let M be a PL triangulation of a d-manifold with boundary.
Suppose M = B1 [ B2, where:

(i) B1 and B2 are shellable (or endocollapsible) d-balls,
(ii) B1 \ B2 is a (d � 1)-dimensional subcomplex of @B1 and of @B2, and
(iii) B1 \ B2 is homeomorphic to S j�1 ⇥ Id� j , for some j 2 {1, . . . , d}.

Then any boundary-critical discrete Morse function h on B1\B2 lifts to a boundary-
critical discrete Morse function u on B1 [ B2, with the critical interior cells of u
being exactly those of h, minus a (d � 1)-face, plus a d-face.

Proof. Let � be any (d � 1)-face of B1 \ B2. Let 61,62 be the two d-faces of
M containing � ; clearly one of them belongs to B1 and the other to B2. Up to
relabeling them, we can assume 6i 2 Bi . Since B1 is endocollapsible, B1 � 61
collapses onto @B1. Since all free faces removed in such a collapse are internal,
the gluing of B2 onto a portion of @B1 does not destroy the freeness of any face.
Therefore,

B1 [ B2 � 61 collapses onto @B1 [ B2. (2.1)

Inside @B1 [ B2 there is now only one d-face left that contains � , namely, 62.
Hence

@B1 [ B2 collapses onto @B1 [ B2 � 62 � �. (2.2)

Since B2 is endocollapsible, B2�62 collapses onto @B2. Equivalently, B2�62��
collapses onto @B2 � � . This implies that

@B1 [ B2 � 62 � � collapses onto @B1 [ @B2 � �. (2.3)

LetC := @B1[@B2. Using h, we can reduceC�� further. In fact, C can be viewed
as the result of attaching (B1\ B2) onto @(B1[ B2) along its boundary @(B1\ B2).
Since h is boundary-critical, it reduces B1\ B2�� via collapses and deletions onto
@(B1 \ B2). The attachment of @(B1 [ B2) does not affect the freeness of any face
in such reduction; therefore, the same sequence of collapses and deletions reduces
C � � onto @(B1 \ B2) [ @(B1 [ B2), which is simply @(B1 [ B2), or in other
words, @M .

In conclusion, by Equations 2.1, 2.2, and 2.3 the complex M � 61 collapses
onto C�� ; using the function h we have reduced C�� further to @M . This yields
a boundary-critical discrete Morse function u on M . The critical interior cells of h
and u are by construction the same, with two exceptions: 61 is a critical face of u,
but not of h, because it does not belong to the intersection B1 \ B2; � is a critical
face of h, but not of u, because u(� ) = u(62).

Lemma 2.27. Let M be a PL triangulation of a d-manifold with boundary. Sup-
pose M = M 0

[ B, where:

(i) M 0 is a PL triangulation of a d-manifold with boundary and B is an endocol-
lapsible d-ball;
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(ii) M 0 admits a perfect boundary-critical discrete Morse function g;
(iii) M 0

\ B is a (d � 1)-dimensional subcomplex of @M 0 and of @B;

(iv) M 0
\ B is homeomorphic to S j�1 ⇥ Id� j , for some j 2 {1, . . . , d}.

Then any boundary-critical discrete Morse function h on M 0
\B lifts to a boundary-

critical discrete Morse function u on M 0
[ B, with the critical interior cells of u

being exactly those of h, minus a (d � 1)-face, plus all the critical interior cells
of g.

Proof. The case where M 0 is a ball has already been treated in Lemma 2.26. If M 0

is not a ball, we proceed analogously to the proof of Lemma 2.26, but instead of
starting with a collapse of M 0

� 1 onto @M 0, we use the boundary-critical function
g on M 0. For the rest, the proof is the same; in the last step, when we determine
the number of critical cells of u, we have to include in the count the critical cells
of g.

Theorem 2.28. Let d be a positive integer. Let M be any PL triangulation of any
d-manifold with boundary. Assume M has a PL handle decomposition into ci PL
handles of index i . For r large enough, one can define on sdr M

(1) a discrete Morse function with ci critical i-faces, and
(2) a boundary-critical discrete Morse function with cd�i critical interior i-faces.

