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Lorentzian area measures and the Christoffel problem

FRANÇOIS FILLASTRE AND GIONA VERONELLI

Abstract. We introduce a particular class of unbounded closed convex sets of
Rd+1, called F-convex sets (F stands for future). To define them, we use the
Minkowski bilinear form of signature (+, . . . ,+,�) instead of the usual scalar
product, and we ask the Gauss map to be a surjection onto the hyperbolic space
Hd . Important examples are embeddings of the universal cover of some globally
hyperbolic maximal flat Lorentzian manifolds.

Basic tools are first derived, similarly to the classical study of convex bodies.
For example, F-convex sets are determined by their support function, which is
defined onHd . Then the area measures of order i , with 0  i  d are defined. As
in the convex bodies case, they are the coefficients of the polynomial in " which
is the volume of an "-approximation of the convex set. Here the area measures
are defined with respect to the Lorentzian structure.

Then we focus on the area measure of order one. Finding necessary and
sufficient conditions for a measure (here on Hd ) to be the first area measure of
an F-convex set is the Christoffel Problem. We derive many results about this
problem. If we restrict to F-convex set setwise invariant under linear isometries
acting cocompactly on Hd , then the problem is totally solved, analogously to
the case of convex bodies. In this case the measure can be given on a compact
hyperbolic manifold.

Particular attention is given on the smooth and polyhedral cases. In these
cases, the Christoffel problem is equivalent to prescribing the mean radius of
curvature and the edge lengths, respectively.
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(secondary).
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1. Introduction

1.1. Area measures and the Christoffel problem for convex bodies

Let K be a convex body in Rd+1 and ! be a Borel set of the sphere Sd , seen as
the set of unit vectors of Rd+1. Let B"(K ,!) be the set of points p which are
at distance at most " from their metric projection p onto K and such that p � p
is collinear to a vector belonging to !. It was proved in [25] that the volume of
B"(K ,!) is a polynomial with respect to ":

V (B"(K ,!)) =

1
d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
Si (K ,!). (1.1)

Each Si (K , ·) is a finite positive measure on the Borel sets of the sphere, called the
area measure of order i . S0(K , ·) is only the Lebesgue measure of the sphere Sd ,
and Sd(K ,!) is the d-dimensional Hausdorff measure of the pre-image of ! for
the Gauss map. The problem of prescribing the dth area measure is the (general-
ized) Minkowski problem, and the one of prescribing the first area measure is the
(generalized) Christoffel problem (each problem having a smooth and polyhedral
specialized version).

There are other ways of introducing the area measures [56]. If K" := K + "B,
with B the unit closed ball, we have

Sd(K",!) =

dX
i=0

"d�i
✓
d
i

◆
Si (K ,!). (1.2)

We can also use the mixed-volume V (·, . . . , ·). Let hK be the support function of K

hK (x) = sup
k2K

hx, ki

where h·, ·i is the usual scalar product and x 2 Sd . The set of support functions of
convex bodies in Rd is a convex cone that spans a linear subspace of the space of
continuous functions on Sd . Identifying a convex body with its support function, the
mixed-volume is the unique symmetric (d + 1)-linear form on the space of convex
bodies of Rd+1 with V (K , . . . , K ) = V (K ), if V is the volume. It is continuous
and hence, fixing convex bodies K1, . . . , Kd , the volume V (K , K1, . . . , Kd), seen
as a function of hK , is an additive functional on a subset of the space of continuous
functions on the sphere Sd . It can be extended to the whole space, and by the
Riesz representation theorem, there exists a unique measure S(K1, . . . , Kd; ·) on
the Borel sets of the sphere with

V (K , K1, . . . , Kd) =

1
d + 1

Z
Sd
hK (x)dS(K1, . . . , Kd , x).
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The area measure of order i can then be defined as

Si (K , ·) = S(K , . . . , K| {z }
i

, B, . . . , B, ·),

so the first area measure of K is the unique positive measure on the sphere such that
for any convex body K 0,

V (K 0, K , B, . . . , B) =

1
d + 1

Z
Sd
hK 0(x)dS1(K , x). (1.3)

A last way of defining the first area measure is due to C. Berg [10]. In the case of
a strictly convex body with C2 boundary K , the first area measure is 'KdSd , with
dSd the usual volume form on the sphere and 'K the mean radius of curvature of K
(the sum of the principal radii of curvature of @K divided by d). One can compute
'K as

1
d

Sd1hK + hK (1.4)

where Sd1 is the Laplacian on Sd . The fact is that S1(K , ·), for any convex body K ,
is equal in the sense of distributions to the formula above, defined in the sense of
distributions. All those definitions of area measures use approximation results of a
convex body by a sequence of polyhedral or smooth convex bodies.

The Christoffel problem was completely solved independently by W. Firey
(in the sufficiently smooth case in [20], then generally by approximation in [21])
and C. Berg [10]. See [24] for an history of the problem to the date, and [56,
Section 4.3]. See [32,33] for developments around [10].

1.2. Content of the paper

There is an active research about problems à la Minkowski and Christoffel for
space-like hypersurfaces of the Minkowski space (at least too many to be cited
exhaustively; some references will be given further). However they mainly concern
smooth hypersurfaces, and often in the d = 2 case. One of the aims of the present
paper is to introduce a class of convex set which are intended to be the analog of
convex bodies when the Euclidean structure is considered. In particular, they are
the objects arising naturally for this kind of problems.

In the first section of the paper we define F-convex sets. They are intersection
of the future sides of space-like hyperplanes, such that any future time-like vector
is a support vector of the convex set. This section is almost self-contained, as we
have to prove all the basics results similar to the convex bodies theory, for which
the main source was [56]. Actually we will use some results contained in [14].
For example, the support functions of F-convex sets are defined on Hd . Also, sin-
gle points, which are convex bodies, are not F-convex bodies. Their analogues are
future cones of single points. However the matter is complicated because condi-
tions on the boundary enter the picture (F-convex sets may have light-like support
planes).
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The motivation behind the definition of F-convex set is to be able to get the ana-
log of (1.1) for the Lorentzian structure. The volume is independent of the signature
of the metric, but not the orthogonal projection. The idea is to first prove it for par-
ticular F-convex sets, called Fuchsian convex sets which are F-convex sets invariant
under a group of linear isometries 0 of the Minkowski space acting cocompactly
on Hd

⇢ Rd+1. In many aspects they behave very analogously to convex bod-
ies, roughly speaking compactness is replaced by “cocompactness” (this was noted
in [19]). For them, we find formulas analogous to (1.1) and (1.3). As the definition
of area measure is local, we use a result of “Fuchsian extension” (Subsection 3.3)
of any part of an F-convex set to treat the general case.

We then focus on the first area measure. In the regular case, it is absolutely
continuous with respect to the volume form of Hd with density the mean radius of
curvature ', obtained as

1
d
1h � h = ' (1.5)

where 1 is the Beltrami–Laplace operator on Hd . In the general case, the area
measure of order one is given by the formula above in the sense of distribution.

To find conditions on a given measure µ on Hd such that there exists an F-
convex set with µ as first area measure is the Christoffel problem. Section 4 con-
tains computations related to the Christoffel problem. In the smooth case, related
results were proved in [42, 50, 58, 59]. Our computations go back to [35, 36], and
generalizes the preceding ones. See Remark 4.2 for more details. In the polyhedral
case, we adapt a classical construction, which appears to be related to more recent
works on Lorentzian geometry [8, 14, 46], see Remark 4.14.

The content of Section 5 will be described later.

1.3. The Fuchsian case

Fuchsian convex sets are very special F-convex sets, because they are at the same
time invariant under the action of a (cocompact) group and contained in the future
cone of a point, which is a relevant property as it will appear. Seemly, they are
the only F-convex sets for which a definitive result can be given, very analogous to
the one of convex bodies. By invariance, the support function of Fuchsian convex
bodies can be defined on the compact hyperbolic manifold Hd/0 instead of Hd .
The following statement stands to give an idea about the kind of results we obtained,
we cannot define precisely all the terms in the introduction.

Theorem 1.1. Let 0 be so that Hd/0 is a compact hyperbolic manifold with uni-
versal covering map P0 : Hd

! Hd/0. Let µ̄ be a positive Radon measure on
Hd/0. Define a positive Radon measure µ := P⇤

0 µ̄ on Hd as the pull-back distri-
bution of µ̄ (see Subsection 4.3) and define the distribution

hµ :=

Z
Hd
G(x, y)dµ(y)
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where G(x, y) is the kernel function defined by

G(x, y) =

cosh dHd (x, y)
vd�1

Z dHd (x,y)

+1

dt
sinhd�1(t) cosh2(t)

(vd�1 is the area of Sd�1
⇢ Rd) and the precise action of hµ is explained in (4.18).

Then:

1. hµ is a solution to equation

1
d
1h � h = µ

in the sense of distributions on Hd ;
2. There exists a unique 0-invariant F-convex set K with first area measure µ̄ if
and only if

(a) ����
Z

Hd
G(x, y)dµ(y)

���� < +1, 8x 2 Hd ,

(b) the convexity condition

Z
Hd
3(⌘, ⌫, y)dµ(y) � 0,

is satisfied for all future time-like vectors ⌘, ⌫, where 3(⌘, ⌫, y) is

3(⌘, ⌫, y) = 0(⌘, y) + 0(⌫, y) � 0(⌘ + ⌫, y)

and 0(⌘, y) = k⌘k�G
⇣

⌘
k⌘k�

, y
⌘
;

3. If µ = '̄dHd for some 0 < '̄ 2 Ck,↵(Hd/0), where k � 0 and 0  ↵ < 1,
then hµ 2 Ck+2,↵(Hd) if ↵ > 0 and hµ 2 C1,�(Hd) for all � < 1 if ↵ = k = 0.

If the '̄ above is C2 another characterization of convexity is given in Proposi-
tion 4.18. In this case '̄ is the mean radius of curvature of the Fuchsian convex
set with support function hµ.

Those conditions are very cumbersome, so necessary conditions could be
wished. In the compact Euclidean case, necessary conditions were first given in
[51, 52] (a proof is in [30]), but it does not seem to have an analogue in our case,
see Remark 4.20, and the next subsection.
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1.4. Quasi-Fuchsian convex sets and flat spacetimes

A quasi-Fuchsian convex set is the data of an F-convex set K and a group of isome-
tries 0 of Minkowski space such that:

• K is setwise invariant under the action of 0,
• 0 is isomorphic to its linear part 00, which is such that Hd/00 is a compact
hyperbolic manifold.

Their interest comes in part from general relativity. Actually for any group 0 as
above, there is a unique convex open set �, maximal for the inclusion, such that 0
acts freely properly discontinuously on it. The closure of � is an F-convex set. The
quotient �/0 is a future complete flat Lorentzian spacetime, globally hyperbolic,
maximal, spatially compact and homeomorphic to Hd/00 ⇥ R. We refer to [7] for
a classification of such manifolds. For more details on �, see [1, 8, 14, 46].

Section 5 contains in particular a kind of slicing of those spacetimes by con-
stant mean radius of curvature hypersurface (the “dual” problem of slicing by con-
stant mean curvature hypersurfaces is classical, see [2]), with the particularity that
the slicing goes “outside” of the future complete space-time and then slices a past
complete spacetime.

1.5. The Christoffel-Minkowski problem

From now on let us consider only smooth objects. The classical Christoffel-
Minkowski problem consists of characterizing functions on the sphere which are
elementary symmetric functions of the radii of curvature of convex bodies. Aside
from the cases corresponding to the Minkowski and Christoffel problems, the Chri-
stoffel-Minkowski problem is not yet solved. Active research is still going on,
see [29–31, 61] and the references inside (see [28] for the “dual” problem of pre-
scribing curvature measures). Another aim of the present paper is to bring attention
to the fact that similar analysis can be done on the hyperbolic space or on compact
hyperbolic manifolds, that still have a geometric interpretation. Convex bodies are
then replaced by F-convex sets.

For example, a Minkowski theorem (smooth version) was proved for quasi-
Fuchsian convex sets in [9], in the case d = 2. In the Fuchsian case, it is proved in
any dimension [50]. The Minkowski problem for quasi-Fuchsian convex sets is the
subject of [12].

ACKNOWLEDGEMENTS. The authors want to thank Francesco Bonsante, Thierry
Daudé, Gerasim Kokarev, Yves Martinez-Maure and Jean-Marc Schlenker. The
first author enjoyed useful conversations with Yves Martinez-Maure about hedge-
hogs. Francesco Bonsante pointed out to the first author the relation between the
first area measure and measured geodesic laminations.



LORENTZIAN AREA MEASURES AND THE CHRISTOFFEL PROBLEM 389
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2. Background on convex sets

2.1. Notations

Subsets ofRd+1. For a set A ⇢ Rd+1 we will denote by A,
�

A, @A respectively the
closure, the interior and the boundary of A. A hyperplane H of Rd+1 is a support
plane of a closed convex set K if it has a non empty intersection with K and K is
totally contained in one side of H. In this paper, a vector orthogonal to a support
plane and inward pointing is a support vector of K . A support plane at infinity of
K is a hyperplane H such that K is contained in one side of H, and any parallel
displacement of H in the direction of K meets the interior of K (H and K may
have empty intersection). A support plane is a support plane at infinity.

We denote by V the volume form of Rd+1 (the Lebesgue measure).
Minkowski space. The Minkowski space-time of dimension (d + 1), for d � 1, is
Rd+1 endowed with the symmetric bilinear form

hx, yi� = x1y1 + · · · + xn yn � xd+1yd+1.

The interior of the future cone of a point p is denoted by I+(p). We will denote
I+(0) by F ; it is the set of future time-like vectors,

F =

n
x 2 Rd+1

|hx, xi� < 0, and xd+1 > 0
o

.

@F? and F? are respectively @F and F without the origin (respectively the set of
future light-like vectors and the set of future vectors). Let us also denote

C(p) := I+(p)

and, for t > 0,

K (Ht ) :=

n
x 2 Rd+1

|hx, xi�  �t2, and xd+1 > 0
o

with K (H) := K (H1).
For a differentiable real function f on an open set ofRd+1, gradx f will be the

Lorentzian gradient of f at x ,

Dx f (X) = hX, gradx f i�,

namely the Lorentzian gradient is the vector with entries
� @ f
@x1 , . . . ,

@ f
@xd ,�

@ f
@xd+1

�
.
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For two points x, y on a causal (i.e., no-where space-like) line, the Lorentzian
distance is

dL(x, y) =

p
�hx � y, x � yi�,

and kxk� := dL(x, 0).We have the reversed triangle inequality:

kxk� + kyk�  kx + yk�, 8x, y 2 F . (2.1)

An isometry f of the Minkowski space has the form f (x) = l(x) + v, with v 2

Rd+1 and l 2 O(d, 1), the group of linear maps such that l J l = J , with

J = diag(1, . . . , 1,�1).

We refer to [49] for more details. For a C2 function f : Rd+1
! R, the wave

operator is

⇤ f =

@2 f
@x21

+ . . . +
@2 f
@x2d

�

@2 f
@x2d+1

.

Hyperbolic Geometry. In all the paper, hyperbolic space is identified with the
pseudo-sphere

Hd
=

n
x 2 Rd+1

|hx, xi� = �1, and xd+1 > 0
o

,

i.e., Hd
= @K (H). We denote by g,r,r2,1 = divr respectively the Rieman-

nian metric, the gradient, the Hessian and the Laplacian of Hd . Using hyperbolic
coordinates on F (any orthonormal frame X1, . . . , Xd on Hd extended to an or-
thonormal frame of F with the decomposition r2gHd � dr ⌦ dr of the metric on
F ), the Hessian of a function f on F and the hyperbolic Hessian of its restriction
to Hd are related by

Hess f = r
2 f �

@ f
@r
g. (2.2)

A function H on F is positively homogeneous of degree one, or in short 1-homoge-
neous, if

H(�⌘) = �H(⌘), 8� > 0.
It is determined by its restriction h toHd via H(⌘) = h(⌘/k⌘k�)/k⌘k�. A function
H obtained in this way will be called the 1-extension of h.

Lemma 2.1. Let h be a C1 function on Hd and H be its 1-extension to F . Then
grad⌘H = r⌘h � h(⌘)⌘. (2.3)

Moreover, if h is C2, then 8X,Y 2 T⌘Hd ,

Hess⌘ H(X,Y ) = r
2h(X,Y ) � hg(X,Y ), (2.4)

and, for ⌘ 2 Hd ,
⇤⌘H = 1h � dh.

See Figure 2.7 for a geometric interpretation of (2.3).
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Proof. Using hyperbolic coordinates on F , grad⌘H has d + 1 entries, and, at ⌘ 2

Hd , the d first ones are the coordinates of r⌘h. We identify r⌘h 2 T⌘Hd
⇢ Rd+1

with a vector of Rd+1. The last component of grad⌘H is �@H/@r(⌘), and, using
the homogeneity of H , it is equal to �h(⌘) when ⌘ 2 Hd . Note that, at such a
point, T⌘F is the orthogonal sum of T⌘Hd and ⌘, and (2.3) follows.

On the other hand, r
2h(X,Y ) = g(DXrh,Y ), with X,Y 2 T⌘Hd , where

D is the Levi-Civita connection of Hd . By the Gauss Formula, it is equal to the
connection of Rd+1 plus a normal term. Differentiating r⌘h = grad⌘H + h(⌘)⌘
and using that ⌘ is orthogonal to Y leads to (2.4). This also follows from (2.2). The
last equation is well-known, see, e.g., [35, Lemma 25].

For x0 2 Hd , ⇢x0(x) is the hyperbolic distance between x0 and x 2 Hd . This
gives local spherical coordinates (⇢x ,2 = (✓2, . . . , ✓d)) centered at x0 on Hd .
A particular x0 is ed+1, the vector with entries (0, · · · , 0, 1) and we, will denote
⇢ed+1(x) by ⇢(x). We have hx,�ed+1i� = xd+1 = cosh ⇢(x).

As we identify the hyperbolic space with a pseudo-sphere in Minkowski space,
we will identify hyperbolic isometries with isometries of Minkowski space. More
precisely, the group of hyperbolic isometries is identified with the group of linear
isometries of the Minkowski space preserving F , see [53]. In all the paper, 0 is a
given group of hyperbolic isometries (hence of linear Minkowski isometries) such
that Hd/0 is a compact manifold.

Cocycles. Let C1(0, Rd+1) be the space of 1-cochains, i.e., the space of maps
⌧ : 0 ! Rd+1. For �0 2 0, we will denote ⌧ (�0) by ⌧�0 . The space of 1-cocycles
Z1(0, Rd+1) is the subspace of C1(0, Rd+1) of maps satisfying

⌧�0µ0 = ⌧�0 + �0⌧µ0 . (2.5)

For any ⌧ 2 Z1(0, Rd+1) we get a group 0⌧ of isometries of Minkowski space,
with linear part 0 and with translation part given by ⌧ : for x 2 Rd+1, the isometry
� 2 0⌧ is defined by

� x = �0x + ⌧�0 .

The cocycle condition (2.5) expresses the fact that 0⌧ is a group. In other words, 0⌧
is a group of isometries which is isomorphic to its linear part 0. Of course, 00 = 0.

The space of 1-coboundaries B1(0, Rd+1) is the subspace of C1(0, Rd+1)
of maps of the form ⌧�0 = �0v � v for a given v 2 Rd+1. This has the following
meaning. Let v 2 Rd+1 and let f be an isometry of theMinkowski space with linear
part f0 and translation part v, so f (x) = f0(x) + v and f �1(x) = f �1

0 (x � v).
Suppose that, for ⌧, ⌧ 0

2 Z1, 0⌧ and 0⌧ 0 are conjugated by f : 8� 2 0⌧ and 8� 0
2

0⌧ 0 with the same linear part �0, � = f � � 0
� f �1. Developing � x = f � 0 f �1x ,

we get
�0x + ⌧�0 = f0�0 f �1

0 x � f0�0 f �1
0 v + f0⌧ 0

�0 + v
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so, for any �0 2 0, f0�0 f �1
0 = �0, hence f0 is trivial [53, 12.2.6], f is a translation

by v, and ⌧ and ⌧ 0 differ by a 1-coboundary. Conversely, it is easy to check that if
⌧ and ⌧ 0 differ by a 1-coboundary, then � x = f � 0 f �1x , with f a translation.

Note that B1(0, Rd+1) ⇢ Z1(0, Rd+1), that they are both linear spaces, and
that the dimension of B1(0, Rd+1) is d + 1. The names come from the usual co-
homology of groups, and H1(0, Rd+1) = Z1(0, Rd+1)/B1(0, Rd+1) is the 1-
cohomology group. The following lemma, certainly well-known, says that those
notions are relevant only for d > 1. Note that, for d > 2, H1(0, Rd+1) may be
trivial.

Lemma 2.2. Z1(0, R2) = B1(0, R2).

Proof. 0 is the free group generated by a Lorentz boost of the form

�0 =

✓
cosh t sinh t
sinh t cosh t

◆
(2.6)

for a t 6= 0. As �0 is a Lorentz boost on the plane, (Id � �0) is invertible. Let ⌧
be a cocycle, and define v =: (Id � �0)�1⌧�0 . Then one checks easily that � nx =

� n0 x + v � � n0 v, for any integer n, which means that ⌧ is a coboundary.

As we will deal only with 1-cocycles and 1-coboundaries, we will call them
cocycles and coboundaries respectively.
⌧ -equivariant functions. Let ⌧ be a cocycle. A function H : F ! R is called
⌧ -equivariant if it is 1-homogeneous and satisfies

H(�0⌘) = H(⌘) + h��1
0 ⌧�0, ⌘i�. (2.7)

See Remark 2.16 for the existence of such functions. A function h : Hd
! R

is called ⌧ -equivariant if its 1-extension is ⌧ -equivariant. Note that a 0-equivariant
map on Hd satisfies

h(�0⌘) = h(⌘)

8⌘ 2 Hd , and hence has a well-defined quotient on the compact hyperbolic man-
ifold Hd/0. Conversely, the lifting of any function defined on Hd/0 gives a 0-
equivariant map on Hd , that is, a 0 invariant map.

Examples of ⌧ -equivariant functions are given in the lemma below. Non-trivial
examples will follow from Remark 2.16.

Lemma 2.3. Let ⌧, ⌧ 0 be two cocycles.

(i) The difference of two ⌧ -equivariant maps is 0-equivariant.
(ii) The sum of a ⌧ -equivariant and a ⌧ 0-equivariant map is (⌧ + ⌧ 0)-equivariant.

The product of a ⌧ -equivariant map with a real ↵ is (↵⌧ )-equivariant.
(iii) If there exists H : F ! R at the same time ⌧ -equivariant and ⌧ 0-equivariant,

then ⌧ = ⌧ 0.



LORENTZIAN AREA MEASURES AND THE CHRISTOFFEL PROBLEM 393

(iv) If ⌧ is a coboundary (⌧�0 = v � �0v), then the map ⌘ 7! h⌘, vi� is ⌧ -
equivariant.

(v) If ⌧ is a coboundary and H is ⌧ -equivariant, then there exists a 0-equivariant
map H0 with H = H0 + h·, vi�.

Proof. (i) and (ii) are straightforward from (2.7).
(iii) From (2.7), for any ⌘ 2 F , and �0 2 0,

H(⌘) +

D
��1
0 ⌧ 0

�0, ⌘
E
�

= H(�0⌘) = H(⌘) +

D
��1
0 ⌧�0, ⌘

E
�

,

so for any ⌘ 2 F , h��1
0 (⌧�0 � ⌧ 0

�0), ⌘i� = 0, which leads to ⌧�0 = ⌧ 0

�0 .
(iv) It is immediate that h��1

0 ⌧�0, ⌘i� = hv, ⌘i� � hv, �0⌘i�.
(v) H � h·, vi� is 0-equivariant by (i) and (iv).