Proof. By Corollary 2.16, it suffices to prove the second claim. We proceed by
double induction on the total number of handles and on the dimension of M . If M
is 1-dimensional, then M is either a path or a cycle, and the claim is obvious. If
M has a handle decomposition into one handle only, then M is a PL d-ball, and by
Lemma 2.22 there is an r such that sdr M is shellable. In particular, sdr M is endo-
collapsible (or equivalently, it admits a boundary-critical discrete Morse function
with one critical interior d-face).

So, assume that d � 2 and that M has a handle decomposition into
P
ci

handles, with
P
ci � 2. Let B be the last handle in a handle decomposition of

M , and let j be the index of B. Since M is connected, we can assume c0 = 1 and
j � 1. Let c0 be the vector defined by c0i + �i, j = ci for all i , where �i, j is the
Kronecker delta. (In other words, c0 = c� e j .) Then M decomposes as

M = M 0

[ B,

where M 0 is a d-manifold with a handle decomposition into c0i handles of index i .
We are going to apply the inductive assumption to the twomanifolds M 0 and M 0

\B:
in fact, M 0

\ B has smaller dimension than M , and M 0 decomposes into fewer
handles than M .

If j = 1, then M 0
\B is a disjoint union of two (d�1)-balls, and there is s such

that the s-th barycentric subdivision of both balls is endocollapsible. Via Lemma
2.25, this yields a boundary-critical discrete Morse function on sds(M 0

\ B) with
two critical interior (d�1)-faces. If instead j > 1, then M 0

\B is a PL triangulation
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of S j�1 ⇥ Id� j . As topological space, S j�1 ⇥ Id� j admits a topological handle
decomposition into one 0-handle and one ( j � 1)-handle. Up to subdividing it
barycentrically k times, we can assume that M 0

\ B has a PL handle decomposition
with ai handles of index i , where a0 = 1, a1 = . . . = a j�2 = 0, and a j�1 = 1.
Since M 0

\B is (d�1)-dimensional, by the inductive assumption there is an integer
s such that sds(M 0

\ B) has a boundary-critical discrete Morse function f with
a(d�1)�i critical interior i-faces. Putting the two cases together, for any j � 1 the
triangulation sds(M 0

\ B) admits a boundary-critical discrete Morse function with
one critical interior (d � 1)-face, one critical interior (d � j)-face, and no other
critical interior face. As for M 0, by the inductive assumption we can find an integer
r 0 and a boundary-critical discrete Morse function g on sdr 0M 0 with exactly c0d�i
critical interior i-faces. Moreover, by Lemma 2.22 there is an integer t such that
sdt B is shellable.

We are now in the position of applying Lemma 2.27. Set r := max(r 0, s+k, t).
Let us subdivide M barycentrically r times. Then

sdr M = sdr M 0

[ sdr B,

where sdr B is shellable, sdr M 0 admits a perfect boundary-critical discrete Morse
function g, and the intersection sdr M 0

\ sdr B = sdr (M 0
\ B) admits a perfect

boundary-critical discrete Morse function h. By Lemma 2.27, there is a boundary-
critical discrete Morse function u on sdr M , whose critical interior cells are exactly
those of h (namely, one (d � 1)-face and one (d � j)-face), minus one (d � 1)-
face, plus all of the critical interior i-cells of g (which are c0d�i ). It follows that u has
exactly c0d�i +�i, j critical interior faces of dimension i . But c0d�i +�i, j = cd�i .

Remark 2.29. As we mentioned in the introduction, Gallais proved in [25] that
every Morse vector is also a discrete Morse vector on some PL triangulation. The
proof in [25] has a gap, due to the fact that it is unknown whether any simplicial
subdivision X0 of the simplex is collapsible [36, Problem 4.18]. (Specifically, it is
not clear whether the triangulation X constructed in [25, page 240], which is a cone
over the CW complex X0 [ 1d [ (I ⇥ @1d), collapses down to its bottom X0 as
claimed, or not.)