The general structure of the set of equivariant maps can be summarized as follows.

• E(0) is the vector space of 0-equivariant functions.
• E(0⌧ ) is the affine space over E(0) of ⌧ -equivariant functions.
• [⌧2Z1E(0⌧ ) is the vector space of equivariant functions for 0. The union is
disjoint.

Let H be a C1, ⌧ -equivariant function. For any � 2 0⌧ it is easy to check that

grad�0⌘H = � grad⌘H (2.8)

and, if H is C2, for X,Y 2 Rd+1,

Hess�0⌘H(�0X, �0Y ) = Hess⌘H(X,Y ).

From (2.4), if X,Y 2 T⌘Hd and h is the restriction of H to h,

r
2
�0⌘h

�
d⌘�0(X), d⌘�0(Y )

�
� h(�0⌘)g

�
d⌘�0(X), d⌘�0(Y )

�
= r

2
⌘h(X,Y ) � h(⌘)g(X,Y ).

Let us state it as:

Lemma 2.4. Let h be a ⌧ -equivariant map onHd . Thenr
2h�hg is 0-equivariant.

2.2. F-convex sets

Let K be a proper closed convex set ofRd+1 defined as the intersection of the future
side of space-like hyperplanes.

Lemma 2.5. Let K be a convex set as above. Then:

(i) 8k 2 K , I+(k) ⇢

�

K ;
(ii) K has non empty interior;
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(iii) K has no time-like support plane;
(iv) If k 2 @K is contained in a light-like support plane of K , then k belongs to a

light-like half-line contained in @K .

Proof. (i) The definition says that there exists a family ⌘i , for i 2 I , of future
time-like vectors and a family ↵i of real numbers such that any k 2 K satisfies
hk, ⌘i i�  ↵i for all i 2 I . For any future time-like or light-like vector ` we have
h⌘i , `i� < 0, hence hk + `, ⌘i i�  ↵i . (ii) follows from (i).

(iii) If k 2 K is contained in a time-like support plane, then I+(k) is not in the
interior of K , which contradicts (i).

(iv) The intersection of the light-like support hyperplane with the boundary of
I+(k) must be contained in the boundary of K .

The half-line in (iv) can not be extended in the past, because any light-like line
meets any space-like hyperplane. But the end-point of the half-line is not necessar-
ily contained in a space-like support plane, see Example 2.35.

An F-convex set is a convex set as above such that any future time-like vector
is a support vector:

8⌘ 2 F , 9↵ 2 R, such that h⌘, ki�  ↵, 8k 2 K . (2.9)

For example the intersection of the future side of two space-like hyperplanes is not
an F-convex set. The K (Ht )’s are F-convex sets. They will play a role analogue to
the balls centered at the origin in the classical case. The cone C(p) of a point p, in
particular F , is an F-convex set. This example shows that an F-convex set can have
light-like support planes.

The following observation can be helpful.

Lemma 2.6. A proper closed convex set defined as the intersection of the future
side of space-like hyperplanes contained in an F-convex set is an F-convex set.

The following lemma says that for an F-convex set K , any space-like hyper-
plane is parallel to a support plane of K .

Lemma 2.7 ([14, Lemma 3.13]). Let K be an F-convex set. Then 8⌘ 2 F , 9↵ 2

R, 9k 2 K , such that h⌘, ki� = ↵.

Lemma 2.8. If an F-convex set K contains a half-line in its boundary, then this
half-line is light-like.

Proof. It follows from Lemma 2.5 that the half-line cannot be time-like. Let us sup-
pose that the boundary contains a space-like half-line starting from x and directed
by the space-like vector v. Hence for any � > 0, x + �v 2 K . Let ⌘ 2 Hd be
such that h⌘, vi� > 0. By definition of F-convex set, there exists ↵ 2 R such that
8k 2 K , hk, ⌘i�  ↵. Then for any �, h⌘, x + �vi�  ↵, which is impossible.

We denote by @s K the set of points of @K which are contained in a space-like
support plane.
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Lemma 2.9. Let k1, k2 2 @s K . Then k1 � k2 is space-like.

Proof. Let us suppose that k1 � k2 is not space-like. Up to exchange k1 and k2, let
us suppose that k1 � k2 is future (light-like or time-like). Let ⌘ be a support future
time-like vector of k1. Then h⌘, k2i�  h⌘, k1i�, i.e., h⌘, k1 � k2i� � 0, that is
impossible for two future vectors (they are not both light-like).

Remark 2.10 (P-convex sets). Similarly to the definition of F-convex set, a P-
convex set K is a proper closed convex set of Rd+1 defined as the intersection
of the past side of space-like hyperplanes and such that any past time-like vector is
a support vector:

8⌘ 2 F , 9↵ 2 R, such that h�⌘, ki�  ↵, 8k 2 K .

The study of P-convex sets reduces to the study of F-convex sets because clearly
the symmetry with respect to the origin is a bijection between F-convex and P-
convex sets. Note that the symmetric of a ⌧ -F-convex set is a (�⌧ )-P-convex set.
In particular, the symmetric of a ⌧ -F-convex set is a ⌧ -P-convex set if and only if
⌧ = 0.
Example 2.11 (⌧ -F-convex sets). Let ⌧ be a cocycle and 0⌧ be the corresponding
group. A ⌧ -F-convex set is an F-convex set setwise invariant under the action of 0⌧ .
They are the quasi-Fuchsian convex sets mentioned in the introduction. If ⌧ = 0,
the F-convex sets are 0 invariant. They are “Fuchsian” according to the terminology
of the introduction. The K (Ht )’s and F are Fuchsian.

⌧ -F-convex sets are F-convex sets [14, Lemma 3.12].
Moreover, there exists a unique maximal domain �⌧ on which 0⌧ acts freely

and properly discontinuously. Its closure �⌧ is a ⌧ -F-convex set. Actually, �⌧ is
maximal in the sense that any ⌧ -F-convex set is contained in �⌧ [7, 14].

The elementary example is �0 = F . There also exists a past domain with the
same property. See Subsection 1.4 and also [13] for an up-to-date overview.
Remark 2.12 (Regular domains). A (future) regular (convex) domain is a convex
set which is the intersection of the future sides of light-like hyperplanes, and such
that at least two light-like support planes exist. Regular domains were introduced
in [14]. See also [8] for the d = 2 case. The intersection of the future side of two
light-like hyperplanes is a regular domain but not an F-convex set. The F-convex
set K (H) bounded byHd is an F-convex set which is not a regular domain. We will
call F-regular domains the regular domains which are F-convex sets. Future cones
of points are F-regular domains. The �⌧ are F-regular domains.

2.3. The Gauss map

Let K be an F-convex set. The inward unit normal of a space-like support plane
is identified with an element of Hd . The Gauss map GK of K is a set-valued map
from @K toHd . It associates to each point on @K the inward unit normals of all the
space-like support planes at this point. The Gauss map is defined only on @s K . By
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the definition and Lemma 2.7, F-convex sets are exactly the future convex sets with
GK (@s K ) = Hd .
Example 2.13. The Gauss map of K (Ht ) is x 7! x/t . The Gauss map of C(p) is
defined only at the apex p of the cone. It maps p onto the whole Hd .

2.4. Minkowski sum

The (Minkowski) sum of two sets A, B of Rd+1 is

A + B := {a + b|a 2 A, and b 2 B}.

It is immediate from (2.9) that the sum of two F-convex sets is an F-convex set. It
is also immediate that if � > 0 and K is an F-convex set, then �K = {�k|k 2 K } is
also an F-convex set. If � < 0, than �K is a P-convex set.

Note that C(p) = {p} +F . Moreover if K is an F-convex set and k 2 K , then
C(k) ⇢ K , so K + F = K and then, for any p 2 Rd+1, K + C(p) = K + {p}.
K + {p} is the set obtained by a translation of K along the vector p.
Example 2.14. Let K be a ⌧ -F-convex set and p 2 Rd+1. Then K + {p} is a
⌧ 0-convex set, with ⌧ 0 differing from ⌧ by a coboundary: ⌧ 0

�0 = ⌧� + p � �0 p.
Lemma 2.2 says that in d = 1, any ⌧ -F-convex set is the translation of a Fuchsian
convex set.

2.5. Extended support function

Let K be an F-convex set. The extended support function HK of K is the map from
F to R defined by

8⌘ 2 F , HK (⌘) = sup{hk, ⌘i�|k 2 K }. (2.10)

Note that the sup is a max by Lemma 2.7. By definition

K =

n
k 2 Rd+1

|hk, ⌘i�  HK (⌘),8⌘ 2 F
o

.

An extended support function is sublinear, that is 1-homogeneous and subadditive:

H(⌘ + µ)  H(⌘) + H(µ).

For a 1-homogeneous function, subadditivity and convexity are equivalent. In par-
ticular H is continuous. Note that, for � > 0,

HK+K 0 = HK + HK 0, H�K = �HK . (2.11)

Hence
K + K 0

= K + K 00

) K 0

= K 00.
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Example 2.15. The extended support function of K (Ht ) is �tk⌘k�. The sublin-
earity is equivalent to the reversed triangle inequality (2.1). The extended support
function of C(p) is the restriction to F of the linear form h·, pi�. In particular the
support function of C(0) = F is the null function.

As from the definition

K ⇢ K 0

, HK  HK 0

it follows from the example above that

K ⇢ F , HK  0.

Actually, for K ⇢ F , if 0 2 K , then F ⇢ K and then K = F . That says that

K ⇢ F? , HK < 0. (2.12)

Remark 2.16. Let K be a ⌧ -F-convex with extended support function H . By defi-
nition of the support function, for ⌘ 2 F and � 2 0⌧ with linear part �0,

H(�0⌘) = sup{hk, �0⌘i�|k 2 K } = sup{h� k, �0⌘i�|� k 2 K }

= sup{h�0k, �0⌘i� + h⌧�0, �0⌘i�|k 2 K } = H(⌘) + h⌧�0, �0⌘i�,

so H is ⌧ -equivariant. In particular the existence of ⌧ -F-convex sets implies the ex-
istence of ⌧ -equivariant functions, and Lemma 2.3 gives properties on ⌧ -F-convex
sets. For example, from (2.11) we get that if K (respectively K 0) is a ⌧ -F-convex
set (respectively ⌧ 0-convex set) then ↵K + K 0 is a (↵⌧ + ⌧ 0)-convex set. Also, a
⌧ -F-convex set can not be a ⌧ 0-convex set if ⌧ 6= ⌧ 0.

2.6. Total support function

The extended support function H of an F-convex set is defined only on F and we
will see that this suffices to determine the F-convex set. The total support function
of K is, 8⌘ 2 Rd+1,

H̃K (⌘) = sup{hk, ⌘i�|k 2 K }.

We have H̃K (0) = 0 and H̃K = HK on F . We also have H̃K = +1 outside of
F . This expresses the fact that K has no time-like support plane and that K is not
in the past of a non time-like hyperplane. The question is what happens on @F .
As a supremum of a family of continuous functions, H̃K is lower semi-continuous,
hence a classical result gives the following lemma, see [39, Propositions IV.1.2.5
and 1.2.6] or [54, Theorems 7.4 and 7.5].

Lemma 2.17. For any ` 2 @F and any ⌘ 2 F , we have

H̃K (`) = lim
t#0

HK (`+ t (⌘ � `)).
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Let K be an F-convex set and H̃ be its total support function. If H̃(`) is finite for a
future light-like vector `, then the light-like hyperplane

`? :=

n
x 2 Rd+1

|hx, `i� = H̃(`)
o

is a support plane at infinity of K : K is contained in the future side of `?, and
any parallel displacement of `? in the future direction meets the interior of K . Of
course `? and K may have empty intersection, for example any light-like vector
hyperplane is a support plane at infinity for K (H), but they never meet it.

The following fundamental result allows to recover the F-convex set from a
sublinear function.

Lemma 2.18. Let H : F ! R be a sublinear function. Then H is the extended
support function of the F-convex set

K =

n
x 2 Rd+1

|hx, ⌘i�  H(⌘),8⌘ 2 F
o

. (2.13)

The set K as defined above is clearly a convex set as an intersection of half-spaces.
If it is an F-convex set, it has an extended support function H 0, and a priori H 0

 H .

Proof. We define H̃ as the closure of the convex function which is H on F and
+1 outside of F : H̃(x) is defined as Liminfx!y H(y). H̃ is then lower semi-
continuous and sublinear [39, page 205]. We know (see, e.g., [37, Theorem 2.2.8]
or [39, V.3.1.1.]) that the set

F =

n
x 2 Rd+1

|hx, ⌘i�  H̃(⌘)8⌘ 2 Rd+1
o

is a closed convex set with total support function H̃ . As H̃ takes infinite values on
Rn

\F , we have

F =

n
x 2 Rd+1

|hx, ⌘i�  H̃(⌘)8⌘ 2 F
o

.

Finally as H̃ and H coincide on F [39, IV, Proposition 1.2.6], and by definition of
H̃ , we get F = K . It follows that K is a closed convex set with H as extended
support function. The definition of K says exactly that it is the intersection of the
future of space-like hyperplanes, and as its extended support function is defined for
any ⌘ 2 F , it is an F-convex set.

Remark 2.19. For any ⌘ 2 Hd , consider a sequence (�0(n))n of 0 such that
�0(n)⌘/(�0(n)⌘)d+1 converges to a light-like vector `. Then, for any ⌧ -equivariant
function H we have

H
✓

�0(n)⌘
(�0(n)⌘)d+1

◆
=

H(�0(n)⌘)
(�0(n)⌘)d+1

=

H(⌘)

(�0(n)⌘)d+1
+

⌧
�0(n)⌘

(�0(n)⌘)d+1
, ⌧�0(n)

�
�

.
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This limit does not depend on the choice of the ⌧ -invariant function. Note that if
⌧ = 0 the limit is 0. Take care that, even in the case where the limit above is
finite, we cannot deduce that the extended support function of a ⌧ -F-convex set has
finite value at `. When �0(n) = � n0 , all the orbits are on the geodesic fixed by the
isometry �0, and Lemma 2.17 says that the limit of the expression above is H̃(`),
and [14, Proposition 3.14] says that the value is finite. It says even more, that ` is
normal to a support plane (and not only to a support plane at infinity). Actually H
has a continuous extension on the sphere [12], but the set of directions of light-like
support planes has zero measure [13, Proposition 4.15].

2.7. Restricted support function

As an extended support function is homogeneous of degree one, it is determined by
its restriction to Hd , which we call the (restricted) support function.
Example 2.20. The support function of K (Ht ) is the constant function �t .

The expression of support function h p of C(p) depends on p, and is given
by the standard formulas relating the distance in the hyperbolic space and the
Minkowski bilinear form, see [63].

• If p is the origin, h p = 0.
• If p is time-like, then h p(⌘) = ±kpk� cosh ⇢p(⌘) where the sign depends on if
p is past or future, and p is the central projection of p (or �p) on Hd .

• If p is space-like, then h p(⌘) = hp, pi1/2
�
sinh d⇤(⌘, p?) where d⇤ is the signed

distance from ⌘ to the totally geodesic hyperplane defined by the orthogonal p?

of the vector p.
• If p is light-like then h p(⌘) = ±ed⇤(⌘,Hp) where d⇤ is the distance between ⌘
and the horosphere n

x 2 Hd
|hx,±pi� = �1

o
the sign depending on whether p is past or future.

Let us consider spherical coordinates (⇢,2) on Hd centered at ed+1. Along radial
directions, the subadditivity of the extended support function can be read on the
restricted support function.

Lemma 2.21. Let h be the support function of an F-convex set. If 2 is fixed, then
for any real ↵,

h(⇢ + ↵,2) + h(⇢ � ↵,2) � 2 cosh(↵)h(⇢,2). (2.14)

Proof. As 2 is fixed, let us denote h(⇢) := h(⇢,2). The proof is based on the
following elementary formula: for ⇢, ⇢0

2 R we have

✓
sinh ⇢
cosh ⇢

◆
+

✓
sinh ⇢0

cosh ⇢0

◆
= 2 cosh

✓
⇢ � ⇢0

2

◆✓sinh ⇢+⇢0

2

cosh ⇢+⇢0

2

◆
. (2.15)
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This is easily checked by direct computation but it is more fun to use the hyperbolic
exponential (see, e.g., supplement C in [65] or [16])

eh⇢ = cosh ⇢ + h sinh ⇢

where h /2 R is such that h2 = 1. As in the complex case we get

eh⇢ + eh⇢
0

= eh⇢eh
⇢0

�⇢
2

✓
eh

⇢0
�⇢
2 + e�h

⇢0
�⇢
2

◆
= 2 cosh

✓
⇢ � ⇢0

2

◆
eh

⇢0
+⇢
2 .

Then

h(⇢) + h(⇢0) = H
✓✓
sinh ⇢
cosh ⇢

◆◆
+ H

✓✓
sinh ⇢0

cosh ⇢0

◆◆

� H
✓✓
sinh ⇢
cosh ⇢

◆
+

✓
sinh ⇢0

cosh ⇢0

◆◆

(2.15)
= 2 cosh

✓
⇢ � ⇢0

2

◆
h
✓
⇢ + ⇢0

2

◆
(2.16)

which is (2.14) up to change of variable.

Fixing a2we get a radial direction along a half-geodesic ofHd . It corresponds
to a half time-like plane inRd+1, whose intersection with @F gives a light-like half-
line. We denote by `2 the light-like vector on this line which has last coordinate
equal to one.

Lemma 2.22. For an F-convex set K we have

lim
⇢!+1

hK (⇢,2)

cosh(⇢)
= H̃K (`2).

In particular, K has a support plane at infinity directed by `2 if and only if

lim
⇢!+1

hK (⇢,2)

cosh(⇢)
< +1. (2.17)

Proof. We have

hK (⇢,2) = (⇢,2)d+1HK

✓
(⇢,2)

(⇢,2)d+1

◆
= cosh(⇢)HK

✓
(⇢,2)

(⇢,2)d+1

◆
.

We can write (see Figure 2.1)

(⇢,2)

(⇢,2)d+1
= (1� tanh(⇢))ed+1 + tanh(⇢)`2.

Setting t := 1� tanh(⇢) the result follows because by Lemma 2.17

H̃K (`2) = lim
t!0

HK (ted+1 + (1� t)`2).
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Figure 2.1. To Lemma 2.22.

Lemma 2.23. Let K be an F-convex set with support function h and total support
function H̃ .

• If for any 2, h(⌘,2) = o(cosh(⇢(⌘))), ⌘ ! 1 (in particular if h is bounded)
then H̃ equals 0 on @F .

• If H̃ equals 0 on @F , h is either negative and K ⇢ F? or h is equal to 0 and
K = F .

Proof. If h satisfies the hypothesis, it is immediate from the previous lemma that
H̃ equals 0 on @F . As H̃ is convex and equal to 0 on @F , it is non-positive on
F . Suppose that there exists x 2 F with H̃(x) = 0, and let y 2 F \ {x}. By
homogeneity, H̃(�x) = 0 for all � > 0. Up to choosing an appropriate �, we
can suppose that the line joining �x and y meets @F in two points. Let ` be the
one such that there exists t 2]0, 1[ with �x = t` + (1 � t)y. By convexity and
because H̃(�x) = H̃(`) = 0, we get 0  H̃(y), hence H̃(y) = 0 and H ⌘ 0. The
conclusion follows from (2.12).

Remark 2.24 (Intrinsic properties of restricted support functions). Let h be the
restricted support function of a F-convex set K , with homogeneous extension H
on F .

• h is locally Lipschitz. Actually as a convex function, H is locally Lipschitz
for the usual Euclidean metric on Rd+1. Clearly h is Lipschitz on Hd for the
Riemannian metric induced by the Euclidean ambient metric. The result follows
because local Lipschitz condition does not depend on the Riemannian metric.
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• h is (�1)-convex. This means that, on any unit speed geodesic � , there exists a
function f such that f is a solution of f 00

� f = 0, h � � = f at a point t , and
h � f near t . This is usually denoted by h00

� h � 0. In our case, f is given
by the restriction of the support function of the future cone of any point of @s K
contained in a support plane orthogonal to � (t) 2 Hd

⇢ Rd+1.
• Actually any (�1)-convex function h on Hd is a support function. It suffices to
prove that the extension H of h to F is subadditive. Let x, y 2 F . They span a
plane P , which defines a geodesic � on Hd . Consider f and F as above, such
that h = f at (x+ y)/kx+ yk�. Then H(x+ y) = F(x+ y) = F(x)+ F(y) 

H(x) + H(y).
• A classical example of (�1)-convex function on Hd is the composition of
cosh(·) � 1 with the distance to a point p. The extension of this function on
F is �hp, ·i� � k · k�, which is the support function of the convex side of the
unit hyperboloid in the future cone at �p.

Remark 2.25 (Euclidean support function of F-convex sets). Let ⌘ be a support
vector of an F-convex set K , orthogonal to a support planeH. For a vector v 2 H,
hv, ⌘i� = 0, i.e., in matrix notation, tv.J.⌘ = 0, J = diag(1, . . . , 1,�1). So v is
orthogonal to J⌘ for the standard Euclidean metric: J⌘ is an Euclidean outward
support vector to K . Hence the Euclidean support function of an F-convex set is
defined on the intersection of the Euclidean unit sphere and the interior of the past
cone of the origin. Let us denote by S the map from Hd to this part of Sd :

S(⌘) =

J⌘
kJ⌘k

=

J⌘
k⌘k

,

with h·, ·i the usual scalar product and k · k the associated norm. Let x 2 K with
h(⌘) = hx, ⌘i�. So

h(⌘) = hx, J⌘i = hx, S(⌘)ik⌘k,

and for suitable radial coordinates on Hd , ⌘ = (0, . . . , 0, sinh(⇢), cosh(⇢)), so if
hE is the Euclidean support function of K (the supremum is reached at the same
point x for the two bilinear forms):

h(⌘) =

p
cosh(2⇢)hE (S(⌘)).

Remark 2.26 (Restricted support function on the ball). An extended support
function H is also defined by its restriction onto the intersection of any space-like
hyperplane with the interior of F . This set can be identified with the open ball B
of Rd . We do not need this here, but this is relevant for example for studying the
Minkowski problem [12]. This reference also considers F-convex sets as graphs on
a space-like hyperplane, which we also do not consider here. But let us note for the
next remark that restrictions of extended support functions on B are exactly convex
functions on B.
Remark 2.27 (A function not bounded on the boundary). It is tempting to say
that if, for any 2, lim

⇢!+1

hK (⇢,2)
cosh(⇢) is finite, then K is contained in the future cone of
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a point, taking the supremum for2 of the limits. But this is false: there exist convex
functions on the closed ball B (see the preceding remark), lower-semi continuous
and unbounded. They are constructed in [27, Lemma page 870]. In this reference
also convex functions on the closed ball B are constructed, which are lower-semi
continuous, bounded, and attain no maximum.

2.8. Polyhedral sets

Let pi , for i 2 I , be a discrete set of points of Rd+1. Let us suppose that, for all
⌘ 2 Hd , supi h⌘, pi i� is finite, and moreover that the supremum is attained. That is
obviously not always the case, as �ied+1 and 1i ed+1 show for i 2 N. The function

H(⌘) = maxi h⌘, pi i�

from F to R is clearly sublinear. From Lemma 2.18 there exists an F-convex set K
with support function H . We call an F-convex set obtained in this way an F-convex
polyhedron. In particular

K =

n
x 2 Rd+1

|hx, ⌘i�  maxi h⌘, pi i�
o

.

Without loss of generality, we suppose that the set pi , for i 2 I , is minimal, in the
sense that if a p j is removed from the list, a different F-convex polyhedron is then
obtained. In particular, for any i there exists ⌘ with H(⌘) = h⌘, pi i�, so pi 2 @s K .
Note that, by Lemma 2.9, pi � p j is space-like 8i, j . This last property is not a
sufficient condition for the pi to define an F-convex polyhedron, as the example
pi = iv for any space-like vector v and i 2 N shows.

An F-convex polyhedron can be described more geometrically as a “future
convex hull”. IfH is a space-like hyperplane, we denote byH+ its future side.

Lemma 2.28. Let K be an F-convex polyhedron as above. K is the smallest F-
convex set containing the pi .

Moreover,
K = \

�
H+

|pi 2 H+

8i
 
.

Proof. Let K 0 be an F-convex set containing the pi . For any ⌘ 2 F

HK 0(⌘) = supx2K 0 hx, ⌘i� � h⌘, pi i�

for all i hence
HK 0(⌘) � maxi h⌘, pi i� = H(⌘)

hence K ⇢ K 0. Let A = \{H+
|pi 2 H+

8i}. K is an intersection of the future side
of space-like hyperplanes (namely its support planes), which all contains the pi ’s,
hence A ⇢ K . By Lemma 2.6, A is an F-convex set, hence K ⇢ A by the previous
property.
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Let K be an F-convex polyhedron as above. It gives a decomposition ofHd by
sets

Oi =

�
⌘ 2 Hd

|H(⌘) = h⌘, pi i�
 
.

Lemma 2.29. The Oi ’s are convex sets and Oi \ Oj is contained in a totally
geodesic hypersurface if not empty.
Proof. Let us denote by C(Oi ) the cone over Oi inF . We have to prove that C(Oi )
is convex in Rd+1. Let ⌘1, ⌘2 2 C(Oi ). Then, for t 2 [0, 1], as extended support
functions are convex,

H((1� t)⌘1 + t⌘2)  (1� t)H(⌘1) + t H(⌘2) = h(1� t)⌘1 + t⌘2, pi i�
 H((1� t)⌘1 + t⌘2)

hence H((1�t)⌘1+t⌘2) = h(1�t)⌘1+t⌘2, pi i� which means that (1�t)⌘1+t⌘2 2

C(Oi ).
For any ⌘ 2 Oi \ Oj we get h⌘, pi � p j i� = 0, the equation of a time-like

vector hyperplane.

A part F of Oi ⇢ Hd is a k-face, k = 0, . . . , d, if k is the smallest integer such
that F can be written as an intersection of (d + 1 � k) Oj . A 0-face is a vertex,
a (d � 1)-face is a facet and a d face is a cell Oi of the decomposition {Oi }. Let
⌘ 2 Hd andH be the support plane of K with normal ⌘. If ⌘ belongs to the interior
of a k-face F , it is easy to see thatH\ K does not depend on ⌘ 2 F but only on F .
The setH \ K is called a (d � k)-face of K . As an intersection of convex sets, the
faces of K are convex. By construction a (d � k)-face contains at least (d � k + 1)
of the pi . As the normal vectors of the hyperplane containing it span a k + 1 vector
space, the (d � k)-face is contained in a plane of dimension (d � k), and is not
contained in a plane of lower dimension.

A 0-face is a vertex, a 1-face is an edge and a d-face is a facet of K . The
vertices are exactly the pi . An F-convex polyhedron must have vertices, but maybe
no other k-faces as the example of the future cone of a point shows.

From [14, Proposition 9.9 and Remark 9.10], the decomposition given by the
Oi is locally finite (each ⌘ 2 Hd has a neighborhood intersecting a finite number
of Oi ). Nevertheless the cells Oi can have an infinite number of sides (see [44,
Figure 3.6] where the lift of a simple closed geodesic on a punctured torus is drawn).
In this case, the decomposition of @s K into faces is not locally finite, for example a
vertex can be the endpoint of an infinite number of edges.

We call an F-convex polyhedron K a space-like F-convex polyhedron if the
Oi are compact convex hyperbolic polyhedra (each with finite number of faces).
Each vertex of the decomposition corresponds to a space-like facet of K , which is a
compact convex polyhedron. Moreover @s K is locally finite for the decomposition
in facets. It must have an infinite number of faces.
Example 2.30. Let x 2 F . Then the convex hull of 0x is a space-like Fuchsian
convex polyhedron, because fundamental domains for 0 gives a tessellation of Hd

by compact convex polyhedra [47]. A dual construction consists of considering the
orbit of a space-like hyperplane [19].
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Let us now consider the case of an F-regular domain K . From [14], the im-
age by the Gauss map G of points of @s K gives a decomposition of Hd by convex
sets which are convex hulls of points on @1Hd . Of course, if p 2 @s K , the sup-
port function H of K is equal to h·, pi� on G(p). Hence K is polyhedral in our
sense if K has a discrete set of vertices (points p of @s K such that G(p) has non
empty interior). Following [14], we call them F-regular domains with simplicial
singularity.
Example 2.31 (The elementary example). Figure 2.2 is an elementary example
of F-regular domains with simplicial singularity. The letters on the F-convex sets
are edge-lengths. The letters on the cellulation of H2 are measures that will be
introduced later. Actually we will call this example (the union the the future cones
of points on a space-like segment) “the” elementary example, since it is the simplest
one, right after the future cone over a point.

Figure 2.2. The elementary example in d = 2.

2.9. Duality

The notion of duality has interest in its own, but here it will only be used as a tool
in the proof of Proposition 2.47. See [11] for a previous introduction. Let A be a
set which does not contain the origin. The dual of A is

A⇤

=

n
x 2 Rd+1

|hx, ai�  �1,8a 2 A
o

.

It is immediate that A⇤ is a closed convex set which does not contain the origin, that
A ⇢ A⇤⇤

=: (A⇤)⇤ and that A ⇢ B implies B⇤
⇢ A⇤, see [56, (1.6.1)]. Note that as

an F-convex set contains the future cone of its points, it meets any future time-like
ray from the origin.

Lemma 2.32. Let K be an F-convex set which does not contain the origin. Then
K ⇤ is contained in F?

Proof. Let x /2 F . Then there exists a k 2 K such that hx, ki� � 0, so x /2 K ⇤.
Since by definition 0 /2 K ⇤, we have K ⇤

⇢ F?.
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In the compact case, duality is defined for convex bodies with the origin in their
interior, which is equivalent to say that the Euclidean support functions are positive,
and we get the fundamental property that the dual of the dual is the identity.

The lemma above says that in our case, even if 0 /2 K , we can take K * F?,
and then K ⇤

⇢ F? and (K ⇤)⇤ ⇢ F?, so (K ⇤)⇤ 6= K . Actually the genuine
analog to the compact case is that the support function is negative. By (2.12) this is
equivalent to say that K is contained in F?.

Lemma 2.33. Let K be an F-convex set contained in F?. Then K ⇤ is a F-convex
set and (K ⇤)⇤ = K .

Proof. K ⇤ is a closed convex set, so it is determined by its total support function.
For ⌘ 2 F let us consider H̃K ⇤(⌘) = sup{h⌘, xi�8x 2 K ⇤

}. There exists � > 0
such that �⌘ 2 K , so since H̃K ⇤(⌘) =

1
� H̃K ⇤(�⌘) and by definition h�⌘, xi�  �1,

8x 2 K ⇤, then H̃K ⇤ has finite values on F . As for two future vectors u, v we have
hu, vi� < 0 and K ⇢ F?, if x 2 K ⇤ then x + F ⇢ K ⇤, so H̃C(x)  H̃K ⇤ , hence
H̃K ⇤ is infinite outside of F . So

K ⇤

=

n
x 2 Rd+1

|hx, ⌘i�  H̃K ⇤(⌘),8⌘ 2 F
o

and by Lemma 2.17 we have

K ⇤

=

n
x 2 Rd+1

|hx, ⌘i�  H̃K ⇤(⌘),8⌘ 2 F
o

that says exactly that K ⇤ is an F-convex set.
To prove that (K ⇤)⇤ = K one has to prove that (K ⇤)⇤ ⇢ K . Let z /2 K .

There exists a support plane of K , orthogonal to some ⌘ 2 F , which separates z
from K [56, (1.3.4)]. Hence there exists ↵ with hz, ⌘i� > ↵ and hk, ⌘i� < ↵ for
all k 2 K . From (2.12), ↵ < 0. On the other hand, for any k 2 K , hk, ⌘i�  ↵,
which can be written hk, ⌘

�↵ i�  �1, hence ⌘
�↵ 2 K ⇤. But hz, ⌘

�↵ i� > �1, so
z /2 (K ⇤)⇤.

Let K be an F-convex contained inF?. The radial function of K is the function
from F? to R+

[ {+1} defined by

RK (⌘) := inf{s > 0|s⌘ 2 K }.

RK has always finite values on F . If K does not meet the light-like ray directed by
`, then RK (`) = +1. In particular, 8⌘, and RK (⌘)⌘ 2 @K , then RK is homoge-
neous of degree �1 and

K =

�
⌘ 2 F?|RK (⌘)  1

 
.
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Lemma 2.34. Let K be an F-convex set contained in F?. Then on F?, the total
support function H̃K ⇤ of K ⇤ satisfies

H̃K ⇤ =

�1
RK

.

As K ⇢ F?,˜HK ⇤ and H̃K have finite non-positive values on F .

Proof. We define X = {x 2 F?|H̃K ⇤(x)  �1}. Let us first prove that K = X .
Let x 2 K \ F . There exists v 2 K ⇤ such that H̃K ⇤(x) = hv, xi�. But

by definition of K ⇤, hv, xi�  �1 hence x 2 X . If K \ @F is empty, we have
K ⇢ X . If not, for x 2 K \ @F the result is obtained from the previous case using
Lemma 2.17.

Let x 2 X . By definition of the support function, for any v 2 K ⇤ we have
hx, vi�  H̃K ⇤(x). On the other hand, as x 2 X , H̃K ⇤(x)  �1 hence x 2

(K ⇤)⇤ = K . We proved that K = X .
Let us suppose that there exists x with H̃K ⇤(x) > �1

RK (x) . As H̃K ⇤ and �1
RK

are 1-homogeneous, one can find � > 0 such that H̃K ⇤(�x) > �1 > �1
RK (�x) . So

�x 2 K \ X , that is impossible.

Example 2.35. Let p 2 F?. Then C(p)⇤ is the intersection of F with the half-
space {hx, pi�  �1}.

The dual of K (Ht ) is K (H1/t ). More striking is the dual of K (H)+C(ed+1). It
is not hard to see that onHd , RK (H)+C(ed+1)(⌘) = 2⌘d+1, so H(K (H)+C(ed+1))⇤(⌘) =

h⌘, ⌘i�/(�2hed+1, ⌘i�), see Figure 2.3. Note that on @F?, R(K (H)+C(ed+1))⇤ = 1.
So K ⇢ F? does not imply K ⇤

⇢ F?.

Figure 2.3. K (H) + C(ed+1) and its dual.

Example 2.36. The dual of a 0 invariant F-convex set is a 0 invariant F-convex
set.
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2.10. First order regularity

Lemma 2.37. Let ⌘ 2 F , let K be an F-convex set andH be the space-like support
plane of K with normal ⌘. The intersection of K andH is reduced to one point p if
and only if H is differentiable at ⌘. In this case p is equal to the gradient grad⌘H
(for h·, ·i�) of H at ⌘.

This result is a classical fact for convex bodies in the Euclidean space [56],
and the adaptation of the proof is straightforward. See [19], where this property is
checked for Fuchsian convex sets, but the group invariance does not enter the proof.

An F-convex set is said to be Ck if @s K is a Ck submanifold of Rd+1.
Lemma 2.38. Let K be an F-convex set with support function hK and extended
support function HK .
(i) K is C1 if and only if it has a unique support plane at each boundary point.
(ii) If there exist ⌘, ⌘0

2 F with HK (⌘ + ⌘0) = HK (⌘) + HK (⌘0) then there exists
k 2 K with two support planes. In particular K is not C1.

(iii) hK is C1 if and only if @s K is strictly convex (i.e., the intersection of K with
any space-like support plane is reduced to a point).

(iv) If K is strictly convex, then hK is C1 and @s K = @K .
(v) If hK is C1 and @s K = @K , then K is strictly convex.
(vi) If K is C1 then the Gauss map is a well-defined continuous map. If @s K is

strictly convex, then the Gauss map has a well-defined inverse.
It follows that if @s K is C1 and strictly convex, the Gauss map is a continuous
bijection (it is surjective by assumption). We will see in Subsection 2.12 that in this
case it is actually a homeomorphism.

Proof. (i) is a general property of closed convex sets, see [56, page 104]. Suppose
that the hypothesis of (ii) holds. Let k, x, x 0 be points of K with respectively hk, ⌘+

⌘0
i� = HK (⌘+⌘0), hx, ⌘i� = HK (⌘), and hx 0, ⌘0

i� = HK (⌘0). By assumption we
get hk, ⌘i� = hx, ⌘i� +hx 0

�k, ⌘0
i�, and hx 0

�k, ⌘0
i� � 0 so hk, ⌘i� � hx, ⌘i� =

HK (⌘), so HK (⌘) = hk, ⌘i�, which means that the support plane directed by ⌘
contains k, which is also in the support plane directed by ⌘+⌘0. By (i) K is not C1.

From Lemma 2.37 the intersection of K with any of its space-like support
planes is reduced to a point if and only if HK is differentiable, that occurs if and only
if HK is C1, as HK is convex (see, e.g., [39, page 189]). This is (iii), that implies
(v). (iv) follows because if K is strictly convex it has only space-like support planes
due to (iv) of Lemma 2.5.

From (i), the Gauss map is well-defined if K is C1. In this case, the volume
form of @s K is continuous, and, by the identification induced by h·, ·i� between
d-forms and vectors on Rd+1, normal vectors to @s K are continuous.

If K is strictly convex, the inverse of the Gauss map is clearly well-defined.

Example 2.39. If H is the extended support function of C(p), it is immediate that
grad⌘H = p,8⌘ 2 F . It is important not to confuse @sC(p) (the single point p)
and @C(p) (the boundary of the cone), as H is C1 but C(p) is not strictly convex.
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2.11. Orthogonal projection

Let K be an F-convex set. We recall some facts which are contained in [14], es-
pecially Proposition 4.3. For any point k 2 K , there exists a unique point r(k) on
@K which is contained in the closure of the past cone of k and which maximizes
the Lorentzian distance. The hyperplane orthogonal to (k� r(k)) is a support plane
of K at r(k). In particular r(K ) = @s K . The map k 7! r(k) is the Lorentzian ana-
logue of the Euclidean orthogonal projection onto a convex set, see Figure 2.4. The
cosmological time of K is T (k) = dL(k, r(k)) for any k 2 K . This is the analogue
of the distance between a point and a convex set in the Euclidean space.

Figure 2.4. For the Euclidean metric, orthogonal projection onto a convex set is well-
defined. For the Lorentzian metric, orthogonal projection onto the complementary of a
space-like convex set is well-defined.

The normal field of K is the map N : K \ @K ! Hd defined by N (k) =
1

T (k) (k �

r(k)). The normal field is well-defined and continuous, because equal to minus the
Lorentzian gradient of T , and T is a C1 submersion on the interior of K . N is
surjective by definition of F-convex set. Note that k grad Tk� = 1.

Let ! be a Borel set of Hd and I be a non-empty interval of positive numbers
(maybe reduced to a point). We introduce the following sets, see Figure 2.5:

KI = T�1(I ),
KI (!) = KI \ N�1(!),

K (!) = G�1
K (!).

We have some immediate properties:

• Kt is the boundary of the F-convex set K + t K (H). If h is the support function
of K and H is its 1-extension, then the support function of Kt is h � t and its
extended support function is H�tk·k�. It follows easily that K and Kt have the
same light-like support planes at infinity. Finally, Kt has no light-like support
plane.

• For t > 0, the restriction of the normal field to Kt = T�1(t) is equal to the
Gauss map GKt of Kt . In particular, Kt (!) = G�1

Kt (!) and @Kt is a C1 space-
like hypersurface (it is actually C1,1 [7, (4.12)]).
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Figure 2.5. Notations, see Subsection 2.11.

• The restriction of the normal field to Kt is a proper map [14, (4.15)] (as Kt is
C1, the Gauss map is well-defined). Hence, if ! ⇢ Hd is compact, Kt (!) is
compact.

• The map r : K ! @s K is continuous [14, (4.3)].
• If ! ⇢ Hd is compact then K (!) is compact, by the two previous items and
because r(Kt (!)) = K (!).

This allows to prove that @s K determines K in the following sense.

Lemma 2.40. Let K be an F-convex set. Then

K =

[
k2@s K

C(k).

Proof. Because of (i) of Lemma 2.5,
S

k2@s K C(k) ⇢ K . Because r(K ) = @s K , for
any p 2 K there exists k 2 @s K such that p 2 C(k).

Remark 2.41. A property of F-convex sets is that the restriction of the normal field
to Kt is a proper map. Consider as K the future of a line (an angle formed by the
future of two light-like planes) in R3. The image of the Gauss map is a line l in
H2. The pre-image of any compact segment of l by the Gauss map of any Kt is not
bounded.
Remark 2.42. Let K be a ⌧ -convex set. It is easy to see [14, (4.10)] that, if � 2 0⌧ ,
with linear part �0, then r �� = � � r , N �� = �0 � N , hence T �� = T . It follows
that

� K(0,"](!) = K(0,"](�0!).

Lemma 2.43. Let ⌧ be a cocycle and let h⌧ be the support function of �⌧ (see
Example 2.11).

(i) An F-convex set K which is (setwise) invariant for the action of 0⌧ is contained
in �⌧ .
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(ii) All ⌧ -F-convex sets have the same light-like support planes at infinity than�⌧ .
(iii) A ⌧ -F-convex set contained in �⌧ has only space-like support planes.
(iv) Let K be a ⌧ -F-convex set. If K \ @�⌧ 6= ;, then K \ @s�⌧ 6= ;.
(v) Let h be the support function of a ⌧ -F-convex set K . If h < h⌧ , then K ⇢ �⌧ .

Proof. Let K as in (i) with extended support function H , and let H⌧ be the extended
support function of�⌧ . Since H �H⌧ is 0-equivariant, its restriction toHd reaches
a minimum a and a maximum b. Hence H⌧ + ak · k�  H  H⌧ + bk · k�, so
clearly H and H⌧ have the same limit on any path `+ t (⌘� `). From Lemma 2.17,
both sets have the same light-like support planes at infinity. (This proves (ii) if K is
a ⌧ -convex set.) In particular K is contained in the intersection of the future side of
those planes, but this intersection is precisely �⌧ [14, Corollary 3.7], so K ⇢ �⌧ .

(iii) We know from Lemma 2.5 that K has no time-like support plane. Let us
suppose that K has a light-like support plane L , and let x 2 K \ L . Then by (ii) L
is a support plane at infinity of �⌧ , but x 2 �⌧ so L is a support plane of �⌧ . In
particular, x 2 @�⌧ , which is impossible because K is supposed to be in�⌧ , which
is open.

(iv) Suppose that K \ @s�⌧ = ;. By cocompactness, H⌧ � H (the extended
support functions of�⌧ and K ) is bounded from below by a positive constant c. So
Sc/2, the level set of the cosmological time of�⌧ for the value c/2, contains K . But
Sc/2 has no light-like support plane, so by (ii), Sc/2\@�⌧ = ;, hence K \@�⌧ = ;.

(v) If h < h⌧ , then K \ @s�⌧ = ; and the result follows from (iv).

Remark 2.44. Lemma 2.18 and Lemma 2.43 imply that there exists a ⌧ -equivariant
convex function H⌧ such that, for any ⌧ -equivariant convex function H , then H 

H⌧ .
Example 2.45. Let h be the support function of a 0 invariant F-convex set K .
Lemma 2.43 says that K ⇢ F . Suppose that K 6= F . From Lemma 2.23, K ⇢ F?,
and by Lemma 2.43, K ⇢ F .

2.12. The normal representation

Let O be an open set of Hd and let h : O ! R be a C1 map with 1-extension
H . We call normal representation of h the map � from O ! Rd+1 defined by
�(⌘) = grad⌘H , that is, for any space-like vector v,

h�(⌘), vi� = D⌘H(v) (2.18)

and by Euler’s Homogeneous Function Theorem

h�(⌘), ⌘i� = H(⌘). (2.19)

The equation above defines a space-like hyperplane with normal ⌘ containing the
point �(⌘). Lemma 2.37 says that if H is the support function of an F-convex set
K , then �(Hd) = @s K . If an F-convex set K is C1 and @s K is strictly convex, we
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know from Lemma 2.38 that the Gauss map is a continuous bijection. But from (iii)
its support function has normal representation, which is clearly the inverse of the
Gauss map, which is then a homeomorphism.

Now let h : O ! R be C2. Then � is C1. Differentiating (2.19) in the
direction of a space-like vector v, and using (2.18), we get that h⌘, D⌘�(v)i� = 0,
so if ⌘ is a regular point, the space-like hyperplane h·, ⌘i� = H(⌘) is tangent
to �(O) at �(⌘). The differential S�1 of � is called the reverse shape operator,
because � is the inverse of the Gauss map, and the differential of the Gauss map is
the shape operator. S�1 is considered as an endomorphism of T⌘Hd , by identifying
this space with the support plane of �(⌘) with normal ⌘. This allows to define the
reverse second fundamental form of H : 8X,Y 2 T⌘Hd ,

II�1(X,Y ) :=hS�1(X),Y i� =Hess⌘ H(X,Y )
(2.4)
= r

2h(X,Y )�hg(X,Y ). (2.20)

As II�1(X,Y ) = Hess⌘HK (X,Y ), II�1 is symmetric and the eigenvalues r1, . . . , rd
of S�1 are real. They are the principal radii of curvature of h. If they are not
zero, the Gauss map is a C1 diffeomorphism, and then the ri are the inverse of the
principal curvatures of the space-like hypersurface �(O).

2.13. Second order regularity

An F-convex set K is called C2
+
if @s K is C2 and its Gauss map is a C1 diffeomor-

phism. This implies that @s K is strictly convex, but K is not necessarily strictly
convex, as can be seen on Figure 2.3.

Lemma 2.46.

(i) If hK is C2, then the radii of curvature are real non-negative numbers.
(ii) If a C2 function h on Hd satisfies

(r2h � hg) � 0 (2.21)

then it is the support function of an F-convex set.
(iii) If K is C2

+
then hK is C2, the radii of curvature are positive (hence equal to

the inverses of the principal curvatures).

Proof. We already know that the eigenvalues of S�1 are real. Since HK is convex,
its Hessian is positive semidefinite, so (i) holds.

Let h be a function as in (ii). Then its one homogeneous extension toRd+1 has
a positive semidefinite Hessian, and (ii) follows by Lemma 2.18.

Let us prove (iii). If the Gauss map G is a C1 diffeomorphism, its inverse is
the normal representation � , which is then C1. As � is the gradient of HK , HK is
C2. Moreover the shape operator (the differential of the Gauss map) is the inverse
of the reverse shape operator, and both are positive definite, because they are both
positive semidefinite and invertible.
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Proposition 2.47. Let K be an F-convex set with support function hK . If hK is C2
and the principal radii of curvature are positive, i.e., (r2hK � hK g) > 0, then K
is C2

+
.

This proof of this proposition is the content of the next subsection.

Corollary 2.48. Let K be an F-convex set with support function hK .

(1) If a C2 function h on Hd satisfies�
r
2h � hg

�
> 0 (2.22)

then it is the support function of a C2
+
F-convex set.

(2) If hK is C2, then, for any " > 0, K + "K (H) is C2
+
.

Proof. (1) follows from Proposition 2.47 and (2) of Lemma 2.46. Let hK be C2.
Then (r2h � hg) � 0, and, for any " > 0, the support function of K + "K (H) is
hK � " and (r2(h � ") � (h � ")g) > 0, and (2) follows from (1).