The collapsibility of arbitrary subdivisions of the simplex (and more gener-
ally, of any convex polytope) is an old conjecture in PL topology, dating back to
Hudson [32, Section 2, page 44]. There has been however recent progress on this:
Adiprasito and the author have shown that if X0 is an arbitrary subdivision of the d-
simplex, the barycentric subdivision sdX0 is always collapsible [2, Main Theorem
VI]. This allows to repair Gallais’ proof, essentially by subdividing barycentrically
the triangulation he considered.

Caveat: many barycentric subdivisions might be required

The previous method suggests that, for every PL triangulation M , there exists an
integer r = r(M) such that sdr M admits perfect discrete Morse functions. This
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is true for spheres, but not for arbitrary manifolds: many manifolds cannot admit
perfect (smooth or discrete) Morse functions, for example if they have torsion in
homology. (See also Corollary 2.35 below.) Moreover, even for spheres, there is
no universal integer r such that, for every PL triangulation M , sdr M admits perfect
discrete Morse function.

Proposition 2.30 (Lickorish [41], cf. also Benedetti-Ziegler [10]). For each inte-
ger r � 0 and for every integer d � 3, there is a PL d-sphere S such that sdr S minus
any facet is not collapsible.

In fact, one can even show that for every positive integers r , s and d, with
d � 3, there is a PL d-sphere S such that sdr S does not admit any discrete Morse
function with fewer that s critical (d � 1)-faces [8].

In particular,Theorem 2.28 is not algorithmically efficient, as one cannot bound
how large r can be. This is consistent with Novikov’s famous result that for each
d � 5, there cannot be an algorithm deciding whether a given simplicial complex
is a d-sphere or not. (Clearly, given a d-manifold S and an integer k, there is an
algorithm to decide if sdk S admits (1, 0, . . . , 0, 1) as discrete Morse vector: we
could just try all possible Morse matchings. If it does admit it, then by Forman’s
sphere theorem sdk S is homeomorphic to the sphere, and so is S.) Using this one
can prove the following: for each d � 5, there is no computable function fd :

N ! N such that, for every PL d-sphere S with N facets, the fd(N )-th barycentric
subdivision of S admits a perfect discrete Morse vector.

2.4. An application to 3-manifolds

A handlebody is a thickened graph in R3. A genus-g Heegaard splitting of a 3-
manifold M is a decomposition of M into two handlebodies, glued together at a
genus-g surface Sg. The Heegaard genus of a 3-manifold is the smallest g for
which the manifold has a genus-g Heegaard splitting.
Example 2.31. The solid torus is the result of thickening a cycle; hence it is a
handlebody. The complement of a solid torus inside the 3-sphere is also a solid
torus. So, the 3-sphere has a genus-1 Heegaard splitting. It has also a genus-0
splitting: The complement of a ball inside the 3-sphere, is a ball. So the Heegaard
genus of the sphere is zero.

Heegaard splittings were introduced around 1900 by Heegaard, and later ab-
sorbed into the more general language of handle decompositions. In fact, every
genus-g handlebody can be viewed as the result of attaching exactly g handles of
index 1 to a handle of index 0. On the other hand, given a handle decomposition
of a closed 3-manifold with 1 handle of index 0, g handles of index 1, g handles
of index 2, and 1 handle of index 3, this can be viewed as a Heegaard splitting:
the i-handles with i  1 form the first handlebody, the i-handle with i � 2 form
the second “dual” handlebody. One can easily see that the two handlebodies are
homeomorphic.
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Theorem 2.32. For a closed connected 3-manifold, the following are equivalent:

(i) M admits a genus-g Heegaard splitting;
(ii) M admits a handle decomposition with ci handles of index i , where (c0, c1,

c2, c3) = (1, g, g, 1);
(iii) M admits a Morse function with ci critical points of index i , where (c0, c1,

c2, c3) = (1, g, g, 1);
(iv) Some triangulation of M admits a discrete Morse function with ci critical i-

faces, where (c0, c1, c2, c3) = (1, g, g, 1).