Remark 2.49. Let h be a C2 function on Hd such that (r2h � hg)  0, with 1-
extension H . Then, by the above proposition, �H is the extended support function
of an F-convex set K , and grad(�H) = �gradH is the normal representation of
@s K . Hence gradH is the normal representation of @s(�K ), and �K is a P-convex
set, see Remark 2.10.
Example 2.50. The future cone of a point is at the same time an F-convex polyhe-
dron and an F-convex set with C2 support function. This is the only case where it
can happen.
Example 2.51 (F-convex sets not contained in the future cone of a point). Let us
define, for x 2 Hd , ⇢ = ⇢(x) the hyperbolic distance to ed+1, and

F+

↵ (x) = cosh(⇢)↵, for ↵ � 1,
F�

↵ (x) = � cosh(⇢)↵, for � 1  ↵  1

whose degree one extensions on F are respectively

x↵d+1
(�hx, xi�)(↵�1)/2 , and �

x↵d+1
(�hx, xi�)(↵�1)/2 .

Since cosh ⇢ is the restriction to Hd of the map x 7! xd+1, using (2.2) and the fact
that for f : R ! R one has r

2( f � ⇢) = ( f 0
� ⇢)r2⇢ + ( f 00

� ⇢)d⇢ ⌦ d⇢, we
easily compute that

r
2⇢ =

cosh ⇢
sinh ⇢

(g � d⇢ ⌦ d⇢) (2.23)

and finally

r
2 cosh↵ ⇢ =

⇥
↵ cosh↵ ⇢

⇤
g +

⇥
↵(↵ � 1) cosh↵�2 ⇢ sinh2 ⇢

⇤
d⇢ ⌦ d⇢ . (2.24)



414 FRANÇOIS FILLASTRE AND GIONA VERONELLI

It follows that (r2 � g)(F+

↵ ) and (r2 � g)(F�

↵ ) are semi-positive definite, hence
F+

↵ and F�

↵ are support functions of F-convex sets. Note that F�

0 is the support
function of K (H), and F�

1 and F+

1 are support functions of the future cones of
ed+1 and �ed+1 respectively. From Lemma 2.22, for ↵ > 1, F+

↵ has no light-like
support plane at infinity. See Figure 2.6.

Figure 2.6. To Example 2.51.

2.14. Proof of Proposition 2.47

Since hK is C2, HK is C2, the normal representation is C1, and this is a regular map
as the principal radii of curvature (the eigenvalues of its differential) are positive, so
@s K is C1. Moreover as the Gauss map is the inverse of the normal representation,
it is a C1 diffeomorphism. It remains to prove the non-trivial result that @s K is
actually C2.

First suppose that K is contained in the future cone of a point. Up to a trans-
lation, we can consider that this is the future cone of the origin. From Lemma 2.34
and the properties of HK , K ⇤ is C2. At the point RK ⇤(⌘)⌘ of the boundary of K ⇤,
the Gauss map is �(⌘)/(

p

�h⌘, ⌘i�), so it is a C1 diffeomorphism, and then K ⇤

is C2
+
. By (iii) of Lemma 2.46, hK ⇤ is C2 and its principal radii of curvatures are

positive. Repeating the argument, we get that K = (K ⇤)⇤ is C2.
Now suppose that K is not contained in any future cone of a point. We will

need the following:

Fact: For any k 2 @s K , there exists a neighborhood V of k in @s K and an F-convex
set KV such that: V is a part of the boundary of KV , KV is contained in the future
cone of a point, has C2 support function and positive principal radii of curvature.



LORENTZIAN AREA MEASURES AND THE CHRISTOFFEL PROBLEM 415

From the preceding argument, it will follow that the boundary of KV is C2,
hence each point of @s K has a C2 neighborhood, hence K is C2. Let us prove the
fact. We need the following local approximation result.

Lemma 2.52. Let K be an F-convex set with support function hK , let ! ⇢ Hd

be compact and " > 0. Then there exists an F-convex set A(K ,!, ") =: A with
support function hA such that

• A is C2
+
,

• sup⌘2!|hK (⌘) � hA(⌘)| < ",
• A is contained in the future cone of a point.

Proof of Lemma 2.52. The argument is an adaptation of [23]. The intersection of
K"/4(!) with

S
k2@s K C(k) is an open covering of the compact set K"/4(!) (see

Subsection 2.11). From it we get a finite covering
SN

i=1 C(ki ). Let E be the convex
hull of [iC(ki ). It has extended support function HE (x) = maxi=1,...,N hx, ki i�,
and is an F-convex set due to Lemma 2.18. ki 2 K , and C(ki ) ⇢ K hence E ⇢ K
and HE  HK on !. By construction K"/4(!) ⇢ E hence, HK � "/4  HE on !,
and finally supx2!|HK (x) � HE (x)| < "/3.

The statement of the lemma and the computation above are true up to transla-
tions. We have implicity performed a translation such that k1, . . . , kN are contained
in the past cone of the origin, so hx, ki i� > 0 for all x 2 F . The functions

Hp(x) =

 
NX
i=1

hx, ki i
p
�
/N

! 1
p

are extended support functions of F-convex sets by Minkowski inequality and Lem-
ma 2.18. Hp is clearly C2 (actually analytic), and Hp(x) converges to HE (x) when
p ! 1. Let us choose p = p" such that supx2!|Hp(x) � HE (x)| < "/3. By
Lemma 2.17, the extension H̃p of Hp to @F is a continuous function with finite
values. Let F(1) be the subset of F made of vectors with last coordinate equal to
one. It is a compact set and let M be the maximal value for H̃p. By homogeneity,
we have, 8⌘ 2 F ,

Hp(⌘) = ⌘d+1Hp(⌘/⌘d+1)  M⌘d+1 = Mh⌘,�ed+1i�,

hence the F-convex set supported by Hp is contained in C(�Med+1). If h p is the
restriction of Hp to Hd , we define hA := h p � "/3. Then:

• by (ii) of Lemma 2.46 hA is the support function of an F-convex set A,
• A is contained in the future cone of a point,
• hence (ii) of Corollary 2.48 holds, and A is a C2

+
F-convex set,

• finally sup⌘2!|hK (⌘) � hA(⌘)| < ",

so A is the aimed A(K ,!, ").
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Let k 2 @s K , GK (k) 2 !0 ( !, where !0 and ! are two compact subsets
of Hd , and V = �(

�

!0). Let us also introduce a bump function  2 C1(Hd), for
0    1, with supp ⇢ ! and  = 1 in �

!0. Let " > 0, let A(K ,!, ") be the
F-convex set given by Lemma 2.52, and let h" be its support function. We proceed
as in [26] for example. The function

h =  hK + (1�  )h"

is a C2 function onHd . It satisfies (2.22) on �

!0 and outside of !. On the remaining
part of Hd we have�

r
2
� g

�
h =  

�
r
2
� g

�
hK + (1�  )

�
r
2
� g

�
h" + (hK � h")r2 

+d ⌦ d(hK � h") + d(hK � h") ⌦ d .

We have  (r2 � g)hK > 0 and (1�  )(r2 � g)h" > 0. Moreover the choice of
" is independent of  . On one hand (hK � h") is arbitrarily small by Lemma 2.52.
On the other hand, as hK and h" are both C1, they are arbitrarily close in C1(

�

!)
(this is true for the convex 1-homogeneous extensions of the functions on a suitable
subset of F [54, 25.7]). So (r2 � g)h > 0 for a well chosen ". As h = h" outside
of a compact set, h is the support function of an F-convex set contained in the future
cone of a point, which is the wanted KV .

Proposition 2.47 is proved.

2.15. The d = 1 case
The relations between an F-convex set and its support function can be made more
explicit in the case of the plane. Let h be C1 and let us use the coordinates
(r sinh ⇢, r cosh ⇢) on F . We have

H(r sinh ⇢, r cosh ⇢) = r H(sinh ⇢, cosh ⇢) =: rh(⇢).

Computing the gradient in those coordinates, we can write @s K as a curve in terms
of the support function, that has a clear geometric meaning, see Figure 2.7:

c(⇢) = h0(⇢)

✓
cosh ⇢
sinh ⇢

◆
� h(⇢)

✓
sinh ⇢
cosh ⇢

◆
. (2.25)

c(t)
h

p

H

0

– h(t)h

h =  sinh t
        cosh t( )

h'=  cosh t
        sinh t( )

Figure 2.7. Planar case: recovering the curve from the support function (Subsec-
tion 2.15).
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Note that if h is C2 then c0(⇢) = (h00(⇢) � h(⇢))
�cosh ⇢
sinh ⇢

�
, so the curve is indeed

space-like, and regular if h00
� h 6= 0.

From Corollary 2.48, a C2 function h : R ! R is the support function of an
F-convex curve (F-convex set in the plane) if and only if h00

� h � 0. If h00
� h >

0, then the curve has finite curvature. It will be useful to have a more general
characterization of convexity. The compact analogue of the lemma below appeared
in [40].

Lemma 2.53. A real function is the support function of an F-convex curve if and
only if it is continuous and satisfies, for any real ↵,

h(⇢ + ↵) + h(⇢ � ↵) � 2 cosh(↵)h(⇢). (2.26)

Proof. The condition is necessary due to Lemma 2.21. Now let h be a continuous
function and let H be its homogeneous extension. We suppose that H is not convex
on F .
Fact: There exists unitary u and v such that H(u + v) > H(u) + H(v).

If the fact is true, we see from (2.16) that (2.26) is false. Now let us prove the
fact. We know that there exists u, v 2 F and 0 < � < 1 such that

H(�u + (1� �)v) > �H(u) + (1� �)H(v).

By continuity, this holds in a neighborhood of �. Up to a reparametrization of
�, we can consider that this holds for any 0 < � < 1. Then it suffices to take
� =

kvk�

kuk�+kvk�

and multiply both sides of the equation above by kuk�+kvk�

kuk�kvk�

.

Remark 2.54 (Osculating hyperbola). We can give a geometric interpretation of
the radius of curvature for F-convex curves in the plane. Computations are formally
the same as in the Euclidean case, see, e.g., the first pages of [60], so we skip them.
Let � be the boundary of a strictly convex F-convex set in the Minkowski plane,
seen as a curve parametrized by arc length (for the induced Lorentzian metric).
Let p1, p2, p3 be three points on � , with p2 between p1 and p3. There exists a
unique upper hyperbola passing through those points (the center of this hyperbola
is the intersection between the two time-like lines passing through the middle, and
orthogonal to the space-like segments p1 p2 and p2 p3). When p1 and p3 approaches
p2, the hyperbolas converge to a hyperbola with radius

1
k� 00

k�

. Now let c as in

(2.25). We have c = � � s, with s the arc length of c:

s(⇢) =

Z ⇢

0

⇥
h00(t) � h(t)

⇤
dt

and � parametrized by arc length. A computation shows that h� 00, � 00
i� =�

1
(h00

�h)2 .
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2.16. Hedgehogs

Both spaces of support functions of F-convex sets and of P-convex set of Rd+1

form a convex cone in the space of continuous functions onHd . They span a vector
space, the vector space of differences of support functions. Such functions were
known for a long under different names (see Remark 4.3 and Remark 4.14) and
called hedgehogs since [43].

To simplify we restrict to the case of C2 support functions. It follows from
the classical theory of difference of convex functions that the vector space spanned
by C2 support functions is the whole space of C2 functions on Hd [5, 34, 38, 64].
In the classical compact case, this is straightforward by compactness, writing any
C2 function h on Sd as (h + r) � r for any sufficiently large constant r . The
same argument occurs in the quasi-Fuchsian case (see Lemma 2.55 below). This
also gives another natural motivation to introduce hedgehogs: level surfaces of the
cosmological time outside of an F-convex set are hedgehogs. Moreover, if ⌧ is
a cocycle, the following lemma says that all the C2 0⌧ invariant hedgehogs are
obtained in this way. We will call such functions (C2) ⌧ -hedgehog. See Figure 2.8.

Figure 2.8. Plane C2 hedgehogs with support function h(t) = cos(t) + c (curves are
drawn thanks to (2.25)). If c is sufficiently small or large, the hedgehog bounds an
F-convex set or a P-convex set.

Lemma 2.55. Let h be a C2 ⌧ -hedgehog. There exists positive constants c1 and c2
such that h � c1 bounds a ⌧ -F-convex set and h + c2 bounds a ⌧ -P-convex set. For
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any positive constant c, h+c2+c (respectively h�c1�c) bounds a C2
+
⌧ -F-convex

(respectively ⌧ -F-convex).

Proof. From Lemma 2.4, since Hd/0 is compact, we get the constants c1 and c2
such that r2h � gh is either positive semi-definite or negative semi-definite. The
result follows from Corollary 2.48 and Remark 2.49.

Note that to speak about “F-hedgehogs” is not relevant, because they are also
“P-hedgehogs”. If h is Ck we will speak about Ck hedgehog. C2 hedgehogs have
a natural geometric representation via the normal representation of h, see Subsec-
tion 2.12. Sometimes we will also call hedgehog the surface �(h). Note that if h is
⌧ -equivariant, by (2.8) �(Hd) is setwise invariant for the action of 0⌧ .

In the classical case, when h is the support function of a convex body, the
normal representation of h is the boundary of the convex body with support function
h. Things are not so simple in our case, for if h is the support function of an F-
convex set, the normal representation of h describes only @s K . For example, the
normal representation of the null function is the origin, and not the future light
cone. Anyway we will be mainly interested in ⌧ -hedgehogs. From Lemma 2.43, if
such a function is the support function of an F-convex set and is strictly less than
h⌧ , then the image of the normal representation is the boundary of the F-convex set.

2.17. Elementary volume computations

For a space-like C1 hypersurface S, we denote by d(S) the volume form of S for
the Riemannian metric induced on S by the ambient Lorentzian metric.

Lemma 2.56. Let A be an open set of Rd+1 and let l : A ! R be a C1 function
with non-vanishing gradient. Suppose that the level hypersurfaces At := l�1(t) are
space-like. Then

V (A) =

ZZ
At

1
k gradx lk�

d(At )(x)dt.

The Lorentzian coarea formula formula above is certainly well-known in more gen-
eral versions, nevertheless we provide a proof, just following the classical one, see,
e.g., [57]. The key elementary remarks are: 1) if we take d space-like vectors with
last coordinates equal to 0 and a vertical vector, the computation of the volume
of the resulting box is obviously the same for the Euclidean metric and for the
Minkowski metric 2) linear Lorentzian isometries have determinant modulus equal
to 1 so they preserve the volume.

Proof. The Lorentzian gradient of l is a non-zero time-like vector. Without loss of
generality we suppose that it is past directed. Moreover at a point x0 2 A we have
@l

@xd+1
(x0) 6= 0. Up to adding a constant to l, let us suppose that l(x0) = 0. By

the implicit function theorem, locally there exists a C1 map g such that xd+1 =

g(x1, . . . , xd , t) and

l(x1, . . . , xd , g(x1, . . . , xd , t)) = t.
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We define a C1 diffeomorphism8 from an open set O⇥ (�", "), O ⇢ Rd , to A by

(x1, . . . , xd , t) 7! (x1, . . . , xd , g(x1, . . . , xd , t)).

(Up to decomposing A into suitable open sets, we suppose for simplicity that the
image of 8 is the whole A.) Let us denote Xi =

@8
@xi , for i = 1, . . . , d and Xd+1 =

@8
@t . Then [57, 6.2.1]

V (A) =

Z "

�"

Z
O

| det(X1, . . . , Xd+1)|dx1 · · · dxddt.

The vectors X1, . . . , Xd belong to the space-like tangent space L to At . Let
f1, . . . , fd be an orthonormal basis (for h·, ·i�) of L , and fd+1 be the unit past
time-like vector orthogonal to L . We have

det(X1, . . . , Xd+1) = det
�
hXi , f j i�

�
i, j=1,...,d+1

(this is easy to see using a Lorentz linear isometry sending f1, . . . , fd+1 to e1, . . .,
ed ,�ed+1 with {ei } the standard Euclidean basis – this isometry has determinant
1). As hXi , fd+1i� = 0 for i = 1, . . . , d,

det(X1, . . . , Xd+1) = hXd+1, fd+1i� det(hXi , f j i�)i, j=1,...,d .

On one hand,

hXd+1, fd+1i� =

⌧
@8

@t
,
gradl

kgradlk�

�
�

=

1
kgradlk�

*0BBB@
0
...
0
@g
@t

1
CCCA , gradh

+
�

=

1
kgradlk�

@g
@t

@l
@xd+1

=

1
kgradlk�

.

On the other hand,

D := det
�⌦
Xi , f j

↵
�

�
i, j=1,...,d = � detM

with
M =

t�X1, . . . , Xd , fd+1
�
J
�
f1, . . . , fd , fd+1

�
.

Note that D = detMJ . So

�D2 = detMJ ⇥
t M = det t

�
X1, . . . , Xd , fd+1

�
J
�
X1, . . . , Xd , fd+1

�
= det

�⌦
Xi , X j

↵
�

�
i, j=1,...,d ,

finally |D| =

s����det
⇣
h
@8
@xi ,

@8
@x j i�

⌘
i, j=1,...,d

���� and |D|dx1 · · · dxd is the volume form

on At for the metric induced by the Lorentzian metric.
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3. Area measures

3.1. Definition of the area measures

3.1.1. Main statement

The notation is the one of Subsection 2.11. Let ! ⇢ Hd be a Borel set. The
normal field N is continuous, and if we denote by N" its restriction to K(0,"],
K(0,"](!) = N�1

" (!), so K(0,"](!) is measurable for the Lebesgue measure, and
we denote by V"(K ,!) its volume. In other terms, V"(K , ·) is the push forward of
the restriction to K(0,"] of the Lebesgue measure, which is a Radon measure, and
as N" is continuous, V"(K , ·) is a Radon measure on Hd . All results concerning
measure theory in this section are elementary and can be found for example in [62]
or in the first pages of [45]. Actually we mainly use these well known facts:

• Radon measures on Hd are the (unsigned) Borel measures which are finite on
any compact,

• a Radon measure µ has the inner regularity property: for any Borel set ! ofHd ,

µ(!) = sup{µ(K )|K ⇢ !, K compact },

• for any positive linear functional I on the space of real continuous compactly
supported functions on Hd , there exists a unique Radon measure µ on Hd such
that I ( f ) =

R
Hd f dµ (Riesz representation theorem).

The aim of this subsection is to prove the following result.

Theorem 3.1. Let K be an F-convex set in Rd+1. There exist Radon measures
S0(K , ·), . . . , Sd(K , ·) on Hd such that, for any Borel set ! of Hd and any " > 0,

V"(K ,!) =

1
d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
Si (K ,!). (3.1)

Si (K , ·) is called the area measure of order i of K . We have that S0(K , ·) is given
by the volume form of Hd .

Two of these measures deserve special attention. Sd(K , ·) may be called “the”
area measure of K , for a reason which will be clear below. The problem of pre-
scribing this measure is the Minkowski problem. In this paper we will focus on
S1(K , ·).
Example 3.2. For any p 2 Rd+1 let us consider K = C(p). Actually V"(C(p),!)
is invariant under translations, so it suffices to compute it for p = 0. From Lem-
ma 2.56, using the cosmological time of the future cone (the Lorentzian distance to
the origin), which has Lorentzian gradient equal to 1,

V"(C(p),!) =

"d+1

d + 1
S0(K ,!), (3.2)
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which expresses the fact that all space-like hyperplanes meet C(p) only at p, so the
“curvatures” are supported only at a single point.

After some basics results on the C1, C2
+
and polyhedral cases, we will prove

a statement close to Theorem 3.1 in the Fuchsian case. After that we will prove
that, up to a translation, any compact part of the boundary of an F-convex set can
be considered as a part of a Fuchsian convex set. The proof of Theorem 3.1 will
follow from the following elementary remark.

Lemma 3.3. The area measures defined in Theorem 3.1 are uniquely defined. They
are even defined locally: if K and K 0 are two F-convex sets such that the statement
of Theorem 3.1 holds, and if ! is a Borel set of Hd with K (!) = K 0(!), then
Si (K ,!) = Si (K 0,!).

Proof. The uniqueness of the Si (K , ·) follows because (3.1) says that V"(K ,!) is
a polynomial in ". K (!) = K 0(!) clearly implies K(0,"](!) = K 0

(0,"](!) hence
V"(K ,!) = V"(K 0,!), which are polynomials by Theorem 3.1, hence they have
equal coefficients.

Remark 3.4. Due to their local nature, the area measures can be defined for more
general convex sets than F-convex sets. What is needed is that the restriction of
the normal map to level sets of the cosmological time is a proper map, see Subsec-
tion 2.11.
Remark 3.5. From (3.1) we get a definition à la Minkowski for the area measure
of an F-convex set:

lim
"#0

V"(K ,!) � V0(K ,!)

"
= lim

"#0

V"(K ,!)

"
= Sd(K ,!).

Remark 3.6. Let K be a C1 F-convex set and let dK be the volume form on @s K
given by the Riemannian metric induced on @s K by the ambient Lorentzian metric.
Let us denote by Area(K ,!) the measure (for dK ) of the set of points of @s K whose
support vector belongs to !, i.e., Area(K ,!) is the push-forward of dK on Hd :

Area(K ,!) = dK
⇣
G�1
K (!)

⌘
= dK (K (!)) = (GK )⇤dK (!),

and Area(K , ·) is a Borel measure because GK is continuous (Lemma 2.38). It is
even a Radon measure, being finite on any compact set, because if ! is compact
then K (!) is compact (see Section 2.11). Now, the cosmological time T of any
F-convex set K is C1, with Lorentzian gradient equal to 1, so from Lemma 2.56:

V"(K ,!) =

Z "

0
Area(Kt ,!)dt. (3.3)

Remark 3.7. With the notation of Remark 2.42:

V"(K , �0!) = V"(K ,!). (3.4)
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3.1.2. The C2
+
case

Let K be aC2
+
F-convex set. We denote by si the i th elementary symmetric function

of the radii of curvature of K , i.e.,

si =

✓
d
i

◆
�1 X

1 j1<···< jid
r j1 · · · r ji .

In particular s0 = 1, s1 =
1
d (r1 + · · · + rd) =

1
dTrace(S

�1) and sd = r1 · · · rd =

det(S�1), where S�1 is the reverse shape operator of @K .

Lemma 3.8. Let K be aC2
+
F-convex set. Then the statement of Theorem 3.1 holds.

Moreover
Si (K , ·) = sidHd(·).

Proof. Kt is the boundary of K + t K (H), which is C2
+
by (ii) of Corollary 2.48.

The Gauss map is a C1 diffeomorphism hence
Z
Kt (!)

dKt =

Z
!
det
�
S�1
t
�
dHd (3.5)

where S�1
t is the reverse shape operator of the boundary of K + t K (H). Moreover

from (2.20) S�1
t = S�1

+ tId. The result follows using (3.3) and

det
�
S�1

+ tId
�

=

dX
k=0

tk
✓
d
k

◆
sd�k .

Remark 3.9. (3.5) can be written Area(K ,!) = Sd(K ,!), which explains the
terminology for “the” area measure Sd .

3.1.3. The polyhedral case

The following characterization of the area measures for the compact case seem-
lingly appeared in [66], see also [22]. Let P be a polyhedral F-convex set. For
a i-face ei , we denote by �i (ei ) the i-dimensional volume of ei in the Euclidean
space isometric to the support plane containing ei . We also denote by ⌫n the n-
dimensional Hausdorff measure of Hd .

Lemma 3.10. Let P be a polyhedral F-convex set. Then the statement of Theo-
rem 3.1 holds. Moreover, for any Borel set ! ⇢ Hd ,

Si (P,!) =

✓
d
i

◆
�1X

ei
�i (ei )⌫d�i (! \ GP(ei )), (3.6)

where the sum is on all the open i-faces ei of P and GP is the Gauss map of P .
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Proof. Let ei be an open i-face of P and let ! be a Borel subset in the relative
interior of GP(ei ). We have

V"(P,!) = �i (ei )
⌫d�i (!)"d+1�i

d + 1� i
.

Indeed, up to a volume preserving Lorentzian isometry, we can suppose that the
hyperplane containing ei is a horizontal hyperplane, for which the induced metric
for the Euclidean or the Lorentzian structure of Rd+1 are the same. By Fubini’s
theorem,

V"(P,!) = V
�
(ei )(0,"],!

�
=

Z
ei
Vd+1�i

�
C(x)(0,")(!))

�
dVi (x)

where Vk is the volume inRk . The relation (3.2) gives that Vd+1�i (C(x)(0,")(!))) =

"d+1�i

d+1�i ⌫d�i (!), which is independent of x .
Now, if ei and e j are distinct open faces of P , then for any !i ⇢ GP(ei ) and

! j ⇢ GP(e j ), for any positive ", the interiors of P(0,"](!i ) and P(0,"](! j ) are dis-
joint. On one hand, V"(P, ·) and ⌫d�i are measures on Hd . On the other hand, the
cell decomposition of Hd given by P has a countable number of cells, and each
face is defined as the intersection of a finite number of cells, hence the decompo-
sition has a countable number of faces. By the property of countable additivity of
measures, we get, for any Borel set ! ⇢ Hd ,

V"(P,!) =

dX
i=0

1
d + 1� i

X
ei
�i (ei )⌫d�i

�
! \ GP(ei )

�
"d+1�i .

The lemma follows by comparing the coefficients with (3.1).

3.2. The Fuchsian case

We prove a “quotiented” version of Theorem 3.1. By the strong analogy between
Fuchsian convex sets and convex bodies, the argument is a straightforward adapta-
tion of [56, Chapter 4].

Let 0 be a group of hyperbolic isometries, such that Hd/0 is a compact hy-
perbolic manifold. Let K be a Fuchsian convex set (for the group 0). Recall that
V"(K , ·) is then 0 invariant. This permits to introduce a canonical projected Radon
measure V 0" (K , ·) on the Borel sets of Hd/0. Namely, it is the only measure on
Hd/0 such that if ! ⇢ H/0 is a Borel set and : ! ! Hd is a measurable section
of the covering projection ⇡ : Hd

! Hd/0, then  ⇤(V 0" (K , ·)) = V"(K , ·), [12,
Section 3.4]. In particular it satisfies

V 0" (K ,⇡(!)) = V"(K ,!)

each time ! meets at most once each orbit of 0.
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Let us denote by K(0) the set of 0-F-convex sets. Recall that for K , K 0
2

K(0), the Hausdorff distance between them is [19]

dH
�
K , K 0

�
= min

�
� � 0|K 0

+ �K (H) ⇢ K , K + �K (H) ⇢ K 0
 
.

If K 2 K(0), the covolume of K , covol0(K ), is the volume of (F \ K )/0. Note
that

V 0"
�
K , Hd/0

�
= covol0(K") � covol0(K ). (3.7)

Lemma 3.11. Let (K (n))n be a sequence of 0-convex sets converging (for dH ) to
a 0-convex set K . Then V 0" (K (n), ·) weakly converges to V 0" (K , ·).

Proof. We have to prove that

1. V 0" (K (n), Hd/0) converges to V 0" (K , Hd/0),
2. for any open set ! of Hd/0 then Liminfn!+1 V 0" (K (n),!) � V 0" (K ,!).

Note that K"(n) = K (n) + "K (H) so by continuity of the Minkowski addition,
K"(n) converges to K". By continuity of the covolume [19], the first point follows
from (3.7). Let us prove the second point. Let ! be an open set of Hd/0, !̃ be any
of its lift and let x 2 K(0,")(!̃).
Fact: for n sufficiently large, x 2 K (n)(0,"](!̃).

Let us suppose that the Hausdorff distance between K and K (n) is �, the or-
thogonal projection of x onto @K is p and dL(x, p) = t < ". Let us denote by
⌘ 2 !̃ the vector (x � p)/t . Since K + �K (H) ⇢ K (n), the point q = p + �⌘
belongs to K (n). We can suppose that � is small enough so that � < t and then
x = p + t⌘ belongs to K (n). We denote by pn the orthogonal projection of x onto
@K (n). By maximization property, dL(pn, x) � dL(x, q) = t � �. Note that p and
pn are both in the past cone of x . Up to a translation we can suppose that x = 0.
The last equation writes kpnk� � t � �. The property K (n)+ �K (H) ⇢ K implies
hpn, ⌘i�  HK (⌘) + � with HK the extended support function of K , that can be
written hpn, ⌘i�  t + �.

We want to show that �pn/kpnk� is arbitrarily close to ⌘ if n is sufficiently
large (recall that pn is a past vector), i.e., that cosh dHd (�pn/kpnk�, ⌘) is close to
1, i.e., that hpn/kpnk�, ⌘i� is close to 1. But

hpn, ⌘i�
kpnk



t + �

t � �

that goes to 1 when � goes to 0. On the other hand, kpnk�  hpn, ⌘i� as it can be
easily checked. As !̃ is open, for n sufficiently large �pn/kpnk� 2 !̃. Moreover

kpnk�  hpn, ⌘i�  t + �

that is less than " if � is sufficiently small because t < ", so dL(pn, x) = kpnk� <
". The fact is proved.
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The fact says that K(0,")(!̃) ⇢ Liminfn K (n)(0,")(!̃), hence

V
�
K(0,")(!̃)

�
 V

⇣
Liminf

n
K (n)(0,")(!̃)

⌘
 Liminf

n
V
�
K (n)(0,")(!̃)

�
,

which implies point 2 because the boundary of a convex set has zero Lebesgue
measure.

Lemma 3.12. Let K be a 0 convex set. Then there exists a sequence of 0-convex
polyhedra converging to K .

Proof. Let " > 0, h be the support function of K and ki 2 @s K . There exists
⌘ 2 Hd such that hki , ⌘i� = h(⌘). By continuity there exists an open neighborhood
Vi of ⌘ in Hd such that |hki , ⌘0

i� � h(⌘0)| < ", 8⌘0
2 Vi . By cocompactness of 0,

there exists a finite number of neighborhood Vi as above such that {0Vi } coversHd .
The associated set of points {0ki } is discrete as discrete orbits of a finite number of
points.

Let us introduce h"(⌘) = maxi hki , ⌘i�. It is easy to see that if ⌘ 2 Vi and
⌘ /2 Vj , then h⌘, k j i� < h⌘, ki i�. Moreover each ⌘ belongs to a finite number of
Vi (the tessellation of Hd by fundamental domains for 0 is locally finite), hence h"
is well-defined. It is also clearly 0 invariant, hence it is the support function of a 0
convex polyhedron and by construction, on Hd , |h"(⌘) � h(⌘)| < ".

Proposition 3.13. Let K be a 0 convex set. There exists finite Radon measures
S00 (K , ·), . . . , S0d (K , ·) on Hd/0 such that, for any Borel set ! of Hd/0 and any
" > 0,

V 0" (K ,!) =

1
d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
S0i (K ,!), (3.8)

and S00 (K , ·) is given by the volume form on Hd/0.
Moreover, if K (n) converges to K , then S0i (K (n), ·) weakly converges to

S0i (K , ·).

Proof. If P is a0 Fuchsian polyhedron, then (3.8) is a consequence of (3.6), applied
to any lifting of !. By polynomial interpolation, for d + 1 distinct reals numbers
n0, . . . , nd , (3.8) applied with " = ni can be considered as a solvable system of
d + 1 linear equations with unknowns S00 (P,!), . . . , S0d (P,!). So there exist real
numbers aim with

S0i (P,!) =

dX
m=0

aimV 0nm (P,!).

Now let K be any 0-convex set. We define

S0i (K , ·) :=

dX
m=0

aimV 0nm (K , ·).
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Clearly S0i (K , ·) is a finite signed Radon measure onHd/0. From Lemma 3.12 we
can consider a sequence P(n) of 0-convex polyhedra converging to K , and, from
Lemma 3.11, for any continuous function f on Hd/0,

Z
Hd/0

f d S0i (P(n), ·) !

Z
Hd/0

f d S0i (K , ·).

It follows that f 7!

R
Hd/0 f d S0i (K , ·) is a positive linear functional, hence

S0i (K , ·) is a Radon measure.
The statement about weak convergence is clear. Using again polyhedral ap-

proximation and the fact that (3.8) is true in the polyhedral case, we see that the
functionals on the continuous functions of Hd/0 given by integrating with respect
to each side of (3.8) are equal, hence the measures are equal by the uniqueness
part of the Riesz representation theorem. We also get the remark on S00 from
Lemma 3.10.

Remark 3.14 (A Steiner formula). Let us introduce

W0
i (K ) =

1
d + 1

S0d+1�i
�
K , Hd/0

�

and W0
0 (K ) := covol0(K ). They are the 0-quermass integrals of K . Then (3.8)

gives the following Steiner formula for 0 convex sets:

V"(K ) =

d+1X
i=1

"i
✓
d + 1
i

◆
Wi (K ).

Note that S00 (K , Hd/0) = (d + 1)W0
d+1(K ) is nothing but the volume of Hd/0,

which is itself related to the Euler characteristic ofHd/0 if d is even by the Gauss-
Bonnet formula [53]. In the compact Euclidean case, up to a dimensional constant
the quermass integrals are the intrinsic volumes, and their sum has an integral rep-
resentation known as Wills functional, see, e.g., [41].
Remark 3.15 (Mixed area). Recall that K(0) is the set of 0-convex sets. The
mixed-covolume covol(·, . . . , ·) is the unique symmetric (d + 1)-linear form on
K(0), continuous on each variable, such that [19]

covol(K , . . . , K ) = covol(K ).

For given K1, . . . , Kd 2 K(0), we get an additive functional

covol(·, K1, . . . , Kd) : K(0) ! R, K 7! covol(K , K1, . . . , Kd).

If we identify the 0-convex sets with their support functions, we can considerK(0)
as a subset of C0(Hd/0), the set of continuous functions on Hd/0. Following the
classical arguments of the compact case [3], one can show that covol(·, K1, . . . , Kd)
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can be extended to a positive linear functional on C0(Hd/0). The first step is to
extend covol(·, K1, . . . , Kd) to the subset of C0(Hd/0) of functions which are dif-
ference of support functions: if Z = h1� h2 where h1 and h2 are support functions
of 0 convex sets, then we define

covol(Z , K1, . . . , Kd) = covol(h1, K1, . . . , Kd) � covol(h2, K1, . . . , Kd).

By the Stone-Weierstrass theorem, any continuous function on Hd/0 can be uni-
formly approximated by a C2 function. Moreover any C2 function Z on Hd/0
is the difference of two support functions: for t sufficiently large, Z + t satis-
fies (2.21). Hence any continuous function on Hd/0 can be uniformly approxi-
mated by the difference of two support functions. From this it can be checked that
covol(·, K1, . . . , Kd) can be extended to C0(Hd/0) with the required properties.

By the Riesz representation theorem there exists a unique Radon measure on
Hd/0, the mixed-area measure, denoted by S(K1, . . . , Kd; ·), such that, for any
f 2 C0(Hd/0),

covol( f, K1, . . . , Kd) = �

1
d + 1

Z
Hd/0

f (u)dS(K1, . . . , Kd; u).

The mixed-area measures are generalization of the area measures in the Fuchsian
case. Let us sketch the proof of this fact. Following [25, page 29], one can prove
that

S(K , · · · , K ;!) = lim
"#0

V"(K ,!)

"
.

It is clear that K(0,"+t](!) is the disjoint union of K(0,"](!) and of (K")(0,t](!), in
particular

V"+t (K ,!) = Vt (K ,!) + V"(Kt ,!)

hence the above equation can be written

lim
"#0

V"+t (K ,!) � Vt (K ,!)

"
= S(K + t K (H), · · · , K + t K (H),!),

with K (H) the 0-convex set bounded by Hd , in other terms

S(K + t K (H), · · · , K + t K (H),!) =

d
d"

(V"(K ,!)) (t).

On the other hand, by properties of the mixed-covolume, S(K1, . . . , Kd; ·) is linear
in each variable, in particular,

S(K+t K (H), . . . ,K+t K (H);·)=
dX
i=0

td�i
✓
d
i

◆
S

0
@K , . . . , K| {z }

i

, K (H), . . . ,K (H);·

1
A.
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Integrating the two equations above between 0 and " with respect to t leads to

V"(K ,!) =

1
d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
S

0
@K , . . . , K| {z }

i

, K (H), . . . , K (H);!

1
A .

Comparing the coefficients with (3.8) leads to

S

0
@K , . . . , K| {z }

i

, K (H), . . . , K (H); ·

1
A = S0i (K , ·).

Remark 3.16. With the notation of Remark 3.14

Wd(K ) =

1
d + 1

S01 (K , Hd/0) =

Z
Hd/0

dS(K , K (H), . . . , K (H))

= covol(K (H), K , K (H), . . . , K (H))

= covol(K , K (H), . . . , K (H)) = �

Z
Hd/0

hdS(K (H), . . . , K (H))

= �

Z
Hd/0

hdHd/0

(in the C2
+
case, writing the first area measure with the help of the Laplacian,

see (1.5), it appears that the formula above is nothing but the Green FormulaR
Hd/0 h1 f =

R
Hd/0 f1h applied to f = �1). See also Subsection 5.3.

Remark 3.17 (Mean radius of curvature and Hessian of the covolume). As in
the compact Euclidean case, the Hessian of the covolume of C1

+
Fuchsian convex

sets, at the point K (H), is (S1(·), ·), where (·, ·) is the L2 scalar product on Hd/0,
see [19]. It acts on the space of C1 functions on Hd/0, i.e., on the space of C1

0-hedgehogs.

3.3. Fuchsian extension

Lemma 3.18. Let K be an F-convex set and ! ⇢ Hd be a bounded Borel set. Up
to a translation, there exists a Fuchsian convex set K̃! such that, for any subset !0

of !,
K (!0) = K̃!(!0).

K̃! is a !-Fuchsian extension of K .

Proof. Let ! be a compact set of Hd containing ! in its interior. Since K (!) is
compact (see Subsection 2.11), up to a translation, we suppose K (!) ⇢ F . This
implies that the support function hK of K is negative on ! (for x 2 K (!) with
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support vector ⌘ 2 ! we have hK (⌘) = h⌘, xi� < 0). Let h0 be the infimum of hK
on !. Let B⇢ be the closed ball of Hd of radius ⇢ centered at ed+1.

Fact: 9⇢ > 0, so that 8x 2 K (!),8⌘ 2 Hd
\ B⇢ , there holds hx, ⌘i�  h0.

The condition hx, ⌘i�  h0 can be written

cosh dHd

✓
x

kxk�

, ⌘

◆
�

|h0|
kxk�

.

As K (!) is compact and contained in F , {x/kxk�|x 2 K (!)} is a compact set of
Hd , say contained in Br . Any ⇢ larger than r +

|h0|
infx2K (!)(kxk�) satisfies the wanted

condition. The fact is proved.
Let 0 be a group of isometries such thatHd is compact and containing B⇢ in a

fundamental domain (this is always possible, see [17, page 74]). We define

K̃! :=

n
x 2 Rd+1

|hx, ⌘i�  hK
�
��1
0 ⌘

�
,8⌘ = �0⌘0, �0 2 0, ⌘0 2 !

o
, (3.9)

i.e., K̃! is the intersection of the future side of the support planes of K (!) and of
their orbits for the action of 0. Because of the choice of 0, K (!) ⇢ K̃!. Moreover
it is clear that the support planes of K (!) are support planes of K̃!, hence K (!) ⇢

K̃!(!) (note that the inclusion may be strict). Finally K̃! is different from F , it is
0-invariant and it is an F-convex set (Lemma 2.6) hence it is a 0-F-convex set.

Finally, we prove below that K (
�

!) = K̃!(
�

!). Obviously this implies that for
any subset !0 of �

!, we have K (!0) = K̃!(!0).
Suppose that K (

�

!) 6= K̃!(
�

!). As K (
�

!) ⇢ K̃!(
�

!), this means that there
exists y 2 @ K̃!, so that y /2 K (

�

!) and ⌘ 2 GK̃!(y)\
�

!. Let H be the support
hyperplane of K orthogonal to ⌘. H \ K = K ({⌘}) is a convex compact set (see
Lemma 2.8). Let x be the orthogonal projection (in H) of y onto H \ K . Let us
denote by v the normalization of the space-like vector y� x and by H the extended
support function of K (which is equal to the extended support function of K̃! on
!). We also denote by H 0(⌘; v) the one-sided directional derivative of H at ⌘ in the
direction v. By [56, (1.7.2)] (see the proof of [19, 3.1] for the Lorentzian version)
it is equal to the total support function ofH \ K evaluated at v, hence it is equal to
hx, vi�.

As ⌘ is in the interior of !, for small positive ", the projection of ⌘ + "v onto
Hd is in !. We want to find the non-negative �("), depending on ", such that

hx + �(")v, ⌘ + "vi� = H(⌘ + "v). (3.10)

We get (recall that hv, ⌘i� = 0)

�(") =

H(⌘ + "v) � hx, ⌘i�
"

� hx, vi�,
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which is non-negative because

hx, ⌘ + "vi�  H(⌘ + "v),

(this only means that x belongs to K ) and clearly continuous for positive ".
Moreover

�(") =

H(⌘ + "v) � H(⌘)

"
� hx, vi�

and lim"#0 �(") = H 0(⌘; v) � hx, vi� = 0.
Hence one can find " such that x+�(")v is between x and y and different from

y. But (3.10) says that x+�(")v is the intersection between the support hyperplane
of K (!) orthogonal to ⌘ + "v and the line between x and y: y is not on the same
side of a support plane of K (!) (and hence of K̃!) than x , that is impossible.

Lemma 3.19. Let K1, K2 be two F-convex sets with extended support functions
H1, H2 and ! a compact set of Hd and " > 0 with sup⌘2!|H1(⌘) � H2(⌘)| < ".

Then for any compact set ! in the interior of ! there exists an isometry group
0 acting cocompactly onHd and !-0 extensions K̃1 and K̃2 of respectively K1 and
K2 such that dH (K̃1, K̃2) < ".

Proof. Using the same notations as in the proof of Lemma 3.18, we take as 0 a
group containing Bmax(⇢K1 ,⇢K2 ) in a fundamental domain. Let y 2 K̃1 + "K (H):
y = x + "b with x 2 K̃1 and b 2 K (H). Let ⌘ 2 Hd such that ⌘ = �0⌘0 with
�0 2 0 and ⌘0 2 !. We have

hy, ⌘i� = hx, ⌘i� + "hb, ⌘i�  H1(⌘0) � "  H2(⌘0) = H2
⇣
��1
0 ⌘

⌘
,

because hb, ⌘i�  �1, hence y 2 K̃2 by definition (3.9), and K̃1 + "K (H) ⇢ K̃2.
In the same way K̃2 + "K (H) ⇢ K̃1, so by definition dH (K̃1, K̃2) < ".

3.4. Proof of Theorem 3.1

Let ! ⇢ Hd be compact, and consider K̃! as in Lemma 3.18 (clearly, V"(K ,!) is
invariant under translation). Let us define the following Radon measures on !: for
any Borel set b contained in ! and i 2 {1, . . . , d}

S!i (K , b) := S0i
�
K̃!, b

�
, (3.11)

with b the image of b for the projection Hd
! Hd/0 and S0i (K̃!, b) given by

Proposition 3.13. From Lemma 3.3, this definition does not depend on K̃!.
Let C0c (Hd) be the space of continuous functions with compact support onHd .

Let f 2 C0c (Hd), and define

Fi (K )( f ) =

Z
!
f dS!i (K , ·),
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where ! is a compact set such that supp f ⇢ !. It is well-defined, because if !0

is another compact set with supp f ⇢ !0, then S!i (K , ·) and S!0

i (K , ·) coincides on
! \ !0, that follows again from Lemma 3.3.

For any i 2 {1, . . . , d}, it is easy to see that Fi (K ) is a linear functional on
C0c (Hd). It is moreover a positive functional, so by the Riesz representation theorem
there exists a unique Radon measure on Hd , that we denote by Si (K , ·), such that
Fi (K )( f ) =

R
Hd f dSi (K , ·).

Let f with support in the compact set !. Recall that ! is contained in a fun-
damental domain for the action of the group 0 fixing K̃!. Let us denote by !̄
(resp. f ) the image of ! (resp. f ) for the canonical projection Hd

! Hd/0. By
Lemma 3.18, V"(K , ·) = V"(K̃!, ·) on !, thenZ

!
f dV"(K , ·) =

Z
!
f dV"

�
K̃!, ·

�
=

Z
!̄
f dV 0"

�
K̃!, ·

�

(3.8)
=

Z
!̄
f

 
1

d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
S0i
�
K̃!,!

�!

(3.11)
=

Z
!
f d

 
1

d + 1

dX
i=0

"d+1�i
✓
d + 1
i

◆
Si (K ,!)

!

and (3.1) follows by the uniqueness part of the Riesz representation theorem.

3.5. Characterizations of the first area measure

3.5.1. Distribution characterization

Let K be a F-convex set of Rd+1 with C2 support function h. The mean radius of
curvature S1(h) of K is the sum of the principal radii of curvature divided by d:

1
d
1h � h = S1(h) (1.5)

where 1 is the Laplacian on the hyperbolic space.
Example 3.20. Let K be the future cone of a point p. The Hessian of its extended
support function is the null matrix, hence, as expected, its mean radius of curvature
is zero.

We will generalize (1.5). For any F-convex set K with support function h,
or more generally for any continuous function h on Hd , we define S1(h) by (1.5)
considered in the sense of distributions: 8 f 2 C1

c (Hd),

(S1(h), f ) =

Z
Hd

f
✓
1
d
1� 1

◆
hdHd

:=

Z
Hd
h
✓
1
d
1� 1

◆
f dHd . (3.12)

Note that S1 is linear with respect to h.
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Lemma 3.21. If h is the support function of K , then S1(h) = S1(K , ·) in the sense
of distributions.

Proof. Let f 2 C1

c (Hd) and suppose that supp f ⇢ ! with ! compact. From
Lemma 2.52 we know that there exists a C2 support function hn of C2+ F-convex
sets Kn converging to h uniformly on !. Hence

R
Hd hn

⇣
1
d1� 1

⌘
f dHd converges

to
R
Hd h

⇣
1
d1� 1

⌘
f dHd .

Let us consider !-Fuchsian extensions of Kn and K converging for the Haus-
dorff distance (Lemma 3.19). From Proposition 3.13, the corresponding first area
measures weakly converge. But on ! they are equal to the first area measures
of Kn and K respectively (Lemma 3.3), hence

R
Hd f dS1(Kn, ·) converge toR

Hd f dS1(K , ·).
By Lemma 3.8 we know that for all n,

R
Hd hn

� 1
d1�1

�
f dHd

=

R
Hd f dS1(Kn, ·).

This proves the lemma.

3.5.2. Polyhedral case

Let P be an F-convex polyhedron, inducing a decomposition C of Hd . From
Lemma 3.10, the first area measure of P is a weight on each facet ⇣ of C , equal
to 1

d times �(⇣ ), the length of the corresponding edge of P . There is a necessary
condition on the weights, if there exist (d � 2)-faces of C . Let ⌘ be a (d � 2)-face
contained in a facet ⇣ of C . We denote by u(⌘, ⇣ ) the unit tangent vector (of Hd )
orthogonal to ⌘ and contained in ⇣ . We also denote by u(⌘, ⇣ ) the corresponding
space-like vector of Minkowski space. For any (d � 2)-face ⌘,

X
�(⇣ )u(⌘, ⇣ ) = 0 (3.13)

where the sum is on the facets ⇣ containing ⌘. A (d � 2)-face of C is the set of
normal vectors to a 2-dimensional face F of P , say contained in a plane H. In
H, F is a compact convex polygon, and by construction u(⌘, ⇣ ) is an outward unit
normal of the edge of F of length �(⇣ ). The condition stated is then well-known:
the sum of the weighted sum of the vectors orthogonal to u(⌘, ⇣ ) (the edges of the
polygon) must close up.