Proof. For (i), (ii) see above; for (ii), (iii) see Section 1.7. The new part is the
equivalence of (ii) and (iv), which is given by Theorems 2.2 and 2.28, and the fact
that all triangulations of 3-manifolds are PL.

Corollary 2.33. The Heegaard genus g(M) of a closed 3-manifold M is the small-
est g such that some triangulation of the manifold admits a discrete Morse function
with discrete Morse vector c = (1, g, g, 1).

This result has two consequences in discrete Morse theory. The first one is
of algorithmic nature: Li’s recent algorithm to compute the Heegaard genus of a
manifold [39] yields an algorithm to determine the best discrete Morse vector over
all possible triangulations. The other way around, the heuristic by the author and
Lutz to quickly compute some random discrete Morse vectors [9] yields a heuristic
to obtain some Heegaard splittings quickly, albeit with no guarantee of minimality.

The second consequence of Corollary 2.33 is of topological nature. The work
by Boileau, Zieschang, Schultens, Weidmann and Li has revealed topological ob-
structions for the existence of Heegaard splittings of low genus. Recall that rank(M)
is the minimal number of elements needed to generate ⇡1(M). It is easy to see that
rank(M)  g(M). In the Sixties, Waldhausen conjectured that equality would hold
for all 3-manifolds. The conjecture was later disproved:

Theorem 2.34 [Boileau-Zieschang [12], Schultens-Weidmann [61], Li [40]].
There are Seifert fibered spaces, graph manifolds, and hyperbolic 3-manifolds with
rank strictly smaller than the Heegaard genus. In fact, the distance between rank
and genus can be arbitrarily high.

Corollary 2.35. For every g > 0, there is a 3-manifold M such that any discrete
Morse function on any triangulation of M has more than g+rank(M) critical edges.

On these manifolds, no matter how much we subdivide the triangulation, no
discrete Morse function will be sharp in reading off the homotopy.

2.5. Non-PL discrete Morse vectors

Say that a topological manifold has both PL and non-PL triangulations. Suppose
we want to find the smallest discrete Morse vector, namely, a triangulation with
a discrete Morse function with the fewest possible number of critical cells. It is
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not clear whether we should look among PL triangulations, rather than among non-
PL ones. Perhaps a simple observation to keep in mind is that cones are always
collapsible; hence cones over non-PL balls yield examples of collapsible, non-PL
triangulations. This indicates that non-PL objects might be “competitive” with PL
ones, when it comes to having perfect discrete Morse functions.

The following 5-dimensional example illustrates a more bizarre possibility.

Example 2.36. Adiprasito, Lutz and the author recently constructed a collapsible
non-PL triangulation of some smooth contractible 5-manifold [4]. This manifold
is not homeomorphic to a ball, because the fundamental group of its boundary is
the binary icosahedral group. Since the manifold is smooth, it admits PL triangu-
lations by Theorem 1.5, but none of these PL triangulations is collapsible. In fact,
by Whitehead’s theorem (Corollary 2.20), all PL collapsible manifolds are homeo-
morphic to balls.

Hence in the quest for an optimal discrete Morse function, in some cases it
is better to look among non-PL triangulations. We proceed now to construct the
first examples of a non-PL triangulation of the 5-sphere that admits a perfect dis-
crete Morse function. The idea for the following construction comes from Karim
Adiprasito.

Proposition 2.37. For every d � 5, there exists a non-PL triangulation B of the
d-ball such that B is collapsible and @B is even shellable. In particular, B is not
PL, but its boundary is.

Proof. Let M be a PL triangulation of a contractible (d � 1)-manifold, such that
M is not homeomorphic to a ball and the double of M is PL homeomorphic to the
standard sphere. Such examples exist: for example, for d � 1 = 4, one can take as
M an arbitrary triangulation of the Mazur manifold. (For d � 1 6= 4, the double of
every contractible PL (d � 1)-manifold is automatically a sphere by Theorem 1.3.)

Let H = @M be the boundary of M . This H is a simplicial PL homology
d-sphere. Since M is not a ball, by Corollary 1.2 H is not simply connected. Let
p be a point not in M , and let C0 denote the manifold obtained by gluing the cone
p ⇤ H to M along their common boundary H . C0 is not a manifold, but it is a
homology-manifold, and has the same homology as a d-sphere. Furthermore C0 is
simply connected, since H is connected. Consider the complex C1, obtained as the
suspension 6C0 of C0. Clearly, C1 is a homology manifold. Let us examine the
links of the vertices of C1. There are three cases to consider:

(a) If v lies in M , then Link (v,C0) is a sphere, hence Link (v,C1)=6Link (v,C0)
is a sphere as well. In particular, Link (v,C1) is simply connected;

(b) If v = p (the apex of the cone), Link (v,C1) is the suspension of Link (v,C0),
which is equivalent to H and hence connected. By Seifert-Van Kampen,
Link (v,C1) is simply connected (although it is not a sphere);

(c) If v is one of the apices of the suspension 6C0, then Link (v,C1) = C0. In
particular, although it is not a manifold, it is simply connected.
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Hence in all cases Link (v,C1) is simply connected. By the Edwards-Cannon cri-
terion (Theorem 1.12), C1 is a manifold. It is not PL, though. In fact, if a and b are
the apices of the suspension 6C0, then the PL-singular set S of C1 consists of the
vertices a, b and p, and of the edges connecting a to p and b to p.

Let us consider the submanifold B of sd2C1 obtained as the union of all faces
of sd2C1 intersecting sd2S. Then B collapses to S (cf. [26, Lemma III.9 and III.10]),
and since S is a tree, and in particular collapsible, so is B. Furthermore, the bound-
ary of B is PL homeomorphic to the double of the contractible manifold M , which
is a PL sphere by assumption. Indeed, @B is PL homeomorphic to the gluing of
Link (a,C1) � p ⇠

= M and Link (b,C1) � p ⇠
= M along their common boundary

Link (p,C1)� {a}� {b} ⇠
= H . In particular, by Corollary 1.2, B is a ball. However,

B is not a PL ball, since its PL singular set is nonempty. In conclusion, B is a col-
lapsible, non-PL ball, whose boundary is a PL sphere. By Lemma 2.22, every PL
sphere becomes shellable after sufficiently many iterated barycentric subdivisions.
So, up to replacing B with sdr B (for a suitably large r), we can also assume that
@B is shellable.

Corollary 2.38. For each d � 5, some non-PL d-spheres admit perfect discrete
Morse functions.

Proof. Consider the non-PL collapsible d-ball B with PL shellable boundary con-
structed in Proposition 2.37. Let y be a vertex not in B, and let

S = @(y ⇤ B) = B [ (y ⇤ @B).

Since @B is shellable, so is the ball B0
= (y ⇤ @B). Let10 be any facet of B0. Since

B0 is shellable, B0 is also endocollapsible, so B0
�10 collapses onto @B = @B0. The

same collapsing sequence shows that S�10 collapses onto B. But B is collapsible;
so S � 10 is collapsible.

Remark 2.39. If C is a collapsible complex, then sdC collapses to a facet of sdC .
Thus, we can modify the construction of Corollary 2.38 to obtain a non-PL 5-sphere
S such that S�10 collapses onto another facet100. Let A be the 5-ball S�100. Then,
with the same collapsing sequence, A� 10 collapses onto @100

= @A. So A yields
an example of an endocollapsible ball that is not PL. This proves that Theorem 2.19
(“every endocollapsible manifold is a ball”) is more general thanWhitehead’s result
(Corollary 2.20) that “every collapsible PL manifold is a ball”.

2.6. LC triangulations and geometric connectivity

In this section we apply our previous results to show that every simply connected
smooth d-manifold, with d 6= 4, admits LC triangulations; in contrast, no triangu-
lation of Mazur’s simply connected 4-manifold is LC.