We will call polyhedral measure of order one a Radon measure ' on Hd satis-
fying the properties above, namely:

(i) The support of ' is the set of facets of a numerable decomposition C ofHd by
compact convex polyhedra;

(ii) For any facet ⇣ of C , there exists a positive number �(⇣ ) such that '(!) =

�(⇣ )⌫d�1(!), for any Borel set ! of ⇣ ;
(iii) For any (d � 2)-face ⌘, (3.13) is satisfied.

From Lemma 3.21, the first area measure of an F-convex polyhedron can also be
written as in (1.5) in the sense of distributions. Let us check it below on the most
elementary example.
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Example 3.22 (The elementary example). Let K be the elementary example of
Example 2.31 (note that this example is easily generalized in all dimensions). p1
and p2 are two points in R3, related by a space-like segment of length a. Let �? be
the time-like plane orthogonal to p1� p2. �? separates F into two regions ˜O1 and
˜O2, such that p1 � p2 is pointed towards ˜O2. The extended support function of K
is the restriction of Hi = h·, pi i� on ˜Oi . Let us denote byOi the intersection of ˜Oi
with H2, and by hi the restriction of H to Oi . Let ⌫1 et ⌫2 be the exterior normals
to O1 and O2 respectively and note that ⌫1 = �⌫2 on @O1 = @O2 = � . Then, for
f 2 C1

c (Hd),

d(S1(h), f ) = d
✓
1
d
1h � h, f

◆
= (1h � dh, f ) =

Z
Hd
h(1 f � d f )

= �

Z
Hd
dh f �

Z
O1

hrh1,r f i +

Z
@O1

h1 hr f, ⌫1i

�

Z
O2

hrh2,r f i +

Z
@O2

h2 hr f, ⌫2i

= �

Z
Hd
dh f +

Z
O1

f1h1 �

Z
@O1

f hrh1, ⌫1i

+

Z
O2

f1h2 �

Z
@O2

f hrh2, ⌫2i

=

Z
O1
f (1h1 � dh1) +

Z
O2

f (1h2 � dh2) +

Z
@O1

f hrh1 � rh2, ⌫1i

=

Z
@O1=�

f hr(h1 � rh2), ⌫1i ,

because (1hi � dhi ) = 0 (see Remark 3.20).
As

(H1 � H2)(⌘) = hp1 � p2, ⌘i�, grad⌘(H1 � H2) = p1 � p2,

and from (2.3),

grad⌘(H1 � H2) = r⌘(h1 � h2) � (h1 � h2)(⌘)⌘.

Note that p1 � p2 = a⌫1, so if ⌘ 2 � ,

(h1 � h2)(⌘) = hp1 � p2, ⌘i� = 0.

Finally, grad⌘(h1 � h2) = p1 � p2, and

hr(h1 � h2), ⌫1i = hp1 � p2, ⌫1i� = a,

and as expected
(S1(h), f ) =

1
d
a
Z
�
f.
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Remark 3.23 (Relation with measured geodesic laminations). It is proved in
[14, Proposition 9.1] that the first area measure of a F-regular domain with sim-
plicial singularity is a particular case of so-called measured geodesic stratification,
which are transverse measures generalizing in any dimension measured geodesic
laminations on H2 (geodesic stratifications are more general than geodesic lami-
nations in any dimension, see [14, Remark 4.18]). Those measures are associated
to some F-regular domains, but it is not known if any F-regular domain gives a
transverse measure on Hd . The reciprocal is true, see Remark 4.14.

4. The Christoffel problem

Let µ be a positive Radon measure on Hd . We have seen in Section 3 that µ is the
first area measure of an F-convex set K if and only if the restricted support function
hK of K is a continuous function which satisfies

1
d
1hK � hK = µ

in the sense of distribution on Hd , and such that its 1-homogeneous extension
HK (⌘) = k⌘k�hK (⌘/k⌘k�) is a convex function on F . In this section we will
discuss the existence of explicit solutions to the equation above, as well as possible
conditions which guarantee the convexity and the uniqueness of the solution. Those
solutions will be compared to a polyhedral construction of a convex solution in 4.4.

Due to its specificity, the d = 1 case will be treated at the end of this section,
so all the remainder concerns the d > 1 case.

4.1. Regular first area measures

Here we look for an explicit solution to (1.5) when µ = 'dHd for some function
' 2 C1

c (Hd).
We define k : (0,+1) ! (�1, 0) as

k(⇢) =

cosh ⇢
vd�1

Z ⇢

+1

dt
sinhd�1(t) cosh2(t)

, (4.1)

with vd�1 the area of Sd�1
⇢ Rd , and we observe that k is solution of the ODE

k̈(⇢) +

Ȧ(⇢)

A(⇢)
k̇(⇢) � dk(⇢) = 0, (4.2)

where
A(⇢) =

Z
@B⇢(x)

dA⇢ = vd�1 sinhd�1 ⇢
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is the area of the (smooth) geodesic sphere

@B⇢ =

n
y 2 Hd

: dHd (x, y) = ⇢
o

centered at any point x 2 Hd and dA⇢ is the (d � 1)-dimensional volume measure
on @B⇢ . Finally, we introduce the kernel function G : Hd

⇥ Hd
! R [ {1} given

by
G(x, y) = k

�
dHd (x, y)

�
. (4.3)

For later purposes observe that there exist positive constants C1 and C2 depending
on d such that

�k(⇢)
⇢!1

⇠ C1e�d⇢, �k(⇢)
⇢!0
⇠

(
C2⇢2�d , if d > 2
�C2 log(⇢), if d = 2,

(4.4)

and
A(⇢)

⇢!1

⇠

vd�1
2d�1 e

(d�1)⇢, A(⇢)
⇢!0
⇠ vd�1⇢

d�1. (4.5)

Accordingly, for each fixed x 2 Hd

Z
Hd

|G(x, y)|dHd(y) =

Z
1

0
|k(⇢)|A(⇢)d⇢ < +1, (4.6)

so that if  : Hd
! R is a measurable bounded function we can write

Z
Hd
G(x, y) (y)dHd(y) =

Z
+1

0

 Z
@B⇢(x)

G(x, z) (z)dA⇢(z)

!
d⇢

=

Z
+1

0
k(⇢)

Z
@B⇢(x)

 (z)dA⇢(z)d⇢ .

Theorem 4.1. Let ' 2 C1

c (Hd). Then, a particular solution to (1.5) is given by
the function h' 2 C1(Hd) defined as

h'(x) = d
Z

Hd
G(x, y)'(y)dHd(y). (4.7)

Remark 4.2. We proceed for the proof as in [58] (similar computations was per-
formed also in [42]). Actually all these proofs are essentially based on the work of
Helgason [35], which gave the solution of the Poisson problem 1h = ' on Hd for
compactly supported data '.

In the regular compact case, a different approach was proposed by Firey in
[20]. Let �K : Sd ! Rd+1 be the normal representation of a compact convex set K
with C2 support function (�K (Sd) is the boundary of K and ⌘ is an outer normal to
K at �K (⌘), namely �K is the Euclidean gradient of the extended support function
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of K ). Then, once we have defined 8 the (�1)-homogeneous extension of ', we
get that �K satisfies the system of uncoupled Poisson equations 1Sd�

i
= @i8.

Actually, the techniques introduced by Firey to solve this problem seem hardly
generalizable to the study of F-convex sets, due to the non compactness of Hd .
Nevertheless, one could try to reproduce Firey’s approach to our context, and use
Helgason’s analysis of the Poisson problem on Hd to get a proof of Theorem 4.1
for smooth compactly supported '.

To conclude this remark, it is worthwhile to recall that Sovertkov proposed
also a further method to prove the existence of a solution to (1.5), [59]. However
this latter is based on a compactness argument which permits to extract a function
from the solutions of the problem on a sequence of compact balls exhausting Hd .
Accordingly the obtained solution has no explicit expression.

Proof. For each  2 C2(Hd) and for each real ⇢ > 0, we introduce the mean value
operator M⇢( ; x), defined for x 2 Hd as

M⇢( ; x) :=

1
A(⇢)

Z
@B⇢(x)

 dA⇢ .

More generally, one could defineM : Hd
⇥ Hd

! R as

M (y, x) := MdHd (x,y)( ; x).

According to [35, Lemma 22], it holds that

11M'(x, y) = 12M'(x, y), (4.8)

where 11 and 12 are the Laplace-Beltrami operators of Hd acting respectively on
the first and second Hd component of M' . Choosing on Hd spherical coordinates
(⇢, ✓) centered at x , standard computations show that (see, e.g., [36, X.7.2]), for
every  2 C2(Hd), it holds

1Hd (⇢, ✓) = @⇢⇢ (⇢, ✓) +

Ȧ(⇢)

A(⇢)
@⇢ (⇢, ✓) +

1
sinh2 ⇢

1@B⇢(x) (⇢, ✓). (4.9)

Accordingly, sinceM (y, x) depends on dHd (x, y), but not on the angular coordi-
nates ✓ of y, relations (4.8) and (4.9) give

1Hd M⇢( ; x) = 12M (y, x) = 11M (y, x)

= @⇢⇢M⇢( ; x) +

Ȧ(⇢)

A(⇢)
@⇢M⇢( ; x),

(4.10)

where y = (⇢, ✓) is any chosen point on @B⇢(x).
Now, from (4.3), (4.6) and (4.7), h' is well-defined and we have

h'(x) = d
Z

1

0
k(⇢)

Z
@B⇢(x)

'(y)dA⇢(y)d⇢ = d
Z

+1

0
k(⇢)A(⇢)M⇢('; x)d⇢ .
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We claim that we can differentiate under the integral sign, i.e., that for all x0 2 Hd

1Hd h'(x0) = d
Z

+1

0
k(⇢)A(⇢)1Hd M⇢('; x0)d⇢ . (4.11)

To prove this claim, let K ⇢ Hd be a compact set containing x0, endowed with a
local coordinate chart, and let @↵x be a partial derivative of order 0  |↵|  2. The
function h' can be written as

h'(x) = d
Z

1

0
k(⇢)

A(⇢)

A(⇢)

Z
@B⇢(0)

'
�
expx (y)

�
dA⇢(y)d⇢,

where B⇢(0) is the Euclidean ball of radius ⇢, A⇢ its area, dA⇢ is its area measure
and expx the exponential map of Hd at x . Since ' 2 C1

c , there exists a constant
R = R(K ) > 0 such thatZ

@B⇢(0)
'
�
expx (y)

�
dA⇢(y) = 0, 8(⇢, x) 2 [R,1) ⇥ K .

On the other hand, by compactness there exists a constant C > 0 such that
|@↵x '(expx (y))|  C for all (⇢, x) 2 [0, R+ 1]⇥ K , y 2 @B⇢(0), and 0  |↵|  2.
Then�����@↵x

Z
@B⇢(0)

'
�
expx (y)

�
dA⇢(y)

����� =

�����
Z
@B⇢(0)

@↵x '
�
expx (y)

�
dA⇢(y)

�����  CA(⇢).

Hence, for all (⇢, x) 2 (0,1) ⇥ K , thanks to (4.4) and (4.5) we have�����@↵x
"
k(⇢)

A(⇢)

A(⇢)

Z
@B⇢(0)

'
�
expx (y)

�
dA⇢(y)

#�����  C|k(⇢)A(⇢)| 2 L1((0,1))

so that

@↵x h'(x0)=d
Z

+1

0
@↵x
⇥
k(⇢)A(⇢)M⇢('; x0)

⇤
d⇢=d

Z
+1

0
k(⇢)A(⇢)@↵x M⇢('; x0)d⇢

and (4.11) is proven. Now, thanks to (4.10),

1
d
1Hd h'(x) � h'(x)

=

Z
+1

0
k(⇢)A(⇢)

⇥
1Hd M⇢('; x) � dM⇢('; x)

⇤
d⇢

=

Z
+1

0
k(⇢)A(⇢)


@⇢⇢M⇢('; x) +

Ȧ(⇢)

A(⇢)
@⇢M⇢('; x) � dM⇢('; x)

�
d⇢

=

Z
+1

0
k(⇢)@⇢

⇥
A(⇢)@⇢M⇢('; x)

⇤
d⇢ � d

Z
+1

0
k(⇢)A(⇢)M⇢('; x)d⇢ .
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An integration by parts and (4.2) yield

1
d
1Hd h'(x) � h'(x)

= k(⇢)A(⇢)@⇢M⇢('; x)
��⇢=+1

⇢=0 �

Z
+1

0
k̇(⇢)A(⇢)@⇢M⇢('; x)d⇢

� d
Z

+1

0
k(⇢)A(⇢)M⇢('; x)d⇢

= k(⇢)A(⇢)@⇢M⇢('; x)
��⇢=+1

⇢=0 �k̇(⇢)A(⇢)M⇢('; x)
��⇢=+1

⇢=0

+

Z
+1

0
@⇢
⇥
k̇(⇢)A(⇢)

⇤
M⇢('; x)d⇢ � d

Z
+1

0
k(⇢)A(⇢)M⇢('; x)d⇢

= k(⇢)A(⇢)@⇢M⇢('; x)
��⇢=+1

⇢=0 �k̇(⇢)A(⇢)M⇢('; x)
��⇢=+1

⇢=0

+

Z
+1

0

⇥
A(⇢)k̈(⇢) + Ȧ(⇢)k̇(⇢) � dk(⇢)A(⇢)

⇤
M⇢('; x)d⇢

= k(⇢)A(⇢)@⇢M⇢('; x)
��⇢=+1

⇢=0 �k̇(⇢)A(⇢)M⇢('; x)
��⇢=+1

⇢=0 .

Now, observe that

��@⇢M⇢(';x)
��
= A(1)�1

����@⇢
Z
@B1(x)

'
⇣
expx

�
⇢ exp�1

x (y)
⌘
dA1(y)

���� max
@B⇢(x)

|r'|.

��M⇢(';x)
��
 max
@B⇢(x)

|'|.
(4.12)

Moreover, applying l’Hôpital’s rule, we get that k̇(⇢) = O(k(⇢)) as ⇢ ! 1 and

lim
⇢!0

k(⇢)A(⇢) = 0 and lim
⇢!0

k̇(⇢)A(⇢) = 1.

Since ' 2 C1

c , (4.12) implies

lim
⇢!0

k(⇢)A(⇢)@⇢M⇢('; x) = lim
⇢!+1

k(⇢)A(⇢)@⇢M⇢('; x)

= lim
⇢!+1

k̇(⇢)A(⇢)M⇢('; x) = 0

and
lim
⇢!0

k̇(⇢)A(⇢)M⇢('; x) = '(x),

so that
1
d
1Hd h'(x) � h'(x) = '(x)

as aimed. Finally, since ' 2 C1, by standard elliptic regularity we get h' 2

C1(Hd).
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Remark 4.3 (Geometric interpretation). Let ' as in Theorem 4.1. We do not
know if h' is the support function of an F-convex set. But the solution (4.7) can be
written as h'(x) = hx,�(x)i� with, for x 2 F ,

�(x) = �

d
vd�1

Z
Hd

y'(y)
Z acosh(�h

x
kxk

�

,yi�)

+1

dt
sinhd�1(t) cosh2(t)

dHd(y).

This is the normal representation of a C2 F-hedgehog with mean radius of curvature
', see Subsection 2.16. Hedgehogs appear naturally when the Christoffel problem
is considered, under different names. In the smooth setting, they are also called
generalized envelopes, see [48] and the references inside. See also Remark 4.14.

4.2. Distribution solutions

Let R(Hd) be the set of the Radon measures µ on Hd and define R+(Hd) as the
subset of measures satisfying the additional conditionZ

Hd
\B1(x0)

|G(x0, y)|dµ(y) < +1 (4.13)

for some (hence any) x0 2 Hd .
Each µ 2 R+(H) can be seen as the distribution called, with a standard abuse

of notation, also µ 2 D0(H), and whose action is given by

(µ, f ) =

Z
Hd

f (x)dµ(x), 8 f 2 D
�
Hd�

= C1

c
�
Hd�. (4.14)

Remark 4.4. We note that, in case µ = 'dHd is given as a C2 function on Hd ,
thanks to (4.4) and (4.5), condition (4.13) is implied by

e�dHd (x0,x)max{|'(x)|; |r'(x)|} 2 L1
�
Hd

\ B1(x0)
�
. (4.15)

In particular our assumption (4.13) is weaker than the conditions required by Sover-
tkov [58] and Lopes de Lima and Soares de Lira [42].

Theorem 4.5. Let µ 2 R+(Hd) and consider the equation

1
d
1h � h = µ (4.16)

in the sense of distributions on Hd . Then, a particular solution to (4.16) is given by
the distribution hµ 2 D0(Hd) defined formally as

hµ(x) := d
Z

Hd
G(x, y)dµ(y), (4.17)

and whose action is defined by (4.18).
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Corollary 4.6. Let ' 2 Ck,↵(Hd), 0  k, 0  ↵ < 1. Assume that there exists
x0 2 Hd such that Z

Hd
|G(x0, y)|'(y)dHd(y) < +1.

Then (1.5) has a solution given by

h'(x) = d
Z

Hd
G(x, y)'(y)dHd(y).

Moreover, h' 2 Ck+2,↵(Hd) if ↵>0 and h' 2 C1,�(Hd) for all �<1 if ↵ = k = 0.

Remark 4.7. It is not hard to see (cf. (4.24)) that if ' is 0-invariant, then also
the solution h' is 0 invariant, see Subsection 4.3 and the proof of Theorem 4.9
for more details. On the other hand if K is a C2

+
⌧ -F-convex set, it follows from

Lemma 2.4 (or more generally from Remark 3.7) that its mean radius of curvature
is 0-invariant. In particular the support function of a ⌧ -F-convex set cannot be
recovered by Corollary 4.6. This is a first evidence of the non-uniqueness of the
solutions, that will be further discussed in the subsequent sections.

Proof of Theorem 4.5. Given µ 2 R+(Hd), the distribution h 2 D0(Hd) is a solu-
tion to (4.16) if and only if

✓
h,
1
d
1 f � f

◆
= (µ, f ) 8 f 2 D

�
Hd�.

Define formally

hµ(x) := d
Z

Hd
G(x, y)dµ(y).

We claim that hµ 2 D0(Hd), its action being defined by

(hµ, f ) := (µ, h f ) =

Z
Hd
h f (x)dµ(x), (4.18)

where h f (x) = d
R
Hd G(x, y) f (y)dHd(y) is the smooth solution to 1d1h f �h f =

f given by Theorem 4.1. To this end, note that for each compact set K 2 Hd and
f 2 D(K ),

��h f (x)�� 

(
d|K | k f k

1

��k(dHd (x), supp f )
�� if dHd (x, K ) > 1

d k f k
1

kG(x, ·)kL1(Hd ) if dHd (x, K )  1
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where |K | is the hyperbolic volume of K . Then, choosing x0 in the interior of K ,
thanks to (4.13) and to the monotonicity of k we have

Z
Hd
h f (x)dµ(x)

 d k f k
1

"
µ
�
{x : dHd (x, K )  1}

�
kG(x, ·)kL1(Hd )

+|K |

Z
{x :dHd (x,K )>1}

|k(dHd (x, K ))|dµ(x)

#

 d k f k
1

"
µ
�
{x : dHd (x, K )  1}

�
kG(x, ·)kL1(Hd )

+|K |

Z
{x :dHd (x,K )>1}

|G(x, x0)|dµ(x)

#

 CK k f k
1

< +1,

(4.19)

where the constant

CK :=d

µ
�
{x :dHd (x, K )1}

�
kG(x,·)kL1(Hd )+|K |

Z
Hd

\B1(x0)
|G(x, x0)|dµ(x)

�

is independent of f . Then (4.18) is well-defined and the functional hµ on D(Hd)
is linear by construction and continuous because of (4.19). Also, it’s worthwhile to
observe that (4.18) is the natural action for hµ, as it is shown by the case µ = 'dHd

when ' 2 C2c (Hd).
We want to prove that hµ is a solution of (4.16). To this end, let f1, f2 2

D(Hd) = C1

c (Hd) and compute

Z
Hd

✓
d
Z

Hd
G(x, y) f2(x)dHd(x)

◆
1
d
1 f1 � f1

�
(y)dHd(y)

=

Z
Hd
h f2(y)


1
d
1 f1 � f1

�
(y)dHd(y)

=

Z
Hd


1
d
1h f2(y) � h f2(y)

�
f1(y)dHd(y)

=

Z
Hd

f2(y) f1(y)dHd(y),

(4.20)

where we have applied Fubini’s and Stokes’ theorems, and h f2 2 C1(Hd) is the
solution given by Theorem 4.1. Since f2 2 D(Hd) is arbitrary, (4.20) says that for
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a f 2 D(Hd) one has h 1
d1 f� f = f . Then

✓
1
d
1hµ � hµ, f

◆
=

✓
hµ,

1
d
1 f � f

◆
=

Z
Hd
h 1
d1 f� f (x)dµ(x)

=

Z
Hd

f (x)dµ(x) = (µ, f ).
(4.21)

Proof of Corollary 4.6. Let µ = 'dHd . Then, according to Theorem 4.5,

h'(x) := d
Z

Hd
G(x, y)dµ(y) = d

Z
Hd
G(x, y)'(y)dHd(y)

is a distribution solution to (4.16). If ' 2 Ck,↵(Hd) for ↵ > 0, then the conclusion
follows directly from [6, Theorem 3.54]. More generally, if ' 2 C0(Hd), then
clearly ' 2 L ploc(Hd) for all p < 1. Applying again Theorem 3.54 in [6] we get
that ' 2 W 2,p

loc (Hd). Hence, up to choose p large enough, we get that ' 2 C1,�(Hd)
for all � < 1 thanks to Sobolev’s embedding (see [6, Theorem 2.10]).

Example 4.8 (The elementary example). We are given a measure onH2 which is
a weight a on a geodesic � . It separates H2 into O1 and O2. Let us denote by
v the unit space-like vector orthogonal to the time-like hyperplane defining � and
pointing to O2. Let hµ be the analytic solution proposed in (4.17). Since hµ|Oi is
smooth, it makes sense to write

hµ|Oi (x) =

Z
Hd
G(x, y)dµ(y) =

Z
1

�1

ak
�
dH2(x, � (t))

�
dt.

It is clear that hµ|Oi (x) depends only on dH2(x, � ). First of all, in dimension d = 2
by (4.1) we have the explicit expression

k(⇢) =

1
2⇡


1+

cosh(⇢)

2
log

✓
cosh(⇢) � 1
cosh(⇢) + 1

◆�
.

By the hyperbolic Pythagorean theorem [63]

cosh
�
dH2(x, � (t)

�
= cosh(t)b(x),

where b(x) := cosh(dH2(x, � )) is independent of t . Note also that b(x) has the
following geometric interpretation: sinh(dH2(x, � )) = "hx, vi�, where " = 1 if x
and v are on the same side of � , and " = �1 otherwise. So

cosh
�
dH2(x, � )

�
=

q
1+ hx, vi

2
�
.
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Consider the halfspace model for H2, i.e., H2
= {(u, w) 2 R2 : y > 0} endowed

with the (conformally Euclidean) metricw�2(du2+dw2). Without loss of general-
ity, we can suppose that � (t) = (0, et ). With this choice for the coordinates system
and for the geodesic, it is easy to obtain

sinh(dH2((u, w), � )) = "hx, vi� =

|u|
w

.

Then

hµ|�i (x) =

Z
1

�1

ak
�
dH2(x, � (t))

�
dt

=

a
2⇡

Z
1

�1


1+

cosh(t)b(x)
2

log
✓
cosh(t)b(x) � 1
cosh(t)b(x) + 1

◆�
dt

=

a
⇡

h�
b2(x) � 1

�1/2 arctan ⇣�b2(x) � 1
�
�1/2

⌘
� 1

i

=

a
⇡

h
hx, vi� arctan

⇣
(hx, vi�)�1

⌘
� 1

i

=

a
⇡

h u
w
arctan

⇣w

u

⌘
� 1

i
.

On the one hand, using the conformal structure of H2, one can check that as ex-
pected

�
1hµ � 2hµ

�
|Oi (u, w) = w2

 
@2

@u2
+

@2

@w2

!
hµ|Oi (u, w) � 2hµ|Oi (u, w) = 0

for i = 1, 2. On the other hand, we have for instance that

�
r
2hµ|Oi � ghµ|Oi

� ✓ @

@w
,
@

@w

◆
=

@2

@w2
hµ|Oi +

1
w

@

@w
hµ|�i �

1
w2

hµ|Oi

=

a
⇡

(1� z2)
2w2(1+ z2)2

,

where z = u/w, and the latter expression is negative for z large enough, which
proves that hµ is not the support function of a convex set. But we know that there
exists a convex solution, see Example 2.31. So (4.17) does not reach all convex
solutions. This example is continued in Example 4.13 and Example 4.26.

4.3. Fuchsian solutions

Throughout this section we will use overlined letters to denote objects defined on
the compact hyperbolic manifold Hd/0. For instance, given '̄ : Hd/0 ! R we
can define ' : Hd

! R as ' = 50 � '̄, where 50 : Hd
! Hd/0 is the covering

projection. The precise meaning of overlined symbols will be specified time by
time.
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Theorem 4.9. Let 0 < '̄ 2 Ck,↵(Hd/0) for some k � 0 and 0  ↵ < 1. Then the
equation

1
d
1h̄ � h̄ = '̄ (4.22)

on Hd/0 has a unique solution h̄'̄ defined for all x̄ 2 H/0 as

h̄'̄(x̄) = d
Z

Hd
G(x, y)'(y)dHd(y), (4.23)

where x 2 5�1
0 (x̄) and ' = '̄ � P0 .

Moreover, h̄'̄ 2 Ck+2,↵(Hd) if ↵ > 0 and h̄'̄ 2 C1,�(Hd) for all � < 1 if
↵ = k = 0.

Proof. Consider ' = '̄ � P0 2 Ck,↵(Hd). By definition ' is 0-invariant, i.e.,
'(x) = '(� x) for all � 2 0 and x 2 Hd . Moreover

0 < '̄⇤ := min
Hd/0

'̄  '  max
Hd/0

'̄ =: '̄⇤ < 1,

so that condition (4.13) is satisfied. Let

h'(x) = d
Z

Hd
G(x, y)'(y)dHd(y),

be the solution to equation (1.5) given by Theorem 4.1 and Corollary 4.6. Then h'
is 0-invariant. In fact, for all x 2 Hd and � 2 0 it holds

h'(� x) =d
Z

Hd
G(� x, y)'(y)dHd(y)

=d
Z

Hd
G(� x, � y)'(� y)dHd(� y) (by a change of variable)

=d
Z

Hd
G(x, y)'(� y)dHd(y) (since � is an isometry of Hd )

=d
Z

Hd
G(x, y)'(y)dHd(y) (by construction of ')

=h'(x).

(4.24)

Accordingly, h̄'̄ = h' � P�1
� is a well-defined function on Hd/0, it has the form

given in (4.23) and it is a solution of (4.22) since P0 is a (local) Riemannian isom-
etry.

Now, letR(Hd/0) be the set of the positive finite Radon measures on Hd/0.
As for (4.14) we have R(Hd/0) ⇢ D0(Hd/0), the space of distributions on
Hd/0. Then, given µ̄ 2 R(Hd/0), we can consider the equation

1
d
1h̄ � h̄ = µ̄, in D0

�
Hd/0

�
. (4.25)
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We want to show that, as in the regular case, a solution to this latter can be obtained
by projecting to Hd/0 a solution of (4.16).

Let " > 0 such that B"(x̄) ⇢ Hd/0 is a convex geodesic ball for each
x̄ 2 Hd/0. The compactness of Hd/0 implies that such an " exists, and that
the open covering {B"(x̄)}x̄2Hd/0 admits a finite subcovering {B"(x̄ j )} j2J , |J | <
1. Fix points x j in the fibers over x̄ j , i.e., P(x j ) = x̄ j for all j 2 J . Then
{B"(� x j )}�20, j2J is a locally finite open covering of Hd such that B"(� x j ) \

B"(x j ) = ; for all � 2 0 and all j 2 J .
Given µ 2 R(Hd/0), we can define µ := P⇤

0 µ̄ 2 R+(Hd) as the pull-back
measure of µ̄ through the projection P0 . Since P0 is a Riemannian submersion, µ
is well-defined. Namely, one can first define the action of µ on Borel-measurable
set A ⇢ B"(� x j ) for some � 2 0 and j 2 J , as µ(A) = µ̄(P0(A)). For general
A ⇢ Hd , one uses the sheaf property of distributions.

We note that µ is 0-invariant, i.e.,

µ(� A) := µ({� x : x 2 A}) = µ(A) (4.26)

for every measurable set A. In fact � acts as an isometry on Hd , and (4.26) is true
by definition for any A ⇢ B"(� x j ).

Similarly, consider a distribution T 2 D0(Hd) which is 0-invariant, i.e., such
that (T, f ) = (T, f � � ) for all � 2 0 and for every f 2 D(Hd). Then T naturally
induces a distribution T̄ = P0,⇤T 2 D(Hd/0) as follows. Let f̄ 2 D(Hd/0).
If supp f̄ ⇢ B"(x̄ j ) for some j 2 J , then we set (T̄ , f̄ ) = (T, f̄ � P� |B"(� x j ))
for some � 2 0. The definition is independent of the choice � because of the 0-
invariance of T . For general f̄ 2 D(Hd/0) we use, as above, the sheaf property of
D0(Hd/0).
Theorem 4.10. Let µ̄ 2 R(Hd/0). Then a distribution solution to (4.25) is given
by the distribution h̄µ̄ 2 D0(Hd/0) defined as

h̄µ̄ = P� ,⇤hµ,

where µ = P⇤

0 µ̄ 2 R+(Hd) and hµ is the distribution solution to equation (4.22)
given in Theorem 4.5.
Proof. Given µ̄ 2 R(Hd/0), we define the “lifting” µ := P⇤

� µ̄ 2 R+(Hd).
Consider the equation

1
d
1h � h = µ in D0

�
Hd�, (4.27)

and let hµ be the solution to (4.27) defined in (4.17). Such a solution exists since
(4.13) is satisfied because of the 0-invariance of µ and (4.6). We have that hµ is
0-invariant. In fact, if f 2 C1

c (Hd), then reasoning as in (4.24) we get

h f �� (x) = d
Z

Hd
G(x, y) f (� y)dHd

= d
Z

Hd
G(� x, � y) f (� y)dHd

= d
Z

Hd
G(� x, y) f (y)dHd(y) = h f (� x) = (h f � � )(x)
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and this latter, together with (4.18), yields

(hµ, f � � ) = (µ, h f �� ) = (µ, h f � � ) = (µ, h f ) = (hµ, f ),

by the 0-invariance of µ.
Since hµ is 0-invariant, we can define a distribution h̄µ̄ 2 D0(Hd/0) as

h̄µ̄ = P� ,⇤hµ. (4.28)

Finally, we want to prove that h̄µ̄ is a solution to (4.25), i.e., that
✓
h̄µ̄,

1
d
1 f̄ � f̄

◆
=

�
µ̄, f̄

�
, 8 f̄ 2 D0

�
Hd/0

�
. (4.29)

To this end, suppose first that supp f̄ ⇢ B"(x̄ j ) for some j 2 J . Then supp( 1d1 f̄ �

f̄ ) ⇢ B"(x̄ j ) and
✓
h̄µ̄,

1
d
1 f̄ � f̄

◆
=

✓
hµ,

1
d
1 f � f

◆
,

where f = f̄ � P0|B"(x j ) 2 C1

c (B"(x j )). Moreover, by definition of hµ

✓
hµ,

1
d
1 f � f

◆
=

⇣
µ, h 1

d1 f� f

⌘
.

Thanks to (4.20), we know that since f 2 C1

c (Hd) it holds h 1
d1 f� f = f . Finally,

since f is compactly supported in B"(x j ), we have

(µ, h1 f�d f ) = (µ, f ) = (µ̄, f̄ ),

which concludes the proof when supp f̄ ⇢ B"(x̄ j ). The case of general f 2

D0(Hd/0) follows by the sheaf property of distributions.

4.4. Polyhedral solution

Recall notations and definitions from Subsubsection 3.5.2.

Theorem 4.11 (General case). Let ' be a polyhedral measure of order one onHd .
If the numbers �(⇣ ) are uniformly bounded from below by a positive constant, then
' is the first area measure of a polyhedral F-convex set.

(Invariant case). Let ' be a Radon measure on a compact hyperbolic manifold
Hd/0 such that a lift ' of ' is a polyhedral measure of order one onHd . Then there
exists a cocycle ⌧ such that ' is the first area measure of a polyhedral ⌧ -F-convex
set.
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Remark 4.12 (The d = 1 case). In this case, the condition (iii) in the definition
of polyhedral measure of order one is void. The measure is only the data of a
countable numbers of points on the non-compact one dimensional manifold H1,
with positive weights. From it we construct a space-like polygon with edge length
the weights. The proof is then the same as the proof of Minkowski theorem for
plane convex compact polygons. See Figure 4.1. The invariant case is the data of
a finite number of points with positive weight on a circle of length t . We construct
a space-like polygon invariant under a group of isometry whose linear part is the
group 0 generated by (2.6). From Lemma 2.2, the polygon is the translate of a 0
polygon.

Figure 4.1. Proof of Theorem 4.11 in the d = 1 case. The point on the right hand
picture is chosen arbitrarily. vk is a unit vector orthogonal to the point of H1 of weight
ak .

Example 4.13 ( The elementary example). Before the general proof, let us illus-
trate the method with the elementary example, see Example 2.31. We are given a
measure on H2 which is a weight a on a geodesic � (this generalizes immediately
to any dimension, taking a totally geodesic hypersurface instead of a geodesic). It
separates H2 intoO1 andO2. Let us denote by v the unit space-like vector orthog-
onal to the time-like hyperplane defining � and pointing to O2. Choose any point
p1 2 R3, and let us denote by p2 the point p1 + av. Then the wanted F-convex set
is the union of the future cones of the points of the segment [p1, p2]. Compare with
the analytical solution, Example 4.8.

Proof. Choose an arbitrarily cell of C and denote it by ⇠b. For any other cell ⇠ , let
us define the following vector of Rd+1: if ⇠ = ⇠b then X (⇠) = 0, otherwise

X (⇠) =

nX
i=1

�(⇠i \ ⇠i+1)v(⇠i , ⇠i+1),

where

• (⇠1 = ⇠b, . . . , ⇠n = ⇠) is a path of cells of C , with ⇠i \ ⇠i+1 a codimension 1
cell of C ;

• v(⇠i , ⇠i+1) is the unit space-like vector normal to the hyperplane ofRd+1 defined
by ⇠i \ ⇠i+1, pointing toward ⇠i+1.

Fact: X (⇠) does not depend on the choice of the path between ⇠b and ⇠ . As Hd

is simply connected, we can go from one path to the other by a finite number of
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operations as shown in Figure 4.2. Clearly the deformation on the left-hand figure
leaves X (⇠) unchanged as v(⇠i , ⇠i+1) = �v(⇠i+1, ⇠i ). The deformation on the right
hand figure consists of changing cells sharing a codimension 2 cell ⇣ by the other
cells sharing ⇣ . Then the result follows from condition (3.13) because v(⇠i , ⇠i+1) is
orthogonal to u(⇣, ⇠i \ ⇠i+1). The fact is proved.

Figure 4.2. The two kinds of operations to go from a path of cell to another (proof of
Theorem 4.11).

Fact: the set of X (⇠) is discrete. Between two points X (⇠) and X (⇠ 0) there is at
least a space-like segment given by a vector �v, with � greater than a given positive
constant by assumption, and v a unit space-like vector, so its Euclidean norm is
� 1. The fact is proved.

Let us define, for ⌘ 2 F

H(⌘) = max
⇠

h⌘, X (⇠)i�.

Let ⌘ 2 ⇠1 and ⌘ /2 ⇠2. For a path of cells ⇠i between ⇠1 and ⇠2, as v(⇠i , ⇠i+1) points
toward ⇠i+1, hv(⇠i , ⇠i+1), ⌘i� is negative, hence

hX (⇠2), ⌘i� = hX (⇠1), ⌘i� +

X
i
�(⇠i \ ⇠i+1)hv(⇠i , ⇠i+1), ⌘i� < hX (⇠1), ⌘i�

so H(⌘) = h⌘, X (⇠1)i�. This says that the decomposition of Hd induced by H is
C . H is the extended support function of the wanted polyhedron, because if ⇠ and
⇠ 0 share a codimension 2 cell, then there is an edge joining X (⇠) to X (⇠ 0). This
edge is X (⇠) � X (⇠ 0) = �(⇠ \ ⇠ 0)v(⇠, ⇠ 0) and has length �(⇠ \ ⇠ 0). The general
part of the theorem is proved. Note that if the base cell ⇠b is changed, the resulting
polyhedron will differ from the former one by a translation.

Now suppose that the data of the cellulation and the � are invariant under the
action of 0. To each �0 2 0 we associate ⌧�0 := X (�0⇠b). For µ0 2 0, the path
from ⇠b to �0µ0⇠b is the path from ⇠b to �0⇠b followed by the image under �0 of the
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path from ⇠b to µ0⇠b. Moreover it is easily checked from the definition of X that

�0X (⇠) =

nX
i=1

�(⇠i \ ⇠i+1)�0v(⇠i , ⇠i+1)

=

nX
i=1

�(⇠i \ ⇠i+1)v(�0⇠i , �0⇠i+1)

=

nX
i=1

�(�0⇠i \ �0⇠i+1)v(�0⇠i , �0⇠i+1),

i.e., �0X (⇠) is the realization of the path from �0⇠b to �0⇠ . Hence

⌧�0µ0 = X (�0µ0⇠b) = X (�0⇠b) + �0X (µ0⇠b) = ⌧�0 + �0⌧µ0,

and the cocycle condition (2.5) is satisfied. Finally

� X (⇠) = �0X (⇠) + ⌧�0 = �0X (⇠) + X (�0⇠b)

is the sum of the realization of the path from ⇠b to �0⇠b followed by the path from
�0⇠b to �0⇠ , i.e., it is the realization of the path from ⇠b to �0⇠ , hence a vertex of P .
The set of vertices of P is 0⌧ invariant, and so is P .

Remark 4.14 (A classical construction). The analog of Theorem 4.11 in the com-
pact Euclidean case was solved in [55]. We almost repeated this proof in the first
part of the proof of Theorem 4.11 above, up to obvious changes. Note that the
argument is classical and appears in some places in polyhedral geometry, without
mention to the Christoffel problem, see [18]. Here polyhedral hedgehogs appear
naturally under the name virtual polytopes, as realizations of signed polyhedral
measure of order one.

The striking fact is that the construction in the proof of Theorem 4.11 also
appears in the following. Inspiring on the d = 2 construction of G. Mess [1, 46],
F. Bonsante shows in [14] how to construct an F-regular domain from a measured
geodesic stratification, see Remark 3.23 (in this setting, in d = 2, the analog of
condition (3.13) is void, but it holds for d > 2). The second part of the proof of
Theorem 4.11 comes from those references. Actually the basement of the construc-
tion is contained in the d = 1 case (Remark 4.12).
Remark 4.15 (Graftings). Let H2/0 be a compact hyperbolic surface, and let �
be a simple closed geodesic on it. Assign a positive weight a to � . It lifts on
H2 to an infinite number of disjoint geodesics, with the same weight a. From the
construction mentioned above [14, 46], one can construct a domain �⌧ . Let S̃1 be
the level surface for the cosmological time of�⌧ . We get a compact surface S̃1/0⌧ ,
and this way to go from H2/0 to S̃1/0⌧ is a geometric realization of a grafting of
H2/0 along � . Graftings are more generally defined along a measured geodesic
lamination on a hyperbolic surface. The same procedure applied to a ⌧ -F-convex
polyhedron is the geometric realization of a grafting, not along disjoint geodesic
but along a cellulation of the hyperbolic surface. See Figure 4.3.
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Figure 4.3. To Remark 4.15. Grafting and intrinsic meaning of condition (3.13).

Remark 4.16 (Fuchsian condition). The polyhedral case is absent from Theorem
1.1 because the polyhedral surface given by Theorem 4.11 should not be Fuchsian
in general. Are there conditions on the measure to be the first area measure of a
convex Fuchsian polyhedron? Can these conditions be stated in term of grafting in
d = 2?

4.5. Convexity of solutions

In sections from 4.1 to 4.3 we have described how to obtain a general analytic
solution to equation (4.22). Actually, by a geometrical point of view we are mainly
interested in special solutions which are restriction to Hd of convex functions on
F . Hence, in this section we discuss some conditions which ensure the convexity
of the solution hµ given in (4.17).

A first general necessary and sufficient convexity condition for classical convex
body was given by Firey in [21, Theorem 2]. There the convexity was showed to
be equivalent to the positivity of a particular quadratic form. As already observed
in [42], Firey’s approach seems unlikely generalizable to F-convex set, since it is
based on applications of the Stokes’ theorem on the compact sphere. Nevertheless,
a similar condition can be given also in our case. We suppose here that the solution
hµ given in (4.17) is continuous (this is without loss of generality, since support
functions of convex sets are necessarily continuous; see also Proposition 4.28). By
Section 2.5, we know that hµ is the restricted support function of a convex set if and
only if its extended support function Hµ(⌘) = k⌘k�hµ(⌘/k⌘k�) is convex, which
is in turn equivalent to Hµ being subadditive, i.e.,

Hµ(⌘ + ⌫)  Hµ(⌘) + Hµ(⌫).

We note that Hµ can be written in the form

Hµ(⌘) =

Z
Hd

k⌘k�G
✓

⌘

k⌘k�

, y
◆
dµ(y) =

Z
Hd
0(⌘, y)dµ(y),
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where

0(⌘, y) = k⌘k�k
✓
dHd

✓
⌘

k⌘k�

, y
◆◆

= k⌘k�k
⇣
acosh

⇣
�k⌘k�1

�
h⌘, yi

�

⌘⌘

= �

h⌘, yi
�

vd�1

Z acosh
⇣
�k⌘k�1

�
h⌘,yi

�

⌘

+1

dq
sinhd�1 q cosh2 q

is defined for all ⌘ 2 F and y 2 Hd
⇢ F . Hence we get the following

Proposition 4.17. Let µ 2 R+(Hd). Then hµ defined formally as in (4.17) is the
restricted support function of a F-convex set if and only if

����
Z

Hd
G(x, y)dµ(y)

���� < +1, 8x 2 Hd ,

and Z
Hd
3(⌘, ⌫, y)dµ(y) � 0, (4.30)

for all ⌘, ⌫ 2 F , where

3(⌘, ⌫, y) = 0(⌘, y) + 0(⌫, y) � 0(⌘ + ⌫, y).

In case hµ 2 C2, µ = 'dHd for some continuous function ', and the expression
of h = h' is given by (4.23). Thanks to Proposition 2.47, we know that h' is the
restricted support function of a F-convex if and only if r

2h' � h'g � 0. In [42],
the authors computed explicitly this expression. For completeness we report here,
with minor changes, their computations.

Let r
2
1G be the Hessian of G : Hd

⇥ Hd
! R with respect to the first

component. Then
⇣
r
2h|x � h(x)g|x

⌘
(X, X)

=

Z
Hd

\{x}

h
r
2
1G|(x,y)(X, X) � |X |

2G(x, y)
i
'(y)dHd(y),

(4.31)

for all X 2 TxHd , with |X |
2

= g(X, X). Since G(x, y) = k(⇢y(x)), we have that

r
2
1G|(x,y) = k̈(⇢y(x))d⇢y ⌦ d⇢y|x + k̇(⇢y(x))r2⇢y|x .

Computing explicitly k̇ and k̈ and using (2.23)

r
2
1G|(x,y) =

 
k(⇢y(x))+

1
vd�1 sinhd(⇢y(x))

!
g�

d
vd�1 sinhd(⇢y(x))

d⇢y ⌦ d⇢y|x .
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Accordingly, (4.31) yields
⇣
r
2h|x � h(x)g|x

⌘
(X, X)

= |X |
2
Z

1

0

1
vd�1 sinhd(⇢y(x))

Z
@B⇢(x)

'(y)dA⇢(y)d⇢

�

Z
1

0

d
vd�1 sinhd(⇢y(x))

Z
@B⇢(x)

g|x (r⇢y, X)2'(y)dA⇢(y)d⇢

=

Z
1

0

1
vd�1 sinhd(⇢y(x))

Z
@B⇢(x)

h
|X |

2
� dgHd |x (r⇢y, X)2

i
'(y)dA⇢(y)d⇢ .

Proposition 4.18. Let ' 2 C2(Hd). The function h' , defined as in (4.23), is the
restricted support function of a F-convex set if and only if

0 

Z
1

0

1
vd�1 sinhd(⇢y(x))

Z
@B⇢(x)

h
|X |

2
� dgHd |x (r⇢y, X)2

i
'(y)dA⇢(y)d⇢,

for all x 2 Hd and all X 2 TxHd .

Remark 4.19. The last expression corresponds to the quadratic form Qu0(u00) com-
puted in [42], where u0

= x and u00
= X . This is easily seen using the explicit

form of k and the relations cosh ⇢y(x) = �hx, yi and
⌦
r⇢y(x), X

↵
sinh ⇢y(x) =

�hX, yi obtained at page 93 in [42]. Here y 2 Hd is identified with y 2 TxF .
Remark 4.20 (Sufficient conditions). The convexity conditions (4.30) and the one
of Proposition 4.18 are sharp, but pretty involved and hard to check. In the case of
compact convex bodies in the Euclidean space, a more direct approach was pro-
posed by Guan and Ma [30], following Pogorelov, but it does not seems suitable
to be adapted to our setting. In fact in the classical setting one has that the re-
stricted support function hK of a regular convex body K satisfies the convexity
condition Sd

r
2hK + hK gSd � 0 as a quadratic form on Sd . Using the fact that the

Hessian Hess(HK ) of the total support function HK (x) := |x |hK (x/|x |) is (�1)-
homogeneous and, in Rd+1,

Hess
�
HessHK

�
ei , ei

���
e j , e j

�
= Hess

�
HessHK

�
e j , e j

���
ei , ei

�
,

one obtains the symmetry relation

Sd
r
2
⇣

Sd
r
2hK

�
ei , ei

�
+ hK

⌘ �
e j , e j

�
+

Sd
r
2hK

�
e j , e j

�
=

Sd
r
2
⇣

Sd
r
2hK

�
e j , e j

�
+ hK

⌘ �
ei , ei

�
+

Sd
r
2hK

�
ei , ei

�
,

for all i = 1, . . . , d, where {ei }di=1 is a local orthonormal frame in a neighbor-
hood of any point x 2 Sd . Choosing the point x and the direction e1 such that
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Sd
r
2hK (e1, e1)|x + hK (x) is a minimum of the curvature radius of K , an applica-

tion of the maximum principle gives that

Sd
r
2hK (e1, e1)|x + hK (x) � ' �

Sd
r
2'(e1, e1),

where ' is the mean radius of curvature of K . This proves that K is convex provided

'(x) �
Sd

r
2'(ei , ei )|x � 0, (4.32)

for all x and i .
Because of the different sign in the decomposition of the Euclidean Hessian in

our setting (2.2), we get instead that

r
2hK (e1, e1)|x � hK (x)  r

2'(e1, e1) + ',

from which it seems impossible to get any useful conclusion.
It has to be noted that in [30] a further sufficient condition for the existence of

a convex solution is given for the classical compact problem. In particular it is there
asked for '�1 to be a solution of r

2
Sd'

�1
+ '�1gSd � 0 in the sense of quadratic

form (actually the more general Christoffel-Minkowski problem is treated). Once
again, the techniques used in [30] seem require the compactness of the underly-
ing space Sd , so that a generalization of their proof to our setting seems definitely
non-trivial. Nevertheless, it is natural to wonder whether there exist conditions
on r

2
Hd'

�1
� '�1gHd which imply the existence of an F-convex solution to the

Christoffel problem.
Remark 4.21 (Curvatures close to a constant function). Finally, we note that
condition (4.32) is verified if ' is C2 close to a constant function. In the same
order of idea, suppose that 0 < '̄ : Hd/0 ! R is C↵ close enough to a positive
constant function '̄⇤ > 0. The unique 0 invariant solution h̄⇤ to

1
d
1h̄⇤ � h̄⇤ = '̄⇤

on Hd/0 is the constant function h̄⇤ = �'̄⇤. Consider the unique 0 invariant
solution h̄ to 1

d1h̄ � h̄ = '̄, which, by Theorem 4.9 and with notation introduced
therein, is given by

h̄(x̄) =

Z
Hd
G(x, y)'(y)dHd(y).