By a tree of d-simpliceswemean a triangulation of a d-ball whose dual graph is
a tree. Locally constructible (shortly, LC) triangulations are those obtainable from
some tree of d-simplices, with d � 2, by repeatedly identifying two adjacent (d �
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1)-simplices in the boundary [10]. LC triangulations were introduced by Durhuus-
Jonsson [18], who proved the following result:

Theorem 2.40 (Durhuus-Jonsson [18]). Every 3-manifold admitting LC triangu-
lations is homeomorphic to the 3-sphere. In higher dimensions, every manifold
admitting LC triangulations is simply connected.

Durhuus and Jonsson conjectured that every triangulation of the 3-sphere is
LC. They also wondered if perhaps every triangulation of every simply connected
manifold is LC. As they noticed, a positive solution of both conjectures would have
immediately implied (via Theorem 2.40) the 3-dimensional Poincaré conjecture,
at the time still open. Perelman’s work sparkled some optimism for Durhuus-
Jonsson’s conjectures but as it later turned out, not all triangulations of the 3-sphere
are LC.

Theorem 2.41 (Benedetti-Ziegler [10]). Let d � 2 be an integer. Let S be an
arbitrary triangulation of the d-sphere. S is LC if and only if S admits a discrete
Morse function without critical (d� 1)-faces. In particular, one can construct non-
LC triangulations of the d-sphere for each d � 3.

This was later extended in [8] to manifolds with boundary, as follows. Let M
be an arbitrary triangulated manifold with boundary. The collapse depth cdepthM
of M is the maximal integer k for which there exists a boundary-critical discrete
Morse function on M with one critical d-cell and no critical interior (d � i)-cells,
for each i 2 {1, . . . , k � 1}. Obviously 1  cdepthM  dimM . We stress that the
collapse depth is not a topological invariant: it depends on the chosen triangulation.

Theorem 2.42 ([8]). Let M be a triangulation of a manifold with boundary. M is
LC if and only if cdepthM � 2.

Theorem 2.41 was part of the author’s PhD thesis. During the doctoral defense,
Živaljević made the following insightful conjecture:
Conjecture 2.43 (Živaljevic̀). Every simply connected smooth d-manifold admits
some LC triangulations.

To tackle the conjecture, let us recall a classical result in PL topology. Given
an integer p in {1, . . . , d}, a geometrically p-connected manifold is a manifold
that admits a PL handle decomposition with one 0-handle and no further handles
of index  p [65]. It is easy to see that geometrically p-connected implies p-
connected. In the Sixties, Wall discovered a surprising converse implication:

Theorem 2.44 (Wall [65]). Let M be a p-connected PL d-manifold, with or with-
out boundary. If p  d � 4, then M is also geometrically p-connected.

The bound p  d � 4 is best possible: In fact, Mazur described a contractible
4-manifold different than the 4-ball [44], and Casson later proved that every PL han-
dle decomposition of Mazur’s manifold must contain 1-handles, cf. [36, Problem
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4.18]. Hence Mazur’s 4-manifold is 1-connected but not geometrically. However,
every (d � 3)-connected d-manifold becomes geometrically (d � 3)-connected af-
ter sufficiently many “stabilizations”, cf. Quinn [55, Theorem 1.2]. Our next result
shows that geometric connectivity and collapse depth (of a suitable subdivision) are
essentially the same invariant, up to a shift of one:

Proposition 2.45. Let M be any PL triangulation of a given manifold.

(1) If M is geometrically p-connected, for r large enough cdepth sdr M � p + 1.
(2) If cdepthM � p + 1, then M is geometrically p-connected.

Proof.

(1) By definition, M has a PL handle vector of the form (1, 0, . . . , 0,cp+1, . . . ,cd).
By Theorem 2.28, some iterated barycentric subdivision of M admits (1, 0, . . .,
0, cp+1, . . . , cd) as discrete Morse vector. By Corollary 2.18, (cd , . . . , cp+1,
0, . . . , 0, 1) is an interior discrete Morse vector on some iterated barycentric
subdivision M 0 of M . Hence the collapse depth of M 0 is at least p + 1.

(2) If cdepthM � p + 1, we can find on M a boundary-critical discrete Morse
function with one critical d-cell and no critical interior (d � i)-cells, for each
i 2 {1, . . . , p}. By Corollary 2.18, for some r the subdivision sdr M admits a
discrete Morse function without critical i-faces, for 1  i  p. By Theorem
2.2, M is geometrically p-connected.

Theorem 2.46. Let d � 2. Every PL triangulation of every simply connected PL
d-manifold, d 6= 4, becomes LC after subdividing it barycentrically suitably many
times. In contrast, the Mazur 4-manifold admits no LC triangulation.

Proof.

– For d = 2 the claim is trivial, since every triangulated 2-ball or 2-sphere is
shellable, and in particular PL, endocollapsible, and LC.

– For d = 3, let M be a simply connected 3-manifold. If @M = ;, by Perelman’s
solution of the Poincaré conjecture M is a 3-sphere. By a result of Adiprasito
and the author, for any PL triangulation of the 3-sphere there exists an integer
r such that sdr S is shellable [3], hence LC. If @M 6= ;, let b be the number
of connected components of its boundary. Each of these connected components
is a simply connected closed 2-manifold, that is, a 2-sphere. Via the Poincaré
conjecture, we conclude that M is topologically a “piece of Swiss cheese with
b � 1 holes” (that is, the result of removing b disjoint 3-balls from a 3-sphere).
We proceed by induction on b. If b = 1, then M is a PL 3-ball, thus it has a
shellable subdivision by Adiprasito-Benedetti [3] and we are done. If b � 2,
up to replacing the triangulation with an iterated barycentric subdivision of it,
we can find an embedded annulus A inside M around one of the holes such that
M splits as B [ M1, where B is a 3-ball, B \ M1 = A, and M1 is a “piece
of Swiss cheese with b � 2 holes”. By the inductive assumption, up to taking
further barycentric subdivisions we can assume that the triangulation of M1 is
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LC and that of B is shellable (so in particular LC). Moreover, any triangulation
of A has connected dual graph. Using [10, Lemma 2.23], we conclude that the
resulting subdivision of M is LC.

– For d = 4, Mazur’s manifold is not geometrically 1-connected, and any trian-
gulation of it (being 4-dimensional) is PL. By Proposition 2.45 (2), any trian-
gulation of Mazur’s manifold has collapse depth  1, hence it cannot be LC by
Theorem 2.42.

– Finally, if d � 5 every simply connected d-manifold is 1-connected by Theorem
2.44. By Proposition 2.45, (1), for any PL triangulation M we can find an integer
r such that

cdepth sdr M � 2.

Via Theorem 2.42, we conclude that sdr M is LC.

Živaljević ’s conjecture remains open for closed 4-manifolds: are there simply con-
nected closed smooth 4-manifolds that do not admit LC triangulations? Via The-
orem 2.42 and Proposition 2.45, this question is equivalent to the following, long-
standing open problem:
Problem 2.47 (cf. Kirby [36, Problem 4.18]). Is every simply-connected closed
manifold also geometrically 1-connected?

As a remark, we mention that for simply connected smooth manifolds of higher
dimension, much more on the Morse vector is known:

Theorem 2.48 (Sharko[62, pages 27–28]). Every contractible smooth d-manifold
M , with d � 6, admits a handle decomposition with exactly one 0-handle, m han-
dles of index d�3 and m handles of index d�2, where m is the minimal number of
generators of the relative homotopy group ⇡2(M, @M). (When M is a ball, m = 0.)

This of course can be translated in a statement on the discrete Morse vector
via Theorem 2.1. Understanding (optimal) smooth/discrete Morse vectors for man-
ifolds that are not simply connected, instead, seems to be a much more difficult
problem. For a survey of what has been achieved so far, we refer the reader to
Sharko [62, Chapter 7].
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