Since '̄ is C↵ close to '̄⇤ and G(x, ·) 2 L1(Hd), also h̄ is C0 close to h̄⇤. Then,
by Schauder’s estimates (see for instance [Section 3.6.3]Au98), h̄ is C2,↵ close to
h⇤, and it is then the restriction to Hd of a convex function on F . This proves the
following:

Proposition 4.22. Let 0 < '̄ : Hd/0 ! R. Fix constants 0 < ↵  1 and '̄⇤ > 0.
There exists a constant c = c(↵, '̄) such that if k'̄ � '̄⇤kC↵ < c, then '̄ is the
restricted support function of a 0 invariant F-convex set.
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4.6. Uniqueness

In this section with find conditions under which F-convex sets are uniquely deter-
mined by their first area measure. This is obviously not true in general, considering
F-convex sets differing by a translation, whose restricted support functions are given
in Example 2.20. Below is a more elaborated example.
Example 4.23 (Fuchsian and quasi-Fuchsian F-convex sets with same mean
radius of curvature). A nontrivial example can be constructed as follows. Let
⌧ be a cocycle which is not a coboundary. Let K be a C2

+
⌧ -F-convex set, with

mean radius of curvature '. ' is 0 invariant and we know by Theorem 4.9 that
there exists a 0 invariant solution h0. We do not know if h0 is convex, but for
any t > 0, K + t K (H) is a C2

+
⌧ -F-convex set, with mean radius of curvature

' + t , and the corresponding Fuchsian solution is h0 � t . If t is sufficiently large,
r
2(h0 � t) � (h0 � t)g > 0, and h0 � t is the support function of a 0 invariant

F-convex set with same mean radius of curvature than K + t K (H).

4.6.1. An elementary case

So far we have seen some uniqueness results for analytic solutions to equation
(4.16). As a matter of fact, we are interested in a smaller class of solutions which
are restricted support functions of some F-convex set. As one expects, convexity
gives further information on the uniqueness of the solution. A special situation oc-
curs when the first area measure µ of some F-convex set K is zero in some open
domain � ⇢ Hd . In this case we have that the restricted support function hK sat-
isfies the homogeneous equation 1

d1hK � hK = 0 in the sense of distributions on
�. By elliptic regularity we have that hK |� 2 C1(�). In particular, it makes sense
to consider the Hessian r

2hK of hK . Hence we have that, at each point x 2 �,
the quadratic form r

2hK � hK g is trace-null, and furthermore all its eigenvalues
are nonnegative by convexity condition. This yields that r2hK � hK g ⌘ 0 in �,
which in turn gives that the extended support function HK (⌘) has null Hessian on
{⌘ 2 F : ⌘/k⌘k� 2 �}. Hence, hK |� is the restriction to Hd of a linear function
on Rd+1.

The remarks above gives an elementary condition for uniqueness:

Lemma 4.24. Let H1 and H2 be the extended support functions of two F-convex
sets with the same first area measure. If H1 � H2 is convex, then they differ by the
restriction of a linear form to Hd .

This also gives the following characterization.

Lemma 4.25. An F-convex set whose first area measure is a polyhedral measure
of order one is an F-convex polyhedron.

In Section 5, we will show many hypersurfaces with zero mean radius of cur-
vature, but they will not be explicit.
Example 4.26 (A surface with zero mean radius of curvature). From Example
4.8, we got a function h on an open setO ofH2 such that its normal representation
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has zero mean radius of curvature. Up to a constant, the 1-extension H of h has the
form

H(x) = hx, vi� arctan
✓

kxk�

hx, vi�

◆
+ hx,

x
kxk�

i�

(here one can once more check that the wave operator of H restricted to H2 is
zero) and one can compute its Lorentzian gradient restricted to H2. Taking for
v the vector with coordinates (1, 0, 0), and using the parametrization of O with

coordinates

0
@ sinh(t) cos(✓)sinh(t) sin(✓)

cosh(t)

1
A, for t > 0,�⇡/2 < ✓ < ⇡/2, we get the following

normal representation, drawn in Figure 4.4,

�(t, ✓) =

0
BB@
arctan

⇣
1

sinh(t) cos(✓)

⌘
sinh(t) sin(✓)

1+sinh(t)2 cos(✓)2
cosh(t)

p

1+sinh(t)2 cos(✓)2

1
CCA .

Note that at the points where the radii ri of curvature are not zero, multiplying by
r1r2, r1 + r2 = 0 implies 1/r1 + 1/r2 = 0, and 1/r1 are the principal curvatures of
the surface, hence the surface has mean curvature zero.

4.6.2. Sovertkov condition for uniqueness

In [58], the author proved the uniqueness among smooth solutions which do not
grow too much. An easy observation gives that Sovertkov’s result holds as well for
distribution solutions.

Theorem 4.27. Let µ be a positive radon measure on Hd and let ⇣ : @Hd
! R

be a function defined on the hyperbolic boundary at infinity. There is at most one
continuous distribution solution h to the equation (4.16) satisfying

8✓, lim
⇢!+1

h(⇢, ✓)

cosh(⇢)
= ⇣(✓). (4.33)

By Lemma 2.22, the result above has a clear geometric meaning: two F-convex sets
with the same first area measure are equal if for any null direction ` they have the
same support plane at infinity directed by `. In particular, if ⇣ is continuous, the
two convex sets must be contained in the future cone of a point.

Proof. Let h1, h2 2 D0(Hn) be two continuous functions satisfying (4.33) and

1h1 � dh1 = µ = 1h2 � dh2

in D0(Hn). Then, h3 = h1 � h2 satisfies

8✓, lim
⇢!+1

h3(⇢, ✓)

cosh(⇢)
= 0,
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Figure 4.4. To Example 4.26.

by the linearity of the equation

1
d
1h3 � h3 = 0, (4.34)

and by elliptic regularity h3 2 C1(Hn), [6]. Hence we can proceed as in [58] to
prove that h3 = 0. Namely, let " > 0 and define the smooth functions

h(")
±

(⇢, ✓) := " (cosh(⇢) + 1) ± h3(⇢, ✓).
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Both h(")
±
satisfy

lim
⇢!+1

h(")
±

(⇢, ✓) = lim
⇢!+1

(cosh(⇢) + 1)
✓
" ±

h3(⇢, ✓)

cosh(⇢) + 1

◆
> 0,

for all ✓ , and
1
d
1h(")

±
� h(")

±
= �"d < 0.

By the maximum principle we thus get that h(")
±
are strictly positive for all ", that is

|h3(⇢, ✓)| < " (cosh(⇢) + 1)

for all " > 0 and (⇢, ✓) 2 Hd . This proves the claim.

4.6.3. Non-uniqueness

Reasoning as in the proof of Theorem 4.27, it is possible to get a characterization
of non-unique solutions. In fact, let h1 and h2 be two distributions solutions to
the equation (4.16) for some positive Radon measure µ on Hd . Then h = h1 � h2
satisfies the homogeneous equation (4.34) and is hence smooth by elliptic regularity.
This elementary observation easily implies the following

Proposition 4.28. Letµ 2 R(Hd)+ and let hµ be the distribution solution to equa-
tion (4.16) defined in (4.17). If hµ 2 D0(Hd)\C0(Hd), then there exists no F-convex
set K with µ as first area measure.

Proof. By contradiction, suppose such a convex K exists. Then its restricted sup-
port function hK is a continuous solution to (4.16). But hµ � hK 2 C1(Hd) by
elliptic regularity, and this gives us a contradiction.

Example 4.29. Let µ = �y be the Dirac distribution at the point y 2 Hd . Then the
solution to (4.22) proposed in (4.17) is

h�(x) = G(x, y) 2 D0
�
Hd�

\ C0
�
Hd�.

Hence, by Proposition 4.28, there is no F-convex set with first area measure �y . On
the other hand, this result is not surprising, since by Section 4.6.1 we know that
a continuous solution h to 1

d1h � h = �y that is restriction to Hd of a convex
function, has to be the restriction of a linear function on Hd

\ {y}, hence on all of
Hd by continuity.

4.7. Proof of Theorem 1.1

The uniqueness is a consequence of Theorem 4.27 together with Lemma 2.23 (it
will also follows from Corollary 5.2).

The first part of Theorem 1.1 follows from Theorem 4.10, the second from
Proposition 4.17 and the third from Theorem 4.9.
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4.8. The d = 1 case

We specify here the analytical results of the previous section to the one dimensional
setting, where an almost complete picture can be given. Actually, the first area
measure is also the last area measure, so in d = 1 there is a unique Christoffel-
Minkowski problem. In fact in this case we have H1

= R1 (see Subsection 2.15),
and the first area measure is a positive Radon measure µ on R. Accordingly, equa-
tion (4.22) reads

h00(t) � h(t) = µ, in D0(R) (4.35)

in the sense of distributions, that is
Z

1

�1

h(s)
�
f 00(s) � f (s)

�
ds =

Z
1

�1

f (s)dµ(s), 8 f 2 C1

c (R).

Assume that µ 2 R+(H1), that is
Z

1

�1

e�|t |dµ(t) < 1. (4.36)

Reasoning as in the previous sections, we get that a particular solution to (4.35)
takes the form

hµ(t) = �

Z
1

�1

e�|s�t |

2
dµ(s),

where the distribution hµ 2 D0(R) is defined by

�
hµ, f

�
:=

�
µ, h f

�
= �

Z
1

�1

✓Z
1

�1

e�|s�t |

2
f (s)ds

◆
dµ(t), 8 f 2 C1

c (R),

and is well-defined because of (4.36). In fact an integration by parts yields

(hµ
00

� hµ, f ) = (hµ, f 00

� f ) =�

Z
1

�1

✓Z
1

�1

e�|s�t |

2
�
f 00(s) � f (s)

�
ds
◆
dµ(t)

=

Z
1

�1

f (t)dµ(t).

We note that, thanks to condition (4.36), even if the function f := �e�|s|/2 is not
compactly supported, the convolution hµ = f ⇤ µ inherits the continuity property
of f .

Considering also solutions to the homogeneous equation h00
= h, we get that

for µ 2 R+(H1) all solutions to equations (4.35) are continuous and can be written
as

hµ(t) = �

Z
1

�1

e�|s�t |

2
dµ(s) + A cosh(t) + B sinh(t), A, B 2 R. (4.37)
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When µ = '(t)dt for some ' 2 C0(R), then assumption (4.36) can be skipped. In
fact the general solution to equation

h00(t) � h(t) = '(t) (4.38)

can be also written in the form

h' =

Z t

1
sinh(t � s)'(s)ds + C cosh(t) + D sinh(t), C, D 2 R, (4.39)

which makes sense for any continuous function ' without growth assumptions. We
note that, when Z

1

�1

e�|t |'(t)dt < 1,

the expression in (4.39) and in (4.37) are the same up to setting

A = C +

1
2

Z
1

1
e�s'(s)ds +

1
2

Z 1

�1

es'(s)ds,

B = D +

1
2

Z
1

1
e�s'(s)ds �

1
2

Z 1

�1

es'(s)ds.

Since the problem is one dimensional, equation (4.38) can be interpreted also as

r
2h � gh = ' � 0

hence all the solutions given in (4.39) are automatically restrictions toH1 of convex
functions on F .

When µ 2 R(H1) is a positive measure, one expects to get the same conclu-
sion for solutions of (4.35), since, roughly speaking, r2h � gh = µ > 0 in the
sense of distribution. To prove this, thanks to Lemma 2.53, it is enough to show
that

hµ(t + ↵) + hµ(t � ↵) � 2 cosh(↵)hµ(t)
for all t,↵ 2 R. We let t be fixed, and since this latter is an even condition, we can
assume without loss of generality that ↵ > 0. Then, an explicit computation gives
that

2 cosh(↵)hµ(t) � hµ(t + ↵) � hµ(t � ↵)

=

Z
1

�1


� cosh(↵)e�|t�s|

+

e�|t+↵�s|

2
+

e�|t�↵�s|

2

�
dµ(s)  0,

since 
� cosh(↵)e�|t�s|

+

e�|t+↵�s|

2
+

e�|t�↵�s|

2

�

=

(
0 if |t � s| � ↵

sinh(|t � s| � ↵)  0 if |t � s| < ↵.
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Example 4.30. To end this section, we remark that here we get also an explicit
expression for the Elementary example of Example 2.31 in the d = 1 case. This
is no more true in higher dimension, as we discussed in Example 4.13. In fact, in
one dimension we have to consider a measure concentrated in a point, that is for
instance µ = �0, the Dirac mass at the origin. Hence a special solution h�0 given
by (4.37) is

h�0(t) =

e�|t |

2
,

which is the restriction to H1 of the 1-homogeneous piecewise linear function H
on R2 defined as

H(x1, x2) =

(
x2 + x1 if x1 < 0
x2 � x1 if x1 � 0.

5. Quasi-Fuchsian solutions

5.1. Uniqueness of the solution

We start this section with the simple proof of the fact that the solution to (4.25) is
unique in the quasi-Fuchsian case. Actually, it can be shown that this result follows
from Theorem 4.27, see Remark 2.19.

Proposition 5.1. Given µ̄ 2 R(Hd/0), the equation (4.25) has a unique solution
h̄µ̄ in the sense of distributions, whose explicit expression is given in (4.28).

Proof. Let T̄1, T̄2 2 D0(Hd/0) be two solution of (4.25). Choose ⌘̄ 2 C1(Hd/0)
and let h̄⌘̄ 2 C1(Hd/0) be a solution to 1

d1h̄⌘̄ � h̄⌘̄ = ⌘̄, which exists thanks to
Theorem 4.9. Then

(T̄1, ⌘̄) =

✓
T̄1,

1
d
1h̄⌘̄ � h̄⌘̄

◆
=

✓
1
d
1T̄1 � T̄1, h̄⌘̄

◆

=

�
µ̄, h̄⌘̄

�
=

✓
1
d
1T̄2 � T̄2, h̄⌘̄

◆
=

✓
T̄2,

1
d
1h̄⌘̄ � h̄⌘̄

◆
=

�
T̄2, ⌘̄

�
.

Since ⌘̄ is arbitrary, this proves that T̄1 = T̄2 in the sense of distributions.

Corollary 5.2. Let ⌧ be a cocycle and let h and h0 be two ⌧ -equivariant maps such
that S1(h) = S1(h0). Then h = h0. In particular there exists at most one ⌧ -F-convex
set with a given first area measure.

Proof. By linearity, S1(h�h0) = 0, but h�h0 is 0-invariant, so by Proposition 5.1,
h = h0. The second part follows by considering support functions for h and h0.
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5.2. The ⌧ -hedgehog of zero curvature

Lemma 5.3. For any ⌧ 2 Z1(0, Rd+1), there exists a unique C1 ⌧ -hedgehog �⌧
with S1(�⌧ ) = 0. It is the support function of a convex set if and only if ⌧ is a
coboundary.

In the Fuchsian case (⌧ = 0), �⌧ is the origin.

Proof. Let h be a ⌧ -equivariant map. By Theorem 4.10 there exits a 0-invariant
function h0 such that S1(h0) = S1(h) in the sense of distribution (h0 is a continuous
function by the arguments of Subsubsection 4.6.3). Let us define �⌧ = h � h0. It
has the following properties:

• �⌧ is unique: by Corollary 5.2. In particular, it is well-defined in the sense that
is depends only on ⌧ .

• S1(�⌧ ) = 0: by construction.
• �⌧ is C1: by the preceding item and elliptic regularity.
• If ⌧ is a coboundary, with the notations of (v) of Lemma 2.3, S1(H) = S1(H0),
H � H0 = h·, vi� and this is the 1-extension of �⌧ .

• If H � H0 is convex, as H and H0 have the same area measure, by Subsubsec-
tion 4.6.1, H and H0 differ by the restriction to F of a linear form. So ⌧ is a
coboundary.

• �⌧ is ⌧ -equivariant by construction.

Remark 5.4 (Formal eigenfunctions of the hyperbolicLaplacian). Let us denote
by E(d) the space of formal eigenfunctions of the Laplacian of Hd for the eigen-
value d. For any ⌧ 2 Z1(0, Rd+1), �⌧ belongs to E(d) (note that its 1-extension
is a formal eigenfunction of the wave operator). Actually this correspondence is a
linear injection.

Lemma 5.5. The map � : ⌧ 7! �⌧ from Z1(0, Rd+1) to E(d) is an injective linear
map.

The image of B1(0, Rd+1) is the set of the restrictions toHd of linear forms of
Rd+1.

Proof. We already know that the image of Z1 belongs to E(d).
� is injective: Let ⌧ 0

2 Z1. If �(⌧ ) = �(⌧ 0), then there exists a ⌧ -equivariant
function h, a ⌧ 0-equivariant function h0 and 0 invariant functions h0 and h0

0 with
h0

� h0

0 = h � h0, i.e., h0
+ h0 = h + h0. The right hand side is a ⌧ -equivariant

function and the left hand side is a ⌧ 0-equivariant function. The result follows from
Lemma 2.3.

� is linear: with the preceding notations and ↵ a real number, from Lemma 2.3,
↵h + h0 is (↵⌧ + ⌧ 0)-equivariant. On one hand, ↵(h � h0) + h0

� h0

0 is equal to
↵�⌧+�⌧ 0 . On the other hand, S1(↵h+h0) = S1(↵h0+h0

0) hence ↵h+h0
�↵h0+h0

0
is equal to �↵⌧+⌧ 0 .

�(B1): we already know that the image is made of restriction of linear forms.
The result follows because � is linear and B1 has dimension d + 1.
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Remark 5.6 (Slicingby constantmean radius of curvature). From Lemma 2.55,
we get two positive constants c1 and c2 such that, for any positive c, �⌧ � c1 � c
is a slicing of an unbounded part of the ⌧ -F-regular domain �+

⌧ by smooth convex
Cauchy surfaces with constant mean radius of curvature. In the same way, �⌧+c2+c
is a slicing of an unbounded part of the ⌧ -P-convex domain ��

⌧ by smooth convex
Cauchy surfaces with constant mean radius of curvature. Taking negative c, the
slicing can be extended, going outside of�+

⌧ [��

⌧ , and the slices are ⌧ -hedgehogs.
Remark 5.7 (Quasi-Fuchsian Christoffel problem). The uniqueness part of the
problem is solved by Corollary 5.2. Given a 0-invariant measure µ, Theorem 4.9
gives the (unique) 0-invariant solution h0 of S1(h0) = µ. So h := h0 + �⌧ is the
unique ⌧ -equivariant solution of S1(h) = µ, in the sense of distribution. To know
when h is the support function of a ⌧ -F-convex set, one has to use Proposition 4.17.
Remark 5.8 (Relations with Codazzi tensors). A Codazzi tensor (here on a hy-
perbolic surface S) is a self-adjoint (0, 2)-tensor which satisfies the Codazzi equa-
tion. For example, for any smooth function u on S, Hessu � uId is a Codazzi
tensor. If S is compact, a group isomorphism 8 between the space of traceless Co-
dazzi tensor and H1(0, R3) (0 = ⇡1(S)) is constructed in [15]: Let b̃ be the lifting
of b to H2. From a result of [50], there exists a smooth map h : H2

! R with b̃ =

Hessh � hId. It can be checked that b̃ is ⌧ -equivariant, for a ⌧ 2 Z1(0, R3). Then
define 8(b) = ⌧ . Lemma 5.3 says that 8 is surjective: for any ⌧ , Hess�⌧ � �⌧ Id is
a traceless Codazzi operator on Hd/0.

5.3. Mean width of flat GHCM spacetimes

Let h be a ⌧ -equivariant map. The map h � �⌧ is 0-invariant, and S1(h) = S1(h �

�⌧ ). With the notations of Subsection 4.3 together with the definition of the action
given in (3.12), 8 f 2 C1(Hd/0), the action of the first area measure on Hd/0
writes as �

S1
�
h � �⌧

�
, f
�

=

Z
Hd/0

�
h � �⌧

� ✓1
d
1� 1

◆
f.

Let h be the support function of a ⌧ -F-convex set K . The Radon measure S1(K , ·)
is 0 invariant, so for any fundamental domain ! for the action of 0, we can define
the total first area measure of K by S1(K ) := S1(K ,!). Actually, S1(K , ·) gives a
Radon measure S1(K , ·) onHd/0, and S1(K ) = S1(K , Hd/0). By setting f = 1
in the above formula, we obtain (compare with Remark 3.16)

S1(K ) = �

Z
Hd/0

h � �⌧ . (5.1)

Let us consider a ⌧ -F-regular domain �+

⌧ with simplicial singularity (see Subsec-
tion 2.8). In this case, the total mass of the measured geodesic stratification on
Hd/0 is equal to S1(�+

⌧ ) (see Remark 3.23).
From the given cocycle ⌧ , one also gets a ⌧ -P-regular domain ��

⌧ (it is given
for example by the symmetry with respect to the origin of the F-convex domain
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��⌧ ). The meaning of S1(��

⌧ ) is clear. Let us denote by h+

⌧ the support function
of �+

⌧ and by h�

⌧ the support function of �
�

�⌧ , which is a (�⌧ )-equivariant map.
Moreover ��⌧ = ��⌧ , so using (5.1) and the equation above,

S1
�
��

⌧

�
+ S1

�
�+

⌧

�
= �

Z
Hd/0

h+

⌧ + h�

⌧ .

This last formula has the following geometric meaning. Let ⌘ 2 F , and �1 :

Rd
! Rd , x 7! �x . Then h�

⌧ � �1 is the support function (defined on �F ) of
��

⌧ . So (h+

⌧ + h�

⌧ )(⌘) is the “distance” between the support planes of �+

⌧ and
�+

⌧ orthogonal to ⌘ ((h+

⌧ + h�

⌧ )(⌘) < 0 says that the respective half-spaces are
disjoint). Hence �

R
Hd/0 h

+

⌧ + h�

⌧ divided by the volume of Hd/0 can be called
the mean width of the flat spacetime (�+

⌧ [��

⌧ )/0⌧ . We get that this mean width
is determined by the total mass of the measured geodesic stratifications defining the
spacetime. In the Fuchsian case ⌧ = 0, the mean width is null.
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